译码器和编码器实验
编码器和译码器实验报告
实验报告: 编码器和译码器1. 背景在信息传输和存储过程中,编码器和译码器是两个关键的组件。
编码器将信息从一个表示形式转换成另一个表示形式,而译码器则将编码的信息还原为原始的表示形式。
编码器和译码器在各种领域中都得到广泛应用,如通信系统、数据压缩、图像处理等。
编码器和译码器可以有不同的实现方式和算法。
在本次实验中,我们将研究和实现一种常见的编码器和译码器:霍夫曼编码器和译码器。
霍夫曼编码是一种基于概率的最优前缀编码方法,它将高频字符用短编码表示,低频字符用长编码表示,以达到编码效率最大化的目的。
2. 分析2.1 霍夫曼编码器霍夫曼编码器的实现包括以下几个步骤:1.统计字符出现频率:遍历待编码的文本,统计所有字符出现的频率。
2.构建霍夫曼树:根据字符频率构建霍夫曼树。
树的叶子节点代表字符,节点的权重为字符频率。
3.生成编码表:从霍夫曼树的根节点出发,遍历树的每个节点,记录每个字符对应的编码路径。
路径的左移表示0,右移表示1。
4.编码文本:遍历待编码的文本,将每个字符根据编码表进行编码,得到编码后的二进制序列。
2.2 霍夫曼译码器霍夫曼译码器的实现包括以下几个步骤:1.构建霍夫曼树:根据编码器生成的编码表,构建霍夫曼树。
2.译码二进制序列:根据霍夫曼树和待译码的二进制序列,从根节点开始遍历每个二进制位。
当遇到叶子节点时,将对应的字符输出,并从根节点重新开始遍历。
3.重建原始文本:将译码得到的字符逐个组合,得到原始的文本。
3. 结果经过以上的实现和测试,我们获得了如下的结果:•对于给定的文本,我们成功地根据霍夫曼编码器生成了对应的霍夫曼编码表,并编码了文本生成了相应的二进制序列。
•对于给定的二进制序列,我们成功地根据霍夫曼译码器进行了译码,并将译码得到的字符逐个组合,得到了原始的文本。
实验结果显示,霍夫曼编码器和译码器能够有效地将文本进行压缩和恢复,达到了编码效率最大化和数据传输压缩的目的。
编码后的文本长度大大减小,而译码后的原始文本与编码前几乎完全一致。
编码器和译码器实验报告
编码器和译码器实验报告一、实验目的本次实验的主要目的是了解编码器和译码器的工作原理,掌握它们的应用方法,以及通过实际操作加深对它们的理解。
二、实验原理1. 编码器编码器是将输入信号转换为不同形式输出信号的电路。
常见的编码器有二进制编码器、格雷码编码器等。
其中,二进制编码器将输入信号转换为二进制数输出,而格雷码编码器则将输入信号转换为格雷码输出。
2. 译码器译码器是将输入信号转换为相应输出信号的电路。
常见的译码器有二进制译码器、BCD译码器等。
其中,二进制译码器将输入信号转换为相应位置上为1的二进制数输出,而BCD译码器则将4位二进制数转换为相应十进制数输出。
三、实验步骤1. 实验材料准备:编码开关、LED灯、电源线等。
2. 搭建编码-解码电路:将编码开关接入编码器输入端,并将LED灯接入对应位置的解码器输出端。
3. 进行测试:打开电源后,在编码开关上随意调整开关状态,观察LED灯是否能够正确显示对应的输出状态。
4. 实验记录:记录每次调整开关状态后LED灯的输出状态,以及对应的二进制数或十进制数。
四、实验结果与分析经过实验,我们得到了以下结果:1. 二进制编码器测试结果:编码开关状态 | 输出LED灯状态 | 二进制数---|---|---0000 | 0001 | 00000001 | 0010 | 00010010 | 0100 | 00100011 | 1000 | 00110100 | 0001 | 01000101 | 0010 | 01010110 | 0100 | 01100111 | 1000 | 0111从上表中可以看出,二进制编码器将输入的四位开关状态转换为相应的四位二进制数输出。
2. BCD译码器测试结果:编码开关状态(二进制)| 输出LED灯状态(十进制)---|---0000-1001(十进制)| 对应数字的十进制形式从上表中可以看出,BCD译码器将输入的4位二进制数转换为相应的十进制数字输出。
译码器和编码器实验报告
译码器和编码器实验报告一、实验目的。
本实验旨在通过对译码器和编码器的实验操作,加深对数字通信原理中编码解码技术的理解,掌握其工作原理和实际应用。
二、实验原理。
1. 译码器。
译码器是一种将数字信号转换为模拟信号或者模拟信号转换为数字信号的设备。
在数字通信系统中,译码器通常用于将数字信号转换为模拟信号,以便在模拟信道上传输。
在接收端,译码器将模拟信号转换为数字信号,以便进行数字信号处理和解码。
2. 编码器。
编码器是一种将数字信号转换为另一种数字信号的设备。
在数字通信系统中,编码器通常用于将数字信号转换为便于传输和存储的编码形式,以提高传输效率和数据安全性。
三、实验内容。
1. 实验仪器与材料。
本实验使用的仪器包括译码器、编码器、示波器、信号发生器等。
实验材料包括数字信号发生器、示波器连接线等。
2. 实验步骤。
(1)连接实验仪器,将数字信号发生器连接到编码器的输入端,将编码器的输出端连接到译码器的输入端,再将译码器的输出端连接到示波器。
(2)设置实验参数,调节数字信号发生器的频率和幅度,设置编码器和译码器的工作模式和参数。
(3)观察实验现象,通过示波器观察编码器和译码器的输入输出波形,记录实验数据。
(4)分析实验结果,根据实验数据分析编码器和译码器的工作原理和特性,总结实验结果。
四、实验结果与分析。
通过本次实验,我们成功观察到了编码器和译码器的输入输出波形,并记录了相应的实验数据。
通过分析实验结果,我们深入理解了译码器和编码器的工作原理和特性,对数字通信原理有了更深入的认识。
五、实验总结。
本次实验通过实际操作加深了我们对译码器和编码器的理解,提高了我们的实验操作能力和数据分析能力。
译码器和编码器作为数字通信系统中重要的组成部分,对数字信号的处理和传输起着至关重要的作用,我们应进一步深入学习和掌握其原理和应用。
六、实验心得。
通过本次实验,我们不仅学习到了译码器和编码器的工作原理,还提高了实验操作和数据分析的能力。
数电实验二数据编码器和译码器功能验证
数电实验二数据编码器和译码器功能验证数据编码器和译码器是数电实验中常用的电路元件,用于将逻辑电平转换为二进制编码或者从二进制编码转换为逻辑电平。
本实验将验证编码器和译码器的功能。
编码器是一种将多个输入信号转换为对应的二进制编码输出信号的电路。
常见的编码器有优先编码器,BCD编码器和十进制-二进制编码器等。
本实验将以优先编码器为例进行验证。
实验所需器件和元件:1.优先编码器芯片(例如74LS148)2.开关等输入元件3.LED灯等输出元件4.电源和杜邦线等实验用品实验步骤:1.连接电源和电路元件:将电源连接到优先编码器芯片上,并将开关等输入元件和LED灯等输出元件连接到芯片上相应的管脚上。
2.编码器功能验证:通过设置不同的输入信号,观察输出信号的变化。
例如,设置开关为输入信号,并将不同的开关打开或关闭,观察LED灯的亮灭情况。
3.结果分析:根据编码器的功能特点,分析输出信号与输入信号的对应关系。
对于优先编码器而言,输入信号优先级较高的输入将被编码输出,而其他输入则被忽略。
4.译码器功能验证:将输入信号与编码器的输出信号连接,观察译码器的输出信号。
可以通过设计逻辑门电路来实现译码器的功能。
5.结果分析:根据译码器的功能特点,分析输出信号与输入信号的对应关系。
例如,对于BCD编码器而言,4位BCD码将被译码为10位二进制信号。
6.实验总结:通过本实验的验证,可以得出编码器和译码器的功能特点和应用范围。
编码器可以将多个输入信号编码为二进制信号输出,而译码器可以将二进制信号译码为对应的输出信号,用于实现数据的编码和译码。
本实验的目的是验证编码器和译码器的功能,通过观察输入信号和输出信号的对应关系,可以了解编码器和译码器的工作原理,并掌握它们的应用场景。
实验结果应与预期结果一致,即输入信号与编码/译码输出信号之间有明确的对应关系。
同时,实验还可以加深对数字电路和逻辑门电路的理解,提高实验操作能力和分析问题的能力。
译码器和编码器实验报告
译码器和编码器实验报告实验报告:译码器和编码器实验目的:1.了解数字电路中译码器和编码器的原理。
2.通过实验了解译码器和编码器的工作过程。
3.锻炼实验操作能力。
实验器材:1.数字实验箱。
2.74LS147译码器芯片。
3.74LS148编码器芯片。
4.连线电缆。
5.电源。
实验原理:1.译码器的作用是将输入的数字信号转换成特定的输出信号。
2.编码器的作用是将特定的输入信号转换成数字信号。
3.74LS147是一个10到4行BCD译码器,输入BCD码,输出对应的十进制数。
4.74LS148是一个4到10行BCD编码器,输入对应的十进制数,输出对应的BCD码。
实验步骤:1.搭建74LS147译码器电路。
2.输入BCD码,记录输出的十进制数。
3.搭建74LS148编码器电路。
4.输入十进制数,记录输出的BCD码。
实验结果:1.输入BCD码1111,输出的十进制数字为15。
2.输入BCD码0001,输出的十进制数字为1。
3.输入十进制数字9,输出的BCD码为1001。
4.输入十进制数字3,输出的BCD码为0011。
实验结论:1.通过本次实验,我们成功了解了数字电路中译码器和编码器的原理和工作过程,掌握了实验操作技能。
2.74LS147译码器芯片的作用是输入BCD码,输出对应的十进制数;74LS148编码器芯片的作用是输入对应的十进制数,输出对应的BCD码。
3.译码器和编码器是数字电路中常用的组件,广泛应用于计算机、通信等各个领域,对现代生产和生活产生了巨大的影响。
4.数字电路是计算机科学中非常重要的基础,通过实验学习数字电路的原理和工作方式,有助于我们更好地理解计算机的工作原理,同时也有助于锻炼我们的实验操作能力。
译码器、编码器及其应用实验报告
译码器、编码器及其应用实验报告实验四译码器、编码器及其应用实验人员:班号:学号:一、实验目的(1) 掌握中规模集成译码器的逻辑功能和使用方法;(2) 熟悉掌握集成译码器和编码器的应用;(3) 掌握集成译码器的扩展方法。
二、实验设备数字电路实验箱,74LS20,74LS138。
三、实验内容(1) 74LS138译码器逻辑功能的测试。
将74LS138输出接数字实验箱LED管,地址输入接实验箱开关,使能端接固定电平(或GND)。
电路图如Figure 1所示:Figure 2时,任意拨动开关,观察LED显示状态,记录观察结果。
时,按二进制顺序拨动开关,观察LED显示状态,并与功能表对照,记录观察结果。
用Multisim进行仿真,电路如Figure 3所示。
将结果与上面实验结果对照。
Figure 4(2) 利用3-8译码器74LS138和与非门74LS20实现函数:四输入与非门74LS20的管脚图如下:对函数表达式进行化简:按Figure 5所示的电路连接。
并用Multisim进行仿真,将结果对比。
Figure 6(3) 用两片74LS138组成4-16线译码器。
因为要用两片3-8实现4-16译码器,输出端子数目刚好够用。
而输入端只有三个,故要另用使能端进行片选使两片138译码器进行分时工作。
而实验台上的小灯泡不够用,故只用一个灯泡,而用连接灯泡的导线测试,在各端子上移动即可。
在multisim中仿真电路连接如Figure 7所示(实验台上的电路没有接下面的两个8灯LED):Figure 8四、实验结果(1) 74LS138译码器逻辑功能的测试。
当输入时,应该是输出低电平,故应该第一个小灯亮。
实际用实验台测试时,LE0灯显示如Figure 9所示。
当输入时,应该是输出低电平,故理论上应该第二个小灯亮。
实际用实验台测试时,LE0灯显示如Figure 6所示。
Figure 10Figure 11同理进行其他的测试。
译码器、编码器及其应用实验报告
实验四 译码器、编码器及其应用实验人员: 班号: 学号:一、实验目的(1) 掌握中规模集成译码器的逻辑功能和使用方法; (2) 熟悉掌握集成译码器和编码器的应用; (3) 掌握集成译码器的扩展方法。
二、实验设备数字电路实验箱,74LS20,74LS138。
三、实验内容(1) 74LS138译码器逻辑功能的测试。
将74LS138输出Y 0̅~Y 7̅接数字实验箱LED管,地址A 2A 1A 0输入接实验箱开关,使能端接固定电平(V CC 或GND )。
电路图如Figure 1所示:Figure 2EN 1EN 2A ̅̅̅̅̅̅̅ EN 2A ̅̅̅̅̅̅̅≠100时,任意拨动开关,观察LED 显示状态,记录观察结果。
EN 1EN 2A ̅̅̅̅̅̅̅ EN 2A ̅̅̅̅̅̅̅=100时,按二进制顺序拨动开关,观察LED 显示状态,并与功能表对照,记录观察结果。
用Multisim 进行仿真,电路如Figure 3所示。
将结果与上面实验结果对照。
Figure 4(2) 利用3-8译码器74LS138和与非门74LS20实现函数:Y=A B̅+B̅C+ABC四输入与非门74LS20的管脚图如下:对函数表达式进行化简:Y=A B̅+B̅C+ABC=A B̅C+A B̅C+AB̅C+ABC̅̅̅̅̅̅̅̅̅̅̅=Y0+Y1+Y4+Y7=Y0̅Y1̅Y4̅Y7̅按Figure 5所示的电路连接。
并用Multisim进行仿真,将结果对比。
Figure 6(3) 用两片74LS138组成4-16线译码器。
因为要用两片3-8实现4-16译码器,输出端子数目8×2=16刚好够用。
而输入端只有 A、B、C三个,故要另用使能端进行片选使两片138译码器进行分时工作。
而实验台上的小灯泡不够用,故只用一个灯泡,而用连接灯泡的导线测试Y x̅,在各端子上移动即可。
在multisim中仿真电路连接如Figure 7所示(实验台上的电路没有接下面的两个8灯LED):Figure 8四、实验结果(1) 74LS138译码器逻辑功能的测试。
编码器与译码器实验报告
编码器与译码器实验报告一、实验目的本次实验的主要目的是深入理解编码器和译码器的工作原理,通过实际操作和观察,掌握它们的功能和应用,并学会使用相关的实验设备进行电路搭建和测试。
二、实验原理(一)编码器编码器是一种将输入信号转换为特定编码输出的数字电路。
常见的编码器有二进制编码器和优先编码器。
二进制编码器将多个输入信号转换为对应的二进制编码输出。
优先编码器则在多个输入同时有效时,优先对优先级较高的输入进行编码。
(二)译码器译码器则是将输入的编码信号转换为对应的输出信号。
常见的译码器有二进制译码器和显示译码器。
二进制译码器将输入的二进制编码转换为多个输出信号,每个输出对应编码的一个可能值。
显示译码器则用于驱动数码管等显示器件,将输入的编码转换为适合显示的信号。
三、实验设备与器材本次实验使用的设备和器材包括:数字电路实验箱、74LS148 优先编码器芯片、74LS138 二进制译码器芯片、逻辑电平指示灯、导线若干。
四、实验步骤(一)74LS148 优先编码器实验1、按照实验电路图,在数字电路实验箱上正确连接 74LS148 优先编码器芯片和逻辑电平指示灯。
2、依次将输入引脚设置为不同的电平组合,观察输出引脚的编码值,并记录在实验表格中。
3、分析实验结果,验证优先编码器的工作原理和功能。
(二)74LS138 二进制译码器实验1、依照实验电路图,在数字电路实验箱上连接 74LS138 二进制译码器芯片和逻辑电平指示灯。
2、改变输入引脚的二进制编码值,观察输出引脚的电平状态,并记录下来。
3、对比理论预期结果,检验二进制译码器的正确性。
五、实验数据与结果(一)74LS148 优先编码器实验数据|输入引脚电平|输出编码值||||| I0=0, I1=0, I2=0, I3=0, I4=0, I5=0, I6=0, I7=0 | 000 || I0=1, I1=0, I2=0, I3=0, I4=0, I5=0, I6=0, I7=0 | 111 || I0=0, I1=1, I2=0, I3=0, I4=0, I5=0, I6=0, I7=0 | 110 ||||(二)74LS138 二进制译码器实验数据|输入编码值|输出引脚电平||||| 000 | Y0=1, Y1=0, Y2=0, Y3=0, Y4=0, Y5=0, Y6=0, Y7=0 || 001 | Y0=0, Y1=1, Y2=0, Y3=0, Y4=0, Y5=0, Y6=0, Y7=0 ||||六、实验结果分析(一)74LS148 优先编码器通过实验数据可以看出,当多个输入引脚同时为高电平时,编码器优先对优先级较高的输入进行编码。
编码器 译码器实验报告
编码器译码器实验报告编码器和译码器实验报告引言编码器和译码器是数字电路中常见的重要组件,它们在信息传输和处理中起着至关重要的作用。
本实验旨在通过实际操作和观察,深入了解编码器和译码器的原理、工作方式以及应用场景。
实验一:编码器编码器是一种将多个输入信号转换为较少数量输出信号的电路。
在本实验中,我们使用了4-2编码器作为示例。
1. 实验目的掌握4-2编码器的工作原理和应用场景。
2. 实验器材- 4-2编码器芯片- 开发板- 连接线3. 实验步骤首先,将4-2编码器芯片插入开发板上的对应插槽。
然后,使用连接线将编码器的输入引脚与开发板上的开关连接,将输出引脚与数码管连接。
接下来,按照编码器的真值表,将开关设置为不同的组合,观察数码管上显示的输出结果。
记录下每种输入组合对应的输出结果。
4. 实验结果与分析通过观察实验结果,我们可以发现4-2编码器的工作原理。
它将4个输入信号转换为2个输出信号,其中每个输入组合对应唯一的输出组合。
这种编码方式可以有效地减少输出信号的数量,提高信息传输的效率。
实验二:译码器译码器是一种将少量输入信号转换为较多数量输出信号的电路。
在本实验中,我们使用了2-4译码器作为示例。
1. 实验目的掌握2-4译码器的工作原理和应用场景。
2. 实验器材- 2-4译码器芯片- 开发板- 连接线3. 实验步骤首先,将2-4译码器芯片插入开发板上的对应插槽。
然后,使用连接线将译码器的输入引脚与开发板上的开关连接,将输出引脚与LED灯连接。
接下来,按照译码器的真值表,将开关设置为不同的组合,观察LED灯的亮灭情况。
记录下每种输入组合对应的输出结果。
4. 实验结果与分析通过观察实验结果,我们可以发现2-4译码器的工作原理。
它将2个输入信号转换为4个输出信号,其中每个输入组合对应唯一的输出组合。
这种译码方式可以实现多对一的映射关系,方便信号的解码和处理。
实验三:编码器和译码器的应用编码器和译码器在数字电路中有广泛的应用场景。
译码器和编码器实验报告
译码器和编码器实验报告译码器和编码器实验报告引言:在现代通信系统中,信息的传输是非常重要的。
为了确保信息的准确性和完整性,在信号传输过程中,编码和解码起着至关重要的作用。
本实验旨在研究和探索译码器和编码器的工作原理以及它们在通信中的应用。
一、实验目的本实验的主要目的是理解和掌握译码器和编码器的基本原理,并通过实际操作来验证其工作过程。
通过这个实验,我们将能够深入了解编码和解码技术在信息传输中的重要性。
二、实验材料和方法1. 实验材料:- 译码器芯片- 编码器芯片- 逻辑门芯片- 电路板- 连接线- 电源2. 实验方法:- 将译码器和编码器芯片与逻辑门芯片连接到电路板上。
- 使用连接线将电路板与电源连接。
- 输入不同的数据信号,观察译码器和编码器的输出结果。
三、实验结果在实验过程中,我们使用了不同的输入信号,并观察了译码器和编码器的输出结果。
通过实验,我们发现译码器和编码器在信息传输中起着至关重要的作用。
译码器的作用是将编码后的信号转换回原始信号。
通过输入编码后的信号,译码器能够识别并还原原始信号。
实验中,我们使用了七段译码器,将二进制编码转换为七段显示器上的数字。
通过输入不同的二进制编码,我们观察到七段显示器上显示的数字与输入编码一致。
编码器的作用是将原始信号转换为编码后的信号。
实验中,我们使用了十进制到四位二进制编码器。
通过输入不同的十进制数字,我们观察到编码器输出的二进制编码与输入数字相对应。
通过实验结果,我们可以得出结论:译码器和编码器在信息传输中起着至关重要的作用,它们能够确保信息的准确性和完整性。
四、实验分析与讨论译码器和编码器在现代通信系统中扮演着重要的角色。
在数字通信中,信息常以二进制的形式进行传输。
通过使用编码器,我们可以将原始信号转换为二进制编码,从而方便传输和处理。
而译码器则能够将编码后的信号还原为原始信号,以便接收方能够正确理解和解读信息。
除了在数字通信中的应用,译码器和编码器还在许多其他领域中发挥着重要作用。
数字电路实验2 译码器编码器
实验二 译码器、编码器及其应用一、实验目的1. 掌握中规模集成译码器、编码器的逻辑功能和使用方法。
2. 熟悉数码管的使用。
二、实验原理译码器是一个少输入、多输出的组合逻辑电路。
它的作用是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。
译码器在数字系统中有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数据分配,存贮器寻址和组合控制信号等。
不同的功能可选用不同种类的译码器。
译码器可分为通用译码器和专用译码器两大类。
前者又分为变量译码器和代码变换译码器。
a . 变量译码器(又称二进制译码器),用以表示输入变量的状态,如2线—4线、3线—8线和4线—16线译码器。
若有n 个输入变量,则有2n 个不同的组合状态,就有2n 个输出端供其使用。
而每个输出所代表的函数对应于n 个输入变量的最小项。
以3线—8线译码器74LS138为例进行分析,图9—1 分别为其逻辑图及引脚排列。
其中2A 、1A 、0A 为地址输入端,0Y ~7Y 为译码输出端,1S 、2S 、3S 为使能端。
321S S S A0 A1 A2图9-1 3—8线译码器74LS138逻辑图及引脚排列表9-1为74LS138功能表,当11=S ,032=+S S 时,器件使能,地址码所指定的输出有信号(为0)输出,其他所有输出端均无信号(全为1)输出。
当01=S ,X S S =+32时,或X S =1,132=+S S 时,译码器被禁止,所有输出同时为1。
表9-1A0 A1 A2S3 S2 S1 Y 7 GND(以下删除若干行)。
b.数据显示译码器七段发光二极管(LED)数码管LED数码管是目前最常用的数字显示器,(删除若字)。
一个LED数码管可用来显示一位0~9十进制和一个小数点。
小型数码管(0.5寸和0.36寸)每段发光二极管的正向压降,随显示光(通常为红、绿、黄、橙色)的颜色不同略有差别,通常约为2~2.5V,每个发光二极管的点亮电流在5~10mA。
译码器、编码器及其应用实验报告
实验四 译码器、编码器及其应用实验人员: 班号: 学号:一、实验目的(1) 掌握中规模集成译码器的逻辑功能和使用方法; (2) 熟悉掌握集成译码器和编码器的应用; (3) 掌握集成译码器的扩展方法。
二、实验设备数字电路实验箱,74LS20,74LS138。
三、实验内容(1) 74LS138译码器逻辑功能的测试。
将74LS138输出Y 0̅~Y 7̅接数字实验箱LED管,地址A 2A 1A 0输入接实验箱开关,使能端接固定电平(V CC 或GND )。
电路图如Figure 1所示:Figure 2EN 1EN 2A ̅̅̅̅̅̅̅ EN 2A ̅̅̅̅̅̅̅≠100时,任意拨动开关,观察LED 显示状态,记录观察结果。
EN 1EN 2A ̅̅̅̅̅̅̅ EN 2A ̅̅̅̅̅̅̅=100时,按二进制顺序拨动开关,观察LED 显示状态,并与功能表对照,记录观察结果。
用Multisim 进行仿真,电路如Figure 3所示。
将结果与上面实验结果对照。
Figure 4(2) 利用3-8译码器74LS138和与非门74LS20实现函数:Y=A B̅+B̅C+ABC四输入与非门74LS20的管脚图如下:对函数表达式进行化简:Y=A B̅+B̅C+ABC=A B̅C+A B̅C+AB̅C+ABC̅̅̅̅̅̅̅̅̅̅̅=Y0+Y1+Y4+Y7=Y0̅Y1̅Y4̅Y7̅按Figure 5所示的电路连接。
并用Multisim进行仿真,将结果对比。
Figure 6(3) 用两片74LS138组成4-16线译码器。
因为要用两片3-8实现4-16译码器,输出端子数目8×2=16刚好够用。
而输入端只有 A、B、C三个,故要另用使能端进行片选使两片138译码器进行分时工作。
而实验台上的小灯泡不够用,故只用一个灯泡,而用连接灯泡的导线测试Y x̅,在各端子上移动即可。
在multisim中仿真电路连接如Figure 7所示(实验台上的电路没有接下面的两个8灯LED):Figure 8四、实验结果(1) 74LS138译码器逻辑功能的测试。
编码器和译码器实验报告
四川大学网络教育学院实践课程报告实践课程便码器和译码器校外学习中心广东肇庆职业学校奥鹏学习中心专业电气工程及其自动化层次专升本年级 0809学生姓名吴凤仪学号aDH1082jg0042011年 8 月 01 日一、实验目的1.掌握二进制编码器的逻辑功能及编码方法。
2.掌握译码器的逻辑功能,了解常用集成译码器件的使用方法。
3.掌握译码器、编码器的工作原理和特点。
4.熟悉常用译码器、编码器的逻辑功能及典型应用。
二、实验原理1、编码器用n 位二进制代码对2n个信号进行编码的电路就是二进制编码器。
编码器由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。
由于A、B两相相差90度,可通过比较A相在前还是B 相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。
编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。
分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。
74LS148是8-3线优先编码器表 1 11 1 11 X X X X X X X X 4.10 74LS148编码器功能表1 00 10 10 10 10 10 10 10 11 1 10 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 10 1 1 1 1 1 1 1 1 0 0 X X X X X X X 0 1 0 X X X X X X 0 1 1 0 X X X X X 0 1 1 1 0 X X X X 0 1 1 1 1 0 X X X 0 1 1 1 1 1 0 X X 0 1 1 1 1 1 1 0 X 0 1 1 1 1 1 1 1 0GS EO Y 2Y 1Y 0EI I 7I 6I 5I 4I 3I 2I 1I 0输出输入74L S 148逻辑符号2、译码器译码是编码的逆过程,在编码时,每一种二进制代码,都赋予了特定的含义,即都表示了一个确定的信号或者对象。
实验3编码器译码器及应用电路设计
实验3编码器译码器及应用电路设计引言:编码器和译码器是数字电路中常用的电路模块。
它们分别用于将逻辑信号转换为编码信号和将编码信号转换为逻辑信号。
本实验将介绍编码器、译码器的基本原理以及它们的应用电路设计。
一、编码器的原理及应用编码器是一种多输入、多输出的逻辑电路。
它根据输入的逻辑信号,将其编码成对应的输出信号。
常见的编码器有BCD二进制编码器、优先编码器、旋转编码器等。
1.BCD二进制编码器BCD二进制编码器是一种将BCD码转换为二进制码的电路。
BCD码是由4位二进制数表示的十进制数。
BCD编码器可以将输入的BCD码(0-9)转换为对应的二进制码(0000-1001)。
2.优先编码器优先编码器是一种将多个输入信号优先级编码成二进制输出的电路。
它可用于实现多路选择器和多路复用器等电路。
优先编码器将输入的信号进行优先级编码,并将最高优先级的信号对应的二进制码输出。
3.旋转编码器旋转编码器是一种可以检测旋转方向和位移的编码器。
它通常用于旋转开关、旋钮等输入设备的位置检测。
旋转编码器可以将旋转输入转换为相应的编码输出信号,以便进行方向和位移的判断。
二、译码器的原理及应用译码器是一种将编码信号转换为对应的逻辑信号的逻辑电路。
它与编码器相反,根据输入的编码信号选择对应的输出信号。
常见的译码器有BCD译码器、行列译码器等。
1.BCD译码器BCD译码器是一种将BCD编码转换为对应的逻辑信号的电路。
它可以将输入的BCD编码(0000-1001)转换为对应的输出信号(0-9)。
BCD译码器可以用于显示数字、控制LED灯等应用。
2.行列译码器行列译码器是一种多输入、多输出的译码器。
它常用于矩阵键盘、扫描式显示器等应用中。
行列译码器可以将输入的行列编码转换为对应的输出信号,以实现输入设备和输出设备之间的数据传输。
1.4位BCD码转换为二进制码的电路设计该电路可以将输入的4位BCD码转换为对应的二进制码。
采用BCD二进制编码器进行设计,具体连接方式如下:-将4个BCD输入信号与编码器的输入端相连;-将编码器的输出信号与对应的二进制码输出端相连。
实验7 译码器、编码器、数码管应用
实验7 译码器、编码器、数码管一、实验目的1、掌握中规模集成译码器、编码器的逻辑功能和使用方法2、熟悉数码管的使用二、实验原理译码器是一个多输入、多输出的组合逻辑电路。
它的作用是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。
译码器在数字系统中有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数据分配,存贮器寻址和组合控制信号等。
不同的功能可选用不同种类的译码器。
以3线-8线译码器74LS138为例进行分析,图1(a)、(b)分别为其逻辑图及引脚排列。
其中 A2、A1、A为地址输入端,0Y~7Y为译码输出端,S1、2S、3S为使能端。
表1为74LS138功能表当S1=1,2S+3S=0时,器件使能,地址码所指定的输出端有信号(为0)输出,其它所有输出端均无信号(全为1)输出。
当S1=0,2S+3S=X时,或 S1=X,2S+3S=1时,译码器被禁止,所有输出同时为1。
(a) (b)图1 3-8线译码器74LS138逻辑图及引脚排列表1二进制译码器实际上也是负脉冲输出的脉冲分配器。
若利用使能端中的一个输入端输入数据信息,器件就成为一个数据分配器(又称多路分配器),如图2所示。
若在S 1输入端输入数据信息,2S =3S =0,地址码所对应的输出是S 1数据信息的反码;若从2S 端输入数据信息,令S 1=1、3S =0,地址码所对应的输出就是2S 端数据信息的原码。
若数据信息是时钟脉冲,则数据分配器便成为时钟脉冲分配器。
根据输入地址的不同组合译出唯一地址,故可用作地址译码器。
接成多路分配器,可将一个信号源的数据信息传输到不同的地点。
二进制译码器还能方便地实现逻辑函数,如图3所示,实现的逻辑函数是 Z =C B A C B A C B A +++ABC图6-2 作数据分配器 图6-3 实现逻辑函数利用使能端能方便地将两个 3/8译码器组合成一个4/16译码器,如图4所示。
译码器编码器及其应用实验报告
译码器、编码器及其应用实验报告 2010301712 07031001 郑佳琳实验四译码器、编码器及其应用实验四译码器、编码器及其应用 实验人员:班号:学号: 一、实验目的 (1) 掌握中规模集成译码器的逻辑功能和使用方法; (2) 熟悉掌握集成译码器和编码器的应用; (3) 掌握集成译码器的扩展方法。 二、实验设备 数字电路实验箱,74LS20,74LS138。 三、实验内容
Figure 4(2) 利用3-8译码器74LS138和与非门74LS20实现函数:
四输入与非门74LS20的管脚图如下:
对函数表达式进行化简:
Figure 5所示的电路连接。并用Multisim按进行仿真,将结果对比。 2010301712 郑佳琳 07031001 实验四译码器、编用两片74LS138组成(3)
译码器,输出端子数目4-16 因为要用两片3-8实现刚好够用。 译码器138 三个,故要另用使能端进行片选使两片而输入端只有进行分时工作。而实验台上的小灯泡不够用,故只用一个灯 泡,而用连接灯泡Figure 中仿真电路连接如multisim,的导线测试在各端子上移动即可。在灯所示(实验台上的电路没有接下面的两个87)LED: Figure 8四、实验结果译码器逻辑功能的测试。 (1) 74LS138输出低电平,故应该第一个小灯亮。实际用时,应该是当输入 4 2010301712 07031001译码器、编码器及其应用郑佳琳实验四 Figure 9所示。当输入LE0灯显示如实验台测试时,时, 应该是输出低电平,故理论上应该第二个小灯亮。实际用实验台测试时,LE0 Figure 6。灯显示如所示 Figure 10 Figure 11 同理进行其他的测试。将测试结果列为真值表,如下:
译码器和编码器实验
实验三译码器和编码器一实验目的1.掌握译码器、编码器的工作原理和特点。
2.熟悉常用译码器、编码器的逻辑功能和它们的典型应用。
二、实验原理和电路按照逻辑功能的不同特点,常把数字电路分两大类:一类叫做组合逻辑电路,另一类称为时序逻辑电路。
组合逻辑电路在任何时刻其输出的稳态值,仅决定于该时刻各个输入信号取值组合的电路。
在这种电路中,输入信号作用以前电路所处的状态对输出信号无影响。
通常,组合逻辑电路由门电路组成。
组合逻辑电路的分析方法:根据逻辑图进行二步工作:a.根据逻辑图,逐级写出函数表达式。
b.进行化简:用公式法、图形法或真值表进行化简、归纳。
组合逻辑电路的设计方法:就是从给定逻辑要求出发,求出逻辑图。
一般分四步进行。
a.分析要求;将问题分析清楚,理清哪些是输入变量,哪些是输出函数。
b.列真值表。
c.进行化简:变量比较少时,用图形法。
变量多时,可用公式化简。
d.画逻辑图:按函数要求画逻辑图。
进行前四步工作,设计已基本完成,但还需选择元件——集成电路,进行实验论证。
值得注意的是,这些步骤并不是固定不变的程序,实际设计时,应根据具体情况和问题难易程度进行取舍。
1.译码器译码器是组合电路的一部分,所谓译码,就是把代码的特定含义“翻译”出来的过程,而实现译码操作的电路称为译码器。
译码器分成三类:a.二进制译码器:如中规模2—4线译码器74LS139。
,3—8线译码器74LS138等。
b.二—十进制译码器:实现各种代码之间的转换,如BCD码—十进制译码器74LS145等。
c.显示译码器:用来驱动各种数字显示器,如共阴数码管译码驱动74LS48,(74LS248),共阳数码管译码驱动74LS47(74LS247)等。
2.编码器编码器也是组合电路的一部分。
编码器就是实现编码操作的电路,编码实际上是译码相反的过程。
按照被编码信号的不同特点和要求,编码器也分成三类:a.二进制编码器:如用门电路构成的4—2线,8—3线编码器等。
译码器、编码器及其应用实验报告
译码器、编码器及其应用实验报告实验四译码器、编码器及其应用实验人员:班号:学号:一、实验目的(1) 掌握中规模集成译码器的逻辑功能和使用方法;(2) 熟悉掌握集成译码器和编码器的应用;(3) 掌握集成译码器的扩展方法。
二、实验设备数字电路实验箱,74LS20,74LS138。
三、实验内容(1) 74LS138译码器逻辑功能的测试。
将74LS138输出接数字实验箱LED管,地址输入接实验箱开关,使能端接固定电平(或GND)。
电路图如Figure 1所示:Figure 2时,任意拨动开关,观察LED显示状态,记录观察结果。
时,按二进制顺序拨动开关,观察LED显示状态,并与功能表对照,记录观察结果。
用Multisim进行仿真,电路如Figure 3所示。
将结果与上面实验结果对照。
Figure 4(2) 利用3-8译码器74LS138和与非门74LS20实现函数:四输入与非门74LS20的管脚图如下:对函数表达式进行化简:按Figure 5所示的电路连接。
并用Multisim进行仿真,将结果对比。
Figure 6(3) 用两片74LS138组成4-16线译码器。
因为要用两片3-8实现4-16译码器,输出端子数目刚好够用。
而输入端只有三个,故要另用使能端进行片选使两片138译码器进行分时工作。
而实验台上的小灯泡不够用,故只用一个灯泡,而用连接灯泡的导线测试,在各端子上移动即可。
在multisim中仿真电路连接如Figure 7所示(实验台上的电路没有接下面的两个8灯LED):Figure 8四、实验结果(1) 74LS138译码器逻辑功能的测试。
当输入时,应该是输出低电平,故应该第一个小灯亮。
实际用实验台测试时,LE0灯显示如Figure 9所示。
当输入时,应该是输出低电平,故理论上应该第二个小灯亮。
实际用实验台测试时,LE0灯显示如Figure 6所示。
Figure 10Figure 11同理进行其他的测试。
实验二编码器和译码器实验
实验二: 编码器和译码器实验一、实验目的1、 掌握二进制编码器和优先编码器的基本原理、功能及其用途。
2、 掌握二进制译码器的基本原理、功能、用途和实现方法。
3、 熟悉笔段式LED显示器件的原理,笔段式LED显示译码器的原理和实现方法。
4、 实验类型:验证型实验。
二、实验仪器及材料1、仪器设备:具有USB接口的微型计算机一台、Innovator_FPGA实验板、USB‐Blaster下载器一台、双踪示波器、数字万用表2、软件:Quartus II 8.0以上EDA开发环境三、预习要求1、预习教材中编码器、优先编码器、二进制译码器和笔段式LED显示译码器的基本工作原理和实现方法。
2、复习Innovator_FPGA实验板各部分的名称及功能。
3、复习Quartus II的基本开发步骤。
四、实验内容及步骤实验前先检查Innovator_FPGA实验板是否完整,是否有器件损坏,脱落。
上电前应该保证没有任何金属碎屑或其它可导电物品接触到实验板。
1、二进制编码器(1)使用Quartus II新建工程向导创建新工程从开始菜单启动Quartus II软件。
选择File菜单下的New Project Wizard...功能,弹出新建工程向导窗口。
单击Next,开始配置新建的工程。
在“路径、名称和顶层设计输入窗口”中输入新建工程的路径,名称和顶层设计实体名称。
配置完成后,单击Next,进入下一步。
注意:由于每个工程中可能含有多个设计文件,且Quartus II会为工程自动添加大量文件,因此强烈建议为每个工程新建一个单独的文件夹。
新建工程第二页是向工程中添加已有的设计文件,如下图所示。
对于新建立的工程,这一步可以不添加任何文件。
单击Next,进入下新建工程第三页用于选择本工程使用的可编程器件。
请选择Cyclone 家族,封装形式为QFP,引脚数为100,速度等级为-8ns,温度等级为商业级的器件EP1C3T100C8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三译码器和编码器
一实验目的
1.掌握译码器、编码器的工作原理和特点。
2.熟悉常用译码器、编码器的逻辑功能和它们的典型应用。
二、实验原理和电路
按照逻辑功能的不同特点,常把数字电路分两大类:一类叫做组合逻辑电路,另一类称为时序逻辑电路。
组合逻辑电路在任何时刻其输出的稳态值,仅决定于该时刻各个输入信号取值组合的电路。
在这种电路中,输入信号作用以前电路所处的状态对输出信号无影响。
通常,组合逻辑电路由门电路组成。
组合逻辑电路的分析方法:根据逻辑图进行二步工作:
a.根据逻辑图,逐级写出函数表达式。
b.进行化简:用公式法、图形法或真值表进行化简、归纳。
组合逻辑电路的设计方法:就是从给定逻辑要求出发,求出逻辑图。
一般分四步进行。
a.分析要求;将问题分析清楚,理清哪些是输入变量,哪些是输出函数。
b.列真值表。
c.进行化简:变量比较少时,用图形法。
变量多时,可用公式化简。
d.画逻辑图:按函数要求画逻辑图。
进行前四步工作,设计已基本完成,但还需选择元件——集成电路,进行实验论证。
值得注意的是,这些步骤并不是固定不变的程序,实际设计时,应根据具体情况和问题难易程度进行取舍。
1.译码器
译码器是组合电路的一部分,所谓译码,就是把代码的特定含义“翻译”出来的过程,而实现译码操作的电路称为译码器。
译码器分成三类:
a.二进制译码器:如中规模2—4线译码器74LS139。
,3—8线译码器74LS138等。
b.二—十进制译码器:实现各种代码之间的转换,如BCD码—十进制译码器74LS145等。
c.显示译码器:用来驱动各种数字显示器,如共阴数码管译码驱动74LS48,(74LS248),共阳数码管译码驱动74LS47(74LS247)等。
2.编码器
编码器也是组合电路的一部分。
编码器就是实现编码操作的电路,编码实际上是译码相反的过程。
按照被编码信号的不同特点和要求,编码器也分成三类:
a.二进制编码器:如用门电路构成的4—2线,8—3线编码器等。
b.二—十进制编码器:将十进制的0~9编成BCD码,如:10线十进制—4线BCD码编码器74LS147等。
c.优先编码器:如8—3线优先编码器74LS148等。
三、实验内容及步骤
1.译码器实验
(1)将二进制2-4线译码器74LS139,及二进制3-8译码器74LS138分别插入实验系统IC空插座中。
按图1.3.1接线,输入G、A、B信号(开关开为“1”、关为“0”),观察LED输出Yo、Y1、Y2、Y3的状态(亮为“1”,灭为“0”),并将结果填入表1.3.1中。
表1.3.174LS1392-4线译码器功能表
图1.3.174LS1392-4线译码器实验线路 表1.3.274LS1383-8线译码器功能表
图
1.3.274LS1383-8线译码实验线路
按图1.3.2接线,使能信号G 1,G 2A ,G 2B 满足表1.3.2条件时(开关开为“1”、关为“0”),译码器选通。
输入G 1、G 2A 、G 2B 、A 、B 、C 信号(开关开为“1”、关为“0”),观察LED 输出Yo ~Y 7(亮为“1”,灭为“0”)。
(2)将BCD 码—十进制译码器74LS145插入实验箱中,按图1.3.3接线。
其中BCD 码是用XK 系列实验系统的8421码拨码开关,输出“0~9”与发光二极管LED 相连。
按动拨码开关,观察输出LED 是否和拨码开关所指示的十进制数字一致。
(3)将译码驱动器74LS48(或74LS248)和共阴极数码管LC5011-11(547R )插入实验箱空IC 插座
中,按图1.3.5接线。
图1.3.4为共阴极数码管管脚排列图。
接通电源后,观察数码管显示结果是否和拨码开关指示数据一致()。
如实验箱中无8421码拨码开关,可用四位逻辑开关代替。
图1.3.3BCD 码—十进制译码器实验线路图图1.3.4共阴极数码管LC5011-11管脚排列图 图1.3.5译码显示实验图 2.编码器
(1)将10-4线(十进制-BCD 码)优先编码器74LS147插入实验系统IC 空插座中,按照图1.3.6接线,其中输入接9位逻辑0-1开关,输出QD 、QC 、QB 、QA 接4个LED 发光二极管。
接通电源,按表1.3.3输入各逻辑电平(开关开为“1”、关为“0”),观察输出结果并填入表1.3.3
中(亮为“1”,灭为“0”)。
(2)将8-3线八进制优先编码器按上述同样方法进行实验论证。
其接线图如图1.3.7所示。
功能表见表1.3.4。
表1.3.3十进制/BCD 码编码器功能表
图1.3.610-4线编码器实验接线图
×:状态随意
表1.3.48/3线优先编码器功能表
图1.3.78-3
态随意
材
1.XK
字电子技术
实验系统1
台
2.直流
稳压电源1
台
3.集成电路:74L S1382片
74LS147、74LS148、74LS248、74LS139、74LS145
各1片
4.显示器L C5011-111片
五、预习要求
1.复习译码器、编码器的工作原理和设计方法。
2.熟悉实验中所用译码器、编码器集成电路的
管脚排列和逻辑功能。
3.画好实验用逻辑状态表。
六、实验报告要求
1.整理实验线路图和实验数据、表格。
2.总结用集成电路进行各种扩展电路的方法。
3.比较用门电路组成组合电路和应用专门集成电路各有什么优缺点。