常微分方程应用案例课件
合集下载
《常微分方程》全套课件(完整版)
捕捉到这种联系,而这种联系,用数学语言表达出来,其结 果往往形成一个微分方程.一旦求出这个方程的解,其运动规 律将一目了然.下面的例子,将会使你看到微分方程是表达自 然规律的一种最为自然的数学语言.
例1 物体下落问题 设质量为m的物体,在时间t=0时,在距
地面高度为H处以初始速度v(0) = v0垂直地面 下落,求ss此物体下落时距离与时间的关系.
有恒等式
因此,令
,则有
因此,所谓齐次方程,实际上就是方程(1.9)的右端函数 是一个关于变元x,y的零次齐次式.
如果我们把齐次方程称为第一类可化为变量分离的方程,那么我们 下面要介绍第二类这种方程.
1.3.2 第二类可化为变量可分离的方程 形如 (1.30) 的方程是第二类可化为变量可分离的方程.其中, 显然,方程(1.30)的右端函数,对于x,y并不
是方程(1.5)在区间(-1,+1)
上的解,其中C是任意常数.又方程(1.5)有两个明显
的常数解y =±1,这两个解不包含在上述解中.
3. 函数
是方程(1.6)在区间(-∞,
+∞)上的解,其中和是独立的任意常数.
4. 函数
是方程(1.7)在区间(-
∞,+∞)上的解,其中和是独立的任意常数.
这里,我们仅验证3,其余留给读者完成.事实上,
(1.13)
显然,方程(1.4)是一阶线性方程;方程(1.5)是一阶非线性方程;方程 (1.6)是二阶线性方程;方程(1.7)是二阶非线性方程.
通解与特解
微分方程的解就是满足方程的函数,可定义如下.
定义1.1 设函数 在区间I上连续,且有直
到n阶的导数.如果把
代入方程(1.11),得到在
区间I上关于x的恒等式,
例1 物体下落问题 设质量为m的物体,在时间t=0时,在距
地面高度为H处以初始速度v(0) = v0垂直地面 下落,求ss此物体下落时距离与时间的关系.
有恒等式
因此,令
,则有
因此,所谓齐次方程,实际上就是方程(1.9)的右端函数 是一个关于变元x,y的零次齐次式.
如果我们把齐次方程称为第一类可化为变量分离的方程,那么我们 下面要介绍第二类这种方程.
1.3.2 第二类可化为变量可分离的方程 形如 (1.30) 的方程是第二类可化为变量可分离的方程.其中, 显然,方程(1.30)的右端函数,对于x,y并不
是方程(1.5)在区间(-1,+1)
上的解,其中C是任意常数.又方程(1.5)有两个明显
的常数解y =±1,这两个解不包含在上述解中.
3. 函数
是方程(1.6)在区间(-∞,
+∞)上的解,其中和是独立的任意常数.
4. 函数
是方程(1.7)在区间(-
∞,+∞)上的解,其中和是独立的任意常数.
这里,我们仅验证3,其余留给读者完成.事实上,
(1.13)
显然,方程(1.4)是一阶线性方程;方程(1.5)是一阶非线性方程;方程 (1.6)是二阶线性方程;方程(1.7)是二阶非线性方程.
通解与特解
微分方程的解就是满足方程的函数,可定义如下.
定义1.1 设函数 在区间I上连续,且有直
到n阶的导数.如果把
代入方程(1.11),得到在
区间I上关于x的恒等式,
高等数学 常微分方程PPT课件
第12页/共35页
【解法】需经过变量代换化为一阶线性微分方程.
除方程两边 , 得
yn d y P( x) y1n Q( x) dx
令 z y1n , 则 dz (1 n) yn d y
dx
dx
dz (1 n) P( x) z (1 n)Q( x) (关于z , x的一阶线性方程) dx
特征方程法
待 定
特征方程的根 及其对应项
系
数
法 f(x)的形式及其
特解形式
高阶方程 可降阶方程
线性方程 解的结构
定理1;定理2 定理3;定理4
欧拉方程
第4页/共35页
微分方程解题思路
一阶方程
作 变 换
降 阶
高阶方程
分离变量法 全微分方程 常数变易法
作变换 积分因子
非非 变全 量微 可分
分方 离程
特征方程法
[提示](1)
原方程化为
令u=xy,得 (2) 将方程改写为
d u u ln u (分离变量方程) dx x
d y 1 y y3 (贝努里方程) d x 2x ln x 2x
令 z y2
第17页/共35页
【例3】 识别下列一阶微分方程的类型,并求解
1)
【解】
y y x
①可分离变量的微分方程
u e P( x)d x P( x) ue P( x)d x P( x) u e P( x)d x Q( x)
即 两端积分得
非齐பைடு நூலகம்方程
dy P(x) y Q(x)
dx
u Q(
对应齐次方程通解
x
)
e
P( x)d
y
x
dx
【解法】需经过变量代换化为一阶线性微分方程.
除方程两边 , 得
yn d y P( x) y1n Q( x) dx
令 z y1n , 则 dz (1 n) yn d y
dx
dx
dz (1 n) P( x) z (1 n)Q( x) (关于z , x的一阶线性方程) dx
特征方程法
待 定
特征方程的根 及其对应项
系
数
法 f(x)的形式及其
特解形式
高阶方程 可降阶方程
线性方程 解的结构
定理1;定理2 定理3;定理4
欧拉方程
第4页/共35页
微分方程解题思路
一阶方程
作 变 换
降 阶
高阶方程
分离变量法 全微分方程 常数变易法
作变换 积分因子
非非 变全 量微 可分
分方 离程
特征方程法
[提示](1)
原方程化为
令u=xy,得 (2) 将方程改写为
d u u ln u (分离变量方程) dx x
d y 1 y y3 (贝努里方程) d x 2x ln x 2x
令 z y2
第17页/共35页
【例3】 识别下列一阶微分方程的类型,并求解
1)
【解】
y y x
①可分离变量的微分方程
u e P( x)d x P( x) ue P( x)d x P( x) u e P( x)d x Q( x)
即 两端积分得
非齐பைடு நூலகம்方程
dy P(x) y Q(x)
dx
u Q(
对应齐次方程通解
x
)
e
P( x)d
y
x
dx
常微分方程PPT讲稿
则 常向量组x1(t0 ), x2 (t0 ), , xn (t0 )线性相关,
从而存在不全为零的常数c1, c2, , cn,使得
c1x1(t0 ) c2 x2 (t0 ) cn xn (t0 ) 0, (3)
现在考虑函数向量
x(t) c1x1(t) c2 x2 (t) cn xn (t)
故x1(t), x2 (t), , xn (t)在a t b上线性无关.
5
例1 证明:函数向量组
cos2 t
1 sin2 t
x1
(t
)
1
,x2(t) Nhomakorabea1
,
t
t
在任何区间都是线性相关的.
证明: 取c1 1, c2 1,则
cos2 t (1 sin2 t) 0
c1x1(t) c2 x2 (t)
11
0 ,
t t
0
故x 1
(t
),
x2
(t
)在任何区间线性相关
常微分方程课件
1
§6.1 线性微分方程组的一般理论
2
一阶线性微分方程组:
dx A(t)x f (t)
(1)
dt
这里A(t)和f (t)在a t b上连续,
f (t) 0, 则式(1)变为
dx A(t ) x
(2)
dt
称式(2)为一阶齐次线性微分方程组.
称式(1)为 非齐次线性微分方程 组
注1:方程组(2)的n个解x1(t), x2 (t), , xn (t)线性相关
W (t) 0, a t b.
注2: 方程组(2)的n个解x1(t), x2 (t), , xn (t)线性无关
W (t) 0, a t b. 即方程组(2)的n个解x1(t), x2 (t) , xn (t)所构成的 Wronsky行列式,或者恒等于零,或者恒不等于零。
从而存在不全为零的常数c1, c2, , cn,使得
c1x1(t0 ) c2 x2 (t0 ) cn xn (t0 ) 0, (3)
现在考虑函数向量
x(t) c1x1(t) c2 x2 (t) cn xn (t)
故x1(t), x2 (t), , xn (t)在a t b上线性无关.
5
例1 证明:函数向量组
cos2 t
1 sin2 t
x1
(t
)
1
,x2(t) Nhomakorabea1
,
t
t
在任何区间都是线性相关的.
证明: 取c1 1, c2 1,则
cos2 t (1 sin2 t) 0
c1x1(t) c2 x2 (t)
11
0 ,
t t
0
故x 1
(t
),
x2
(t
)在任何区间线性相关
常微分方程课件
1
§6.1 线性微分方程组的一般理论
2
一阶线性微分方程组:
dx A(t)x f (t)
(1)
dt
这里A(t)和f (t)在a t b上连续,
f (t) 0, 则式(1)变为
dx A(t ) x
(2)
dt
称式(2)为一阶齐次线性微分方程组.
称式(1)为 非齐次线性微分方程 组
注1:方程组(2)的n个解x1(t), x2 (t), , xn (t)线性相关
W (t) 0, a t b.
注2: 方程组(2)的n个解x1(t), x2 (t), , xn (t)线性无关
W (t) 0, a t b. 即方程组(2)的n个解x1(t), x2 (t) , xn (t)所构成的 Wronsky行列式,或者恒等于零,或者恒不等于零。
常微分方程的解法PPT共21页
常微分方程的解法
21、静念园林好,人间良可辞。 22、步步寻往迹,有处特依依。 23、望云惭高鸟,临木愧游鱼。 24、结庐在人境,而无车马喧;问君 何能尔 ?心远 地自偏 。 25、人生归有道,衣食固其端。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百Байду номын сангаас不饶。——贝多芬
45、自己的饭量自己知道。——苏联
21、静念园林好,人间良可辞。 22、步步寻往迹,有处特依依。 23、望云惭高鸟,临木愧游鱼。 24、结庐在人境,而无车马喧;问君 何能尔 ?心远 地自偏 。 25、人生归有道,衣食固其端。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百Байду номын сангаас不饶。——贝多芬
45、自己的饭量自己知道。——苏联
常微分方程数值解法ppt课件
若存在正的常数 L 使:
(Lipschitz)条件
|f( x ,y 1 ) f( x ,y 2 ) | L |y 1 y 2 | ( 1 .3 )
使 得 对 任 意 的 x [ a , b ] 及 y 1 ,y 2 都 成 立
则称 f (x,y) 对y 满足李普希兹条件,L 称为 Lipschitz常数.
节点 x i a i h i , 一 般 取 h i h ( ( b a ) / n ) 即 等 距
要计算出解函数 y(x) 在一系列节点
ax 0x 1x nb
处的近似值 y y(x ) i 完整版PPT课件i
16
yf(x,y) axb (1 .1 )
y(x 0) y0
(1 .2 )
对微分方程(1.1)两端从 xn到 xn1 进行积分
在大量的实际方程中出现的函数起码的连续性都 无法保证,更何况要求阶的导数
求解数值解
很多微分方程 根本求不到 问题的解析解!
重要手段。
完整版PPT课件
7
5.常微分方程数值解法的特点 常微分方程的数值解法常用来求近似解
根据提供的算法 通过计算机
数值解法得到的近似 解(含误差)是一个 离散的函数表.
便捷地实现
欧拉方法的导出把区间ab分为n个小区间步长为要计算出解函数yx在一系列节点iiyyx?iiixaihhhban?????一般取即等距节点处的近似值01naxxxb?????1iiihxx??nn等分001112yfxyaxbyxy????????对微分方程11两端从1nnxx?到进行积分11nnnnxxxxydxfxyxdx??????11nnxnnxyxyxfxyxdx?????右端积分用左矩形数值求积公式22baggxdxbagaba???????gxfxyx?令11nnnnxxnnfxyxnnyyfxyxh??????得x0x11nnnnnnyxyxhyxyhfxy??????1
第7常微分方程1-PPT精品文档
称它为微分方程的积分曲线.也被称为微分方程 初值问题的几何意义.
通解是一组平行的曲线簇.
d x 例1 验 证 x C1 cos kt C2 sin kt 是 2 k 2 x 0 的 dt
2
解,其中 C1 , C2 为任意常数.并求满足初始条件
dx 0 的特解. x t 0 A , dt t 0 dx 解: k1 C sin k tk 2 C cos kt dt 2 dx 2 2 2 k C cos kt k C sin kt k C cos kt C sin kt 1 2 1 2 2 dt d2x d 2x 2 将 2 , x 代入方程 2 k x 0 得: dt dt 2 2 k C c o s k t C s i n k t 0 k C cos kt C sin kt 1 2 1 2
t 0
M0
又由 M
t 0
M 0 得: C M 0
所以所求变化规律为: M M 0 e t .
2、齐次方程
若一阶微分方程 y f x, y 中的函数 f x, y y y y 可化为 的函数 ,即: f x, y ,称 x x x 该方程为齐次方程.
故 ln y x2 C1
y e
x2C 1
C1 x2
x2
e e
Ce
即方程的通解为 y Ce
x2
例3 求微分方程 x xy 2 dx x 2 y y dy 0 满足
1 的特解. x y 解:原方程变形为: 2 d x d y 2 x 1 1y 1 x2 1 1 2 1 2 ln x 1 ln y 1 C C 1 ln 2 1 2 2 2 y 1 2 即: x 1 C y2 1 1 y |x 1 C 0 2 x2 1 1 故所求特解为: 2 y 1 2
第4章常微分方程数值解ppt课件
其中L为李普希兹条件。
总目录
本章目录
4.1
4.2
4.3
4.4
4.5
4.2.3 中心欧拉公式
y(x)的在x=x1处的中心差商式:y' ( x1 )
y(x2 ) y(x0 ) 2h
又y'(x1) f (x1, y(x1)) ,可得到y(x2)的近似值y2计算公式:
y2 y0 2hf ( x1 , y1 )
2k3
k4
k1 f xn , yn
(1)
k2
f
xn
1 2
h,
y
n
1 2
hk1
(2)
k3
f
xn
1 2 h, yn
1 2
hk
2
k4 f xn h, yn hk3
(4-16)
yn1
yn
h 8
k1
3k 2
3k3
k4
k1 f xn , yn
k 2
f
xn
1 3 h, yn
4.1
4.2
4.3
4.4
4.5
4.1 微分方程在化工中的应用
微分方程在化工中应用的简单而又典型的例子是 套管式换热器的稳态温度分布。首先作以下假设:
1、套管内侧为液体,其温度只随套管的长度改变 而改变,忽略温度的径向变化;套管环隙为蒸汽, 其温度在任何位置均为恒定值,可认为是饱和蒸 汽的温度。
2、忽略套管内侧流体的纵向热传导。
f
(xn1, yn1 )]
(4-10)
上式也称为改进的欧拉公式,它可合并成:
yn1
yn
h(f 2
(xn , yn )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳定年代法的根据
由于不断地蜕变而不断 减少。碳定年代法就是 根据蜕变减少量的变化 情况来判定生物死亡时 间的。
问题假设
1、现代生物体中 C 的蜕变速度与马王堆墓葬时代 14 生物体中 C 的蜕变速度相同; 2、 C 的蜕变速度与该时刻 C 的含量称正比。 由于地球周围大气中的14C 的百分含量可认为基本不 变(即宇宙线照射大气层的强度自古至今基本不变), 假设1是合理的,假设2的根据来自原子物理学的理论。
而 x(t ) 29.78 次/分(由已知),将它们及T=5568 t ln 2036 ln 2 29.78
这样就估算出马王堆一号墓大约是2000多年前的。
注意:对 C 的半衰期各种书上说法不一,有人测 定为5568,也有人测定为5580年或5730年,本例 是用5586年计算的,若用5580年或5730年计算, 则可分别求得马王堆一号墓存在于2040年或2095年 前左右。
案例2 马王堆一号墓年代的确定
年代:西汉 墓主简介:马王堆汉墓是中国西汉初期 长沙国丞相、侯利仓及其家属的墓。位 于湖南长沙东郊。共3座。 1972年发掘马王堆一号墓,一号墓 墓主应是利仓妻子,下葬年代在 文帝十二年以后数年至十几年间。
一、问题背景
考古、地质等方面的专家常用 C (碳—14,碳—12 的同位素)测定法(通常称为碳定年代法),去估 计文物或化石的年代。长沙市的马王堆一号墓于 1972年8月出土,其时测得出土的木炭标本的14C 平均原子蜕变数为29.78次/分,而新看法烧成的木 14 14 C 的 炭中 平均原子蜕变数为 38.37 次 / 分,又知 C 14 半衰期(给定数量的 蜕变到一般数量所需的时间 ) C 为5568年,试估算一下该墓的大致年代?
14 14
14
数学建模
设在时刻t(年)生物体中 C 的存量为x(t),由假设2知
14
其中k>0为比例常数,k前置负号表示 14C 的存量x递减
14
dx kx dt
………………….(1)
kx x ( t ) Ce (1)式的通解为
设生物体的死亡时间为 t0 0 ,其时 C 的含量为 x0
C x0 ,于是有: 代入上式得:
x(t ) x0e x0 ………………(3) 14 记 C 的半衰期为T,则 x (T ) 2
kx
………………….(2)
ln 2 将(3)带入(2)中得: k T ln 2 x 即有 x(t ) x0e T ,由此解得:
x0 T ……………(4) t ln ln 2 x(t )
由于 x0 , x(t ) 不便于测量,我们改用下面的办法求t:
对(2)式两边求导,得:
x(t ) x0kekt kx(t )
而
x(0) kx(0) kx0
x0 x(0) 上面两式相除得: x(t ) x(t ) T x(0) ……………(5) 将其带入(4)得 t ln ln 2 x(t ) 14 由假设1知,可用现代木炭中 C 的蜕变速度作为 x(0)
14
14
碳定年代法的根据 宇宙射线不断宏基大气层,使 之产生中子,中子与氮气作用生 14 成具有放射性的 C ,这种放射 性碳可氧化成二氧化碳,二氧化 碳被植物所吸收,而动物又以植 物做食物,于是放射性碳就被带 14 到各种到植物体内。由于 C 是放 射性的,无论存在于空气中或生 物体内它都不断蜕变。活着的生 物通过新陈代谢不断地摄取14C , 使得生物体内的14C 与空气中的14C 有相同的百分含量。生物死亡后, 它停止摄取 14C ,因而尸体内14C