表面化学与胶体化学
胶体与表面化学的应用研究
胶体与表面化学的应用研究胶体和表面化学是相互关联的两个领域,它们在材料科学、生物学、化学工程、环境科学等领域具有广泛的应用。
本文将简要介绍胶体和表面化学的基本概念,以及它们的应用研究。
一、胶体学胶体是指颗粒大小在1-1000纳米的分散体系,其中颗粒的表面性质对胶体的物理、化学和生物性质起着重要作用。
胶体的稳定性是由电荷、分子相互作用力、表面活性剂等因素决定的。
胶体学研究的主要内容包括胶体的结构、稳定性、能量行为和相互作用等方面。
胶体稳定性研究是胶体学的重要内容之一,它直接关系到胶体的物理、化学、生物性质以及工业应用。
胶体学的应用研究包括材料制备、涂料、油墨、化妆品、医学用品等领域。
例如,在医学上,胶体作为一种新型药物提供了一种新的途径用于药物传递和释放。
二、表面化学表面化学是研究物质表面和界面的化学性质及其影响的学科,其研究对象通常包括气-固、液-固、液-液以及固-固等不同表面和界面类型。
表面化学的主要研究内容包括表面的内部结构、表面分子的排布、表面物质的吸附等。
表面化学在材料领域有广泛的应用,例如,表面处理技术在材料加工中是不可或缺的一部分。
表面化学在催化、油泥清洗、电子材料制备、纤维素制备以及设备清洗等方面具有重要作用。
新型表面活性剂的开发和应用也是表面化学的研究重点之一。
三、在化妆品制造中,胶体和表面化学被广泛应用。
胶体在染发剂、护肤品和化妆品中被用作乳液稳定剂。
表面化学理论则可用来解释化妆品与皮肤表面相互作用的基础。
此外,研究表面分子的吸附和排布规律,对理解某些彩妆产品的性质和特性也很重要。
然而,胶体和表面化学的应用远不仅止于此,更广阔的前景在于其在生物医学、能源开发、环境保护等方面的应用。
例如,在生物医学上,胶体学为癌症、肾脏疾病等提供了一种有效的药物释放途径。
在能源开发方面,如何设计和改进太阳能电池的阳极,使其更高效转换太阳能到电能,是表面化学最热门的研究方向之一。
在环境保护中,胶体科学和表面化学已成为处理废水和空气污染的有力手段,例如胶体沥青用于道路的铺装,可有效减少空气中有害颗粒的含量等。
物理化学中的表面现象与胶体化学
物理化学中的表面现象与胶体化学物理化学是一门探讨物质性质变化及相关规律的学科。
与之相关的表面现象和胶体化学则是物理化学领域中一项重要的分支。
本文将从表面现象和胶体化学两个方面入手,探讨它们的基本概念、相关应用和研究意义。
一、表面现象观察一个物体,我们会发现它的表面是与外界直接接触的部分。
因此,表面现象是物质研究中一种极其普遍和重要的现象。
表面现象是指两种或两种以上介质相接触时,有特殊性质的现象出现。
在物理化学中,表面现象主要包括表面张力、毛细现象和润湿现象。
表面张力是液体表面处由于分子间作用力而表现出来的一种现象。
表面张力较大的液体在容器中形成凸面或水滴状,这种现象称为毛细现象。
液体与固体相接触时,液体能否在固体表面上均匀分布并附着称为润湿现象。
表面现象在自然界和人类生活中都有广泛应用。
例如,水平稳定的大船只是因为水面的表面张力;高楼大厦的毛细管水系统则利用了毛细现象;润滑油、乳液、涂料等都运用了润湿性质。
二、胶体化学胶体化学是涉及无色透明的小粒子(胶体)和它所处的环境之间的相互作用的学科。
胶体是介于小分子和宏观物体之间的一种存在形式,其中粒子的平均大小在1至1000纳米之间。
胶体物理包括多种胶体类型,例如溶胶、凝胶和气溶胶等。
胶体学科研究中的主要问题是如何制备胶体,以及在胶体中所表现出的各种特殊性质。
胶体的制备方法包括溶胶法、凝胶法和胶体化合物分解法等。
在胶体中存在的各种特殊现象包括布朗运动、泡沫现象和重力分选等。
胶体的应用十分广泛,例如在涂料、油墨、胶水、陶瓷、橡胶等方面都得到了广泛的应用。
另外,人类生命活动中的一些基础物质,例如蛋白质、肌肉等,都是以胶体形式存在的。
三、物理化学中的表面现象与胶体化学的关联表面现象与胶体化学之间有着密不可分的联系。
在液态物质中,固液接触面所呈现的动态变化与胶体的形成和演化密切相关。
例如,胶体粒子表面的物理化学特征决定了胶体粒子的成长和聚集行为。
此外,表面现象和胶体化学之间也有着一些实际应用。
表面及胶体化学知识点归纳
胶体: 指具有高度分散的分散体系(亦是研究对象),分散相可以是一相和多相,粒子大小通常为10-7~10-9m之间.胶体的研究内容:表面现象、分散体系、高分子溶液。
表面能δ:恒温恒压下,可逆地增加单位表面积,环境对体系所做的功,单位J·m-2。
表面张力δ:单位长度液体表面的收缩力,单位N·m-1(或mN·m-1)l aplace方程:球面,则R1=R2=R,ΔP=2σR 柱面,则R1=R,R2=∞,ΔP=σ/R 球形气泡,且R1=R2=RΔP=4σ/R表面过剩:界面相与体相的浓度差。
接触角:固液气三相交点处作气液界面的切线,此切线与固液交界线之间的夹角θ。
Gibbs吸附公式:(双组分体系)固体表面张力:新产生的两个固体表面的表面应力之和的一半。
固体表面能:指产生一平方厘米新表面所消耗的等温可逆功。
Laugmuir理论:假设被吸附分子间无作用力,因而分子脱附不受周围分子的影响。
只有碰撞在空间表面的分子才有可能被吸附(单分子层吸附)。
固体表面是均匀的,各处吸附能相同。
BET理论的基本假设:①固体表面是均匀的,同层分子(横向)间没有相互作用,分子在吸附和脱附时不受周围同层分子的影响。
②物理吸附中,固体表面与吸附质之间有范德华力,被吸附分子间也有范德华力,即吸附是多分子层的。
影响溶液中吸附的因素:吸附剂:溶质、溶剂三者极性的影响;温度:溶液吸附也是放热过程,一般T上升,吸附下降;溶解度:吸附与溶解相反,溶解度越小,越易被吸附;同系物的吸附规律一般随C-H链的增长吸附有规律的增加和减少。
Trube规则;吸附剂的孔隙大小;吸附剂的表面化学性质,同一类吸附剂由于制备条件不同,表面活性相差很大,吸附性能也会有很大差异;混合溶剂的影响,色谱法中使用混合溶剂,洗提效果比单纯溶剂好,若自极性相同的混合溶剂中吸附第三组份,等温线界于两单等温线之间;若自极性不相同的混合溶剂中吸附第三组份,吸附量比任何单一溶剂中少,混合溶剂极性一致或不一致情况不同;多种溶质的混合溶液;9、盐的影响,盐的存在通过影响溶质的活度系数、溶解度、溶质的电离平衡而影响吸附。
胶体与表面面化学
一、溶胶的胶团结构:1胶粒的结构比较复杂,首先有一定量的难溶物分子聚结形成胶粒的中心称为胶核2胶核选择性的吸附稳定剂中的一种离子,形成紧密的吸附层,由于正负电荷相吸,在紧密层外形成反号离子包围层,从而形成了带有紧密层相同电荷的胶粒3胶粒与扩散层中反号离子形成一个胶团。
二、双电层理论:当固体与液体接触时,可以是固体从溶液中选择性吸附某种离子,也可以是固体分子本身发生电离作用而使离子进入溶液,以致使固液两相分别带有不同符号的电荷,在界面上形成了双电层的结构。
1平板型模型2扩散双电层模型3stem模型。
三、溶胶的聚沉:溶胶的稳定具有条件的,一旦稳定条件被破坏,溶胶中的粒子就合并,长大,最后从介质中沉出。
影响因素:电解质、加热、辐射、溶胶本身。
聚沉值:能引起某一溶胶发生明显聚沉所需加电解质的最小浓度。
四、胶凝:一定浓度的溶胶或大分子化合物的真溶液在放置过程中自动形成胶凝的过程。
性质:1所有新形成的凝胶都含有大量液体,95%以上2凝胶有一定几何外形。
显示出固定的力学性质3由固液两相组成,具有液体的某些性质,不仅分散相是连续的,分散介质也连续。
分类:1弹性凝胶(明胶、琼脂)2非弹性(SiO2、TiO2、V2O5、Fe2O3)。
形成条件:1降低溶解度,使被分散的物质从溶液中以胶体分散状态析出2析出的质点既不沉降也不自由行动,而是构成骨架,通过整个溶液形成连续的网状结构。
形成方法:1改变温度2转化溶剂3加入电解质4化学反应。
不溶物形成凝胶的条件:1在产生不溶物的同时生成大量小晶粒2晶粒的形状以不对称为好,有利于搭成骨架。
五、膨胀:凝胶在液体或蒸汽中吸收液体和蒸汽使自身体积或重量增加的现象。
机理:一阶段:溶剂化层:溶剂分子很快出入凝胶中,与凝胶分子相互作用形成溶剂化层。
特征:1液体蒸汽压很低2体积收缩3热效应4熵值降低。
二阶段:溶剂分子的渗透和吸收。
六、硅酸铝凝胶制备(共沉淀法):酸性硫酸铝溶液+水玻璃溶液——硅铝溶胶—硅铝凝胶小球—老化—铝盐活化a—水洗—表面活性剂浸渍b—干燥—烘焙。
胶体化学与表面化学小论文
胶体化学与表面化学胶体化学是胶体体系的科学,随着胶体化学的迅速发展,它已成为一门独立的学科。
这是因为有一方面由于胶体现象很复杂,有它自己独特的规律性;它在科学研究方面发挥着巨大的作用;不仅如此,它与无机化学、材料化学等相关学科也有着密切关系,如利用微乳技术制取纳米颗粒、利用溶胶—凝胶法制压电陶瓷等。
胶体体系的重要特点之一,是具有很大的表面积。
任何表面,在通常情况下实际上都是界面,如水面即液体与气体的界面、桌面即固体与气体的界面等,在任何两相界面上都可以发生复杂的物理或化学现象,总称为表面现象,也就是界面现象。
胶体化学中所说的界面现象,不仅包括物体表面上发生的物理化学现象以及物体表面分子(或原子)和内部的有什么不同,而且还包括一定量的物体经高度分散后(这时表面积将强烈增大)给体系的性质带来怎样的影响,例如粉尘为什么会爆炸、小液珠为什么能成球、汞的小液滴在洁净玻璃上成球而水的小液滴铺展、活性炭为什么能脱色等等,这些问题都与界面现象有关。
界面现象涉及的范围很广,研究界面现象具有十分重要的意义。
表面化学就是研究表面现象的一门学科,从历史角度看,表面化学是胶体化学的一个重要分支,也是其中最重要的一个部门,二者密切相关。
胶体化学与表面化学内容包括胶体的制备和性质、凝胶、界面现象和吸附、乳状液的基本知识及其应用,如丁达尔现象、电泳及电渗、双电层结构和相应电位分布、双电层理论、DLVO理论、表面张力产生原因及肥皂去污等原理。
胶体的制备与性质和表面现象是胶体化学最核心内容。
胶体的制备与性质包括胶体的运动性质、光学性质、电学性质、流变性质、制备及净化方法及胶团的结构和与其相关的双电层理论及模型等相关内容:由于胶粒对光的散射作用产生了丁达尔现象;由于不同溶胶中胶粒的大小不同,使之对透过其中的光的散射、反射作用不同,故使溶胶产生各种颜色;由于胶粒带电的性质使之产生了电泳及电渗现象;由于它带电的性质又产生了双电层理论;又由于它带电的性质引出了DLVO理论及对其聚沉性的研究;在外力作用下胶体具有流变性质,所谓流变性,是指物质在外力作用下的流动和变形的性质。
《表面与胶体化学》课件
胶体在食品工业中的应用
胶体在食品工业中广泛应用于增稠、 稳定和乳化等方面。
胶体还可以作为食品的稳定剂,保持 食品的稳定性和一致性,如冰淇淋、 奶昔和饮料等。
胶体可以作为食品的增稠剂,提供更 好的口感和质地,如酸奶、果酱和调 味酱等。
胶体的稳定性
取决于胶体粒子间的相互作用力,包 括静电作用、范德华力、空间位阻等 。
聚沉现象
当胶体粒子间的相互作用力减弱或消 除时,胶体将失去稳定性,发生聚沉 ,出现沉淀或凝胶现象。
影响因素
电解质浓度、温度、pH值等对胶体 稳定性产生影响,可引发聚沉。
胶体的光学性质
总结词 丁达尔效应
瑞利散射 实验方法
物理吸附
由于范德华力引起的吸附,吸附力较弱,吸 附热较小。
表面吸附的应用
催化剂、电极材料、光电子器件等。
表面润湿性
表面润湿性定义
液体在固体表面铺展的能力称为润湿性。
润湿性的影响因素
表面张力、接触角和表面粗糙度等。
润湿性的应用
涂料、油墨、农药等。
2023
PART 03
胶体化学基础
REPORTING
2023
REPORTING
《表面与胶体化学》 PPT课件
2023
目录
• 表面与胶体化学概述 • 表面化学基础 • 胶体化学基础 • 表面与胶体化学在生活中的应用 • 表面与胶体化学的未来发展
2023
PART 01
表面与胶体化学概述
REPORTING
表面与胶体化学的定义
表面与胶体化学是一门研究物 质表面现象和胶体分散体系的 科学。
胶体与表面化学 复习
胶体与表面化学第一章绪论胶体与表面化学:研究胶体分散系统、一般粗分散系统及表面现象的化学分支。
胶体化学:研究胶体体系的科学,是物理化学的分支。
表面化学:研究发生在表面或界面上的物理、化学现象的一门学科,是胶体化学的分支。
分散系统:一种物质以细分散状态分散在另一种物质中构成的系统。
被分散的不连续相为分散相,连续相为分散介质。
可分为:粗分散系统、胶体分散系统、分子分散系统。
习惯上,按分散介质的类型把胶体系统分为气、液、固溶胶。
溶胶:以液体为分散介质时,分散相为固体小粒子的胶体分散系统。
凝胶:以固体为分散介质时,分散相为液体的胶体分散系统。
(第九章)胶体分散系统:分散相粒子至少在一个尺度上的大小处于1~100nm范围内的分散系统。
胶体是物质存在的一种状态而非特殊的物质,不是物质的本性;胶体是两相或多相不均匀分散系统。
界面:不相混溶的两相间的边界区域。
凝聚相与气相的边界区域称为表面。
比表面:单位质量或体积的分散相物质所具有的总表面积。
第二章胶体与纳米粒子胶体制备的一般条件:1.分散相在介质中的溶解度必须极小 2.必须有稳定剂存在胶体制备方法:一、分散法:1.机械分散(助磨剂、分级设备) 2.电分散(金属水溶胶)3超声波分散(乳状液)4.胶溶(在某些新生成的松散聚集沉淀物中,加入适量的电解质或置于某一温度下,使沉淀重新分散成溶胶。
例如正电荷溶胶MMH或MMLHC)二、凝聚法:用物理或化学方法使分子或离子聚集成胶体粒子的方法。
物理凝聚:将蒸气或溶解状态的物质凝聚成胶体状态。
(蒸汽骤冷、更换溶剂)化学凝聚:通过各种化学反应使生成物呈过饱和状态,初生成的难溶物微粒结合成胶粒,在少量稳定剂存在时形成溶胶。
(还原、氧化、水解、复分解法)溶胶净化:(粗粒子--过滤、沉降、离心;)胶体中过多的电解质--渗析:用半透膜将溶胶和纯分散介质隔开,仅能让小分子和离子通过而胶粒不能通过;由于浓度差,多余电解质向外渗透,更换溶剂便可净化溶胶。
胶体与表面化学课程大纲及重点
胶体与表面化学第一章绪论(2学时)1.1胶体的概念什么是胶体,胶体的分类1.2胶体化学发展简史1.3胶体化学的研究对象表面现象,疏液胶体,缔合胶体,高分子溶液。
重点:胶体、分散系统、分散相、分散介质的概念。
难点:胶体与表面化学在矿物加工工程中的作用及意义。
教学方法建议:启发式教学,引导学生对胶体及表面化学的兴趣。
第二章胶体与纳米材料制备(4学时)2.1胶体的制备胶体制备的条件和方法,凝聚法原理。
2.2胶体的净化渗析、渗透和反渗透。
2.3单分散溶胶单分散溶胶的定义及制备方法。
2.4胶体晶体胶体晶体的定义及制备方法2.5纳米粒子的制备什么是纳米材料,纳米粒子的特性及制备方法重点:胶体的制备、溶胶的净化、胶体晶体的制备。
难点:胶体制备机理。
教学方法建议:用多媒体教学,注重理论联系实际。
第三章胶体系统的基本性质(8学时)3.1溶胶的运动性质扩散、布朗运动、沉降、渗透压和Donnan平衡。
3.2溶胶的光学性质丁道尔效应和溶胶的颜色。
3.3溶胶的电学性质电动现象、双电层结构模型和电动电势(。
电势)3.4溶胶系统的流变性质剪切速度越切应力,牛顿公式,层流与湍流,稀胶体溶液的黏度。
3.5胶体的稳定性溶胶的稳定性、DLVO理论、溶胶的聚沉、高聚物稳定胶体体系理论。
3.6显微镜及其对胶体粒子大小和形状的测定显微镜的类型及基本作用重点:沉降、渗透压、电泳、电渗、。
电势的计算、双电层结构模型、DLVO理论、溶胶的聚沉。
难点:双电层结构模型。
教学方法建议:多媒体教学和板书教学相结合。
第四章表面张力、毛细作用与润湿作用(6学时)4.1表面张力和表面能净吸力和表面张力的概念、影响表面张力的因素、液体表面张力和固体表面张力的测定方法。
4.2液-液界面张力Anntonff规则、Good-Girifalco公式、Fowkes理论和液-液界面张力的测定。
4.3毛细作用与Laplace公式和Kelvin公式毛细作用,Laplace公式和Kelvin公式的应用,曲界面两侧的压力差及与曲率半径的关系,毛细管上升或下降现象,弯曲液面上的饱和蒸气压。
胶体与表面化学(1)
0 绪 论 ---胶体化学发展简史
现今所用的一些名词,如溶胶(sol)、凝胶(gel)、胶溶 (peptization)、渗析(dialysis)、离浆(syneresis)都是 Graham提出的。尽管在这一时期积累了大量的经验和知识, 但胶体化学真正为人们所重视并获得较大的发展是从1903年 开始的。这时席格蒙迪Zsigmondy(德)发明了超显微镜, 肯定了溶胶的一个根本问题——体系的多相性,从而明确了 胶体化学是界面化学。1907年,德国化学家Ostwald创办了 第一个胶体化学的专门刊物——《胶体化学和工业杂志》, 因而许多人把这一年视为胶体化学正式成为一门独立学科的 一年。接着Freundlich和Zsigmondy先后出版了他们的名著 《毛细管化学》(1909)和《胶体化学》(1902)。
界面化学的统计力学研究是从范德华开 始的。1893年,范德华认识到在界面层中 密度实际上是连续变化的。他应用了局部 自由能密度的概念,结合范德华方程,并 引入半经验修正,从理论上研究了决定于 分子间力的状态方程参数与界面张力间的 关系。
50年代以后,界面现象的统计力学研究 经 过 勃 夫 ( F.Buff ) 、 寇 克 伍 德 (Kirkwood ) 、哈拉西玛 (Harasima ) 等的研究工作,取得了实质性的进展.
Vacuum Technology.
Elsevier (NL) [E]
0 绪 论 ---胶体化学发展简史
胶体化学也是一门古老而又年轻的科学。 有史以前,我们的祖先就会制造陶器;汉朝已能利用纤 维造纸;后汉时又发明了墨;其他像做豆腐、面食以及 药物的制剂等等在我国都有悠久的历史,这些成品及其 制作过程都与胶体化学密切相关。 1809年,俄国化学家Scheele发现了土粒的电泳现象; 1829年英国植物学家Brown观察到花粉的布朗运动。此 后,许多人相继制备了各种溶胶,并研究了它们的性质。
胶体与表面化学的基础概念
胶体与表面化学的基础概念胶体是指具有二态分散相(分散相与连续相成分不同)的混合物,由于分子尺寸在10-9~10-7m之间,彼此间相互作用均衡,不能通透光线,但又不会沉淀。
表面化学则是研究物质表面特性及其相互作用的科学。
胶体与表面化学是紧密相关的分支学科,本文将简单介绍胶体与表面化学的基础概念及其在生活、工业等领域的应用。
一、溶液与悬浮液溶液是指固体、液体或气体分子在溶剂中均匀混合而成的混合物,一般都是透明的,没有悬浮在其中的颗粒。
而悬浮液则是一种由较大的颗粒在溶剂中悬浮形成的混合物,常常是混浊或浑浊的。
溶液和悬浮液之间的区别在于,溶解的粒子能形成较为稳定的静电作用力或化学键,而悬浮液中的粒子不能形成这些相互作用力或键。
与悬浮液相比,溶液稳定性更高,能够长期存储。
二、胶体的定义及分类胶体比溶液和悬浮液之间的粒子要小,但比分子要大,其直径一般在1至1000纳米之间。
由于粒子体积小,布朗运动强,粒子表面强烈极化,胶体不断地扩散,所以具有明显的色散性。
此外,由于颗粒表面与连续相之间的相互作用力较强,所以胶体的稳定性较高,不易析出。
根据胶体内分散相与连续相之间的相互作用类型,可将其分为以下几种:1. 粒子均匀分布在水或有机溶剂中的溶胶,形成的胶体为“溶胶胶体”;2. 在两种不相容的液体界面上生长,形成的胶体为“界面胶体”;3. 以气体分子为分散相,水或液体常温下为连续相,形成的胶体为“气溶胶”。
三、表面现象的定义与分类表面现象是指在液面或液体比较靠近固体表面的区域内,由于分子间作用力发生变化,使液体在这一区域内的性质与其他地方不同。
表面现象一般包括以下三种:1. 表面张力:液体分子与空气之间作用力引起的压强差。
表面张力越大,液体表面上,原子与分子的吸附作用越强,液面不容易被破坏。
2. 润湿性:在固体表面和液体之间形成的接触角。
若液体完全覆盖固体表面,接触角为零,该液体具有良好的润湿性。
3. 泡沫:在界面上由于表面张力与流体运动引起的大量气体聚集形成的团块。
胶体与表面化学讲义第一章 基本概念
《胶体与界面化学》讲义第一章基本概念第一节胶体与表面一、胶体与胶体分散体系•目前科学地将颗粒大小在10-6~10-9m这样的物质(不管其聚集状态是气态、液态还是固态)称为胶体。
•胶体与其分散在其中的介质组成分散体系,介质可以是气、液和固体并与胶体颗粒间存在相界面,因此它还是高分散的多相的分散体系。
•胶体分散体系一般是两个组分以上的多组分体系,不过也存在极为罕见的单组分胶体分散体系,这类分散体系是液体,但由于分子的热运动而出现的涨落现象,一些分子会在液态内部聚集成较大的聚集体,这种分散体系称为类胶体(iso-colloid)分散体系。
聚合物或大分子量物质•聚合物或大分子量物质过去也称之为胶体分散体系的物质。
•如蛋白质,纤维素以及各种天然的和人工合成的聚合物,其尺寸也在胶体范围、并具有胶体的某些性质,比如慢扩散性,不透过半透膜,电泳行为等。
•因此过去也把它们作为胶体与表面化学的讲解内容。
但由于其迅速的发展,形成一个庞大的大分子家族,而成为一个独立学科去研究,不过它的某些理论和研究方法确系胶体的理论和研究方法。
二、表面和界面•表面(surface):是指凝聚相与真空,空气或其蒸气间的交界•界面(interface):是指凝聚相与其他相间的交界面。
•水的表面张力是水的表面(与空气或蒸汽的交界面)上的表面张力,约为72.8×10-3N/m;水和苯间界面张力为35×10-3N/m;水与汞间界面张力为375×10-3N/m。
•由此可见,界面张力值决定于相邻相的物质。
相边界上“面”的含义•这里所说的“面”是指相边界上的化学概念上的而非数学概念上的面。
数学面只有面积而无厚度,而化学面是有一定厚度的,起码有几个分子大小的厚度。
数学面所示在面上相的性质(如密度、浓度等)发生突变是不可思议的,而化学面中相的性质逐渐变化才是可理解的。
但在描述它时,由于其厚度值与两相本体尺寸比较可忽略不计近似为零。
胶体及表面化学知识点整理
第一章 胶体的制备和性质一、什么是胶体?1.胶体体系的重要特点之一是具有很大的外表积。
通常规定胶体颗粒的大小为1-100nm 〔直径〕2.胶体是物质以一定分散程度存在的一种特殊状态,而不是一种特殊物质,不是物质的本性。
胶体化学研究对象是溶胶〔也称憎液溶胶〕和高分子溶液〔也称亲液溶胶〕。
气溶胶:云雾,青烟、高空灰尘液溶胶:泡沫,乳状液,金溶胶、墨汁、牙膏固溶胶:泡沫塑料、沸石、冰淇淋,珍珠、水凝胶、红宝石、合金 二、溶胶的制备与净化1.溶胶制备的一般条件:〔1〕分散相在介质中的溶解度必须极小〔2〕必须有稳定剂存在2.胶体的制备方法:〔1〕分散法:①研磨法:用机械粉碎的方法将固体磨细〔产品细度1-74μm 〕②胶溶法〔解胶法〕:仅仅是将新鲜的凝聚胶粒重新分散在介质中形成溶胶,并参加 适当的稳定剂。
〔目前制备纳米材料和超微细粉的方法〕③超声波分散法:让分散介质动起来。
主要用来制备乳状液〔即分散介质是液体的体系〕。
好处是不与溶液接触。
④电弧法:用于制备金属水溶胶。
金溶胶多用于美容。
(2)凝聚法:①化学凝聚法②物理凝聚法:A 、更换溶剂法〔溶解度是减小的〕:利用物质在不同容剂中的溶解度的显著差异,制备溶胶,而且两种溶剂要能完全互溶。
〔与萃取区别〕B 、蒸汽骤冷法:制备碱金属的苯溶胶。
3.溶胶的净化:简单渗析法,电渗析,超过滤法 三.溶胶的运动性质1.扩散:胶粒从高浓度向低浓度迁移的现象,此过程为自发过程根本原因在于存在化学位。
d d d d m cDA t x =-,此为Fick 第一扩散定律,式中dm/dt 表示单位时间通过截面A 扩散的物质数量,D为扩散系数,单位为m 2/s ,D 越大,质点的扩散能力越大。
扩散系数D 与质点在介质中运动时阻力系数f 之间的关系为:A RTD N f=〔A N 为阿伏加德罗常数;R 为气体常数〕假设颗粒为球形,阻力系数f =6r πη〔式中,η为介质的黏度,r 为质点的半径〕 故16RT D NA rπη=⨯,此式即为Einstein 第一扩散公式 浓度梯度越大,质点扩散越快;就质点而言,半径越小,扩散能力越强,扩散速度越快。
工科大学化学(物理化学)表面化学与胶体部分习题及解答
第11章表面化学与胶体化学1.在293 K时,把半径为1×10st1:chmetcnv TCSC="0" NumberType="1" Negative="True" HasSpace="False" SourceValue="3" UnitName="m">-3m的水滴分散成半径为1×10-6m的小水滴,比表面增加多少倍?表面吉布斯自由能增加多少?环境至少需做功多少?已知293 K时。
(答案:9.15×10-4 J)解:一滴大水滴可分散成N个小水滴:小水滴的面积为:,大水滴的面积为:4π面积增加倍数为:2.在298 K时,1,2—二硝基苯(NB)在水中所形成的饱和溶液的浓度为5.9×10-3mol·L-1,计算直径为1×10-8m的NB微球在水中的溶解度。
已知298 K时NB/水的表面张力为25.7 mN·m-1,NB 的密度为1 566 kg·m-3。
(答案:2.625×10-3 mol·dm-3)解:根据开尔文公式:,将数值代入,得:3.373 K时,水的表面张力为58.9 mN·m-1,密度为958.4 kg·m-3,在373 K时直径为1×10-7m的气泡内的水蒸气压为多少?在101.325 kPa外压下,能否从373 K的水中蒸发出直径为1×10-7m的气泡?(答案:99.89kPa)解:气泡为凹面,且r = 0.5×10-7m因p r p外,故不能蒸发出直径为1×10-7m的气泡。
4.水蒸气骤冷会发生过饱和现象。
在夏天的乌云中,用干冰微粒撒于乌云中使气温骤降至293 K,此时水气的过饱和度(p/ps)达4,已知293 K时,ρ(H2O)=997 kg·m-3。
表面化学和胶体化学
注意:表面自由能与表面张力的代表符相同,均 为σ,量纲相通,但两者的概念不同!! 表面自由能是单位表面积的能量,标量;
表面张力是单位长度上的力,矢量。 讨论:dU =TdS – pdV +σdAs+Σidni dH =TdS + Vdp +σdAs+Σidni
dA =-SdT –pdV +σdAs+Σidni
s
σ= 58.85×10-3N.m-1, ps= 2 /r =11.77×103kPa
h = 0.02m,ρ=958.1kg· m-3
p静=gh = 958.1×9.8×0.02=0.1878kPa p大气=100kPa
p =100 + 0.1878 + 11.77×103 = 11.87×103kPa pr 2M 1 007127 根据开尔文公式 ln 得: p0 RT r
◆ 过饱和蒸气
降温过程:
p
微小
pB
A:不能凝出微小液滴 pA B:凝出微小液滴 AB:过饱和蒸气 pB> pA
l
B 大块
A
g TA T
消除:如人工降雨,加AgI颗粒
◆ 过冷液体
原因:凝固点下降。如纯净水可到-40℃不结冰。
◆过热液体 液体在正常沸腾温度不沸腾,要温度超过正 常沸腾温度才沸腾。 原因:液体表面气化,液体内部的极微小气泡 (新相)不能长大逸出(气泡内为凹液面)。 小气泡受到的压力为: p大气 p = p大气+ ps+ p静 p静=ρgh ps = 2σ/r h 如 r =-10-8m,T = 373.15K时, p
dG =-SdT +Vdp +σdAs+Σidni
胶体和表面化学的基本原理
胶体和表面化学的基本原理在我们周围的世界中,有很多物质并不是简单的固体、液体或气体,而是由微小的、不均匀的颗粒组成的物质,这些物质被称为“胶体”。
胶体是介于分子和宏观物质之间的物质,由固体、液体或气体中的微粒(粒径约为1-1000纳米)与分散介质构成的二相或多相系统。
例如,蛋白质、淀粉、胆固醇、纤维素、血液等都是胶体。
另外,表面化学是一门研究表面和界面现象的科学,从分子和原子水平研究物质的表面和界面性质。
表面化学在材料、化工、能源、生化及其他领域中都有着非常重要的应用。
本文将讨论胶体和表面化学的基本原理。
一、胶体学的基础知识1.1 分散相与分散介质分散相是指被分散在分散介质中的微粒,分散介质是指存在于分散相中的介质。
分散相和分散介质的不同可能会导致胶体形态的不同。
1.2 微粒的大小和形态微粒的大小和形态都会影响胶体的性质。
一般来说,微粒的粒径越小,胶体的可逆性越差;微粒的形态越不规则,胶体的稳定性越差。
1.3 分散相与分散介质的界面胶体的许多性质都与分散相与分散介质的界面有关。
界面能的变化会使得胶体的某些性质发生变化。
二、表面化学的基础知识2.1 表面张力表面张力是指表面上的分子之间相互作用力。
例如,液滴在表面张力的作用下可以保持形状。
2.2 界面活性剂界面活性剂是一类具有亲油性和亲水性的分子,可以吸附在液-液或液-气界面上,减小表面张力并且使界面稳定。
2.3 潜伏现象在一些系统中,表面或界面存在着某种能量的积累现象,这种现象被称为“潜伏现象”。
例如,液-液界面上的表面张力可以随时间的推移而改变,这种变化被称为“表面失活”或“表面激化”。
三、胶体和表面化学的应用3.1 药品输送系统由于胶体颗粒的微小尺寸和大量的表面积,胶体颗粒可以用于制作药物输送系统。
这种系统可以控制药物的释放,以达到更好的治疗效果。
3.2 膳食中的胶体食品和饮料中的胶体有很多重要的作用,例如在奶制品中可以使蛋白质和脂肪稳定;果汁中的胶体可以使果汁更加清澈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在定温、定压下
过程自发
这是产生表面现象的热力学原因。 水滴形成球形表面积最小
表面张力、表面能
即σ
垂直作用在物质表面边界单位长度上的力——表面张力 增加单位表面积所需付出的功——比表面功 增加单位表面积时,系统吉布斯自由能的增加——表面能
表面张力和比表面能是从不同角度分析同一事实得到的结果,不严格区分
r↘, ρ↘, h↗ θ<90o,h>0; θ>90o ,h<0;r→∞,h →0
3. 液-固界面——润湿作用
什么是润湿过程?
滴在固体表面上的少许液体,取代了部分固-气界面, 产生了新的液-固界面。这一过程称之为润湿过程。
沾湿是指液体与固体接触后,其接触面由原来 液-气和固-气表面变为固-液界面的过程。
注意: 1) r 的符号:
凸液面,R>0,ps>0, R指向液相(固相)内部 凹液面,R<0,ps<0, R 指向气相 平液面,R→∞,ps→0,
2)气泡的附加压强:
肥皂泡两个l-g界面,r1≈r2 ps=ps,1+ ps,2= 4σ/r
自由液滴或气泡通常为何都呈球形 ?
1。假若液滴具有不规则的形状,则在表面上 的不同部位曲面弯曲方向及其曲率不同,所具的 附加压力的方向和大小也不同,这种不平衡的力, 必将迫使液滴呈现球形
其大小与表面的弯曲程度、表面张力的大小相关
V 4 R 3 As 4R2
pp0 ps
p
3
p dp dAs 8RdR dV4R2dR
δW'psdV δW'dAs
球面
★
ps
2
R
Young-Laplace公式
R
ps
p0
适用范围:
1)适用毛细管直径<0.5mm情形 2)适用于R为定值的小液滴或液体中小气泡。
★
b) 分析以上四种润湿情况的接触角大小
1. 完全润湿:θ=0°
2. 润湿:θ<90°
3. 润湿不好:90°<θ<180° 4. 完全不润湿:θ=180°
润湿(Wetting)液体在固体表面的粘性情况★
液滴在固体表面上的不同θ 角
c) 产生润湿、不润湿的原因
当液体以一定的状态沾附在固体表面时,我们认为它呈平衡状态。
表面化学与胶体化 学
第一节 表面化学
碧海蓝天
落日彩霞
雾锁重山
荷叶露珠
1.几个概念
表面化学:研究物质相界面上发生的现象的规律。
1)界面和表面
界面(interface):密切接触的两相间的过渡区,约10-9—10 -8 m, 有几个分子层厚。
五类界面:气(g)-液(l) ,气(g)- 固(s), 液(l)- 固(s) ,液(l1)-液(l2) ,固(s1)- 固(s2)
2。相同体积的物质,球形的表面积最小, 则表面总的Gibbs自由能最低,所以变成球状就 最稳定
3.毛细现象★
毛细管插入液相中,毛细管内液体上升或下降的现象。
想一想:为什么会产生毛细管现象?
原因:附加压强 ps=p静压时,在液面处达力平衡
ps= 2σ/R= ρgh
h =2σ/ρgR
cosθ=r/R h = 2σcosθ/rρg
影响表面张力的因素
■ 与物质本性有关
分子间的作用力越大,σ越大: σ金属键>σ离子键>σ极性键>σ非极性键,
■ 与温度有关
一般:温度升高,σ↓;温度升高到临界温度Tc时,σ→0
■ 与接触相的性质有关
接触相相同, σ固体 > σ液体
■ 与压强有关
一般:压强升高,σ↓;
■ 其它:组成,分散度 ,运动情况等
某些液体、固体的表面张力和液/液界面张力
2、弯曲液面上的附加压力
1)液面的曲率
2)弯曲液面的附加压强
p0
p0
p0
A
B
A
ps B
A
B
p = p0
平面
ps p = p0 + ps
凸面
A
B
p = p0 - ps
凹面
附加压强ps:
由表面张力的合力产生,指向“球心”的压强
附加压强ps:★
由表面张力的合力产生,指向“球心”的压强
σs-g = σs-l + σl-gCOSθ
(合力为零)
cos sg-sl lg
∴θ 的大小由三个σ 决定。
浸湿功
在恒温恒压可逆情况下,将具有单位表面积的固体浸 入液体中,s-g、l-g界面转变为s-l界面的过程Gibbs自由 能的变化值为:
称为浸湿功,它是液体在固体表面上取代 气体能力的一种量度,有时也被用来表示对抗液体 表面收缩而产生的浸湿能力,故又称为沾附张力。
表面(surface): 若其中的一相为气相(习惯),或在真空中。如l-g,s-g。
气-液界面
空气
CuSO 4 溶液
气-液 界面
气-固界面
气-固界面
液-液界面
H 2O
Hg
液-液 界面
液-固界面
Hg
液-固界面
H 2O
玻璃板
固-固界面
Cr镀层 铁管
固-固界面
2) 比表面
量纲):面积·质量-1
A、V、m ——分别为物质的总表面积、体积和质量
A0:体现了物质的分散度。
1cm3 立方体分散为小立方体时表面积的变化 表分颗 面散粒 积度小 大高
3) 界面现象(表面现象)
在相的界面上发生的行为 。
如:
露珠为球形 微小液滴易蒸发 水在玻璃毛细管中会自动上升,而汞面下降 活性炭脱色 硅胶吸水、塑料防水 牛奶、豆浆制成乳状液而稳定存在 肥皂、洗衣服和洗衣液起泡去污 水过冷不结冰、液体过热而不沸腾 溶液过饱和而不结晶。
浸湿是指固体浸入液体中的过程。
固
→
固
液
液
铺展过程实质上是以固-液界面代替固-气表面 的同时,液体表面也同时扩展并铺满固体表面。
润湿程度的量度——接触角(contact angle) a) 接触角:过液、固、气 三相的交点作液面的切线, 切线与液﹣固界面的夹角(包含液体)。
图 接触角与各界面张力的关系
σ是垂直作用于表面上单位长度的力
表面张力作用的结果使液体表面缩小
表面张力的方向
对于平液面是沿着液面并与液面平行; 对于弯曲液面则与液面相切。
(a)平液面表面张力示意图
(b)球形液面表面张力示意图
热力学基本方程
恒T、p条件下:
σ等于在定温、定压条件下,增加单位表面积时系 统 G的增 加,因此σ称为比表面自由能(表面自由能)。
4)表面张力和表面能
表 面 层 粒 子 受 力 分 析
表面层粒子受力不均匀,受到一个指向液体内部的拉力。
导致:液体表面有自动收缩为球形的趋势; 界面层分子有自发与外来分子发生化学或物理结合的趋势。
可逆条件下:
比例系数σ为表面张力。 即:增大单位表面积所需要做的功。
换个角度讨论
表面功:
外力的作用——机械功