2013年北京市西城区高三二模数学理科含答案
北京市西城区2013届高三上学期期末考试数学理题目
北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科) 2013.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =( )(A )1(0,)2(B )(1,1)-(C )1(,1)(,)2-∞-+∞ (D )(,1)(0,)-∞-+∞2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限 (B )第二象限(C )第三象限 (D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( ) (A )sin 1=ρθ (B )sin 3=ρθ (C )cos 1=ρθ(D )cos 3=ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( ) (A )416(,)55(B )4(,16)5(C )(1,16) (D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A )25(B )26 (C )27 (D )428.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( ) (A )221(B )463(C )121(D )263第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k =_____.10.如图,Rt △ABC 中,90ACB ︒∠=,3AC =,4BC =.以AC 为直径的圆交AB 于点D ,则BD = ;CD =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =,34a =,63k S =,则k =______.12.已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12PF F 的面积是______.13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在△ABC 中,已知3sin 21cos 2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2BC =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB // 平面EAC ;(Ⅱ)求证:平面PAD ⊥平面ABCD ; (Ⅲ)求二面角B AC E --的余弦值.17.(本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下: 测试指标 [70,76) [76,82) [82,88) [88,94) [94,100]元件A 8 12 40 32 8元件B7 1840296(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.18.(本小题满分13分)已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值.20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n =表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末高三数学(理科)参考答案及评分标准2013.1一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6; 12.2; 13.1[,1]2-,[,]62ππ; 14.①③.注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)(Ⅰ)解法一:因为3sin 21cos 2B B =-,所以 223sin cos 2sin B B B =. ………………3分因为 0B <<π, 所以 sin 0B >,从而 tan 3B =, ………………5分所以 π3B =. ………………6分解法二: 依题意得 3sin 2cos 21B B +=,所以 2sin(2)16B π+=, 即 1sin(2)62B π+=. (3)分因为 0B <<π, 所以 132666B πππ<+<, 所以 5266B ππ+=. ………………5分所以 π3B =. ………………6分(Ⅱ)解法一:因为 4A π=,π3B =, 根据正弦定理得 sin sin AC BCB A=, ………………7分所以 sin 6sin BC BAC A⋅==. (8)分因为 512C A B π=π--=, ………………9分所以 562sin sin sin()12464C πππ+==+=, ………………11分所以 △ABC 的面积133sin 22S AC BC C +=⋅=. (13)分解法二:因为 4A π=,π3B =, 根据正弦定理得 sin sin AC BCB A=, ………………7分所以 sin 6sin BC BAC A⋅==. (8)分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, (9)y zOE PCBADx 分化简为 2220AB AB --=,解得 13AB =+. (11)分所以 △ABC 的面积133sin 22S AB BC B +=⋅=. ………………13分16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点. 因为 E 为棱PD 中点.所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC ,所以直线PB //平面EAC . ………………4分(Ⅱ)证明:因为⊥PA 平面PDC ,所以CD PA ⊥. ………………5分因为四边形ABCD 为正方形,所以CD AD ⊥,所以⊥CD 平面PAD . ………………7分所以平面PAD ⊥平面ABCD . ………………8分(Ⅲ)解法一:在平面PAD 内过D 作直线Dz AD ⊥.因为平面PAD ⊥平面ABCD ,所以Dz ⊥平面ABCD .由,,Dz DA DC 两两垂直,建立如图所示的空间直角坐标系xyz D -. …………9分设4AB =,则(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E .所以 )1,0,3(-=EA ,)0,4,4(-=AC .yzNMOEP C BADx 设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得(1,1,3)=n . (11)分易知平面ABCD 的法向量为(0,0,1)=v . ………………12分所以 ||311|cos ,|||||11⋅==〈〉n v n v n v . ………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. ………………14分解法二:取AD 中点M ,BC 中点N ,连结PM ,MN . 因为ABCD 为正方形,所以CD MN //. 由(Ⅱ)可得⊥MN 平面PAD . 因为PD PA =,所以⊥PM AD .由,,MP MA MN 两两垂直,建立如图所示 的空间直角坐标系xyz M -. ………………9分设4=AB ,则(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---.所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得=n )3,1,1(. (11)分易知平面ABCD 的法向量为=v )1,0,0(. ………………12分所以||311|cos ,|||||11⋅==〈〉n v n v n v . ………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. ………………14分17.(本小题满分13分)(Ⅰ)解:元件A 为正品的概率约为4032841005++=. (1)分元件B 为正品的概率约为4029631004++=. (2)分(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15-. ………………3分433(90)545P X ==⨯=; 133(45)5420P X ==⨯=; 411(30)545P X ==⨯=; 111(15)5420P X =-=⨯=. ………………7分所以,随机变量X 的分布列为:X 90 45 30 15- P3532015120 (8)分3311904530(15)66520520EX =⨯+⨯+⨯+-⨯=. ………………9分(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n -件. 依题意,得 5010(5)140n n --≥, 解得 196n ≥. 所以 4n =,或5n =. ………………11分设“生产5件元件B 所获得的利润不少于140元”为事件A , 则 445531381()C ()()444128P A =⨯+=.………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分② 当0b >时,222()()b x f x x b -'=+. (3)分令()0f x '=,得1x b =,2x b =-.()f x 和()f x '的情况如下:x(,)b -∞-b -(,)b b -b(,)b +∞()f x ' -+-()f x↘↗↘故()f x 的单调减区间为(,)b -∞-,(,)b +∞;单调增区间为(,)b b -. (5)分③ 当0b <时,()f x 的定义域为{|}D x x b =∈≠±-R .因为222()0()b x f x x b -'=<+在D 上恒成立,故()f x 的单调减区间为(,)b -∞--,(,)b b ---,(,)b -+∞;无单调增区间. (7)分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. ………………9分设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤. 所以,b 的取值范围是1(0,]4. ………………13分19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分从而128y y =-. (5)分(Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ………………7分设直线AM 的方程为1x ny =+,将其代入24y x =,消去x , 整理得 2440y ny --=. ………………9分所以 134y y =-. ………………10分 同理可得 244y y =-. ………………11分故112121223412444k y y y y y y k y y y y ++===--+-+. ………………13分由(Ⅰ)得 122k k =,为定值. ………………14分20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.1- 1- 1- 1- 1 1 1 1 1 1 1 1 1 1 1 1………………3分(Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤, 所以1()r A ,2()r A ,,9()r A ,1()c A ,2()c A ,,9()c A 这18个数中有9个1,9个1-.令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅.一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ① 另一方面,129()()()r A r A r A ⋅⋅⋅表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅;另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅.从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅. ③ (10)分注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤. 下面考虑1()r A ,2()r A ,,()n r A ,1()c A ,2()c A ,,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -,所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分对数表0A :1ij a =(,1,2,3,,)i j n =,显然0()2l A n =.将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤,其余1ij a =.所以 12()()()1k r A r A r A ====-,12()()()1k c A c A c A ====-.所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -=. (13)分。
北京2013西城高三数学一模理科试题及答案
北京市西城区2013年高三一模试卷高三数学(理科) 2013.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U=R ,集合{|02}A x x =<<,2{|10}B x x =->,那么U A B = ð(A ){|01}x x << (B ){|01}x x <≤ (C ){|12}x x << (D ){|1x2.若复数i2ia +的实部与虚部相等,则实数a = (A )1- (B )1 (C )2- (D )23.执行如图所示的程序框图.若输出y ==θ(A )π6 (B )π6- (C )π3 (D )π3-4.从甲、乙等5名志愿者中选出4名,分别从事A ,B ,C ,D 四项不同的工作,每人承担一项.若甲、乙二人均不能从事A 工作,则不同的工作分配方案共有(A )60种 (B )72种 (C )84种 (D )96种 5.某正三棱柱的三视图如图所示,其中正(主)视 图是边长为2的正方形,该正三棱柱的表面积是(A )6 (B )12(C )12+ (D )24+6.等比数列{}n a 中,10a >,则“13a a <”是“36a a <”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 7.已知函数22()log 2log ()f x x x c =-+,其中0c >.若对于任意的(0,)x ∈+∞,都有()1f x ≤,则c 的取值范围是(A )1(0,]4 (B )1[,)4+∞ (C )1(0,]8 (D )1[,)8+∞ 8.如图,正方体1111ABCD ABC D -中,P 为底面ABCD上的动点,1PE AC ⊥于E ,且PA PE =,则点P 的轨迹是(A )线段 (B )圆弧 (C )椭圆的一部分 (D )抛物线的一部分第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.已知曲线C 的参数方程为2cos 12sin x y =⎧⎨=+⎩αα(α为参数),则曲线C 的直角坐标方程为 .10.设等差数列{}n a 的公差不为0,其前n 项和是n S .若23S S =,0k S =,则k =______.11.如图,正六边形ABCDEF 的边长为1,则AC DB ⋅=______.12.如图,已知AB 是圆O 的直径,P 在AB 的延长线上,PC切圆O 于点C ,CD OP ⊥于D .若6CD =,10CP =, 则圆O 的半径长为______;BP =______.13.在直角坐标系xOy 中,点B 与点(1,0)A -关于原点O 对称. 点00(,)P x y 在抛物线24y x =上,且直线AP 与BP 的斜率之积等于2,则0x =______.14.记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC 的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为max{,,}min{,a b c a t b c a b =⋅,}b c c a.(ⅰ)若△ABC 为等腰三角形,则t=______;(ⅱ)设1a =,则t 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()sin cos f x x a x =-的一个零点是π4.(Ⅰ)求实数a 的值;(Ⅱ)设()()()cos g x f x f x x x =⋅-+,求()g x 的单调递增区间.16.(本小题满分13分)某班有甲、乙两个学习小组,两组的人数如下:现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测. (Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率;(Ⅱ)记X 为抽取的3名同学中男同学的人数,求随机变量X 的分布列和数学期望.17.(本小题满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,BC AB 2=,60ABC ︒∠=,AC FB ⊥.(Ⅰ)求证:⊥AC 平面FBC ;(Ⅱ)求BC 与平面EAC 所成角的正弦值;(Ⅲ)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ? 证明你的结论. 18.(本小题满分13分)已知函数()ln f x ax x =-,()e 3ax g x x =+,其中a ∈R .(Ⅰ)求)(x f 的极值;(Ⅱ)若存在区间M ,使)(x f 和()g x 在区间M 上具有相同的单调性,求a 的取值范围.19.(本小题满分14分)如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒. (Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别 交于,D E 两点.记△GFD 的面积为1S ,△OED (O 为原点) 的面积为2S ,求12S S 的取值范围. 20.(本小题满分13分)已知集合*12{|(,,,),,1,2,,}(2)nn i S X X x x x x i n n ==∈=≥N .对于12(,,,)n A a a a = ,12(,,,)n n B b b b S =∈ ,定义1122(,,,)n n AB b a b a b a =---; 1212(,,,)(,,,)()n n a a a a a a =∈R λλλλλ;A 与B 之间的距离为1(,)||ni i i d A B a b ==-∑.(Ⅰ)当5n =时,设5(1,2,1,2,)A a =,(2,4,2,1,3)B =.若(,)7d A B =,求5a ;(Ⅱ)(ⅰ)证明:若,,n A B C S ∈,且0∃>λ,使AB BC λ= ,则(,)(,)(,)d A B d B C d A C +=;(ⅱ)设,,n A B C S ∈,且(,)(,)(,)d A B d B C d A C +=.是否一定0∃>λ,使AB BC λ=?说明理由; (Ⅲ)记(1,1,,1)n IS =∈ .若A ,n B S ∈,且(,)(,)d I A d I B p ==,求(,)d A B 的最大值.北京市西城区2013年高三一模试卷高三数学(理科)参考答案及评分标准2013.4一、选择题:本大题共8小题,每小题5分,共40分.1. B ; 2.A ; 3.D ; 4.B ; 5.C ; 6.B ; 7.D ; 8.A . 二、填空题:本大题共6小题,每小题5分,共30分.9.22230x y y +--=; 10.5; 11.32-12.152,5; 13.1 14.1,1[1,2. 注:12、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:依题意,得π()04f =, ………………1分 即ππsincos 04422a -=-=, ………………3分 解得 1a =. ………………5分 (Ⅱ)解:由(Ⅰ)得()sin cos f x x x =-. ………………6分()()()cos g x f x f x x x =⋅-+(sin cos )(sin cos )x x x x x =--- ………………7分22(cossin )x x x =- ………………8分cos2x x = ………………9分 π2sin(2)6x =+. ………………10分由 πππ2π22π262k x k -≤+≤+,得 ππππ36k x k -≤≤+,k ∈Z . ………………12分所以 ()g x 的单调递增区间为ππ[π,π]36k k -+,k ∈Z . ………………13分16.(本小题满分13分)(Ⅰ)解:依题意,甲、乙两组的学生人数之比为 (35):(22)2:1++=, ……………1分所以,从甲组抽取的学生人数为2323⨯=;从乙组抽取的学生人数为1313⨯=.………2分 设“从甲组抽取的同学中恰有1名女同学”为事件A , ………………3分则 113528C C 15()C 28P A ⋅==,故从甲组抽取的同学中恰有1名女同学的概率为1528.………5分 (Ⅱ)解:随机变量X 的所有取值为0,1,2,3. ………………6分21522184C C 5(0)C C 28P X ⋅===⋅, 111213525221218484C C C C C 25(1)C C C C 56P X ⋅⋅⋅==+=⋅⋅, 211113235221218484C C C C C 9(2)C C C C 28P X ⋅⋅⋅==+=⋅⋅, 21322184C C 3(3)C C 56P X ⋅===⋅.……………10分 所以,随机变量X 的分布列为:………………11分5259350123285628564EX =⨯+⨯+⨯+⨯=. ………………13分 17.(本小题满分14分)(Ⅰ)证明:因为BC AB 2=,60ABC ︒∠=,在△ABC 中,由余弦定理可得 BC AC 3=,所以 BC AC ⊥. ………………2分 又因为AC FB ⊥,所以⊥AC 平面FBC . ………………4分 (Ⅱ)解:因为⊥AC 平面FBC ,所以FC AC ⊥.因为FC CD ⊥,所以⊥FC 平面ABCD . ………………5分 所以,,CA CF CB 两两互相垂直,如图建立的空间直角坐标系xyz C -. ………………6分 在等腰梯形ABCD 中,可得 CB CD =. 设1BC =,所以11(0,0,0),(0,1,0),(,,0),(,,1)2222C A BDE --. 所以)1,21,23(-=CE ,)0,0,3(=CA ,)0,1,0(=CB . 设平面EAC 的法向量为=()x,y,z n ,则有0,0.CE CA ⎧⋅=⎪⎨⋅=⎪⎩n n 所以 10,20.x y z -+== 取1z =,得=n (0,2,1). ………………8分设BC 与平面EAC 所成的角为θ,则||sin |cos ,|||||CB CB CB ⋅=〈〉==θn n n 所以 BC 与平面EAC 所成角的正弦值为552. ………………9分 (Ⅲ)解:线段ED 上不存在点Q ,使平面EAC ⊥平面QBC .证明如下: ………………10分假设线段ED 上存在点Q ,设 ),21,23(t Q - )10(≤≤t ,所以),21,23(t CQ -=. 设平面QBC 的法向量为=m ),,(c b a ,则有0,0.CB CQ ⎧⋅=⎪⎨⋅=⎪⎩m m 所以0,10.2b b tc =⎧-+= 取 1=c ,得=m )1,0,32(t -. ………………12分 要使平面EAC ⊥平面QBC ,只需0=⋅n m , ………………13分 即002110⨯+⨯+⨯=, 此方程无解. 所以线段ED 上不存在点Q ,使平面EAC ⊥平面QBC . ………………14分 18.(本小题满分13分) (Ⅰ)解:()f x 的定义域为(0,)+∞, ………………1分且11()ax f x a x x-'=-=. ………………2分① 当0a ≤时,()0f x '<,故()f x 在(0,)+∞上单调递减.从而)(x f 没有极大值,也没有极小值. ………………3分② 当0a >时,令()0f x '=,得1x a=.()f x 和()f x '的情况如下:故()f x 的单调减区间为(0,)a ;单调增区间为(,)a +∞.从而)(x f 的极小值为1()1ln f a a=+;没有极大值. ………………5分(Ⅱ)解:()g x 的定义域为R ,且 ()e 3ax g x a '=+. ………………6分③ 当0a >时,显然 ()0g x '>,从而()g x 在R 上单调递增. 由(Ⅰ)得,此时()f x 在1(,)a+∞上单调递增,符合题意. ………………8分④ 当0a =时,()g x 在R 上单调递增,()f x 在(0,)+∞上单调递减,不合题意.……9分⑤ 当0a <时,令()0g x '=,得013ln()x a a=-. ()g x 和()g x '的情况如下表:当30a -≤<时,00x ≤,此时()g x 在0(,)x +∞上单调递增,由于()f x 在(0,)+∞上单调递减,不合题意. ………………11分当3a <-时,00x >,此时()g x 在0(,)x -∞上单调递减,由于()f x 在(0,)+∞上单调递减,符合题意.综上,a 的取值范围是(,3)(0,)-∞-+∞ . ………………13分 19.(本小题满分14分)(Ⅰ)解:依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒. ………………1分设 (,0)F c -,则tan60bc︒=.………………2分将 b 代入 222a b c =+,解得 2a c =.………………3分 所以椭圆的离心率为 12c e a ==. ………………4分 (Ⅱ)解:由(Ⅰ),椭圆的方程可设为2222143x y c c+=. ………………5分设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=,整理得 222222(43)84120k x ck x k c c +++-=. ………………7分则 2122843ck x x k -+=+,121226(2)43cky y k x x c k +=++=+,22243(,)4343ck ck G k k -++. ………………8分因为 GD AB ⊥,所以 2223431443Dck k k ck x k +⨯=---+,2243D ck x k -=+. ………………9分 因为 △GFD ∽△OED ,所以 2222222212222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+ ………………11分 222242222242(3)(3)99999()ck ck c k c k ck c k k++===+>. ………………13分 所以12S S 的取值范围是(9,)+∞. ………………14分 20.(本小题满分13分)(Ⅰ)解:当5n =时,由51(,)||7iii d A B a b ==-=∑,得 5|12||24||12||21||3|7a -+-+-+-+-=,即 5|3|2a -=. 由 *5a ∈N ,得 51a =,或55a =. ………………3分(Ⅱ)(ⅰ)证明:设12(,,,)n A a a a = ,12(,,,)n B b b b = ,12(,,,)n C c c c = .因为 0∃>λ,使 AB BC λ=,所以 0∃>λ,使得 11221122(,,)((,,)n n n n b a b a b a c b c b c b ---=--- λ,,, 即 0∃>λ,使得 ()i i i i b a c b λ-=-,其中1,2,,i n = .所以 ii b a -与(1,2,,)i i c b i n -= 同为非负数或同为负数. ………………5分所以 11(,)(,)||||n n iiiii i d A B d B C a b b c ==+=-+-∑∑1(||||)niiiii b a c b ==-+-∑1||(,)ni i i c a d A C ==-=∑. ………………6分(ⅱ)解:设,,n A B C S ∈,且(,)(,)(,)d A B d B C d A C +=,此时不一定0∃>λ,使得AB BC λ=. ………………7分反例如下:取(1,1,1,,1)A = ,(1,2,1,1,,1)B = ,(2,2,2,1,1,,1)C ,则 (,)1d A B =,(,)2d B C =,(,)3d A C =,显然(,)(,)(,)d A B d B C d A C +=.因为(0,1,0,0,,0)AB = ,(1,0,1,0,0,,0)BC =,所以不存在>0λ,使得AB BC λ=. ………………8分(Ⅲ)解法一:因为 1(,)||niii d A B b a ==-∑,设(1,2,,)ii b a i n -= 中有()m m n ≤项为非负数,n m -项为负数.不妨设1,2,,i m = 时0i i b a -≥;1,2,,i m m n =++ 时,0i i b a -<.所以 1(,)||niii d A B b a ==-∑12121212[()()][()()]m m m m n m m n b b b a a a a a a b b b ++++=+++-+++++++-+++因为 (,)(,)d I A d I B p ==,所以11(1)(1)nniii i a b ==-=-∑∑, 整理得 11nn iii i a b ===∑∑.所以 12121(,)||2[()]niimm i d A B b a b b ba a a ==-=+++-+++∑ .……………10分因为 121212()()m n m m n b b b b b b b b b +++++=+++-+++ ()()1p n n m p m ≤+--⨯=+;又 121ma a a m m +++≥⨯= ,所以 1212(,)2[()]m m d A B b b b a a a =+++-+++ 2[()]2p m m p ≤+-=.即 (,)2d A B p ≤.…12分 对于 (1,1,,1,1)A p =+ ,(1,1,1,,1)B p =+ ,有 A ,n B S ∈,且(,)(,)d I A d I B p ==,(,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分 解法二:首先证明如下引理:设,x y ∈R ,则有 ||||||x y x y +≤+. 证明:因为 ||||x x x -≤≤,||||y y y -≤≤,所以 (||||)||||x y x y x y -+≤+≤+,即 ||||||x y x y +≤+. 所以 11(,)|||(1)(1)|n niiiii i d A B b a b a ===-=-+-∑∑1(|1||1|)niii b a =≤-+-∑11|1||1|2nni i i i a b p ===-+-=∑∑. ……………11分上式等号成立的条件为1i a =,或1i b =,所以 (,)2d A B p ≤. ……………12分对于 (1,1,,1,1)A p =+ ,(1,1,1,,1)B p =+ ,有 A ,n B S ∈,且(,)(,)d I A d I B p ==,(,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分。
西城高三期末理科数学含答案
北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =U ( )(A )1(0,)2 (B )(1,1)- (C )1(,1)(,)2-∞-+∞U (D )(,1)(0,)-∞-+∞U2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ (B )sin =ρθ(C )cos 1=ρθ (D )cos =ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( )(A )416(,)55 (B )4(,16)5 (C )(1,16) (D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( )(A )221 (B )463 (C )121 (D )263二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k = _____ 10.如图,Rt △ABC 中,90ACB ︒∠=,3AC =,4BC =.以AC 为直径的圆交AB 于点D ,则BD = ;CD =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S . 若11a =,34a =,63k S =,则k =______.12.已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上. 若12||||2PF PF -=,则△12PF F 的面积是______. 13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______. 14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 21cos 2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2BC =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB EAC PAD ⊥ABCD B AC E --8282100(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率. 18.(本小题满分13分)已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值. 20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n =L 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末 高三数学(理科)参考答案及评分标准一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B . 二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6; 12; 13.1[,1]2-,[,]62ππ; 14.①③. 注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)21cos 2B B =-, 所以 2cos 2sin B B B =. (3)分 因为 0B <<π, 所以 sin 0B >, 从而 tan B =,………………5分所以 π3B =. ………………6分 解法二: 依题意得2cos 21B B +=,所以 2sin(2)16B π+=,即 1sin(2)62B π+=. ………………3分因为 0B <<π, 所以 132666B πππ<+<,所以 5266B ππ+=.………………5分所以 π3B =. ………………6分(Ⅱ)解法一:因为 4A π=,π3B=, 根据正弦定理得 sin sin AC BCB A =, ……………7分 所以 sin sin BC BAC A⋅==. ………………8分因为512C A Bπ=π--=, ………………9分所以 5sin sinsin()12464C πππ==+=, ………………11分 所以 △ABC 的面积13sin 22S AC BC C =⋅=. ………………13分 解法二:因为 4A π=,π3B=, 根据正弦定理得 sin sin AC BC B A =, ……………7分 所以 sin sin BC BAC A⋅==. ………………8分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, ………………9分化简为 2220AB AB --=,解得1AB =+ ………………11分所以 △ABC 的面积1sin 2S AB BC B =⋅=. ………………13分 16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点.因为 E 为棱PD 中点.所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC , 所以线PB EAC ⊥PA PDC CD PA ⊥ABCD CD AD ⊥CD ⊥ABCD Dz ⊥ABCD4(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C PE )1,0,3(-=)0,4,4(-=EAC=()x,y,z n 0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n ⎩⎨⎧=+-=-.044,03y x z x 1=x (1,1,3)=n ABCD (0,0,1)=v |||cos ,|||||11⋅==〈〉n v n v n v B AC E --B AC E --11113-AD M BC N PM MN ABCDCDMN //⊥MN PAD PD PA =⊥PM AD ,,MP MA MN xyz M -4=AB (2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---)1,0,3(-=)0,4,4(-=EAC=()x,y,z n 0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n ⎩⎨⎧=+-=-.044,03y x z x 1=x =n )3,1,1(ABCD =v )1,0,0(|||cos ,|||||11⋅==〈〉n v n v n v B AC E --B AC E --11113-4032841005++=4029631004++=X90,45,30,15-433(90)545P X ==⨯=133(45)5420P X ==⨯=411(30)545P X ==⨯=111(15)P X =-=⨯=X1904530(15)66520520EX =⨯+⨯+⨯+-⨯=n 5n -依题意,得 5010(5)140n n --≥, 解得 196n ≥.所以 4n =,或5n =. ………………11分 设“生产5件元件B 所获得的利润不少于140元”为事件A , 则 445531381()C ()()444128P A =⨯+=.………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分② 当0b >时,222()()b x f x x b -'=+. ………………3分令()0f x '=,得1x =2x =()f x 和()f x '的情况如下:故()f x 的单调减区间为(,-∞,)+∞;单调增区间为(.………………5分③ 当0b <时,()f x 的定义域为{|D x x =∈≠R .因为222()0()b x f x x b -'=<+在D 上恒成立,故()f x 的单调减区间为(,-∞,(,)+∞;无单调增区间.………………7分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. ………………9分 设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分 则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤. 所以,b 的取值范围是1(0,]4. ………………13分 19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分 从而128y y =-. ………………5分 (Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ………………7分 设直线AM 的方程为1x ny =+,将其代入24y x =,消去x , 整理得 2440y ny --=. ………………9分所以 134y y =-. ………………10分 同理可得 244y y =-. ………………11分 故112121223412444k y y y y y yk y y y y ++===--+-+. ………………13分 由(Ⅰ)得122k k =,为定值. ………………14分 20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.………………3分 (Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分 证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤,所以1()r A ,2()r A ,L ,9()r A ,1()c A ,2()c A ,L ,9()c A 这18个数中有9个1,9个1-. 令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅L L .一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ①另一方面,129()()()r A r A r A ⋅⋅⋅L 表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅L 也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅L ; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅L .从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅L L . ③ ………………10分注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤.下面考虑1()r A ,2()r A ,L ,()n r A ,1()c A ,2()c A ,L ,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -, 所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分 对数表0A :1ij a =(,1,2,3,,)i j n =L ,显然0()2l A n =. 将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤L ,其余1ij a =. 所以 12()()()1k r A r A r A ====-L ,12()()()1k c A c A c A ====-L . 所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -=L .……………13分。
2013西城高三期末理科数学含答案
北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科) 2013.1一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =U ( )(A )1(0,)2(B )(1,1)- (C )1(,1)(,)2-∞-+∞U (D )(,1)(0,)-∞-+∞U2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ (B )sin =ρθ(C )cos 1=ρθ (D )cos =ρθ4.执行如图所示的程序框图.若输出15S =,① 处可以填入( )(A )2k < (B )3k < (C )4k <(D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( )(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( ) (A )416(,)55 (B )4(,16)5 (C )(1,16) (D )16(,4)57六条棱的长度中,最大的是( )(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( ) (A )221 (B )463 (C )121 (D )263二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k = _____10.如图,Rt △ABC 中,90ACB ︒∠=,3AC =,4BC =.以AC 为直径的圆交AB 于点D ,则BD = ;CD =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S . 若11a =,34a =,63k S =,则k =______.12.已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12PF F 的面积是______.13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2x f x =; ②()sin f x x =; ③3()f x x x =-. 其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在△ABC 21cos 2B B =-. (Ⅰ)求角B 的值;(Ⅱ)若2BC =,4A π=,求△ABC 的面积. 16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB // 平面EAC ; (Ⅱ)求证:平面PAD ⊥平面ABCD ; (Ⅲ)求二面角B AC E --的余弦值. 17.(本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率. 18.(本小题满分13分) 已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围. 19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N . (Ⅰ)求12y y 的值;明:12k k 为定(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证值.20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n =L 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合. 对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j cA为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =;(Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末高三数学(理科)参考答案及评分标准 2013.1 一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B . 二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6; 12; 13.1[,1]2-,[,]62ππ; 14.①③. 注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)21cos 2B B =-, 所以 2cos 2sin B B B =.………………3分因为0B <<π, 所以 sin 0B >, 从而 tan B =, (5)分所以 π3B =. ………………6分 解法二: 依题意得2cos 21B B +=,所以 2sin(2)16B π+=,即 1sin(2)62B π+=. ………………3分 因为 0B <<π, 所以 132666B πππ<+<,所以 5266B ππ+=.………………5分 所以 π3B =. ………………6分 (Ⅱ)解法一:因为 4A π=,π3B =, 根据正弦定理得 sin sin AC BCB A=, ……………7分所以 sinsin BC BAC A⋅==. ………………8分因为 512C A B π=π--=, ………………9分所以 5sin sinsin()1246C πππ==+=, ………………11分所以 △ABC 的面积1sin 2S AC BC C =⋅=. ………………13分解法二:因为 4A π=,π3B =, 根据正弦定理得 sin sin AC BCB A=, ……………7分所以 sin sin BC BAC A⋅==. ………………8分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, ………………9分化简为 2220AB AB --=,解得 1AB = ………………11分所以 △ABC 的面积1sin 2S AB BC B =⋅=. ………………13分 16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结因为四边形ABCD 为正方形,所以O 为BD 因为 E 为棱PD 中点.所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC ,所以直线PB //平面EAC . ………………4分(Ⅱ)证明:因为⊥PA 平面PDC ,所以CD PA ⊥. ………………5分因为四边形ABCD 为正方形,所以CD AD ⊥,所以⊥CD 平面PAD . ………………7分所以平面PAD ⊥平面ABCD . ………………8分 (Ⅲ)解法一:在平面PAD 内过D 作直线Dz AD ⊥.因为平面PAD ⊥平面ABCD ,所以Dz ⊥平面ABCD .由,,Dz DA DC 两两垂直,建立如图所示的空间直角坐标系xyz D -. …………9分设4AB =,则(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E .所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 所以 ⎩⎨⎧=+-=-.044,03y x z x取1=x ,得(1,1,3)=n . ………………11分 易知平面ABCD 的法向量为(0,0,1)=v . ………………12分所以 |||cos ,|||||11⋅==〈〉n v n v n v . ………………13分 由图可知二面角B AC E --的平面角是钝角,所以二面角B AC E --的余弦值为11113-. ………………14分 解法二:取AD 中点M ,BC 中点N ,连结PM ,MN .因为ABCD 为正方形,所以CD MN //.由(Ⅱ)可得⊥MN 平面PAD . 因为PD PA =,所以⊥PM AD .由,,MP MA MN 两两垂直,建立如图所示 的空间直角坐标系xyz M -. ………………9分设4=AB ,则(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---. 所以 )1,0,3(-=,)0,4,4(-=.设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得=n )3,1,1(. ………………11分 易知平面ABCD 的法向量为=v )1,0,0(. ………………12分所以|||cos ,|||||11⋅==〈〉n v n v n v . ………………13分 由图可知二面角B AC E --的平面角是钝角,所以二面角B AC E --的余弦值为11113-. ………………14分 17.(本小题满分13分)(Ⅰ)解:元件A 为正品的概率约为4032841005++=. ………………1分元件B 为正品的概率约为4029631004++=. ………………2分(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15-. ………………3分433(90)545P X ==⨯=; 133(45)5420P X ==⨯=; 411(30)545P X ==⨯=; 111(15)5420P X =-=⨯=. ………………7分所以,随机变量X 的分布列为:………………8分 3311904530(15)66520520EX =⨯+⨯+⨯+-⨯=. ………………9分 (ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n -件. 依题意,得 5010(5)140n n --≥, 解得 196n ≥. 所以 4n =,或5n =. ………………11分设“生产5件元件B 所获得的利润不少于140元”为事件A ,则 445531381()C ()()444128P A =⨯+=. ………………13分 18.(本小题满分13分)(Ⅰ)解:① 当0b =时,1()f x x=.故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分② 当0b >时,222()()b x f x x b -'=+. ………………3分 令()0f x '=,得1x =,2x =()f x 和()f x '的情况如下:故()f x 的单调减区间为(,-∞,)+∞;单调增区间为(. ………………5分③ 当0b <时,()f x 的定义域为{|D x x =∈≠R .因为222()0()b x f x x b -'=<+在D 上恒成立, 故()f x 的单调减区间为(,-∞,(,)+∞;无单调增区间.………………7分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. ………………9分 设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分 则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤.所以,b 的取值范围是1(0,]4. ………………13分 19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分从而128y y =-. ………………5分 (Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ..................7分 设直线AM 的方程为1x ny =+,将其代入24y x =,消去x , 分 整理得 2440y ny --=. (9)10分所以 134y y =-. ………………同理可得 244y y =-. ………………11分 故112121223412444k y y y y y yk y y y y ++===--+-+. ………………13分 由(Ⅰ)得122k k =,为定值. ………………14分 20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.………………3分(Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤,所以1()r A ,2()r A ,L ,9()r A ,1()c A ,2()c A ,L ,9()c A 这18个数中有9个1,9个1-.令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅L L .一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ①另一方面,129()()()r A r A r A ⋅⋅⋅L 表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅L 也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分 (Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅L ; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅L .从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅L L . ③ ………………10分 注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤.下面考虑1()r A ,2()r A ,L ,()n r A ,1()c A ,2()c A ,L ,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -,所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分 对数表0A :1ij a =(,1,2,3,,)i j n =L ,显然0()2l A n =.将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤L ,其余1ij a =. 所以 12()()()1k r A r A r A ====-L ,12()()()1k c A c A c A ====-L . 所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -=L .……………13分 2020-2-8。
2013西城高三期末理科数学含答案
北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科)2013.1一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}Ax x R ,{|(21)(1)0}B x x x R ,则A B()(A )1(0,)2(B )(1,1)(C )1(,1)(,)2(D )(,1)(0,)2.在复平面内,复数5i 2i的对应点位于()(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.在极坐标系中,已知点(2,)6P ,则过点P 且平行于极轴的直线的方程是()(A )sin 1(B )sin 3(C )cos 1(D )cos 34.执行如图所示的程序框图.若输出15S ,则框图中①处可以填入()(A )2k (B )3k (C )4k (D )5k5.已知函数()cos f x x b x ,其中b 为常数.那么“0b ”是“()f x 为奇函数”的()(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件6.已知,a b 是正数,且满足224a b .那么22ab 的取值范围是()(A )416(,)55(B )4(,16)5(C )(1,16)(D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是()(A )25(B )26(C )27(D )428.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是()(A )221(B )463(C )121(D )263二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)a ,(2,1)b ,(3,2)c .若向量c 与向量k a b 共线,则实数k_____10.如图,Rt △ABC 中,90ACB,3AC,4BC .以AC 为直径的圆交AB 于点D ,则BD;CD______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a ,34a ,63k S ,则k______.12.已知椭圆22142xy的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF ,则△12PF F 的面积是______.13.已知函数π()sin(2)6f x x,其中π[,]6x a .当3a 时,()f x 的值域是______;若()f x 的值域是1[,1]2,则a 的取值范围是______.14.已知函数()f x 的定义域为R .若常数0c ,对x R ,有()()f x c f x c ,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x ;②()sin f x x ;③3()f x xx .其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在△ABC 中,已知3sin 21cos2B B .(Ⅰ)求角B 的值;(Ⅱ)若2BC,4A,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P 中,底面ABCD 为正方形,PD PA ,PA平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB // 平面EAC ;(Ⅱ)求证:平面PAD 平面ABCD ;(Ⅲ)求二面角B ACE的余弦值.17.(本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:测试指标[70,76)[76,82)[82,88)[88,94)[94,100]元件A 81240328元件B71840296(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.18.(本小题满分13分)已知函数2()x f x xb,其中b R .(Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b .若13[,]44x ,使()1f x ,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24yx 的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值.20.(本小题满分13分)如图,设A 是由n n 个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i jn 表示位于第i 行第j 列的实数,且{1,1}ija .记(,)S n n 为所有这样的数表构成的集合.对于(,)AS n n ,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()nni j i j l A r A c A .(Ⅰ)请写出一个(4,4)A S ,使得()0l A ;(Ⅱ)是否存在(9,9)AS ,使得()0l A ?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)AS n n ,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末高三数学(理科)参考答案及评分标准2013.1一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.1; 10.165,125;11.6;12.2; 13.1[,1]2,[,]62; 14.①③.注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)(Ⅰ)解法一:因为3sin 21cos2BB ,所以223sin cos 2sin B BB .………………3分因为0B,所以sin 0B ,从而tan 3B ,………………5分所以π3B.………………6分解法二:依题意得3sin 2cos 21B B ,所以2sin(2)16B,即1sin(2)62B .………………3分因为0B,所以132666B,所以5266B.………………5分所以π3B.………………6分(Ⅱ)解法一:因为4A ,π3B,根据正弦定理得sin sin AC BC BA,……………7分所以sin 6sin BC B AC A .………………8分因为512CAB ,………………9分所以562sin sin sin()12464C ,………………11分所以△ABC 的面积133sin 22SAC BC C .………………13分解法二:因为4A,π3B,根据正弦定理得sin sin AC BC BA,……………7分所以sin 6sin BC B ACA .………………8分根据余弦定理得2222cos AC ABBCAB BC B ,………………9分化简为2220ABAB,解得13AB.………………11分yzOE PCBADx所以△ABC 的面积133sin 22SAB BC B.………………13分16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点.因为E 为棱PD 中点.所以EO PB//.………………3分因为PB平面EAC ,EO平面EAC ,所以直线PB //平面EAC .………………4分(Ⅱ)证明:因为PA平面PDC ,所以CD PA.………………5分因为四边形ABCD 为正方形,所以CD AD,所以CD 平面PAD .………………7分所以平面PAD 平面ABCD .………………8分(Ⅲ)解法一:在平面PAD 内过D 作直线DzAD .因为平面PAD 平面ABCD ,所以Dz 平面ABCD .由,,Dz DA DC 两两垂直,建立如图所示的空间直角坐标系xyz D.…………9分设4AB ,则(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E .所以)1,0,3(EA,)0,4,4(AC.设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA ACn n 所以.044,03y x z x取1x ,得(1,1,3)n.………………11分易知平面ABCD 的法向量为(0,0,1)v.………………12分所以||311|cos ,|||||11〈〉n v n v n v .………………13分由图可知二面角B ACE 的平面角是钝角,所以二面角B ACE 的余弦值为11113.………………14分解法二:取AD 中点M ,BC 中点N ,连结PM ,MN .因为ABCD 为正方形,所以CD MN //.yzNMOEP C BADx由(Ⅱ)可得MN平面PAD .因为PD PA ,所以PMAD .由,,MP MA MN 两两垂直,建立如图所示的空间直角坐标系xyz M .………………9分设4AB ,则(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E .所以)1,0,3(EA,)0,4,4(AC.设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA ACn n 所以.044,03y x z x 取1x,得n)3,1,1(.………………11分易知平面ABCD 的法向量为v)1,0,0(.………………12分所以||311|cos ,|||||11〈〉n v n v n v .………………13分由图可知二面角B ACE 的平面角是钝角,所以二面角B ACE 的余弦值为11113.………………14分17.(本小题满分13分)(Ⅰ)解:元件A 为正品的概率约为4032841005.………………1分元件B 为正品的概率约为4029631004.………………2分(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15.………………3分433(90)545P X ;133(45)5420P X ;411(30)545P X;111(15)5420P X.………………7分所以,随机变量X 的分布列为: X 90453015P3532015120………………8分3311904530(15)66520520EX.………………9分(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n 件.依题意,得5010(5)140n n ,解得196n.所以4n ,或5n .………………11分设“生产5件元件B 所获得的利润不少于140元”为事件A ,则445531381()C ()()444128P A .………………13分18.(本小题满分13分)(Ⅰ)解:①当0b 时,1()f x x.故()f x 的单调减区间为(,0),(0,);无单调增区间.………………1分②当0b 时,222()()b xf x xb .………………3分令()0f x ,得1x b ,2x b .()f x 和()f x 的情况如下:x (,)b b(,)b b b(,)b ()f x 0()f x ↘↗↘故()f x 的单调减区间为(,)b ,(,)b ;单调增区间为(,)b b .………………5分③当0b 时,()f x 的定义域为{|}Dx x b R .因为222()0()b xf x xb 在D 上恒成立,故()f x 的单调减区间为(,)b ,(,)b b ,(,)b ;无单调增区间.………………7分(Ⅱ)解:因为0b ,13[,]44x,所以()1f x 等价于2b x x ,其中13[,]44x .………………9分设2()g x x x ,()g x 在区间13[,]44上的最大值为11()24g .………………11分则“13[,]44x ,使得2bxx ”等价于14b.所以,b 的取值范围是1(0,]4.………………13分19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2xmy .………………1分将其代入24y x ,消去x ,整理得2480ymy .………………4分从而128y y .………………5分(Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444yy y y y y k x x y y k x x y y y y y y y y .………………7分设直线AM 的方程为1xny ,将其代入24yx ,消去x ,整理得2440yny .………………9分所以134y y .………………10分同理可得244y y .………………11分故112121223412444k y y y y y y k y y y y .………………13分由(Ⅰ)得122k k ,为定值.………………14分20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.1111111111111111………………3分(Ⅱ)解:不存在(9,9)AS ,使得()0l A .………………4分证明如下:假设存在(9,9)A S ,使得()0l A .因为(){1,1}i r A ,(){1,1}j c A (19,19)ij ,所以1()r A ,2()r A ,,9()r A ,1()c A ,2()c A ,,9()c A 这18个数中有9个1,9个1.令129129()()()()()()M r A r A r A c A c A c A .一方面,由于这18个数中有9个1,9个1,从而9(1)1M.①另一方面,129()()()r A r A r A 表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A 也表示m ,从而21Mm.②①、②相矛盾,从而不存在(9,9)A S ,使得()0l A .………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A ;另一方面,从“列”的角度看,有12()()()n pc A c A c A .从而有1212()()()()()()n n r A r A r A c A c A c A .③………………10分注意到(){1,1}i r A ,(){1,1}j c A (1,1)i n j n .下面考虑1()r A ,2()r A ,,()n r A ,1()c A ,2()c A ,,()n c A 中1的个数:由③知,上述2n 个实数中,1的个数一定为偶数,该偶数记为2(0)k kn ;则1的个数为22n k ,所以()(1)21(22)2(2)l A k nk nk .………………12分对数表0A :1ija (,1,2,3,,)i jn ,显然0()2l A n .将数表0A 中的11a 由1变为1,得到数表1A ,显然1()24l A n .将数表1A 中的22a 由1变为1,得到数表2A ,显然2()28l A n.依此类推,将数表1k A 中的kk a 由1变为1,得到数表k A .即数表k A 满足:11221(1)kka a a kn ,其余1ij a .所以12()()()1k r A r A r A ,12()()()1k c A c A c A .所以()2[(1)()]24k l A kn k nk .由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k kn .……………13分。
2013年北京高三(二模)数学(理)分类汇编系列三解析版11概率与统计
【解析分类汇编系列三:北京2013(二模)数学理】11:概率与统计一、选择题1 .(2013北京东城高三二模数学理科)如图是某班50位学生期中考试数学成绩的频率分布直方图,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100] ,则图中x 的值等于 ( )A .0.754B .0.048C .0.018D .0.012【答案】C 成绩在[)8090,的矩形的面积为10.0061030.01100.0541010.720.18-⨯⨯-⨯-⨯=-=,所以100.18x =,解得0.018x =,选C.2 .(2013北京丰台二模数学理科)已知变量,x y 具有线性相关关系,测得(,)x y 的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为ˆ 1.4yx a =+,则a 的值是_______. 【答案】0.9样本数据的平均数1(123) 1.54x =++=,1(1245)34y =+++=,即回归直线过点(1.5,3),代入回归直线得3 1.4 1.5a =⨯+,解得0.9a =。
3(2013北京西城区二模数学理科试题右图是甲,乙两组各6据的茎叶图.记甲,乙两组数据的平均数依次为x 甲和x 乙, 则 x 甲______x 乙. (填入:“>”,“=”,或“<”) 【答案】>由茎叶图,甲班平均身高为1160(57101279)16031636++++--=+=,乙班平均身高为1160(12341210)16021626+++++-=+=,所以x 甲>x 乙。
4.(2013北京丰台二模数学理科)在平面区域01,01x y ≤≤⎧⎨≤≤⎩内任取一点(,)P x y ,若(,)x y 满足2x y b +≤的概率大于14,则b 的取值范围是 ( )A .(,2)-∞B .(0,2)C .(1,3)D .(1,)+∞【答案】D其构成的区域D 如图所示的边长为1的正方形,面积为S 1=1,满足2x y b +≤所表示的平面区域是以原点为直角坐标顶点,以b 为直角边长的直角三角形,其面积为221224b b S b =⨯⨯=,所以在区域D 内随机取一个点,则此点满足2x y b +≤的概率22414b bP ==,由题意令2144b >,解得1b >,选D .5 .(2013北京海淀二模数学理科)如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为( )A .ma nB .na mC .2ma n D .2na m【答案】C设图形Ω面积的为S ,则由实验结果得2S m a n=,解2maS n =,所以选C.6.(2013北京昌平二模数学理科)在区间[]0,π上随机取一个数x,则事件“1tan cos 2x x ≥g ”发生的概率为 ( )A .13B .12C .23D .34【答案】C 由1tan cos 2x x ≥g 得1sin 2x ≥,解得566x ππ≤≤,所以事件“1tan cos 2x x ≥g ”发生的概率为52663πππ-=,选C. 二、填空题7 .(2013北京朝阳二模数学理科试题)将一个质点随机投放在关于,x y 的不等式组3419,1,1x y x y +≤⎧⎪≥⎨⎪≥⎩所构成的三角形区域内,则该质点到此三角形的三个顶点的距离均不小于1的概率是_______.【答案】112π-画出关于,x y 的不等式组3419,1,1x y x y +≤⎧⎪≥⎨⎪≥⎩所构成的三角形区域,如图.。
北京市西城区2013届高三上学期期末考试数学理科试题
北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科) 2013.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =( )(A )1(0,)2(B )(1,1)-(C )1(,1)(,)2-∞-+∞(D )(,1)(0,)-∞-+∞ 【答案】D【KS5U 解析】1{|(21)(1)0}{1}2B x x x x x x =-+>=><-或,所以{01}A B x xx =><-或,即(,1)(0,)-∞-+∞,选D.2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限(B )第二象限(C )第三象限(D )第四象限 【答案】B【KS5U 解析】55(2)5(2)122(2)(2)5i i i i i i i i i ++===-+-+-,,对应的点的坐标为(1,2)-,所以在第二象限,选B.3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ(B )sin =ρθC )cos 1=ρθ(D )cos ρθ 【答案】A【KS5U 解析】先将极坐标化成直角坐标表示,(2,)6P π 转化为点cos 2cossin 2sin166x y ππρθρθ======,即),过点且平行于x 轴的直线为1y =,在化为极坐标 为sin 1=ρθ,选A.4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( (A )2k <(B )3k <(C )4k <(D )5k < 【答案】C【KS5U 解析】第一次循环,满足条件,112,2S k =+==;第二次循环,满足条件,2226,3S k =+==;第三次循环,满足条件,26315,4S k =+==;第四次循环,不满足条件,输出15S =,此时4k =,所以条件应为4k <,选C.5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】C【KS5U 解析】若0b =,则()c o s f x x b x x =+=为奇函数。
北京西城区2013届高三上学期期末考试数学(理科)试题
北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科) 2013.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B = ( ) (A )1(0,)2(B )(1,1)-(C )1(,1)(,)2-∞-+∞(D )(,1)(0,)-∞-+∞2.在复平面内,复数5i 2i-的对应点位于( )(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ(B )sin =ρθ(C )cos 1=ρθ(D )cos =ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( )(A )416(,)55(B )4(,16)5(C )(1,16) (D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( ) (A )221(B )463(C )121(D )263第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k = _____.10.如图,R t △A B C 中,90ACB ︒∠=,3A C =,4B C =.以A C 为直径的圆交AB 于点D ,则 BD = ;C D =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =,34a =,63k S =,则k =______. 12.已知椭圆22142xy+=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12P F F 的面积是______. 13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 21cos 2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2B C =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB // 平面EAC ;(Ⅱ)求证:平面P A D ⊥平面A B C D ; (Ⅲ)求二面角B AC E --的余弦值.17.(本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率. 18.(本小题满分13分)已知函数2()x f x x b=+,其中b ∈R .(Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线A F ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线M N 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值.20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n = 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()nniji j l A r A cA ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末高三数学(理科)参考答案及评分标准2013.1一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6;12 13.1[,1]2-,[,]62ππ; 14.①③. 注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解法一21cos 2B B =-, 所以 2cos 2sin B B B =.……………3分因为 0B <<π, 所以 sin 0B >, 从而 tan B =5分所以 π3B =. ………………6分解法二: 依题意得2cos 21B B +=,所以 2sin(2)16B π+=,即 1sin(2)62B π+=. (3)分因为 0B <<π, 所以 132666B πππ<+<,所以 5266B ππ+=.…………5分所以 π3B =. ………………6分(Ⅱ)解法一:因为 4A π=,π3B =,根据正弦定理得sin sin A C B C BA=, ………7分所以 sin sin B C B A C A⋅==. ………………8分因为 512C A B π=π--=, ………………9分所以 5sin sin sin()12464C πππ+==+=, ………………11分所以 △ABC 的面积13sin 22S AC BC C +=⋅=.………………13分解法二:因为 4A π=,π3B =,根据正弦定理得 sin sin A C B C B A=, ………………7分所以 sin sin B C B A C A⋅==. ………………8分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, ………………9分 化简为 2220AB AB --=,解得 1AB =+………………11分所以 △ABC 的面积1sin 22S AB BC B =⋅=………………13分16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点.因为 E 为棱PD 中点.所以 EO PB //. …………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC , 所以直线PB //平面EAC . ………………4分(Ⅱ)证明:因为⊥PA 平面PDC ,所以CD PA ⊥. ………………5分因为四边形ABCD 为正方形,所以CD AD ⊥, 所以⊥CD 平面PAD . ……7分所以平面PAD ⊥平面ABCD . ………………8分(Ⅲ)解法一:在平面PAD 内过D 作直线D z AD ⊥.因为平面PAD ⊥平面ABCD ,所以D z ⊥平面ABCD .由,,Dz DA DC 两两垂直,建立如图所示的空间直角坐标系xyz D -. …………9分 设4A B =,则(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E .所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.E A A C ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得(1,1,3)=n . ………………11分易知平面ABCD 的法向量为(0,0,1)=v . ………………12分所以 |||cos ,|||||11⋅==〈〉n v n v n v . ………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. ………………14分解法二:取AD 中点M ,BC 中点N ,连结PM ,MN . 因为ABCD 为正方形,所以CD MN //. 由(Ⅱ)可得⊥MN 平面PAD . 因为PD PA =,所以⊥PM AD . 由,,MP MA MN 两两垂直,建立如图所示的空间直角坐标系xyz M -. ………………9分设4=AB ,则(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---.所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.E A A C ⎧⋅=⎪⎨⋅=⎪⎩ n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得=n )3,1,1(. ………………11分易知平面ABCD 的法向量为=v )1,0,0(. ………………12分所以|||cos ,|||||11⋅==〈〉n v n v n v . ………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. ………………14分17.(本小题满分13分)(Ⅰ)解:元件A 为正品的概率约为4032841005++=. ………………1分 元件B 为正品的概率约为4029631004++=. ………………2分(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15-. ………………3分433(90)545P X ==⨯=; 133(45)5420P X ==⨯=;411(30)545P X ==⨯=; 111(15)5420P X =-=⨯=. ………………7分所以,随机变量X 的分布列为:………………8分3311904530(15)66520520E X =⨯+⨯+⨯+-⨯=. ………………9分(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n -件. 依题意,得 5010(5)140n n --≥, 解得 196n ≥. 所以 4n =,或5n =.………11分设“生产5件元件B 所获得的利润不少于140元”为事件A , 则 445531381()C ()()444128P A =⨯+=. ………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. (1)分② 当0b >时,222()()b xf x x b -'=+. ………………3分令()0f x '=,得1x =2x =()f x 和()f x '的情况如下:故()f x 的单调减区间为(,-∞,)+∞;单调增区间为(.………………5分③ 当0b <时,()f x 的定义域为{|D x x =∈≠R .因为222()0()b xf x x b -'=<+在D 上恒成立,故()f x 的单调减区间为(,-∞,(,)+∞;无单调增区间.………………7分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈.……9分设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤.所以,b 的取值范围是1(0,]4. ………………13分19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分 从而128y y =-.………………5分(Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ………………7分设直线A M 的方程为1x ny =+,将其代入24y x =,消去x ,整理得 2440y ny --=. ………………9分所以 134y y =-. ………………10分 同理可得 244y y =-. ………………11分 故112121223412444k y y y y y y k y y y y ++===--+-+. ………………13分由(Ⅰ)得 122k k =,为定值. ………………14分20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.………………3分 (Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分 证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤,所以1()r A ,2()r A , ,9()r A ,1()c A ,2()c A , ,9()c A 这18个数中有9个1,9个1-. 令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅ .一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ①另一方面,129()()()r A r A r A ⋅⋅⋅ 表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅ 也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅ ; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅ .从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅ . ③ ………………10分注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤.下面考虑1()r A ,2()r A , ,()n r A ,1()c A ,2()c A , ,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -, 所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分 对数表0A :1ij a =(,1,2,3,,)i j n = ,显然0()2l A n =.将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤ ,其余1ij a =. 所以 12()()()1k r A r A r A ====- ,12()()()1k c A c A c A ====- . 所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -= .……………13分。
西城高三期末理科数学含答案
北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则AB =( )(A )1(0,)2 (B )(1,1)- (C )1(,1)(,)2-∞-+∞ (D )(,1)(0,)-∞-+∞ 2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ (B )sin =ρθ(C )cos 1=ρθ (D )cos =ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( )(A )416(,)55 (B )4(,16)5 (C )(1,16) (D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( )(A )221 (B )463 (C )121 (D )263二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k = _____ 10.如图,Rt △ABC 中,90ACB ︒∠=,3AC =,4BC =.以AC 为直径的圆交AB 于点D ,则BD = ;CD =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S . 若11a =,34a =,63k S =,则k =______.12.已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上. 若12||||2PF PF -=,则△12PF F 的面积是______. 13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______. 14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 21cos 2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2BC =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB EAC PAD ⊥ABCD B AC E --8282100(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率. 18.(本小题满分13分)已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值. 20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n =表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末 高三数学(理科)参考答案及评分标准一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B . 二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6; 12; 13.1[,1]2-,[,]62ππ; 14.①③. 注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)21cos 2B B =-, 所以 2cos 2sin B B B =. (3)分 因为 0B <<π, 所以 sin 0B >, 从而 tan B =,………………5分所以 π3B =. ………………6分 解法二: 依题意得2cos 21B B +=,所以 2sin(2)16B π+=,即 1sin(2)62B π+=. ………………3分因为 0B <<π, 所以 132666B πππ<+<,所以 5266B ππ+=.………………5分所以 π3B =. ………………6分(Ⅱ)解法一:因为 4A π=,π3B=, 根据正弦定理得 sin sin AC BCB A =, ……………7分 所以 sin sin BC BAC A⋅==. ………………8分因为512C A Bπ=π--=, ………………9分所以 5sin sinsin()12464C πππ==+=, ………………11分 所以 △ABC 的面积13sin 22S AC BC C =⋅=. ………………13分 解法二:因为 4A π=,π3B=, 根据正弦定理得 sin sin AC BC B A =, ……………7分 所以 sin sin BC BAC A⋅==. ………………8分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, ………………9分化简为 2220AB AB --=,解得1AB =+ ………………11分所以 △ABC 的面积1sin 2S AB BC B =⋅=. ………………13分 16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点.因为 E 为棱PD 中点.所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC , 所以线PB EAC ⊥PA PDC CD PA ⊥ABCD CD AD ⊥CD ⊥ABCD Dz ⊥ABCD4(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E )1,0,3(-=)0,4,4(-=EAC=()x,y,z n 0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n ⎩⎨⎧=+-=-.044,03y x z x 1=x (1,1,3)=n ABCD (0,0,1)=v |||cos ,|||||11⋅==〈〉n v n v n v B AC E --B AC E --11113-AD M BC N PM MN ABCDCDMN //⊥MN PAD PD PA =⊥PM AD ,,MP MA MN xyz M -4=AB (2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---)1,0,3(-=)0,4,4(-=EAC=()x,y,z n 0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n ⎩⎨⎧=+-=-.044,03y x z x 1=x =n )3,1,1(ABCD=v )1,0,0(|||cos ,|||||11⋅==〈〉n v n v n v B AC E --B AC E --11113-4032841005++=4029631004++=X90,45,30,15-433(90)545P X ==⨯=133(45)5420P X ==⨯=411(30)545P X ==⨯=111(15)P X =-=⨯=X1904530(15)66520520EX =⨯+⨯+⨯+-⨯=n 5n -依题意,得 5010(5)140n n --≥, 解得 196n ≥.所以 4n =,或5n =. ………………11分 设“生产5件元件B 所获得的利润不少于140元”为事件A , 则 445531381()C ()()444128P A =⨯+=.………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分② 当0b >时,222()()b x f x x b -'=+. ………………3分令()0f x '=,得1x =2x =()f x 和()f x '的情况如下:故()f x 的单调减区间为(,-∞,)+∞;单调增区间为(.………………5分③ 当0b <时,()f x 的定义域为{|D x x =∈≠R .因为222()0()b x f x x b -'=<+在D 上恒成立,故()f x 的单调减区间为(,-∞,(,)+∞;无单调增区间.………………7分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. ………………9分 设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分 则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤. 所以,b 的取值范围是1(0,]4. ………………13分 19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分 从而128y y =-. ………………5分 (Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ………………7分 设直线AM 的方程为1x ny =+,将其代入24y x =,消去x , 整理得 2440y ny --=. ………………9分所以 134y y =-. ………………10分 同理可得 244y y =-. ………………11分 故112121223412444k y y y y y yk y y y y ++===--+-+. ………………13分 由(Ⅰ)得122k k =,为定值. ………………14分 20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.………………3分 (Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分 证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤, 所以1()r A ,2()r A ,,9()r A ,1()c A ,2()c A ,,9()c A 这18个数中有9个1,9个1-.令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅.一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ① 另一方面,129()()()r A r A r A ⋅⋅⋅表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅.从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅. ③ ………………10分注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤. 下面考虑1()r A ,2()r A ,,()n r A ,1()c A ,2()c A ,,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -, 所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分 对数表0A :1ij a =(,1,2,3,,)i j n =,显然0()2l A n =.将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤,其余1ij a =.所以 12()()()1k r A r A r A ====-,12()()()1k c A c A c A ====-.所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -=.……………13分。
北京市西城区高三理科数学二模试题与答案
(A){0,1}
(C){0,1, 4}
2.在复平面内,复数 z1 的对应点是 Z1(1,1) , z2 的对应点是 Z2 (1, 1) ,则 z1 z2
(A)1
(B) 2
3.在极坐标系中,圆心为 (1, ) ,且过极点的圆的方程是
2
(A) 2sin
(B) 2sin (C) 2 cos
雅思博教育
2013 年北京市西城区高三二模试卷
高三数学(理科)
第Ⅰ卷(选择题 共 40 分)
一、选择题:本大题共 8 小题,每小题 5 分共 40 分.在每小题列出的四个选项中,选出符 合题目要求的一项.
1.已知全集U {0,1, 2,3, 4} ,集合 A {0,1, 2,3}, B {2,3, 4},那么 ðU ( A B)
(A) m n , n ∥
,则
1
深的入精贯习神彻中部和落纪选。要实委拔深锋求中机任入队,为央关用学员”特的和、工习装的别情省组中作《、标本是形、织央坚条中统准质“和市原组守例源国一和九处委则织为、》,共思条使个分关、部人遵等标 弘产想件命严规于优《做守法准 扬党行章;,禁定从良关事党规和 党地动党学进止。严作于的章制条 的方个,规习一、治风加基县、度件 优委全认。党步九党动,强准处维,。 良员面真着规明个的实牢换和级护学认 传会”学,眼确一重效记届底以党习教真 统工战习充明要“律大;入风线上章市育学 和作略习中分确掌四”决要党气。党,委、习 作条布近、展基握个纪策在充誓监员坚加全理《 风例局平五示本廉服律部学分词督领定强体论中 ;》、总中共标洁从要,署,发的导理领党武国 深《贯全全产准自”求做。关挥牢通(干想导员装共 刻中彻市会党、律的,合键机记知川部(区信班学。,产 汲国落X精人树准要重格在关党》委要二X域念子习根进党 取共实年神的立则求点党系做党的和办学)中;思党据一廉 违产五在,优行规掌员统。组宗中〔深学心认想章省步洁 纪党大全进良为定掌握”先要织旨央2一系全 关”真政,委坚自 违党0发体一风规的握“学深战,、1层列体 于提学治要办定律 法组6展党步貌范“四习〕入斗深省,讲党 在供习建深公理准 反工理题员巩和,四的个教1学堡入委系话员 全坚党设入4厅想则 面作念学中固时组个领廉育号习垒领、统。讲 体强的领个印信》 典条,习开拓代织必导洁实)贯作会市学着定党保历实会专。发念《 型例实讨展精和须干”施和彻用党委习眼理课 员证史施党题的,中(现一”论“党神引部方《习和员有领加想, 中。意的组《提国 的试X、学 制,的;导“必四案中近党条关悟强X信支 开学见性织关高共 教行二总习 度按党群要广四须个〉共事平员件严党理念部 展习等质讨于党产 训)、体讨 要照章众带大个具自的X业总先和肃章论,书 “革制、论照在性党 ,》主X要论 求“党路着坚备觉通“书锋义换,武学明记命度市宗,入全觉纪 自《要求” ,四规线问员持的知十记模务届深习确给 党先文委旨每党省悟律 觉内。 党个、教题逐”六,》三头开系范、纪刻教政支 章辈件办、个志党;处 讲政容,以 小讲学育条项(五落展列作权律把育治部 党和,公指专愿员要分 政领带党 组(系实,逐掌基X”于实“重用利握动方党 规先学室导题谈中坚条 治导X头组 每课一列践针句握本发“全两要,“委员向、进关思集理开持例 、干观严中 月”)讲活对通各条展七面学讲领明两办部”讲 学典于想中想展学》 讲,守心 底要学话动问读类件良定个从一话导确个〔署、党 系型印学、“用等 规温在政组求党,和题违好共有严做,带先2,“课 列发奋习谈学结党 矩入推0关治形 织,做“改章纪开产之治”全头合1以坚,用〈斗讨信党合内 、讲动6键纪式 一开合三,行局党”学面、格〕华党持邀好关目论念章、法 守话志改时律, 次展格严进明和人“责习贯以党2民支根请红于标不,党创规 纪愿革8刻和定 党三一确“性理五任教彻上号族部本党色在、得对规先, 律做和发保站政期 员组实步做决锻想个。育落率)优为宗校教全少照、争尊 ,合入展持得治组 集班”坚合胜,炼信必实下,三秀单旨教育市于入学优崇格党稳公出规织 中子学专持格全向和念须基党,结、,传位师资党1党系,誓定仆,矩集 学成习题问党天面党道,”础的为合主站统开敢、员讲誓列进章员词实情危,中 习员教题。小的德牢等十协我要稳美展于专中规词讲一”,践怀险带学 。到育导的康理修固重八调”局(措政德一担家开矩找话步学交中精,时头习 支联(成向、论养树要大推中实三施治,次当学展、标,强习流建神牢候, 部系以果建和,立论进奋际)全立筑主作者“有(准做化教思功,记豁固每区下;注成路心党述十“发,开面场牢题为给学国纪一、合宗育想立推共得树次 季县简要重线存的,八四有现展从,拒党”特律)找格旨实体业动产出立确 度X称突活方敬意认届为制“严把腐日、员章X色,开差党观施会。X党,和定 召“出述针畏识真三、定四局治理防活“干党X社讲展距员念方。《员在贯1开两正县,政、践中加建如个带个党想变动坚部规会道“。”案党永X彻一学面(处领策手党行、快功下讲头专等信的,守讲、X主德两党学干委远落次党一二级会看握员“四发立实党事讲题方念防组纪党学义、重支习部会是实全中做)以贯齐戒意三展业施课党开新面时线织律课系道有温部教要读的劳五体央”开上穿,尺识严、。方”“课展要的时;党底,列路品两书育讲本工动大党决学展其认,三科案。十,交中求深处始员线鼓讲全、行对记方话)作人发员定习“中真廉强实学习党三局流国,刻处终重励话体“,照作案精》方民展会,教三领的贯洁化”发系支五党研特坚内体保温树普党建五讲”学》神为法的理议2育个导马彻从党要展列部”组讨0理 情色持涵现入立通员位奉主习。基1》普念,)干克省政的求、讲要规书6。念 怀社以和为干党清要与一献题动本纳通,分县部思委、宗和话结划记按怎 、会知要行事志风员坚全体、党员教入一带别处要主、从旨好谐,合开给照么 务主促求动创愿正、持面”有日,材学员头围级义市严意干发要专局“办 实义行。的业、气学建总作活领,习,攻绕以做立委治识部展重起三、 思要力重”做成体为动导深内密坚“上结场决家,标。点步会新 想“知着量开温3结小的布。干入容切克坚党合观策,积准学、一战 作四行重;拓入(合康要局合4部学。联难员,月点部带极,习“课略 风个合学坚进党三,社求、格带习深系、干对底方署头践带《决怎 。全一习定取誓)坚会和“党头《入群敢部照前法,弘行头习胜么 要面,领正的词做相内四员重习领众于要习,做扬社坚近全干 深”做会确精,合适容个。近会,担以近结领政社会定平面” 入战讲习的气对格应;全引平关全当《平合会治主理总小学 领略政近神党、重面导总于心,习总贯上主义想书康习 会布治平,员有点”党书改全带近书穿的义核信记、研 我局、总方平。效学战员记革意平记其明核心念系建讨 国、有书向常着服习略强系发为谈关中白心价列成; 发五信记,时眼务习布化列展人治的人价值重区注 展大念来经候党国近局政重稳民国坚;值要域重 战发,川常看和家平、治要定服理定践体讲中同 略展视主得国治总五意讲、务政信行系话心X机理察动出家书大识话内;》X仰党和读遇念重向,事和记发,读工政加《追的中本、要党业“对展保本作外强习求宗(中社讲的五四理持(“交党近、旨2会话央新位川念政02存国平历,10主和看发一工、治61凭防总年史6义系齐展体年作全本、、书版担核列对”版的面色留治记)当心重党建)系深史党重》意价要员设》列化、治要,识值指的,改资国讲重、观示X要革政治话点真X和将、、事军文领挚全毛育业的章会为面泽人发重选理民从东”展要编想严同的体论(信治志作系领念党用。导、等结中全方合国体面起梦党来、员,学加快
2013北京西城高考二模数学理(含解析)
北京市西城区2013年高三二模试卷高三数学(理科) 2013.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{0,1,2,3,4}U =,集合{0,1,2,3}A =,{2,3,4}B =,那么()U A B =I ð( ). A .{0,1} B .{2,3} C .{0,1,4} D .{0,1,2,3,4}2.在复平面内,复数1z 的对应点是1(1,1)Z ,2z 的对应点是2(1,1)Z -,则12z z ⋅=( ). A .1 B .2 C .i - D .i3.在极坐标系中,圆心为π(1,)2,且过极点的圆的方程是( ).A .2sin ρθ=B .2sin ρθ=-C .2cos ρθ=D .2cos ρθ=-4.如图所示的程序框图表示求算式“235917⨯⨯⨯⨯”之值,则判断框内可以填入( ). A .10k ≤ B .16k ≤ C .22k ≤ D .34k ≤5.设122a =,133b =,3log 2c =,则( ). A .b a c << B .a b c << C .c b a <<D .c a b <<6.对于直线m ,n 和平面α,β,使m α⊥成立的一个充分条件是( ). A .m n ⊥,n α∥ B .m β∥,βα⊥ C .m β⊥,n β⊥,n α⊥ D .m n ⊥,n β⊥,βα⊥7.已知正六边形ABCDEF 的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛的焦点到准线的距离是( ). A .34B .32C .3D .238.已知函数()[]f x x x =-,其中[]x 表示不超过实数x 的最大整数.若关于x 的方程()f x kx k =+有三个不同的实根,则实数k 的取值范围是( ). A .111[1,)(,]243--UB .111(1,][,)243--UC .111[,)(,1]342--UD .111(,][,1)342--U第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.右图是甲,乙两组各6名同学身高(单位:cm )数据 的茎叶图.记甲,乙两组数据的平均数依次为x 甲和x 乙, 则x 甲______x 乙. (填入:“>”,“=”,或“<”)10.5(21)x -的展开式中3x 项的系数是______.(用数字作答)11.在ABC △中,2BC =,7AC =,π3B =,则AB =______;ABC △的面积是______.12.如图,AB 是半圆O 的直径,P 在AB 的延长线上,PD 与半圆O 相切于点C ,AD PD ⊥.若4PC =,2PB =,则CD =______.13.在等差数列{}n a 中,25a =,1412a a +=,则n a =______;设*21()1n n b n a =∈-N ,则数列{}n b 的前n 项和n S =______.14.已知正数,,a b c 满足a b ab +=,a b c abc ++=,则c 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且ππ,)62α∈(.将角α的终边按逆时针方向旋转π3,交单位圆于点B .记1122(,),(,)A x y B x y .(Ⅰ)若113x =,求2x ;(Ⅱ)分别过,A B 作x 轴的垂线,垂足依次为,C D .记AOC △的面积为1S ,BOD △的面积为2S .若122S S =,求角α的值.16.(本小题满分13分)某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(Ⅰ)求1名顾客摸球3次停止摸奖的概率;(Ⅱ)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.17.(本小题满分14分)如图1,四棱锥P ABCD-中,PD⊥底面ABCD,面A B C D是直角梯形,M为侧棱PD上一点.该四棱锥的俯视图和侧(左)视图如图2所示.(Ⅰ)证明:BC⊥平面PBD;(Ⅱ)证明:AM∥平面PBC;(Ⅲ)线段CD上是否存在点N,使AM与BN所成角的余弦值为34?若存在,找到所有符合要求的点N,并求CN的长;若不存在,说明理由.18.(本小题满分13分)如图,椭圆22:1(01)y C x m m+=<<的左顶点为A ,M 是椭圆C 上异于点A 的任意一点,点P 与点A 关于点M 对称.(Ⅰ)若点P 的坐标为943(,)55,求m 的值; (Ⅱ)若椭圆C 上存在点M ,使得OP OM ⊥,求m 的取值范围.19.(本小题满分14分)已知函数322()2(2)13f x x x a x =-+-+,其中a ∈R . (Ⅰ)若2a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)求()f x 在区间[2,3]上的最大值和最小值.20.(本小题满分13分)已知集合1212{(,,,)|,,,n n n S x x x x x x =L L 是正整数1,2,3,,n L 的一个排列}(2)n ≥,函数1,0,()1,0.x g x x >⎧=⎨-<⎩ 对于12(,,)n n a a a S ∈…,定义:121()()(),{2,3,,}i i i i i b g a a g a a g a a i n -=-+-++-∈L L ,10b =,称i b 为i a 的满意指数.排列12,,,n b b b L 为排列12,,,n a a a L 的生成列;排列12,,,n a a a L 为排列12,,,n b b b L 的母列.(Ⅰ)当6n =时,写出排列3,5,1,4,6,2的生成列及排列0,1,2,3,4,3--的母列;(Ⅱ)证明:若12,,,n a a a L 和12,,,n a a a '''L 为n S 中两个不同排列,则它们的生成列也不同; (Ⅲ)对于n S 中的排列12,,,n a a a L ,定义变换τ:将排列12,,,n a a a L 从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:一定可以经过有限次变换τ将排列12,,,n a a a L 变换为各项满意指数均为非负数的排列.北京市西城区2013年高三二模试卷高三数学(理科)参考答案及评分标准 2013.5一、选择题:本大题共8小题,每小题5分,共40分.1.C ; 2.B ; 3.A ; 4.C ; 5.D ; 6.C ; 7.B ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.>; 10.80; 11.3,332; 12.125; 13.21n +,4(1)n n +; 14.4(1,]3.注:11、13题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:由三角函数定义,得 1cos x α=,2πcos()3x α=+. ………………2分因为 ππ,)62α∈(,1cos 3α=,所以222sin 1cos 3αα=-=. ………………3分 所以2π13126cos()cos sin 3226x αα-α-=+==. ………………5分(Ⅱ)解:依题意得 1sin y α=,2πsin()3y α=+.所以111111cos sin sin 2224S x y ααα==⋅=, ………………7分22211ππ12π||[cos()]sin()sin(2)223343S x y ααα==-+⋅+=-+. ……………9分依题意得2πsin 22sin(2)3αα=-+,整理得cos 20α=. ………………11分因为ππ62α<<, 所以π2π3α<<, 所以π22α=,即π4α=. ………………13分16.(本小题满分13分)(Ⅰ)解:设“1名顾客摸球3次停止摸奖”为事件A , ………………1分则2334A 1()A 4P A ==,故1名顾客摸球3次停止摸奖的概率为14. ………………4分 (Ⅱ)解:随机变量X 的所有取值为0,5,10,15,20. ………………5分1(0)4P X ==, 2224A 1(5)A 6P X ===, 222344A 11(10)A A 6P X ==+=, 122234C A 1(15)A 6P X ⋅===,3344A 1(20)A 4P X ===. ………………10分所以,随机变量X 的分布列为:X 0 5 10 15 20P14 16 16 16 14………………11分11111051015201046664EX =⨯+⨯+⨯+⨯+⨯=. ………………13分17.(本小题满分14分) 【方法一】(Ⅰ)证明:由俯视图可得,222BD BC CD +=,所以BC BD ⊥. ………………1分 又因为 PD ⊥平面ABCD ,所以BC PD ⊥, ………………3分 所以BC ⊥平面PBD . ………………4分 (Ⅱ)证明:取PC 上一点Q ,使:1:4PQ PC =,连结MQ ,BQ . ………………5分由左视图知:1:4PM PD =,所以MQ ∥CD ,14MQ CD =. ………………6分在BCD △中,易得60CDB ∠=o ,所以30ADB ∠=o .又2BD =,所以1AB =,3AD =. 又因为AB ∥CD ,14AB CD =,所以AB ∥MQ ,AB MQ =.所以四边形ABQM 为平行四边形,所以AM ∥BQ . ………………8分因为AM ⊄平面PBC ,BQ ⊂平面PBC ,所以直线AM ∥平面PBC . ………………9分 (Ⅲ)解:线段CD 上存在点N ,使AM 与BN 所成角的余弦值为34.证明如下:………10分 因为PD ⊥平面ABCD ,DA DC ⊥,建立如图所示的空间直角坐标系D xyz -. 所以(0,0,0),(3,0,0),(3,1,0),(0,4,0),(0,0,3)D A B C M .设(0,0,0),(3,0,0),(3,1,0),(0,4,0),(0,0,3)D A B C M ,其中(0,,0)N t .………………11分所以(3,0,3)AM =-u u u r,(3,1,0)BN t =--u u u r .要使AM 与BN 所成角的余弦值为34,则有||34||||AM BN AM BN ⋅=uuu r uuu r uuu r uuu r , ………………12分所以2|3|34233(1)t =⋅+-,解得0t =或2,均适合(0,,0)N t . ………………13分 故点N 位于D 点处,此时4CN =;或CD 中点处,此时2CN =,有AM 与BN 所成角的余弦值为34. ………………14分 【方法二】(Ⅰ)证明:因为PD ⊥平面ABCD ,DA DC ⊥,建立如图所示的空间直角坐标系D xyz -.在BCD △中,易得60CDB ∠=o ,所以30ADB ∠=o , 因为2BD =,所以1AB =,3AD =. 由俯视图和左视图可得:(0,0,0),(3,0,0),(3,1,0),(0,4,0),(0,0,3),(0,0,4)D A B C M P .所以(3,3,0)BC =-u u u r ,(3,1,0)DB =u u u r.因为3331000BC DB ⋅=-⋅+⋅+⋅=u u u r u u u r,所以BC BD ⊥. ………………2分 又因为PD ⊥平面ABCD ,所以BC PD ⊥, ………………3分 所以BC ⊥平面PBD . ………………4分(Ⅱ)证明:设平面PBC 的法向量为=()x,y,z n ,则有0,0.PC BC ⎧⋅=⎪⎨⋅=⎪⎩uu u r uu ur n n 因为(3,3,0)BC =-u u u r ,(0,4,4)PC =-u u u r,所以440,330.y z x y -=⎧⎪⎨-+=⎪⎩取1y =,得=n (3,1,1). ………………6分因为(3,0,3)AM =-u u u r,所以AM ⋅uuu r=n 3(3)10130⋅-+⋅+⋅=. ………………8分 因为AM ⊄平面PBC ,所以直线AM ∥平面PBC . ………………9分 (Ⅲ)解:线段CD 上存在点N ,使AM 与BN 所成角的余弦值为34.证明如下:………10分 设(0,0,0),(3,0,0),(3,1,0),(0,4,0),(0,0,3)D A B C M ,其中(0,,0)N t ………………11分所以(3,0,3)AM =-u u u r,(3,1,0)BN t =--u u u r .要使AM 与BN 所成角的余弦值为34,则有||34||||AM BN AM BN ⋅=⋅uuu r uuu r uuu r uuu r , ………………12分所以2|3|34233(1)t =⋅+-,解得0t =或2,均适合(0,,0)N t . ………………13分 故点N 位于D 点处,此时4CN =;或CD 中点处,此时2CN =,有AM 与BN 所成角的余弦值为34. ………………14分 18.(本小题满分13分)(Ⅰ)解:依题意,M 是线段AP 的中点,因为(1,0)A -,943(,)55P , 所以点M 的坐标为223(,)55.………………2分由点M 在椭圆C 上,所以41212525m +=, ………………4分 解得47m =. ………………5分(Ⅱ)解:设00(,)M x y ,则2201y x m+=,且011x -<<. ① ………………6分因为 M 是线段AP 的中点,所以 00(21,2)P x y +. ………………7分 因为 OP OM ⊥,所以2000(21)20x x y ++=.② ………………8分由 ①,② 消去0y ,整理得 20020222x x m x +=-. ………………10分 所以0011316242(2)82m x x =+≤-++-+, ………………12分当且仅当 023x =-+时,上式等号成立.所以 m 的取值范围是13(0,]24-. ………………13分 19.(本小题满分14分)(Ⅰ)解:()f x 的定义域为R , 且2()242f x x x a '=-+-. ………………2分当2a =时,1(1)3f =-,(1)2f '=-,所以曲线()y f x =在点(1,(1))f 处的切线方程为 12(1)3y x +=--,即 6350x y +-=. ………………4分(Ⅱ)解:方程()0f x '=的判别式为8a ∆=.(ⅰ)当0a ≤时,()0f x '≥,所以()f x 在区间(2,3)上单调递增,所以()f x 在区间[2,3]上的最小值是7(2)23f a =-;最大值是(3)73f a =-. ………………6分 (ⅱ)当0a >时,令()0f x '=,得 1212ax =-,或2212a x =+.()f x 和()f x '的情况如下:x 1(,)x -∞ 1x 12(,)x x 2x 2(,)x +∞故()f x 的单调增区间为2(,1)2a-∞-,2(1,)2a ++∞;单调减区间为22(1,1)22a a -+. ……8分① 当02a <≤时,22x ≤,此时()f x 在区间(2,3)上单调递增,所以()f x 在区间[2,3]上的最小值是7(2)23f a =-;最大值是(3)73f a =-. ………………10分 ② 当28a <<时,1223x x <<<,此时()f x 在区间2(2,)x 上单调递减,在区间2(,3)x 上单调递增,所以()f x 在区间[2,3]上的最小值是 252()33a a f x a =--. ………………11分因为14(3)(2)3f f a -=-, 所以当1423a <≤时,()f x 在区间[2,3]上的最大值是(3)73f a =-; 当1483a <<时,()f x 在区间[2,3]上的最大值是7(2)23f a =-. ………………12分 ③ 当8a ≥时,1223x x <<≤,此时()f x 在区间(2,3)上单调递减,所以()f x 在区间[2,3]上的最小值是(3)73f a =-;最大值是7(2)23f a =-.…………14分 综上,当2a ≤时,()f x 在区间[2,3]上的最小值是723a -,最大值是73a -; 当1423a <≤时,()f x 在区间[2,3]上的最小值是5233a a a --,最大值是73a -; 当1483a <<时,()f x 在区间[2,3]上的最小值是5233a a a --,最大值是723a -; 当8a ≥时,()f x 在区间[2,3]上的最小值是73a -,最大值是723a -.20.(本小题满分13分)(Ⅰ)解:当6n =时,排列3,5,1,4,6,2的生成列为0,1,2,1,4,3--; ………………2分排列0,1,2,3,4,3--的母列为3,2,4,1,6,5. ………………3分 (Ⅱ)证明:设12,,,n a a a L 的生成列是12,,,n b b b L ;12,,,n a a a '''L 的生成列是与12,,,n b b b '''L . 从右往左数,设排列12,,,n a a a L 与12,,,n a a a '''L 第一个不同的项为k a 与k a ',即:n n a a '=,11n n a a --'=,L ,11k k a a ++'=,k k a a '≠.显然 n nb b '=,11n n b b --'=,L ,11k k b b ++'=,下面证明:k k b b '≠. ………………5分 由满意指数的定义知,i a 的满意指数为排列12,,,n a a a L 中前1i -项中比i a 小的项的个数减去比i a 大的项的个数.由于排列12,,,n a a a L 的前k 项各不相同,设这k 项中有l 项比k a 小,则有1k l --项比k a 大,从而(1)21k b l k l l k =---=-+.()f x ' +-0 +()f x↗↘↗同理,设排列12,,,n a a a '''L 中有l '项比k a '小,则有1k l '--项比k a '大,从而21k b l k ''=-+. 因为 12,,,k a a a L 与12,,,k a a a '''L 是k 个不同数的两个不同排列,且k k a a '≠, 所以 l l '≠, 从而 k kb b '≠. 所以排列12,,,n a a a L 和12,,,n a a a '''L 的生成列也不同. ………………8分 (Ⅲ)证明:设排列12,,,n a a a L 的生成列为12,,,n b b b L ,且k a 为12,,,n a a a L 中从左至右第一个满意指数为负数的项,所以 1210,0,,0,1k k b b b b -≥≥≥≤-L . ………………9分进行一次变换τ后,排列12,,,n a a a L 变换为1211,,,,,,k k k n a a a a a a -+L L ,设该排列的生成列为12,,,n b b b '''L . 所以 1212()()n n b b b b b b '''+++-+++L L 121121[()()()][()()()]k k k k k k k k g a a g a a g a a g a a g a a g a a --=-+-++---+-++-L L1212[()()()]k k k k g a a g a a g a a-=--+-++-L22k b =-≥. ………………11分因此,经过一次变换τ后,整个排列的各项满意指数之和将至少增加2.因为i a 的满意指数1i b i ≤-,其中1,2,3,,i n =L ,所以,整个排列的各项满意指数之和不超过(1)123(1)2n nn -++++-=L , 即整个排列的各项满意指数之和为有限数, 所以经过有限次变换τ后,一定会使各项的满意指数均为非负数. ………………13分北京市西城区高三统一测试 数学(理科)选填解析一、 选择题 1.【答案】C【解析】解:{}2,3A B =Q I ,{}0,1,4U A B ∴=I ð. 故选C .2.【答案】B【解析】解:()()12121i,1i,1i 1i 2Z Z Z Z =+=-⋅=+-=. 故选B .3.【答案】A【解析】解:在直角坐标系下,圆心坐标为(0,1),又因为圆过极点所以圆的半径为1r =,所以圆的方程为22(1)1x y +-=,所以极坐标方程为2sin ρθ=. 故选A .4.【答案】C 【解析】解:列表S 223⨯ 235⨯⨯ 2359⨯⨯⨯ 235917⨯⨯⨯⨯循环结束 k3591733输出S可知[)17,33k m ≤∈. 故选C .5.【答案】D【解析】解:由函数的性质可知1,1,1a b c >><, 而668,9a b ==,显然1c a b <<<. 故选D .6.【答案】C【解析】解:由图一可知m n ⊥,n α∥,但是m α⊥不成立,故A 错; 由图二可知m β∥,βα⊥,但是m α⊥不成立,故B 错; 由图二可知m n ⊥,n β⊥,βα⊥,但是m α⊥不成立,故D 错.图一n mβα图二nmβα故选C .7.【答案】B【解析】解:可设抛物线的标准方程为22y px =, 由正六边形可知点(),1A x ,点()3,2B x +,把点带入方程可知 ()312342332x px p x p ⎧=⎪=⎧⎪⎪⇒⎨⎨=⋅+⎪⎪⎩=⎪⎩,由等抛物线的性质可知焦点到准线的距离为p .故选B .8.【答案】B【解析】解:画出函数()y f x =的图象,其图象 为具有周期性,并且在区间[0,1)上的解析式为 y x =.函数y kx k =+可能是任意一条经过点 (1,0)-且不与x 轴垂直的直线.斜率k 使得函数 ()y f x =的图象与函数y kx k =+的图象恰有3个 交点根据图像可知111(1,][,)243k ∈--U .故选B .二、 填空题 9.【答案】>【解析】解:由茎叶图可知甲的平均数151153165167170172163.36x +++++=≈甲,乙的平均数150161162163164172165.36x +++++=≈乙. 故答案为>.10.【答案】80【解析】解:由二项式的定理可知()()515C 21rrrr T x -+=⋅-,当2r =时,展开式含3x 项,其系数为25C 880⋅=. 故答案为80.11.【答案】3,332【解析】解:利用余弦定理得222cos 2AB BC AC B AB BC+-=⋅⋅,故3AB =,133sin 22S AB BC B =⋅⋅=.故答案为3,332.12.【答案】125【解析】解:连接OC ,因为PC 切圆O 于点C ,所以OC PC ⊥, 由切割线定理知2(2)PC PB PA PB PB r =⋅=⋅+3OA r ∴==//AD PD OC AD ⊥∴Q125PC PO CD CD OA ∴=∴=. 故答案为125.13.【答案】21n +,4(1)nn +【解析】解:由题意得:1115223123a d a a d d +==⎧⎧⇒⎨⎨+==⎩⎩ 21n a n ∴=+1111()4(1)41n b n n n n ==-++11111111(1......)(1)4223141n S n n n ∴=-+-++-=-++4(1)n n =+ .故答案为21n +,4(1)nn +.14.【答案】4(1,]3【解析】解:若1ab =,则1a b ab +==,1a b c c ++=+,abc c =, 不满足等式a b c abc ++=.于是1ab ≠,11111a b ab c ab ab ab +===+---. 由于2ab a b ab =+≥,故4ab ≥,于是有:141413c ≤+=-,当且仅当2a b ==时取得最大值. 又由a b ab +=可知(1)(1)1a b --=.不难证明,1a b >,于是10ab ->,1111c ab =+>-. 因此,c 的取值范围是4(1,]3.(注:当1b →时,由(1)(1)1a b --=可知a →+∞,因此ab 的取值范围没有上界).故答案为4 (1,]3.。
北京市西城区2013届高三第二次模拟数学理科
2013北京西城区高三二模数学理科一、选择题:本大题共8小题,每题5分,共40分. 在每题给出的四个选项中,选出符合要求的一项 1. 设集合{1,2,3,4,5}U =,{1,2,3}A =,{3,4,5}B =,则C U ()AB 等于A .{1,2,3,4,5}B .{1,2,4,5} √C .{1,2,5}D .{3}2. “ln 1x >”是“1x >”的A .充分不必要条件 √B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 假设0b a <<,则以下不等式中正确的选项是A .11a b> B .a b >C .2b aa b+> √ D .a b ab +>4. 如图,三棱柱111ABC A B C -的侧棱长和底面边长均为2,且侧棱1AA ⊥底面ABC ,其正〔主〕视图是边长为2的正方形,则此三棱柱侧〔左〕视图的面积为AB. √ C. D .45. 数列{}n a 满足11a =,23a =,1(2)n n a n a λ+=-〔1,2,n =〕,则3a 等于A .15 √B .10C .9D .56. 在数列{}n a 中,11a =,1n n a a n -=+,2n ≥.为计算这个数列前10项的和,现给出该问题算法的程序框图〔如下列图〕,则图中判断框〔1〕处合适的语句是A .8i ≥B .9i ≥C .10i ≥ √D .11i ≥正〔主〕视图ABCA 1B 1C 17. 设集合{129}S =,,,,集合123{,,}A a a a =是S 的子集,且123,,a a a 满足123a a a <<,326a a -≤,那么满足条件的子集A 的个数为A . 78B .76C .84D .83 √8. 如图,在等腰梯形ABCD 中,//AB CD ,且2AB AD =.设DAB θ∠=,(0,)2πθ∈,以A ,B 为焦点且过点D 的双曲线的离心率为1e ,以C ,D 为焦点且过点A 的椭圆的离心率为2e ,则A .随着角度θ的增大,1e 增大,12e e 为定值B .随着角度θ的增大,1e 减小,12e e 为定值 √C .随着角度θ的增大,1e 增大,12e e 也增大D .随着角度θ的增大,1e 减小,12e e 也减小二、填空题:本大题共6小题,每题5分,共30分. 9. 某区高二年级的一次数学统考中,随机抽取200名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……第五组,成绩大于等于90分且小于等于100分,据此绘制了如下列图的频率分布直方图.则这200名同学中成绩大于等于80分且小于90分的学生有______名.10. 在261()x x+的展开式中,常数项是______.〔结果用数值表示〕11. 如图,ABC ∆是圆的内接三角形,PA 切圆于点A ,PB 交圆于点D .假设60ABC ∠=,1PD =,8BD =,则PAC ∠=________,PA=________.12. 圆1,:2x C y θθ⎧=⎪⎨=+⎪⎩〔θ为参数〕的半径为______, 假设圆C 与直线0x y m -+=相切,则m =______.13. 设,,a b c 为单位向量,,a b 的夹角为60,则()++⋅a b c c 的最大值为_____.B14. 已知函数()e ln x f x a x =+的定义域是D ,关于函数()f x 给出以下命题:①对于任意(0,)a ∈+∞,函数()f x 是D 上的减函数; ②对于任意(,0)a ∈-∞,函数()f x 存在最小值;③存在(0,)a ∈+∞,使得对于任意的x D ∈,都有()0f x >成立; ④存在(,0)a ∈-∞,使得函数()f x 有两个零点.其中正确命题的序号是_____.〔写出所有正确命题的序号〕②、④三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤. 15.〔本小题总分值13分〕如图,在四边形ABCD 中,3AB =,2AD BC CD ===,60A =. 〔Ⅰ〕求sin ABD ∠的值; 〔Ⅱ〕求BCD ∆的面积.16.〔本小题总分值13分〕一个盒子中装有5张卡片,每张卡片上写有一个数字,数字分别是1、2、3、4、5,现从盒子中随机抽取卡片.〔Ⅰ〕假设从盒子中有放回的取3次卡片,每次抽取一张,求恰有两次取到的卡片上数字为偶数的概率;〔Ⅱ〕假设从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当取到一张记有偶数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X 的分布列和期望.17.〔本小题总分值13分〕如图,四棱柱1111ABCD A BC D -中,1A D ⊥平面ABCD ,底面ABCD 是边长为1的正方形,侧棱12AA =.〔Ⅰ〕求证:1//C D 平面11ABB A ;〔Ⅱ〕求直线1BD 与平面11AC D 所成角的正弦值; 〔Ⅲ〕求二面角11D AC A --的余弦值.ADD 1A 1B 1C 1ABCD18.〔本小题总分值13分〕已知0a ≥,函数2()f x x ax =+.设1(,)2a x ∈-∞-,记曲线()y f x =在点11(,())M x f x 处的切线为l ,l 与x 轴的交点是2(,0)N x ,O 为坐标原点.〔Ⅰ〕证明:21212x x x a=+;〔Ⅱ〕假设对于任意的1(,)2a x ∈-∞-,都有916aOM ON ⋅>成立,求a 的取值范围.19.〔本小题总分值14分〕如图,椭圆22:14y C x +=短轴的左右两个端点分别为,A B ,直线:1l y kx =+与x 轴、y 轴分别交于两点,E F ,与椭圆交于两点,C D ,.〔Ⅰ〕假设CE FD =,求直线l 的方程;〔Ⅱ〕设直线,AD CB 的斜率分别为12,k k ,假设12:2:1k k =,求k 的值.20.〔本小题总分值14分〕在数列{}n a 和{}n b 中,n n a a =,(1)n b a n b =++,1,2,3,n =,其中2a ≥且a ∈*N ,b ∈R . 〔Ⅰ〕假设11a b =,22a b <,求数列{}n b 的前n 项和;〔Ⅱ〕证明:当2,a b ={}n b 中的任意三项都不能构成等比数列; 〔Ⅲ〕设123{,,,}A a a a =,123{,,,}B b b b =,试问在区间[1,]a 上是否存在实数b 使得C A B =≠∅.假设存在,求出b 的一切可能的取值及相应的集合C ;假设不存在,试说明理由.北京市西城区2010年抽样测试参考答案高三数学试卷〔理科〕2010.5一、选择题:本大题共8小题,每题5分,共40分.题号 1 2 3 4 5 6 7 8答案 B A C B A C D B二、填空题:本大题共6小题,每题5分,共30分.9.4010.1511.60,312.3或1-13.114. ②④注:两空的题目,第一个空2分,第二个空3分.14题②④选对一个命题得两分,选出错误的命题即得零分.三、解答题:〔本大题共6小题,共80分.假设考生的解法与本解答不同,正确者可参照评分标准给分.〕15、解:〔Ⅰ〕已知60A =,由余弦定理得2222cos7BD AB AD AB AD A=+-⋅=,解得BD=…………………3分由正弦定理,sin sinAD BDABD A=∠,所以sin sinADABD ABD∠=. …………………5分7==. …………………7分〔Ⅱ〕在BCD∆中,2222cosBD BC CD BC CD C=+-⋅,所以744222cos C=+-⨯⨯,1cos8C=,…………………9分因为(0,)C∈π,所以sin C=…………………11分所以,BCD∆的面积1sin24S BC CD C=⋅⋅=. …………………13分16、解:〔Ⅰ〕设A表示事件“有放回地抽取3次卡片,每次抽取一张,恰有两次取到的卡片上数字为偶数”,A BCD由已知,每次取到的卡片上数字为偶数的概率为25, …………………2分 则2232336()()55125P A C =⨯=. …………………5分 〔Ⅱ〕依题意,X 的可能取值为1,2,3,4. …………………6分2(1)5P X ==, …………………7分 323(2)5410P X ⨯===⨯, …………………9分3221(3)5435P X ⨯⨯===⨯⨯, …………………10分3211(4)54310P X ⨯⨯===⨯⨯, …………………11分所以X 的分布列为X 12 3 4 P25 310 15 110 …………………12分2311()12342510510E X =⨯+⨯+⨯+⨯=. …………………13分17、〔Ⅰ〕证明:四棱柱1111ABCD A BC D -中,11//BB CC ,又1CC ⊄面11ABB A ,所以1//CC 平面11ABB A , …………………2分ABCD 是正方形,所以//CD AB ,又CD ⊄面11ABB A ,所以//CD 平面11ABB A , …………………3分 所以平面11//CDD C 平面11ABB A ,所以1//C D 平面11ABB A . …………………4分 〔Ⅱ〕解:ABCD 是正方形,AD CD ⊥,因为1A D ⊥平面ABCD , 所以1A D AD ⊥,1A D CD ⊥,如图,以D 为原点建立空间直角坐标系D xyz -,. …………………5分在1ADA ∆中,由已知可得1A D所以11(0,0,0),(1,0,0),(1,1D A A C -,11(0,1,3),(1(1,1,0)B D B -, 1(2,1BD =--, ………6分因为1A D ⊥平面ABCD , 所以1A D ⊥平面1111A B C D ,111A D B D ⊥,又1111B D AC ⊥,所以11B D ⊥平面11AC D ,…………………7分所以平面11AC D 的一个法向量为(1,1,0)=n , …………………8分设1BD 与n 所成的角为β, 则113cos 42BD BD β⋅-===-n n , …………………9分所以直线1BD 与平面11AC D 所成角的正弦值为34. …………………10分 〔Ⅲ〕解:设平面11AC A 的法向量为(,,)a b c m=,则1110,0AC A A ⋅=⋅=m m , 所以0ab -+=,0a =,令c =m =, …………………12分 设二面角11D AC A --的大小为α, 则cos7α⋅===m n m n . 所以二面角11D AC A --的余弦值为7. …………………13分 18、解:〔Ⅰ〕对()f x 求导数,得()2f x x a '=+,故切线l 的斜率为12x a +, …………………2分 由此得切线l 的方程为21111()(2)()y x ax x a x x -+=+-. …………………4分令0y =,得22111211122x ax x x x x a x a+=-+=++. …………………5分1〔Ⅱ〕由2211111(,),(,0)2x M x x ax N x a ++,得3112x OM ON x a⋅=+. …………6分 所以0a =符合题意, ………………7分当0a >时,记3111()2x g x x a=+,1(,)2a x ∈-∞-.对1()g x 求导数,得211121(43)()(2)x x a g x x a +'=+, …………………8分 令1()0g x '=,得13(,)42a a x =-∈-∞-. 当1(,)ax ∈-∞-时,1()g x '的变化情况如下表:所以,函数1()g x 在(,)4-∞-上单调递减,在(,)42--上单调递增,……10分 从而函数1()g x 的最小值为2327()432a g a -=. …………………11分 依题意22793216a a >, …………………12分 解得23a >,即a 的取值范围是2(,)3+∞. …………………13分综上,a 的取值范围是2(,)3+∞或0a =.19、解:〔Ⅰ〕设1122(,),(,)C x y D x y ,由2244,1x y y kx ⎧+=⎨=+⎩得22(4)230k x kx ++-=, 222412(4)1648k k k ∆=++=+,12224k x x k -+=+,12234x x k -=+, …………………2分 由已知1(,0),(0,1)E F k -,又CE FD =,所以11221(,)(,1)x y x y k---=- …………………4分 所以121x x k --=,即211x x k+=-, …………………5分所以2214k k k-=-+,解得2k =±, …………………6分符合题意,所以,所求直线l 的方程为210x y -+=或210x y +-=. …………………7分 〔Ⅱ〕2121y k x =+,1211y k x =-,12:2:1k k =, 所以2112(1)2(1)1y x y x -=+, …………………8分平方得22212212(1)4(1)y x y x -=+, …………………9分又221114y x +=,所以22114(1)y x =-,同理22224(1)y x =-,代入上式, 计算得2112(1)(1)4(1)(1)x x x x --=++,即121235()30x x x x +++=,…………………12分所以231030k k -+=,解得3k =或13k =, …………………13分 因为2112(1)2(1)1y x y x -=+,12,(1,1)x x ∈-,所以12,y y 异号,故舍去13k =,所以3k =. …………………14分20、解:〔Ⅰ〕因为11a b =,所以1a a b =++,1b =-, …………………1分由22a b <,得2210a a --<,所以11a <+ …………………3分因为2a ≥且a ∈*N ,所以2a =, …………………4分所以 31n b n =-,{}n b 是等差数列, 所以数列{}n b 的前n 项和2131()222n n n S b b n n =+=+. …………………5分〔Ⅱ〕由已知3n b n =3m +3n3t 成等比数列,其中,,m n t ∈*N ,且彼此不等,则2(3(3n m t =, …………………6分所以29292n mt ++=+++,所以233(2n mt m t n -=+-假设20m t n +-=,则2330n mt -=,可得m t =,与m t ≠矛盾; ………7分假设20m t n +-≠,则2m t n +-为非零整数,(2m t n +- 所以233n mt -为无理数,与233n mt -是整数矛盾. …………………9分 所以数列{}n b 中的任意三项都不能构成等比数列. 〔Ⅲ〕设存在实数[1,]b a ∈,使C AB =≠∅,设0m C ∈,则0m A ∈,且0m B ∈,设0()t m a t =∈*N ,0(1)()m a s b s =++∈*N ,则(1)ta a sb =++,所以1t a bs a -=+,因为,,a t s ∈*N ,且2a ≥,所以ta b -能被1a +整除. …………………10分 〔1〕当1t =时,因为[1,]b a ∈, [0,1]a b a -∈-,所以1a bs a -=∉+*N ; …………………11分 〔2〕当2()t n n =∈*N 时,22212[(1)1](1)(1)1n n n n a b a b a C a b -=+--=++-++-,由于[1,]b a ∈,所以1[0,1]b a -∈-,011b a ≤-<+,所以,当且仅当1b =时,ta b -能被1a +整除. …………………12分 〔3〕当21()t n n =+∈*N 时,212121121[(1)1](1)(1)1n n n n a b a b a C a b ++++-=+--=++++--, 由于[1,]b a ∈,所以1[2,1]b a +∈+,所以,当且仅当11b a +=+,即b a =时,ta b -能被1a +整除. ……13分 综上,在区间[1,]a 上存在实数b ,使C AB =≠∅成立,且当1b =时,2{,}n C y y a n ==∈*N ;当b a =时,21{,}n C y y a n +==∈*N . …………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年北京市西城区高三二模数学理科含答案北京市西城区2013年高三二模试卷高三数学(理科) 2013.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{0,1,2,3,4}U =,集合{0,1,2,3}A =,{2,3,4}B =,那么()UA B =I ð(A ){0,1} (B ){2,3} (C ){0,1,4} (D ){0,1,2,3,4}2.在复平面内,复数1z 的对应点是1(1,1)Z ,2z 的对应点是2(1,1)Z -,则12z z ⋅=(A )1 (B )2 (C )i - (D )i3.在极坐标系中,圆心为(1,)2π,且过极点的圆的方程是 (A )(B)(C )(D )2sin =ρθ 2sin =-ρθ 2cos =ρθ 2cos =-ρθ4.如图所示的程序框图表示求算式“235917⨯⨯⨯⨯” 之值,则判断框内可以填入 (A )10k ≤ (B )16k ≤ (C )22k ≤ (D )34k ≤5.设122a =,133b =,3log 2c =,则(A )b a c << (B )a b c << (C )c b a << (D )c a b <<6.对于直线m ,n 和平面α,β,使m ⊥α成立的一个充分条件是 (A )m n ⊥,n ∥α(B )m ∥β,⊥βα(C )m ⊥β,n ⊥β,n ⊥α (D )m n ⊥,n ⊥β,⊥βα7.已知正六边形ABCDEF 的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是 (A 3(B 3(C 3(D )38.已知函数()[]f x x x =-,其中[]x 表示不超过实数x 的最大整数.若关于x 的方程()f x kx k =+有三个不同的实根,则实数k 的取值范围是(A )111[1,)(,]243--U (B )111(1,][,)243--U (C )111[,)(,1]342--U (D )111(,][,1)342--U第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.右图是甲,乙两组各6名同学身高(单位:cm )数据的茎叶图.记甲,乙两组数据的平均数依次为甲和x 乙,则 x 甲______x 乙. (填入:“>”,“=”,或“<”)10.5(21)x -的展开式中3x 项的系数是______.(用数字作答)11.在△ABC 中,2BC =,7AC =,3B π=,则AB =______;△ABC 的面积是______.12.如图,AB 是半圆O 的直径,P 在AB 的延长线上,PD与半圆O 相切于点C ,AD PD ⊥.若4PC =,2PB =,则CD =______.13.在等差数列{}na 中,25a=,1412a a+=,则n a =______;设*21()1nn bn a =∈-N ,则数列{}nb 的前n 项和nS =______.14.已知正数,,a b c 满足a b ab +=,a b c abc ++=,则c 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且,)62ππ∈(α.将角α的终边按逆时针方向旋转3π,交单位圆于点B .记),(),,(2211y x B y x A .(Ⅰ)若311=x,求2x ;(Ⅱ)分别过,A B 作x 轴的垂线,垂足依次为,C D .记△AOC的面积为1S ,△BOD 的面积为2S .若122SS =,求角α的值.16.(本小题满分13分)某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(Ⅰ)求1名顾客摸球3次停止摸奖的概率; (Ⅱ)记X 为1名顾客摸奖获得的奖金数额,求随机变量X 的分布列和数学期望.17.(本小题满分14分)如图1,四棱锥ABCD P -中,⊥PD 底面ABCD ,面ABCD是直角梯形,M 为侧棱PD 上一点.该四棱锥的俯视图和侧(左)视图如图2所示.(Ⅰ)证明:⊥BC 平面PBD ; (Ⅱ)证明:AM ∥平面PBC ;(Ⅲ)线段CD 上是否存在点N ,使AM 与BN 所成角的余弦值为43?若存在,找到所有符合要求的点N ,并求CN 的长;若不存在,说明理由.18.(本小题满分13分)如图,椭圆22:1(01)y C x m m+=<<的左顶点为A ,M 是椭圆C 上异于点A 的任意一点,点P 与点A 关于点M 对称.(Ⅰ)若点P 的坐标为943(,55,求m 的值;(Ⅱ)若椭圆C 上存在点M ,使得OP OM ⊥,求m 的取值范围.19.(本小题满分14分)已知函数322()2(2)13f x xx a x =-+-+,其中a ∈R .(Ⅰ)若2a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)求()f x 在区间[2,3]上的最大值和最小值.20.(本小题满分13分)已知集合1212{(,,,)|,,,nn nSx x x x x x =L L 是正整数1,2,3,,n L 的一个排列}(2)n ≥,函数1,0,()1,0.x g x x >⎧=⎨-<⎩对于12(,,)nna a a S ∈…,定义:121()()(),{2,3,,}i i i i i b g a a g a a g a a i n -=-+-++-∈L L ,10b =,称ib 为ia 的满意指数.排列12,,,nb b b L 为排列12,,,na a a L 的生成列;排列12,,,na a a L 为排列12,,,nb b b L 的母列.(Ⅰ)当6n =时,写出排列3,5,1,4,6,2的生成列及排列0,1,2,3,4,3--的母列; (Ⅱ)证明:若12,,,na a a L 和12,,,na a a '''L 为nS 中两个不同排列,则它们的生成列也不同;(Ⅲ)对于nS 中的排列12,,,na a a L ,定义变换τ:将排列12,,,na a a L 从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:一定可以经过有限次变换τ将排列12,,,na a a L 变换为各项满意指数均为非负数的排列.北京市西城区2013年高三二模试卷高三数学(理科)参考答案及评分标准2013.5一、选择题:本大题共8小题,每小题5分,共40分.1.C ; 2.B ; 3.A ; 4.C ; 5.D ; 6.C ; 7.B ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.>;10.80;11.3,332;12.125;13.21n+,4(1)nn+;14.4(1,]3.注:11、13题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:由三角函数定义,得1cosx=α,2cos()3xπ=+α.………………2分因为,)62ππ∈(α,1cos3=α,所以222sin1cos3=-=αα. (3)分所以213126 cos()cos3226xπ-=+==αα-α.………………5分(Ⅱ)解:依题意得 1sin y =α,2sin()3yπ=+α.所以111111cos sin sin 2224S x y ==⋅=ααα,………………7分2221112||[cos()]sin()sin(2)223343S x y πππ==-+⋅+=-+ααα.……………9分 依题意得2sin 22sin(2)3π=-+αα,整理得cos20=α.………………11分因为 62ππ<<α, 所以 23π<<πα, 所以22π=α,即4π=α. ………………13分16.(本小题满分13分)(Ⅰ)解:设“1名顾客摸球3次停止摸奖”为事件A, ………………1分则2334A 1()A 4P A ==,故1名顾客摸球3次停止摸奖的概率为14. ………………4分(Ⅱ)解:随机变量X 的所有取值为0,5,10,15,20. (5)分1(0)4P X ==,2224A 1(5)A 6P X ===,222344A 11(10)A A 6P X ==+=,122234C A 1(15)A 6P X ⋅===,3344A 1(20)A 4P X ===.………………10分所以,随机变量X 的分布列为:X5101520P1416161614………………11分11111051015201046664EX =⨯+⨯+⨯+⨯+⨯=.………………13分17.(本小题满分14分) 【方法一】(Ⅰ)证明:由俯视图可得,222BDBC CD +=,所以BDBC ⊥. ………………1分又因为 ⊥PD 平面ABCD ,所以 PD BC ⊥, ………………3分所以⊥BC 平面PBD.………………4分(Ⅱ)证明:取PC 上一点Q ,使:1:4PQ PC =,连结MQ ,BQ. ………………5分由左视图知 4:1:=PD PM ,所以MQ∥CD ,14MQ CD=. ………………6分 在△BCD 中,易得60CDB ︒∠=,所以30ADB ︒∠=.又2=BD , 所以1AB =, 3AD =又因为AB∥CD ,CD AB 41=,所以 AB∥MQ ,AB MQ=.所以四边形ABQM 为平行四边形,所以AM∥BQ. ………………8分因为 ⊄AM 平面PBC ,BQ ⊂平面PBC , 所以直线AM∥平面PBC. ………………9分(Ⅲ)解:线段CD 上存在点N ,使AM 与BN 所成角的余弦值为43.证明如下:………10分因为 ⊥PD 平面ABCD ,DC DA ⊥,建立如图所示的空间直角坐标系xyz D -.所以 )3,0,0(),0,4,0(),0,1,3(),0,0,3(),0,0,0(M C B A D . 设)0,,0(t N ,其中40≤≤t . ………………11分所以)3,0,3(-=AM ,)0,1,3(--=t BN .要使AM 与BN 所成角的余弦值为43,则有||3||||AM BN AM BN ⋅=u u u u r u u u r u u u u r u u u r , ………………12分所以43)1(332|3|2=-+⋅t ,解得 0=t 或2,均适合40≤≤t . ………………13分故点N 位于D 点处,此时4CN =;或CD 中点处,此时2CN =,有AM与BN所成角的余弦值为43.………………14分【方法二】(Ⅰ)证明:因为⊥PD 平面ABCD ,DC DA ⊥,建立如图所示的空间直角坐标系xyz D -.在△BCD 中,易得60CDB ︒∠=,所以30ADB ︒∠=,因为 2=BD , 所以1AB =,3AD =由俯视图和左视图可得:)4,0,0(),3,0,0(),0,4,0(),0,1,3(),0,0,3(),0,0,0(P M C B A D . 所以)0,3,3(-=BC ,)0,1,3(=DB .因为001333=⋅+⋅+⋅-=⋅,所以BDBC ⊥. ………………2分 又因为⊥PD 平面ABCD,所以 PDBC ⊥, ………………3分 所以⊥BC 平面PBD.………………4分(Ⅱ)证明:设平面PBC 的法向量为=()x,y,z n ,则有0,0.PC BC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 因为)0,3,3(-=BC ,)4,4,0(-=PC ,所以440,330.y z x y -=⎧⎪⎨-+=⎪⎩ 取1=y ,得=n )1,1,3(. ………………6分 因为 )3,0,3(-=AM ,所以⋅=n 03101)3(3=⋅+⋅+-⋅.………………8分因为 ⊄AM 平面PBC , 所以直线AM∥平面PBC. ………………9分(Ⅲ)解:线段CD 上存在点N ,使AM 与BN 所成角的余弦值为43.证明如下:………10分设)0,,0(t N ,其中40≤≤t . ………………11分所以 )3,0,3(-=AM ,)0,1,3(--=t BN .要使AM 与BN 所成角的余弦值为43,则有43||||=⋅BN AM BN AM , ………………12分所以43)1(332|3|2=-+⋅t ,解得0=t 或2,均适合40≤≤t . ………………13分故点N 位于D 点处,此时4CN =;或CD 中点处,此时2CN =,有AM与BN所成角的余弦值为43.………………14分18.(本小题满分13分)(Ⅰ)解:依题意,M 是线段AP 的中点,因为(1,0)A -,943(,55P , 所以 点M 的坐标为23(,55.………………2分 由点M 在椭圆C 上, 所以41212525m+=,………………4分解得47m =.………………5分 (Ⅱ)解:设0(,)M x y ,则2201y x m +=,且011x-<<.① ………………6分因为 M是线段AP 的中点,所以00(21,2)P x y +.………………7分因为 OP OM⊥,所以2000(21)20x x y ++=.② ………………8分由 ①,② 消去y ,整理得20020222x x m x +=-. ………………10分所以0011316242(2)82m x x =+≤-++-+, ………………12分当且仅当 023x =- 所以m的取值范围是13(0,]2. ………………13分19.(本小题满分14分) (Ⅰ)解:()f x 的定义域为R, 且2()242f x x x a'=-+-. ………………2分当2a =时,1(1)3f =-,(1)2f '=-, 所以曲线()y f x =在点(1,(1))f 处的切线方程为12(1)3y x +=--,即6350x y +-=.………………4分 (Ⅱ)解:方程()0f x '=的判别式为8a =∆.(ⅰ)当0a ≤时,()0f x '≥,所以()f x 在区间(2,3)上单调递增,所以()f x 在区间[2,3] 上的最小值是7(2)23f a =-;最大值是(3)73f a=-. ………………6分(ⅱ)当0a >时,令()0f x '=,得1212a x =-,或2212a x =+.()f x 和()f x '的情况如下:x1(,)x -∞1x 12(,)x x2x 2(,)x +∞()f x ' +0 -0 +()f x↗↘↗ 故()f x 的单调增区间为2(,1a -∞,2(1)a+∞;单调减区间为22(1)a a +.………………8分① 当02a <≤时,22x≤,此时()f x 在区间(2,3)上单调递增,所以()f x 在区间[2,3]上的最小值是7(2)23f a =-;最大值是(3)73f a=-. ………………10分② 当28a <<时,1223x x <<<,此时()f x 在区间2(2,)x 上单调递减,在区间2(,3)x 上单调递增,所以()f x 在区间[2,3]上的最小值是252()3a af x a =--. ………………11分因为 14(3)(2)3f f a -=-, 所以 当1423a <≤时,()f x 在区间[2,3]上的最大值是(3)73f a=-;当1483a <<时,()f x 在区间[2,3]上的最大值是7(2)23f a =-. ………………12分③ 当8a ≥时,1223x x <<≤,此时()f x 在区间(2,3)上单调递减,所以()f x 在区间[2,3]上的最小值是(3)73f a =-;最大值是7(2)23f a =-.………………14分综上,当2a ≤时,()f x 在区间[2,3]上的最小值是723a -,最大值是73a -;当1423a <≤时,()f x 在区间[2,3]上的最小值是5233aa --73a -;当1483a <<时,()f x 在区间[2,3]上的最小值是523a a a --723a -; 当8a ≥时,()f x 在区间[2,3]上的最小值是73a -,最大值是723a -.20.(本小题满分13分)(Ⅰ)解:当6n =时,排列3,5,1,4,6,2的生成列为0,1,2,1,4,3--; ………………2分排列0,1,2,3,4,3--的母列为3,2,4,1,6,5. ………………3分(Ⅱ)证明:设12,,,na a a L 的生成列是12,,,nb b b L ;12,,,na a a '''L 的生成列是与12,,,nb b b '''L .从右往左数,设排列12,,,na a a L 与12,,,na a a '''L 第一个不同的项为ka 与ka ',即:nnaa '=,11n naa --'=,L ,11k kaa ++'=,kkaa '≠.显然n nb b '=,11n nbb --'=,L ,11k kbb ++'=,下面证明:k kb b '≠. ………………5分由满意指数的定义知,ia 的满意指数为排列12,,,na a a L 中前1i -项中比ia 小的项的个数减去比ia 大的项的个数.由于排列12,,,na a a L 的前k 项各不相同,设这k 项中有l项比ka 小,则有1k l --项比ka 大,从而(1)21k b l k l l k =---=-+.同理,设排列12,,,na a a '''L 中有l '项比ka '小,则有1k l '--项比ka '大,从而21kb l k ''=-+.因为12,,,k a a a L 与12,,,ka a a '''L 是k 个不同数的两个不同排列,且kkaa '≠, 所以l l '≠, 从而k kb b '≠.所以排列12,,,na a a L 和12,,,n a a a '''L 的生成列也不同. ………………8分(Ⅲ)证明:设排列12,,,na a a L 的生成列为12,,,nb b b L ,且ka 为12,,,na a a L 中从左至右第一个满意指数为负数的项,所以1210,0,,0,1k k b b b b -≥≥≥≤-L . (9)分进行一次变换τ后,排列12,,,na a a L 变换为1211,,,,,,k k k na a a a a a -+L L ,设该排列的生成列为12,,,nb b b '''L .所以1212()()n n b b b b b b '''+++-+++L L121121[()()()][()()()]k k k k k k k k g a a g a a g a a g a a g a a g a a --=-+-++---+-++-L L1212[()()()]k k k k g a a g a a g a a -=--+-++-L22k b =-≥.………………11分因此,经过一次变换τ后,整个排列的各项满意指数之和将至少增加2.因为ia 的满意指数1ib i ≤-,其中1,2,3,,i n =L ,所以,整个排列的各项满意指数之和不超过(1)123(1)2n nn -++++-=L ,即整个排列的各项满意指数之和为有限数,所以经过有限次变换 后,一定会使各项的满意指数均为非负数.………………13分。