RP快速成型技术的原理介绍

合集下载

快速成型( Rapid Prototyping )

快速成型( Rapid Prototyping )

成型示意图:
二、熔融挤出成型工艺的工作原理三、FDM机台的具体操作
• 1.开机及初始化 • 2.载入模型及调整 • 3.分层参数设置 • 4.开始加工
STL模型检验和修复
• 校验点数:点数越多,修复的正确率越高, 但时间更长,一般设定为5就足够。
测量和修改
• • • • • 单击鼠标左键——拾取面片 按住CTRL键,单击鼠标左键——拾取边 按住SHIFT键,单击鼠标左键——拾取顶点 表面反向——修复法向错误 删除表面——删除多余表面,将与该面片相连通 的所有面片都删除 • 删除面片——删除该面片 • 隐藏表面——隐藏表面,以便测量或者修改 • 设定为成型方向——以该面片为底平面,重新摆 放三维模型。
分层参数详解
• • • • • • • • • • • • • • • • • 包括三个部分:分层、路径、支撑 层厚:单层厚度。 起点:开始分层的高度,一般应为零 终点:分层结束的高度,一般为模型的最高点 轮廓线宽:层片上轮廓的扫描线宽度,一般为:1.3~1.6倍的喷嘴直径 扫描次数:层片轮廓的扫描次数 填充线宽:层片填充线的宽度。 填充间隔:相邻填充线间隔(n-1)个填充线宽 填充角度:每层填充线的方向,可输入六个值,每层依次循环 填充偏置:每层填充线的偏置数,可输入六个值 水平角度:设定能够进行孔隙填充的表面的最小角度(与水平面的夹角),该值越小, 标准填充的面积越小,若过小,会在表面形成孔隙 表面层数:设定水平表面的填充厚度,n个层厚 支撑角度:设定需要支撑的表面的最大角度(与水平面),角度越大,支撑面越大 支撑线宽:支撑扫描线的宽度 支撑间隔:与填充间隔意义类似 最小面积:需要支撑的表面的最小面积 表面层数:靠近原型的支撑部分,为使原型表面质量较高,需采用标准填充

快速成型技术

快速成型技术

光固化成型(SLA)优缺点 (一)SLA优点: (1)原材料的利用率将近100% ; (2)尺寸精度高( ±0. 1 mm); (3)表面质量优良; (4)可以制作结构十分复杂的模型。 (二)SLA缺点: (1)成型过程中伴随着物理和化学变化,所以制件较易弯曲, 需要支撑; (2)可使用的材料种类较少; (3)液态树脂具有气味和毒性,并且需要避光保护,以防止 提前发生聚合反应,选择时有局限性。
2.反求工程
物理形态的零件是快速成型技术体系中零件几何信息的另一个 重要来源。几何实体同样包含了零件的几何信息,但这些信息必 须通过反求工程进行数字化,方可进行下一步的处理。反求工程 要对零件表面进行数字化处理,提取零件的表面三维数据。主要 的技术手段有三坐标测量仪、三维激光数字化仪、工业CT和自动 断层扫描仪等。通过三维数字化设备得到的数据往往是一些散乱 的无序点或线的集合,还必须对其三维重构得到三维CAD模型,或 者层片模型等。
二、快速成型的原理及特点 1、RP成型原理 传统加工:去材法、变形法。 RP加工:材料累加法。 快速成型技术采用离散/堆积成型原理,根据三维 CAD模型,对于不同的工艺要求,按照一定厚度进行分 层,将三维数字模型变成厚度很薄的二维平面模型。再 将数据进行一定的处理,加入加工参数,产生数控代码, 在数控系统控制下以平面加工方式连续加工出每个薄层, 并使之粘结而成形。实际上就是基于“生长”或“添加” 材料原理一层一层地离散叠加,从底到顶完成零件的制 作过程。
快速成型技术(RP)
目录
一、快速成型技术概述 二、快速成型的原理及特点 三、快速成型技术体系的基本环节 四、快速成型技术的典型工艺及特点 五、快速成型技术的应用 六、快速成型技术的发展方向 七、结束语 八、参考文献

快速成型技术的工作原理

快速成型技术的工作原理

快速成型技术的工作原理快速成型技术(Rapid Prototyping Technology,RPT),也称为快速制造技术(Rapid Manufacturing Technology,RMT),是指采用计算机辅助设计(CAD)、数控加工(CNC)和分层制造技术(SLM)等手段,快速制作出具有复杂内部结构的三维实物模型或器件的一种先进制造技术。

快速成型技术主要包括三个方面的内容:现代制造方式、CAD技术和快速成型技术。

快速成型技术的工作原理是将设计图或CAD模型转为STL文件,再将STL文件通过计算机化控制系统控制加工设备的动作,并以逐层堆积、覆盖、切割、加压等方式将逐层依次进行制造,直至完成所需产品的加工制造。

其具体工作流程如下:1.设计阶段首先,使用计算机辅助设计(CAD)软件将所需产品的三维模型绘制出来。

CAD绘图是快速成型技术的关键环节,决定了产品的实际制造效果和制造成本,需要使用专业的CAD软件进行设计。

2.模型处理阶段CAD设计完成后,需要进行一系列的模型处理。

主要包括增补模型壳体、提高模型强度、修复模型错误等。

这一阶段的处理对制造成型的质量和效率有直接的影响。

3.数据修复阶段接下来进入数据修复阶段,对CAD绘制过程中的错误进行修复和清理,以确保STL文件的精度和准确性,避免在制造过程中出现数据错乱和失真等问题。

4.切片阶段STL文件经过数据处理后,需要切成非常小的层面,比如0.1mm,这个过程称为切片。

通过这个过程将模型切成多个水平层面形成多个切片。

每层镶嵌在一起就变成了整个模型。

5.加工阶段加工阶段就是将切片依次导入数控加工机中,喷射实现逐层累加和压实,也就是通常所说的“逐层堆叠”过程。

这个过程就是快速成型技术的核心技术。

6.后处理阶段最后的后处理阶段可以将产品进行研磨、喷漆、涂料处理等等。

完成整个产品制造的过程。

总之,快速成型技术极大地缩短了从概念到产品推向市场的时间。

快速成型技术的高效加工和制造过程为设计师提供更好的自由度,可以随意尝试和实验不同的设计方案,以最快的速度推向市场产品。

RP快速成型技术的原理介绍

RP快速成型技术的原理介绍

RP快速成型技术的原理介绍快速自动成型RP(Rapid Prototyping)技术是近年来发展起来的直接根据CAD模型快速生产样件或零件的成组技术总称,它集成了CAD技术、数控技术。

激光技术和材料技术等现代科技成果:是先进制造技术的重要组成部分。

与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。

由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。

快速自动成型技术问世不到十年,已实现了相当大的市场,发展非常迅速。

人们对材料逐层添加法这种新的制造方法已逐步适应。

制造行业的工作人员都想方设法利用这种现代化手段,与传统制造技术的接轨工作也进展顺利。

人们用其长避共短,效益非凡。

与数控加工、铸造、金属冷喷涂、硅胶模等制造手段一起,快速自动成型已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。

快速成型的过程是首先生成一个产品的三维CAD实体模型或曲面模型文件,将其转换成STL文件格式,再用一软件从STL文件"切"(Slice)出设定厚度的一系列的片层,或者直接从CAD文件切出一系列的片层,这些片层按次序累积起来仍是所设计零件的形状。

然后,将上述每一片层的资料传到快速自动成型机中去,类似于计算机向打印机传递打印信息,用材料添加法依次将每一层做出来并同时连结各层,直到完成整个零件。

因此,快速自动成型可定义为一种将计算机中储存的任意三维型体信息通过材料逐层添加法直接制造出来,而不需要特殊的模具、工具或人工干涉的新型制造技术。

快速成型技术与传统方法相比具有独特的优越性和特点:(1)产品制造过程几乎与零件的复杂性无关,可实现自由制造(Free FormFabrication),这是传统方法无法比拟的。

快速成型(RP)技术-这是20世纪90年代逐步发展起来的一项先进制造技术

快速成型(RP)技术-这是20世纪90年代逐步发展起来的一项先进制造技术

快速成型(RP)技术-这是20世纪90年代逐步发展起来的一项先进制造技术快速成型(RP)技术-这是20世纪90年代逐步发展起来的一项先进制造技术,它可以在无需准备任何模具、刀具和工装卡具的情况下,直接利用计算机辅助设计数据,通过“分层制造,逐层叠加”的原理,快速制造出新产品的样件、模具或模型。

学术术语来源---快速成型钛板结合自体骨移植修复犬下颌骨缺损文章亮点:1 实验利用工程制造领域的快速成型技术为颌骨缺损制作个体化钛板,达到精确修复效果,修复中无需对钛板进行塑形,重建的颌骨对称性良好。

2 实验在重建良好下颌骨外形轮廓的同时,重建了大鼠下颌骨的骨质连续性,为后期进行种植修复重建咬合功能提供基础条件,因而实现了形态和功能兼顾的重建。

关键词:组织构建;骨组织工程;下颌骨缺损;钛板;髂骨移植;计算机辅助设计;快速成型;核素骨显像;修复体主题词:下颌骨;钛;支架(骨科);髂骨;骨移植;体层摄影术, 螺旋计算机摘要背景:近年来,快速成型技术被迅速的应用于医学重建领域,利用快速成型技术可为组织缺损患者制作个体化的植入物,可达到空间尺寸上的精确修复。

目的:利用快速成型技术制作个体化钛板,结合自体松质骨移植,修复犬下颌骨节段性缺损。

方法:9只杂种犬行螺旋CT扫描获取头颅骨骼数据,建立数字3D模型,在模型上模拟右侧下颌骨体部切除术,并制作个体化板状修复体,经快速成型加工制造,获得个体化的钛板。

然后行动物实验,手术制造右侧下颌骨体部4 cm长节段性缺损,同期手术切取自体髂骨块固定于快速成型钛板的舌侧,修复下颌骨缺损。

采用核医学、力学、影像学和组织学等方法评估骨移植后的转归。

结果与结论:应用快速成型支架重建了左右对称的下颌骨形态,自体髂骨移植后逐渐皮质化,植骨和钛板之间形成纤维结缔组织间隔层。

在下颌骨缺损修复中,应用快速成型钛板能够达到形态和功能兼顾的效果。

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程。

快速成型技术

快速成型技术

快速成型技术1、快速成型简介快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。

自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。

RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。

不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。

但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。

形象地讲,快速成形系统就像是一台"立体打印机"。

2、RP 技术的原理RP 技术是采用离散∕堆积成型的原理, 由CAD 模型直接驱动的通过叠加成型方出所需要零件的计算机三维曲面或实体模型, 根据工艺要求将其按一定厚度进行分层, 把三维电子模型变成二维平面信息(截面信息), 在微机控制下, 数控系统以平面加工的方式有序地连续加工出每个薄层并使它们自动粘接成型, 图1 为RP 技术的基本原理。

图1 RP 技术的基本原理。

RP 技术体系可分解为几个彼此联系的基本环节: 三维CAD 造型、反求工程、数据转换、原型制造、后处理等。

2.1立体光固化成型(SLA)该方法是目前世界上研究最深入、技术最成熟、应用最广泛的一种快速成型方法。

SLA 技术原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫描, 被扫描区域的树脂薄层( 约十分之几毫米) 产生光聚合反应而固化, 形成零件的一个薄层。

工作台下移一个层厚的距离, 以便固化好的树脂表面再敷上一层新的液态树脂, 进行下一层的扫描加工, 如此反复, 直到整个原型制造完毕。

由于光聚合反应是基于光的作用而不是基于热的作用, 故在工作时只需功率较低的激光源。

此外,因为没有热扩散, 加上链式反应能够很好地控制, 能保证聚合反应不发生在激光点之外, 因而加工精度高, 表面质量好, 原材料的利用率接近100%, 能制造形状复杂、精细的零件, 效率高。

快速成型专业技术及原理

快速成型专业技术及原理

RP技术简介快速原型制造技术,又叫快速成形技术,(简称RP技术);英文:RAPID PROTOTYPING(简称RP技术),或RAPID PROTOTYPING MANUFACTUREING,简称RPM。

快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。

自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。

RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。

不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。

但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。

形象地讲,快速成形系统就像是一台"立体打印机"。

RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。

RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。

快速成型机的工艺立体光刻成型sla层合实体制造lom熔融沉积快速成型fdm激光选区烧结法SLS多相喷射固化mjs多孔喷射成型mjm直接壳法产品铸造dspc激光工程净成型lens选域黏着及热压成型SAHP层铣工艺lmp分层实体制造som自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。

快速成型技术及其应用

快速成型技术及其应用

快速成型技术及其应用一、本文概述随着科技的迅速发展和市场竞争的日益激烈,产品的设计、开发和生产周期已经成为决定企业竞争力的关键因素。

在这一背景下,快速成型技术(Rapid Prototyping,简称RP技术)应运而生,以其独特的优势在生产制造领域引发了深刻的变革。

本文旨在全面介绍快速成型技术的基本概念、发展历程、主要类型及其在各行业中的应用实例,分析快速成型技术带来的经济效益与社会影响,并展望其未来的发展趋势和挑战。

通过对这一技术的深入探讨,我们期望能够帮助读者更好地理解并应用快速成型技术,以促进企业创新能力的提升和产业升级的加速。

二、快速成型技术的基本原理与分类快速成型技术(Rapid Prototyping, RP)是一种基于三维计算机辅助设计(CAD)数据,通过逐层堆积材料来制造三维实体的技术。

其基本原理可以概括为“离散-堆积”。

将三维CAD模型进行切片处理,得到一系列二维层面信息;然后,按照这些层面信息,通过特定的成型设备,如激光烧结机、熔融沉积机、光固化机等,将材料逐层堆积起来,最终形成与原始CAD模型一致的三维实体。

根据成型材料的不同和成型方式的差异,快速成型技术可以分为以下几类:熔融沉积成型(Fused Deposition Modeling, FDM):该技术使用热塑性材料,如蜡、ABS塑料等。

材料在喷头中加热至熔融状态,然后按照CAD模型的切片信息,通过喷头逐层挤出材料,冷却后形成实体。

光固化成型(Stereo Lithography, SLA):使用液态光敏树脂作为材料。

在紫外光照射下,液态树脂逐层固化,形成实体。

该技术精度较高,适用于制造复杂结构和高精度的模型。

选择性激光烧结(Selective Laser Sintering, SLS):采用粉末状材料,如塑料粉末、金属粉末、陶瓷粉末等。

在激光的作用下,粉末逐层烧结,形成实体。

该技术可以制造金属和陶瓷等高强度材料的零件。

快速成型技术的原理

快速成型技术的原理

快速成型技术的原理快速成型技术(Rapid Prototyping,RP)是一种利用计算机辅助设计和制造技术,通过逐层堆积材料来制造三维实体模型的先进制造技术。

它是一种以增量方式制造物体的技术,与传统的减量方式(如切削加工)相比,RP技术具有制造过程简单、制造周期短、制造精度高等优点,因此在工程设计、医学、航空航天等领域得到了广泛应用。

快速成型技术的原理主要包括建模、切片、堆积和后处理四个主要步骤。

首先,建模是快速成型技术的第一步。

它利用计算机辅助设计软件(CAD)对产品进行三维建模,将产品的设计图形转换为由许多小体积元素组成的三维模型。

建模的关键是准确地描述产品的几何形状和内部结构,以便后续的切片和堆积操作。

其次,切片是快速成型技术的第二步。

在切片过程中,建模软件将三维模型分解为许多薄层,每一层的厚度通常在几十微米到几毫米之间。

切片的精度和层厚度决定了最终制造出的实体模型的表面粗糙度和精度。

接下来是堆积,也就是快速成型技术的核心步骤。

在堆积过程中,通过逐层堆积材料,将切片后的二维轮廓堆积成三维实体模型。

常见的堆积方法包括激光烧结、熔融沉积、光固化等。

不同的堆积方法适用于不同的材料和精度要求,但它们的共同目标是逐层堆积,逐渐形成最终的产品。

最后是后处理,也是快速成型技术的最后一步。

在堆积完成后,通常需要对实体模型进行后处理,包括去除支撑结构、表面处理、热处理等。

后处理的目的是使实体模型达到设计要求的精度和表面质量。

总的来说,快速成型技术的原理是通过建模、切片、堆积和后处理四个主要步骤,利用计算机辅助设计和制造技术,逐层堆积材料来制造三维实体模型。

这种制造技术具有制造过程简单、制造周期短、制造精度高的优点,因此在工程设计、医学、航空航天等领域得到了广泛应用。

随着材料和技术的不断进步,快速成型技术将在未来发展出更多的应用和可能性。

快速成形实训报告

快速成形实训报告

一、实训目的本次快速成形实训旨在使学生了解快速成形技术的原理、设备操作流程以及实际应用,培养学生的动手能力和创新意识。

通过实训,使学生掌握快速成形的基本操作方法,熟悉快速成形设备的使用,并能够根据实际需求进行快速成形模型的制作。

二、实训内容1. 快速成形技术原理快速成形技术(Rapid Prototyping,简称RP)是一种以数字模型为基础,通过材料堆积的方式快速制造出实体模型的技术。

其主要原理包括:分层制造、材料堆积、光固化、热熔、喷墨打印等。

2. 快速成形设备操作本次实训主要使用的是光固化快速成形设备,其操作流程如下:(1)准备:将数字模型导入设备,调整参数,如切片厚度、填充密度、打印速度等。

(2)预热:打开设备,预热光固化材料,使其达到一定温度。

(3)打印:设备开始分层打印,每层厚度约为0.1mm,打印速度约为10mm/s。

(4)固化:紫外光照射材料,使材料固化。

(5)脱模:打印完成后,将模型从设备中取出。

3. 快速成形模型制作根据实际需求,设计并制作一个简单的快速成形模型。

具体步骤如下:(1)设计:使用CAD软件进行三维建模,将设计好的模型导出为STL格式。

(2)切片:将STL格式的模型导入设备,进行切片处理。

(3)打印:按照设备参数进行打印,直至模型成型。

(4)后处理:将打印好的模型进行打磨、抛光等后处理,使其达到预期效果。

三、实训过程1. 实训前期:学习快速成形技术原理,了解快速成形设备操作流程,熟悉快速成形材料。

2. 实训中期:根据实训要求,设计并制作一个快速成形模型,进行实际操作。

3. 实训后期:对制作的模型进行评价,总结实训过程中的经验教训。

四、实训结果通过本次实训,我们成功制作了一个简单的快速成形模型,掌握了快速成形设备的基本操作方法。

以下是实训过程中取得的主要成果:1. 熟悉了快速成形技术原理,了解了快速成形设备的使用。

2. 掌握了快速成形模型的设计、制作、后处理等基本技能。

快速成型技术概述

快速成型技术概述

三、快速成型技术的特点 优点: • 制造任意复杂的三维几何实体。 • 快速成型产品单价与原型的复杂程度和制造 数量无关。 • 高度的柔性。 • பைடு நூலகம்型的快速性 • 信息过程和材料过程一体化。 • 技术的高度集成。
缺点: • 成型后的残余应力难以消除。 • RP技术能够处理的材料种类有限。 • 成型材料和设备价格高 • 只适用小批量生产 • 成型精度和速度不够。
四、快速成型制造工艺分类 按制造工艺原理分:
1)光固化成型(SLA)★ 2)分层实体制造(LOM) 3) 选择性激光烧结(SLS) 4) 熔融沉积制造(FDM) 5) 三维打印(3DP)
五、快速成型技术的应用:
1、在新产品研发中的应用: • 概念模型的可视化、设计评价。 • 结构设计验证与装配干涉校验。 • 性能和功能测试 2、在模具中的应用:(RT—快速模具制造) • 直接快速模具制造(树脂模、陶瓷模、金属模) • 间接快速模具制造(软质模具—硅胶模具、环氧 树脂、低熔点合金模具;硬质模具—精密铸造、 熔模铸造法、电火花加工等)。
3.在快速铸造中的应用 利用快速成型技术直接制造铸造用的蜡膜、消 失模、模样、模板、型芯或型壳等。
4.在艺术领域的应用 工艺品的制造和古文物的仿制。 • 在艺术家的创作中的应用,把创作灵感变成成品, 可以进行修改。 • 在珍稀艺术品复制或修复中的应用。 5.在医学领域的应用 • 设计和制作可植入假体 • 外科手术规划
六、快速成型技术的现状和发展趋势 现状: 快速成型技术工艺日趋成熟。 在功能上从原型制造到批量定制发展; 在应用上集中在产品的设计、测试、装配。 从RP—RM的转变。 发展趋势: 1.材料成型和材料制备 2.生物制造和生长成型 3.计算机外设和网络制造 4.快速成型与微纳米制造 5.直写技术与信息处理

快速原型制造技术快速成形原理及特点

快速原型制造技术快速成形原理及特点
快速原型制造技术快速成形原理及 特点
成型过程示意图
快速原型制造技术快速成形原理及 特点
• 快速成型工艺的优势:
------使模型或模具的制造时间缩短数倍甚至数十倍,大大缩 短新产品研制周期;
------使复杂模型的直接制造成为可能,提高了制造复杂零件 的能力;
------可以及时发现产品设计的错误,做到早找错、早更改, 避免更改后续工序所造成的大量损失,显著提高新产品 投产的一次成功率;
快速成型的基本过程:
→→→首先设计出所需零件的计算机三维模型(数字模型、 CAD模型)
→→→按照一定的规律将该模型离散为一系列有序的单元, 通常在Z向将其按一定厚度进行离散(习惯称为分 层),把原来的三维CAD模型变成一系列的层片
→→→再根据每个层片的轮廓信息,输入加工参数,自动生 成数控代码
→→→最后由成形系统成形一系列层片并自动将它们联接起 来,得到一个三维物理实体。
快速原型制造技术快速成形原理及 特点
三、快速成型机及成形方法:
1、快速成形机 快速成形机是分层叠加成形(包括截面轮廓
制作和截面轮廓叠合)的基本设备。 成形机都是基于“增长”成形法原理,即用一
层层的小薄片轮廓逐步叠加成三维工件。其差别 主要在于薄片采用的原材料类型,由原材料构成 截面轮廓的方法,以及截面层之间的连接方式。
------使设计、交流和评估更加形象化,使新产品设计、样品 制造、市场定货、生产准备、等工作能并行进行,支持 同步(并行)工程的实施;
------节省了大量的开模费用,成倍降低新产品研发成本。
快速原型制造技术快速成形原理及 特点
• 自1986年出现至今,短短十几年,世界上已有大约二十多 种不同的成型方法和工艺,其中比较成熟的有SLA、SLS、 LOM和FDM等方法。其成形原理分别介绍如下:

快速成型技术

快速成型技术

2)三维模型的近似处理。 由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理, 以方便后续的数据处理工作。由于STL格式文件格式简单、实用,目前 已经成为快速成型领域的准标准接口文件。它是用一系列的小三角形平 面来逼近原来的模型,每个小三角形用3个顶点坐标和一个法向量来描 述,三角形的大小可以根据精度要求进行选择。STL文件有二进制码和 ASCll码两种输出形式,二进制码输出形式所占的空间比ASCII码输出 形式的文件所占用的空间小得多,但ASCII码输出形式可以阅读和检查。 典型的CAD软件都带有转换和输出STL格式文件的功能。
2)快速性。通过对一个CAD模型的修改或重组就可获 得一个新零件的设计和加工信息。从几个小时到几十个 小时就可制造出零件,具有快速制造的突出特点。
3)高度柔性。无需任何专用夹具或工具即可完成复杂的 制造过程,快速制造工模具、原型或零件。
4)快速成型技术实现了机械工程学科多年来追求的两 大先进目标.即材料的提取(气、液固相)过程与制造 过程一体化和设计(CAD)与制造(CAM)一体化。
型头(激光头或喷头)按各截面轮廓信息做扫描运动,在工 作台上一层一层地堆积材料,然后将各层相粘结,最终得到 原型产品。
5)成型零件的后处理 从成型系统里取出成型件,进行打磨、抛光、涂挂,或放在 高温炉中进行后烧结,进一步提高其强度。
3、特点
1)可以制造任意复杂的三维几何实体。由于采用离散/堆 积成型的原理.它将一个十分复杂的三维制造过程简化为二 维过程的叠加,可实现对任意复杂形状零件的加工。越是复 杂的零件越能显示出RP技术的优越性此外,RP技术特别适 合于复杂型腔、复杂型面等传统方法难以制造甚至无法制造 的零件。
3)三维模型的切片处理。 根据被加工模型的特征选择合适的加工方向,在成型高度 方向上用一系列一定间隔的平面切割近似后的模型,以便 提取截面的轮廓信息。间隔一般取0.05mm~0.5mm,常 用0.1mm。间隔越小,成型精度越高,但成型时间也越长, 效率就越低,反之则精度低,但效率高。

(RP) 快速成型技术

(RP) 快速成型技术
1) 利用激光或其它光源的成型工艺的成型: ---立体光造型(简称SL), 或光固化快速成型; ---叠层实体造型(简称LDM) ---选择性激光烧结(简称SLS) ---形状层积技术(简称SDM); 2) 利用原材料喷射工艺的成型: ---熔融层积技术(简称FDM) ---三维印刷技术(简称3DP) 其它类型工艺有: ---树脂热固化成型 (LTP) ---实体掩模成型 (SGC) ---弹射颗粒成型 (BFM) ---空间成型 (SF) ---实体薄片成型 (SFP)
目前已经有许多比较成熟的RP专用数据处理软件面市。如 Bridgeworks and SolidView, Brockware, StlView, Velocity, Z_ Shifter, Rapid Tools, Rapid Prototyping Module,Rapid Tools,以及清华大学激光快速成型中心开发的Lark’98 等。
SLS法采用各种粉末(金属、陶瓷、蜡粉、塑料等)为材料,在激光照射 下烧结的原理,利用滚子铺粉,用CO2高功率激光器对粉末进行加热, 在计算机控制下堆积成形,直至烧结成块。其优点是多零件制作时速 度快;但精度较低,后处理工艺复杂。利用该方法可以加工出能直接 使用的金属件。
(3)SLA
使用二氧化碳激光器烧结粉末材料(如蜡粉,PS粉,ABS粉,尼龙粉, 覆膜陶瓷和金属粉等)。成型时先在工作台上铺一层粉末材料,激光束 在计算机的控制下,按照截面轮廓的信息,对制件的实心部分所在的粉 末进行烧结。一层完成后,工作台下降一个层厚,再进行后一层的铺粉 烧结。如此循环,最终形成三维产品。
快速成型技术 (RP)
快速成型技术(RP)的起源
1979年,东京大学的中川威雄教授利用分层技术制造了金属冲裁模、 成形模和注塑模。

快速成型技术

快速成型技术

现代设计与加工方法——快速成型技术快速成型技术(Rapid Prototyping & Manufacturing, 缩写为RP)是二十世纪八十年代末九十年代初兴起并迅速发展起来的新的先进制造技术. 其特点是可以不需机加工设备或者模具即可快速制造形状极为复杂的工件,从而在小批量产品生产或新产品试制时节省时间和初始投资.快速成型技术(RP)的成型原理是基于离散-叠加原理而实现快速加工原型或零件。

这里所说的快速加工原型是指能代表一切性质和功能的实验件,一般数量较少,常用来在新产品试制时作评价之用. 而这里所说的快速成型零件是指最终产品,已经具有最佳的特性,功能和经济性.快速成型技术(RP)的成型过程: 首先建立目标件的三维计算机辅助设计(CAD 3D)模型, 然后对该实体模型在计算机内进行模拟切片分层,沿同一方向(比如Z轴)将CAD实体模型离散为一片片很薄的平行平面; 把这些薄平面的数据信息传输给快速成型系统中的工作执行部件,将控制成型系统所用的成型原材料有规律地一层层复现原来的薄平面, 并层层堆积形成实际的三维实体,最后经过处理成为实际零件。

经过20多年的发展, 快速成型技术(RP)有较大发展, 应用非常广泛,尤其在汽车制造,航天航空,建筑,家电,卫生医疗及娱乐等领域有强大的应用.快速成型技术优点快速成型技术优点:不同于传统成型加工方法,利用RP技术加工零件,不需要刀具和模具,而是利用光、热、电等手段,通过固化、烧结、聚合等作用,实现材料的堆积,并从液态、粉末态过渡到实体状态从而完成造型过程。

技术集成程度高,从CAD数据到物理实体转换过程快,周期短,成本低。

快速制模是寻求更快更好地开发新产品的一种强有力手段。

现在和将来,使用快速制模,采用客户所希望的材料来制造零件,都可以大幅度减少零件的交货时间。

目前,扩大快速制模的应用范围可能还存在一些问题,但是快速制模进一步更大范围的应用,必将成为一种强大的。

(RP) 快速成型技术

(RP) 快速成型技术
不同种类的快速成型系统因所用成形材料不同,成形原理和系 统特点也各有不同。但是,其基本原理都是一样的,那就是"分 层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快 速成形系统就像是一台"立体打印机"。
快速成型技术(RP)的成型过程
快速成型技术(RP)的成型过程:
首先建立目标件的三维计算机辅助设计(CAD 3D)模型,
2、反求工程 物理形态的零件是快速成型制造技术中零件几何信息的另一个重要
来源。这里既包括天然形成的各种几何形体,也包括利用各种技术手段, 如锻造、锻压、焊接、车、铣、刨、磨、堆积等传统工艺加工而成的几 何实体。几何实体包含了零件的几何信息,但这些信息必须经过反求工程 将三维物理实体的几何信息数字化,将获得的数据进行必要的处理后,实现 三维重构而得到CAD三维模型。
目前已经有许多比较成熟的RP专用数据处理软件面市。如 Bridgeworks and SolidView, Brockware, StlView, Velocity, Z_ Shifter, Rapid Tools, Rapid Prototyping Module,Rapid Tools,以及清华大学激光快速成型中心开发的Lark’98 等。
然后对该实体模型在计算机内进行模拟切片分层,沿同一方向(比 如Z轴)将CAD实体模型离散为一片片很薄的平行平面; 把这些薄 平面的数据信息传输给快速成型系统中的工作执行部件,将控制 成型系统所用的成型原材料有规律地一层层复现原来的薄平面, 并层层堆积形成实际的三维实体,最后经过处理成为实际零件。
构造三维模型 模型近似处理
快速成型技术 (RP)
快速成型技术(RP)的起源
1979年,东京大学的中川威雄教授利用分层技术制造了金属冲裁模、 成形模和注塑模。

快速原型制造

快速原型制造

快速原型制造种类
激光束RP可分为: 1. 立体光刻(SLA: Stereolithography)、 2. 选择激光沉积(SLS: Selective Laser Sintering) 3. 分层制造(LOM: Laminated Object Manufacturing) 4. 形状沉积制造(SDM: Shape Deposition Manufacturing)
二、RP技术的基本原理
将计算机内的三维实体模型进行分层切片得到各 层截面的轮廓,计算机据此信息控制激光器 (或喷嘴)有选择性地切割一层又一层的片状 材料(或固化一层层的液态光敏树脂,烧结一 层层的粉末材料,或喷射一层层的热熔材料或 粘合剂等方法)形成一系列具有一个微小厚度 的片状实体,再采用粘接、聚合、熔结、焊接 或化学反应等手段使其逐层堆积成一体制造出 所设计的三维模型或样件。
4.支持同步(并行)工程的实施 5.支持技术创新、改进产品外观设计。 6.用 RP 技术制做模具 7.逆向工程(反求)
快速原型服务领域
工业造型、模具、家电、电子仪表、轻 工、塑料、玩具、航空航天、军工、机 械、汽车、摩托车、内燃机、建筑规划 及模型、科研、医疗等。
五、快速原型制造种类
成型工艺 加工能量
样件或模型
的区域
快速制造新产 品样件、模型 或铸造用木模
截面轮廓 线
塑料件、铸造 用蜡模、样件 或模型
截面轮廓 线所包围 的区域
塑料件、铸造 用蜡模、样件 或模型
截面轮廓 线所包围 的区域
RP工艺优缺点比较
技 术 类
精 度

SL 好
LOM
一 般
SLS
一 般
FDM
较 差
表 面 质

快速成型(RP)技术

快速成型(RP)技术

快速成型(RP)技术快速成型(RP)技术简介RP技术是80年代后期发展起来的快速成型(Rapid Prototyping 简称RP)技术,被认为是近年来制造技术领域的一次重大突破,其对制造业的影响可与数控技术的出现相媲美。

RP系统综合了机械工程、CAD、数控技术,激光技术及材料科学技术,可以自动、直接、快速、精确地将设计思想物化为具有一定功能的原型或直接制造零件,从而可以对产品设计进行快速评价、修改及功能试验,有效地缩短了产品的研发周期。

而以RP系统为基础发展起来并已成熟的快速模具工装制造( Quick Tooling)技术,快速精铸技术(Quick Casting),快速金属粉末烧结技术(Quick Powder Sintering),则可实现零件的快速成品。

RP技术,迴异于传统的去除成型(如车、削、刨、磨),拼合成型(如焊接),或受迫成型(如铸、锻,粉末冶金)等加工方法,而是采用基于材料累积制造的思想,把三维立体看成是无数平行的、具有不同形状的层面的叠加,能快速制造出产晶原型。

快速原型制造技术(RP)将计算机辅助设计(CAD)、辅助制造(CAM)、计算机辅助控制(CHC)、精密伺服驱动和新材料等先进技术集于一体,依据计算机上构成的产品三维设计模型,对其进行分层切片,得到各层截面的轮廓,激光选择性的切割一层层的纸(或固化一层层的液态树脂、烧结一层层的粉末材料或热喷头选择快速地熔覆一层层的塑料或选择性地向粉末材料喷射一层层粘结剂等),形成各截面轮廓并逐步叠加成三维产品。

目前,它已成为现代制造业的支柱技术,是实现并行工程、集成制造技术和技术开发的必不可少的手段之一。

与传统的切削加工方法相比,快速原型加工具有以下优点:(1)可迅速制造出自由曲面和更为复杂形态的零件,如零件中的凹槽、凸肩和空心部分等,大大降低了新产品的开发成本和开发周期。

(2)属非接触加工,不需要机床切削加工所必需的刀具和夹具,无刀具磨损和切削力影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RP快速成型技术的原理介绍
快速自动成型RP(Rapid Prototyping)技术是近年来发展起来的直接根据CAD模型快速生产样件或零件的成组技术总称,它集成了CAD技术、数控技术。

激光技术和材料技术等现代科技成果:是先进制造技术的重要组成部分。

与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。

由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。

快速自动成型技术问世不到十年,已实现了相当大的市场,发展非常迅速。

人们对材料逐层添加法这种新的制造方法已逐步适应。

制造行业的工作人员都想方设法利用这种现代化手段,与传统制造技术的接轨工作也进展顺利。

人们用其长避共短,效益非凡。

与数控加工、铸造、金属冷喷涂、硅胶模等制造手段一起,快速自动成型已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。

快速成型的过程是首先生成一个产品的三维CAD实体模型或曲面模型文件,将其转换成STL文件格式,再用一软件从STL文件"切"(Slice)出设定厚度的一系列的片层,或者直接从CAD文件切出一系列的片层,这些片层按次序累积起来仍是所设计零件的形状。

然后,将上述每一片层的资料传
到快速自动成型机中去,类似于计算机向打印机传递打印信息,用材料添加法依次将每一层做出来并同时连结各层,直到完成整个零件。

因此,快速自动成型可定义为一种将计算机中储存的任意三维型体信息通过材料逐层添加法直接制造出来,而不需要特殊的模具、工具或人工干涉的新型制造技术。

快速成型技术与传统方法相比具有独特的优越性和特点:
(1)产品制造过程几乎与零件的复杂性无关,可实现自由制造(Free FormFabrication),这是传统方法无法比拟的。

(2)产品的单价几乎与批量无关,特别适合于新产品的开发和单件小批量零件的生产。

(3)由于采用非接触加工的方式,没有工具更换和磨损之类的问题,可做到无人值守,无需机加工方面的专门知识就可操作。

(4)无切割、噪音和振动等,有利于环保。

(5)整个生产过程数字化,与CAD模型具有直接的关联,零件可大可小,所见即所得,可随时修改,随时制造。

(6)与传统方法结合,可实现快速铸造,快速模具制造,小批量零件生产等功能,为传统制造方法注入新的活力。

光固化立体造型(SL—Stereolithography)
该技术以光敏树脂为原料,将计算机控制下的紫外激光按预定零件各分层截面的轮廓为轨迹对液态树脂逐点扫描,使被扫描区的树脂薄层产生光聚合反应,从而形成零件的一个薄层截面。

当一层固化完毕,移动工作台,在
原先固化好的树脂表面再敷上一层新的液态树脂以便进行下一层扫描固化。

新固化的一层牢固地粘合在前一层上,如此重复直到整个零件原型制造完毕。

SL法是第一个投入商业应用的RP技术。

目前全球销售的SL设备约占RP设备总数的70%左右。

这种方法的特点是精度高、表面质量好。

原材料利用率将近100%,能制造形状特别复杂(如空心零件)、特别精细(如手饰、工艺品等)的零件。

分层物件制造(LOM—Laminated Object Manufacturing)
LOM工艺将单面涂有热溶胶的纸片通过加热辊加热粘接在一起,位于上方的激光器按照CAD分层模型所获数据,用激光束将纸切割成所制零件的内外轮廓,然后新的一层纸再叠加在上面,通过热压装置和下面已切割层粘合在一起,激光束再次切割,这样反复逐层切割一粘合一切割……直至整个零件模型制作完成。

选择性激光烧结(SLS—Se1ected Laser Sintering)
该法采用CO2激光器作能源,目前使用的造型材料多为各种粉未材料。

在工作台上均匀铺上一层很薄(100μ~200μ)的粉未,激光束在计算机控制下按照零件分层轮廓有选择性地进行烧结,一层完成后再进行下一层烧结。

全部烧结完后去掉多余的粉未,再进行打磨、烘干等处理便获得零件。

目前,成熟的工艺材料为蜡粉及塑料粉,用金属粉或陶瓷粉进行粘接或烧结的工艺还正在实验研究阶段。

熔融沉积造型(FDM—Fused Deposition Modeling)
FDM工艺的关键是保持半流动成型材料刚好在熔点之上(通常控制在比熔点高1℃左右)。

FDM喷头受CAD分层数据控制使半流动状态的熔丝材料(丝材直径一般在1.5mm以上)从喷头中挤压出来,凝固形成轮廓形状的薄层。

每层厚度范围在0.025~0.762mm,一层叠一层最后形成整个零件模型。

RP工艺技术比较:。

相关文档
最新文档