7 二次根式第2课时 二次根式的运算

合集下载

《二次根式(第2课时)》精品教案

《二次根式(第2课时)》精品教案

第2课时二次根式的化简1.掌握积的算术平方根的性质,并会根据性质把二次根式化简;(重点) 2.理解最简二次根式的概念,并会把二次根式化为最简二次根式.(重点,难点)一、情境导入计算:(1)4×9,4×9;(2)16×25,16×25.观察计算结果,上述每组式子计算结果有什么关系?由此你能猜想什么结论成立?二、合作探究探究点一:积的算术平方根的性质【类型一】利用积的算术平方根的性质进行二次根式计算或化简化简:(1)196×0.25;(2)(-19)×(-6481);(3)225a6b2(a≥0,b≥0).解析:利用积的算术平方根的性质,把它们化为几个二次根式的积,(2)小题中先确定符号.解:(1)196×0.25=196×0.25=14×0.5=7;(2)(-19)×(-6481)=19×6481=19×6481=13×89=827; (3)225a 6b 2=225·a 6·b 2=15a 3b .方法总结:利用积的算术平方根的性质进行计算或化简,其实质就是把被开方数中的完全平方数或偶次方开出来,要注意的是,如果被开方数是几个负数的积,先要把符号进行转化,如(2)小题.【类型二】 利用积的算术平方根的性质确定字母的取值范围若a 2-a 3=a 1-a 成立,则a 的取值范围是( )A .a ≥0B .a >0C .a ≥1D .0≤a ≤1 解析:a 2-a 3=a 2(1-a )=a 2·1-a =|a |·1-a ,又a 2-a 3=a 1-a ,所以⎩⎨⎧a ≥0,1-a ≥0.解得0≤a ≤1,故选D. 方法总结:利用积的算术平方根的性质确定字母的取值范围时,根据积的算术平方根的性质得出的每一个因式(包括被开方数)都是非负数,再列不等式(组)求解.【类型三】 逆用积的算术平方根的性质比较大小比较大小:35与5 3.解析:把根号外的因式移到根号内,比较两个被开方数的大小.解:∵35=32×5=45,53=52×3=75,∵75>45,∴35<5 3.方法总结:比较两个二次根式的大小,可以逆用积的算术平方根的性质,把根号外的因式移到根号内,直接比较两个被开方数的大小,对于两个正数,被开方数大的数较大.探究点二:最简二次根式【类型一】最简二次根式的判定下列二次根式中,最简二次根式是( ) A.8a B.3aC.a3D.a2+a2b解析:A选项中8a含能开得尽方的因数4,不是最简二次根式;B选项是最简二次根式;C选项a3中含有分母,不是最简二次根式;D选项a2+a2b中被开方数用提公因式法因式分解后得:a2+a2b=a2(1+b)含能开得尽方的因数a2,不是最简二次根式;故选B.方法总结:最简二次根式必须同时满足下列两个条件:①被开方数中不含能开得尽方的因数或因式;②被开方数不含分母.判定一个二次根式是不是最简二次根式,就是看是否同时满足最简二次根式的两个条件,同时满足的就是最简二次根式,否则就不是.【类型二】二次根式的化简把下列各式化成最简二次根式.(1)500;(2)3a2b3;(3)2512;(4)23ab2.解析:(1)先将500分解质因数,再根据积的算术平方根的性质,把能够开尽方的因数100移到根号外;(2)根据积的算术平方根的性质,把能够开尽方的因式a2b2移到根号外;(3)把被开方数的分子、分母同时乘以3,把分母化为一个完全平方数,再把能开得尽方的部分移到根号外;(4)把被开方数的分子、分母同时乘以3a,把分母化为一个数的平方,再把分母移到根号外.解:(1)500=100×5=105;(2)3a2b3=3b·a2b2=|a|b3b;(3)2512=25×312×3=563;(4)23ab2=2×3a3ab2·3a=6a3ab.方法总结:把二次根式化成最简二次根式时,如果被开方数不含分母,则把被开方数尽量写成一个数的平方的形式,再利用积的算术平方根的性质化简;如果被开方数含有分母,可把分子、分母同乘以一个数,把分母化为一个数或式的平方的形式,再把分母开方后移到根号外,与此同时,分子中能开方的也要移到根号外.三、板书设计1.积的算术平方根的性质2.最简二次根式通过积的算术平方根与算术平方根的积的运算引入积的算术平方根的性质,让学生归纳总结出结论,并运用于化简.对于被开方数含有分母的二次根式化为最简二次根式是本节课的难点,引导学生根据分式的基本性质把分母化为一个数或式的平方,并让学生加强训练.。

北师大版数学八年级上册 二次根式的运算

北师大版数学八年级上册  二次根式的运算

的值. 解:由题意得 32mn21n2,3, 解得
m
n
4, 3 1, 2
即 mn 4 1 6 .
32 3
归纳 确定可以合并的二次根式中字母取值的方法:利 用被开方数相同,指数都为 2 ,列关于待定字母的方 程求解即可.
【变式题】如果最简二次根式 2 3a 8与 17 2a 可以合
并,那么要使式子 4a 2x 有意义,求 x 的取值范围.
3. 下列二次根式,不能与 12 合并的是__②__⑤___ (填
序号).
① 48 ;②- 125 ;③ 11 ;④ 3 ;⑤ 18.
3
2
例7
已知 a,b,c 满足 a
2
8
b5 c3
2 0.
(1) 求 a,b,c 的值;
(2) 以 a,b,c 为三边长能否构成三角形?若能构成
三角形,求出其周长;若不能,请说明理由. 解分:析(:1)(1由)若题几意个得非a 负 式8 的 2和2为,零b , 5则,这c 几3个2非. 负式 (必2)然能都. 理为由零如;下(2:)根∵据2三2角<3形2的<三5,边即关a<系c来<判b.断.
又∵ a c 5 2 5,∴ a + c>b.
∴ 能够成三角形,周长为 a b c 5 2 5.
【变式题】有一个等腰三角形的两边长分别为
5 2,2 6,求其周长. 解:当腰长为 5 2 时, ∵ 5 2 5 2 10 2>2 6, ∴ 此时能构成三角形,周长为 10 2+2 6; 当腰长为 2 6 时, ∵ 2 6 2 6 4 6>5 2, ∴ 此时能构成三角形,周长为 5 2+4 6.
C. 2 3 5
D. 4 5 5 5 20 5
3. 计算:

八年级数学上册第2章习题课件:二次根式(第2课时)(北师大版)

八年级数学上册第2章习题课件:二次根式(第2课时)(北师大版)

课件目录
首页
末页
7 二次根式(第2课时)
4.计算: 12× 3= 6 .
【解析】 原式=2 3× 3=6.
5.计算: 12-
34=
33 2
.
【解析】
原式=2
3-
23=3
2
3 .
6.计算:
32- 2
8=
2
.
课件目录
首页
末页
7 二次根式(第2课时)
7.计算:(1) 2× 6; (2) 1 000× 0.1; (3) 32× 23; (4) 24× 3. 解:(1)2 3;(2)10;(3)1;(4)6 2.
首页
末页
7 二次根式(第2课时)
【解析】 (1)直接把二次根式合并;(2)、(3)、(4)先将二次根式化成最简二
次根式,再将被开方数相同的二次根式合并.
解:(1)2 3-6 3=(2-6) 3=-4 3.
(2) 80- 20+ 5=4 5-2 5+ 5=(4-2+1) 5=3 5.
(3)2 12-4 13+ 23- 27=4 3-43 3+ 36-3 3=4-43-3 3+ 36=-
D. 9
课件目录
首页
末页
7 二次根式(第2课时)
2.计算 8×
A.2+ 2 C.3
12+( 2)0的结果为( C ) B. 2+1 D.5
3.[2018秋·贵港期末]把 132aab化简后得( D )
A.4b
B.
b 2b
1 C.2 b 【解析】
12ab= 3a
D.2 b 123aab= 4b=2 b.故选D.
7 二次根式(第2课时)
第二章 实数
7 二次根式(第2课时)

二次根式的运算【公开课教案】

二次根式的运算【公开课教案】

2.7 二次根式 第2课时 二次根式的运算【上节知识回顾】1.关于二次根式的概念,要注意以下几点: (1)从形式上看,二次根式是以根号“”表示的代数式,这里的开方运算是最后一步运算。

如,等不是二次根式,而是含有二次根式的代数式或二次根式的运算;(2)当一个二次根式前面乘有一个有理数或有理式(整式或分式)时,虽然最后运算不是开方而是乘法,但为了方便起见,我们把它看作一个整体仍叫做二次根式,而前面与其相乘的有理数或有理式就叫做二次根式的系数;(3)二次根式的被开方数,可以是某个确定的非负实数,也可以是某个代数式表示的数,但其中所含字母的取值必须使得该代数式的值为非负实数; (4)像“,”等虽然可以进行开方运算,但它们仍属于二次根式。

2.二次根式的主要性质(1); (2); (3);(4)积的算术平方根的性质:;(5)商的算术平方根的性质:;(6)若,则。

3.注意与的运用。

【新授】一、二次根式的乘法一、复习引入1.填空 (14949⨯=______; (21625=_______1625⨯. (31003610036⨯. 参考上面的结果,用“>、<或=”填空.4×9_____49⨯,16×25_____1625⨯,100×3610036⨯一般地,对二次根式的乘法规定为反过来:例1.计算(1(2(3(4例2 化简(1(2(3(4(5)例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4二、二次根式的除法1.写出二次根式的乘法规定及逆向等式.2.填空;(2=________;(1;(4=________.(3一般地,对二次根式的除法规定:(2(3(4例1.计算:(1(1(2(3(4例3.已知9966x xx x --=--,且x 为偶数,求(1+x )22541x x x -+-的值. 三、分母有理化两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式。

八年级数学上册2.7二次根式第2课时二次根式的运算教案 新版北师大版

八年级数学上册2.7二次根式第2课时二次根式的运算教案 新版北师大版

八年级数学上册2.7二次根式第2课时二次根式的运算教案新版北师大版一. 教材分析二次根式的运算是在学生已经掌握了二次根式的性质和运算法则的基础上进行教学的。

通过本节课的学习,使学生掌握二次根式的加减乘除运算,以及能够熟练运用二次根式进行实际问题的解决。

教材通过例题和练习题的形式,引导学生掌握二次根式的运算方法,并能够灵活运用。

二. 学情分析学生在学习本节课之前,已经掌握了二次根式的性质和运算法则,具备了一定的数学基础。

但是,对于二次根式的混合运算,部分学生可能会感到困难,需要通过实例和练习来进一步巩固。

三. 教学目标1.使学生掌握二次根式的加减乘除运算方法。

2.培养学生运用二次根式解决实际问题的能力。

3.提高学生的数学思维能力和运算能力。

四. 教学重难点1.二次根式的加减运算。

2.二次根式的乘除运算。

3.二次根式在实际问题中的应用。

五. 教学方法采用讲练结合的方法,通过实例和练习,引导学生掌握二次根式的运算方法。

同时,注重培养学生的逻辑思维能力和运算能力。

六. 教学准备1.PPT课件。

2.练习题。

3.教学黑板。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入二次根式的运算。

例如:一个圆的半径为根号2,求这个圆的面积。

2.呈现(10分钟)讲解二次根式的加减乘除运算方法,并通过PPT课件展示实例。

3.操练(10分钟)让学生独立完成一些二次根式的运算练习题,教师进行讲解和指导。

4.巩固(10分钟)通过一些综合性的练习题,巩固学生对二次根式运算的掌握。

5.拓展(10分钟)讲解二次根式在实际问题中的应用,让学生能够运用二次根式解决实际问题。

6.小结(5分钟)对本节课的内容进行总结,使学生对二次根式的运算有一个清晰的认识。

7.家庭作业(5分钟)布置一些二次根式的运算练习题,让学生进行巩固。

8.板书(5分钟)板书本节课的主要内容和公式,方便学生复习。

教学过程每个环节所用时间:导入5分钟,呈现10分钟,操练10分钟,巩固10分钟,拓展10分钟,小结5分钟,家庭作业5分钟,板书5分钟。

2.7二次根式(第2课时)课件(共16张PPT)

2.7二次根式(第2课时)课件(共16张PPT)
7 二次根式
第2课时
山东星火国际传媒集团
学习目标
山东星火国际传媒集团
1.理解最简二次根式的定义. 2.会利用积的算术平方根的性质化简二次根式. 3.理解商的算术平方根的性质,能够应用二次根式的性质化简二次根
式.
温故知新
山东星火国际传媒集团
1.什么叫二次根式?
一般地,形如 a(a≥0)的式子叫做二次根式.
(2) 4a 2b3 4 • a b2 b
2ab b.
山东星火国际传媒集团
想一想:
(4) (9) (4) (9)
成立吗?为什么?
ab a • b (a 0, b 0)
所以 (4) (9)
36 6.



山东星火国际传媒集团
【跟踪训练】
•4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3
谢谢观赏
You made my day!
我们,还在路上……
•2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独
立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022
•3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022
山东星火国际传媒集团
4.如图,在Rt△ABC中,∠C=90°,AC=10 cm,
A
BC=20 cm.求AB的长.
【解析】因为AB2 AC2 BC2 , B
C
所以AB AC2 BC2

北师版八年级数学上册第二章 实数7 二次根式

北师版八年级数学上册第二章 实数7 二次根式
商的算术平方根
二次根式
乘、除法
运算
最后结果
加、减法
C. 2 2
D. 2
感悟新知
知识点 4 二次根式的乘除法
语言叙述
知4-讲
符号表示
a · b= ab ( a ≥
乘法 两个二次根式相乘,把被开
法则 方数相乘,根指数不变
0,b ≥ 0)
a
a
除法 两个二次根式相除,把被开
= (a≥0,
b
b
法则 方数相除,根指数不变
b > 0)
感悟新知
知4-讲
法则
推广
9
9
9 3
122×(32+中,正确的是(
A. ( - 6) 2= - 6
B.
4
9
3
=2
16
4
C. 21 ÷ 7 =3
D. 25a4 =5a2
D )
感悟新知
知识点 3 最简二次根式
概念
满足的条件
知3-讲
化简二次根式的一般方法
(1)如果被开方数是分数
(包括小数和分式),先利
A. - 1
B.0
C.2
D.6
知1-练
例2
9
若y= x-3+ 3-x+2, 则xy=________.
解题秘方:紧扣二次根式定义中的双重非负性“a ≥ 0,
a ≥ 0”进行解答.
知1-练
解:由二次根式的被开方数的非负性,
得 x - 3 ≥ 0,且3 - x ≥ 0,所以 x=3.
又因为y= x-3+ 3-x +2,所以y=2,
行运算 . 例如: m a ·n b =mn ab
感悟新知
知4-讲
特别提醒

八年级数学上册《第二章7 二次根式》讲解与例题

八年级数学上册《第二章7 二次根式》讲解与例题

《第二章7 二次根式》讲解与例题1.二次根式的概念 一样地,咱们把形如a (a ≥0)的式子叫做二次根式,“ ”称为二次根号,a 叫做被开方数.【例1-1】 以下式子中,哪些是二次根式,哪些不是二次根式?2,33,1x,x 2+1,0,42,-2,1x +y,x +y .解:二次根式有:2,x 2+1,0,-2;不是二次根式的有:33,1x ,42,1x +y,x +y .析规律 二次根式的条件二次根式应知足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.【例1-2】 当x 是多少时,3x -1在实数范围内成心义?分析:由二次根式的概念可知,被开方数必然要大于或等于0,因此3x -1≥0时,3x -1才成心义.解:由3x -1≥0,得x ≥13.因此当x ≥13时,3x -1在实数范围内成心义.点技术 二次根式成心义的条件二次根式成心义的条件是,被开方数是非负数,即被开方数必然要大于或等于0. 2.积的算术平方根 用“>,<或=”填空. 4×9______4×9,16×25______16×25,100×36______100×36.依照上面的计算咱们可得出:ab =a ·b (a ≥0,b ≥0)即:积的算术平方根,等于各算术平方根的积. 【例2】 化简: (1)9×16;(2)16×81;(3)81×100;(4)54.分析:利用ab =a ·b (a ≥0,b ≥0)直接化简即可.解:(1)9×16=9×16=3×4=12. (2)16×81=16×81=4×9=36.(3)81×100=81×100=9×10=90.(4)54=9×6=32×6=3 6.点评:利用积的算术平方根的性质可对二次根式进行化简,使其不含能开得尽方的因数或因式.3.商的算术平方根填空:(1)916=__________,916=__________;(2)1636=__________,1636=__________;(3)416=__________,416=__________;(4)3681=__________,3681=__________.规律:916______916;1636______1636;416______416;3681______3681.通过计算容易患出上面的式子都是相等的.因此,a b=ab(a≥0,b>0)即:商的算术平方根等于各算术平方根的商.【例3】化简:(1)364;(2)64b29a2;(3)9x64y2;(4)5x169y2.分析:直接利用ab=ab(a≥0,b>0)就能够够达到化简之目的.解:(1)364=364=38.(2)64b29a2=64b29a2=8|b|3|a|.(3)9x64y2=9x64y2=3x8|y|.(4)5x169y2=5x169y2=5x13|y|.4.最简二次根式最简二次根式应知足以下两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.因此,化简二次根式时,要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式.【例4】把以下根式化成最简二次根式:(1)12,(2)40,(3) 1.5,(4)4 3 .解:(1)12=4×3=2 3.(2)40=4×10=210.(3) 1.5=32=32=3×22×2=62.(4)43=23=233.点评:化简二次根式时,要求最终结果中分母不含有根号,应利用二次根式的有关性质化掉分母中的根号.5.二次根式的乘除二次根式的乘法:a·b=ab(a≥0,b≥0)二次根式的除法:ab=ab(a≥0,b>0)即:二次根式相乘除,只把被开方数相乘除,结果仍然作为被开方数.【例5】计算:(1)5×7;(2)13×9;(3)14÷116;(4)648.分析:直接利用a·b=ab(a≥0,b≥0)和ab=ab(a≥0,b>0)计算即可.解:(1)5×7=35.(2)13×9=13×9= 3.(3)14÷116=14÷116=14×16=4=2.(4)648=648=8=2 2.6.二次根式的加减计算以下各式:(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3.上面的题目,事实上为同类项归并.同类项归并确实是字母不变,系数相加减.计算以下各式:(1)22+32;(2)28-38+58;(3)7+27+9×7;(4)33-23+ 2.分析:(1)若是咱们把2当做x,不就转化为上面的问题了吗?22+32=(2+3)2=5 2.(2)把8当做y;28-38+58=(2-3+5)8=48=8 2.(3)把7当做z;7+27+9·7=7+27+37=(1+2+3)7=67.(4)把3看为x,2看为y.33-23+2=(3-2)3+2=3+ 2.因此,二次根式的被开方数相同的话是能够归并的.二次根式加减时,能够先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行归并.【例6】计算:(1)8+18;(2)16x +64x ;(3)348-913+312;(4)(48+20)+(12-5).分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行归并. 解:(1)8+18=22+32=(2+3)2=52.(2)16x +64x =4x +8x =(4+8)x =12x .(3)348-913+312=123-33+63=(12-3+6)3=153.(4)(48+20)+(12-5)=48+20+12-5=43+25+23-5=63+5.7.化简a 2(1)计算:42=4,0.22=0.2,⎝ ⎛⎭⎪⎫452=45,202=20,观看其结果与根号内幂底数的关系,归纳取得:当a >0时,a 2=a .(2)计算:(-4)2=4,(-0.2)2=0.2,⎝ ⎛⎭⎪⎫-452=45,(-20)2=20,观看其结果与根号内幂底数的关系,归纳取得:当a <0时,a 2=-a .(3)计算:02=0,当a =0时,a 2=0.(4)将上面做题进程中取得的结论综合起来,取得二次根式的又一条超级重要的性质:a 2=|a |=⎩⎪⎨⎪⎧a ,a >0,0,a =0,-a ,a <0.【例7-1】 化简:(1)9;(2)(-4)2; (3)25; (4)(-3)2.分析:因为(1)9=32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,因此都可运用a 2=a (a ≥0)去化简.解:(1)9=32=3. (2)(-4)2=42=4.(3)25=52=5. (4)(-3)2=32=3.【例7-2】 先化简再求值:当a =9时,求a +1-2a +a 2的值,甲、乙两人的解答如下:甲的解答为:原式=a +(1-a )2=a +(1-a )=1; 乙的解答为:原式=a +(1-a )2=a +(a -1)=2a -1=17.两种解答中,__________的解答是错误的,错误的缘故是__________. 答案:甲 甲没有先判定1-a 是正数仍是负数 8.二次根式的混合运算 计算: (1)6x ·3y ; (2)(2x +y )·zx ; (3)(2x 2y +3xy 2)÷xy . (4)(2x +3y )(2x -3y ); (5)(2x +1)2+(2x -1)2.若是把上面的x ,y ,z 改写成二次根式,以上的运算规律是不是仍成立?仍成立.整式运算中的x ,y ,z 是一种字母,它的意义十分普遍,能够代表所有一切,固然也能够代表二次根式,因此,整式中的运算规律也适用于二次根式.【例8】 计算:(1)(6+8)×3;(2)(46-32)÷22;(3)(5+6)(3-5); (4)(10+7)(10-7).分析:因为二次根式仍然知足整式的运算规律,因此直接可用整式的运算规律. 解:(1)(6+8)×3=6×3+8×3=18+24=32+26.(2)(46-32)÷22=46÷22-32÷22=23-32.(3)(5+6)(3-5)=35-(5)2+18-65=13-3 5.(4)(10+7)(10-7)=(10)2-(7)2=10-7=3.。

北师大版初中数学八年级(上)第二章实数2-7二次根式(第2课时)教学详案

北师大版初中数学八年级(上)第二章实数2-7二次根式(第2课时)教学详案

第二章实数7二次根式第2课时二次根式的运算教学目标1.掌握二次根式的乘、除法运算法则,并能够熟练应用乘、除法法则进行计算.2.会用二次根式的四则运算法则进行简单运算.3.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算,重要的是培养这种类比学习的能力.教学重难点重点:掌握二次根式的乘、除法运算法则,并能够熟练应用;难点:会用二次根式的四则运算法则进行简单运算.教学过程导入新课1.满足什么条件的根式是最简二次根式?试化简下列二次根式:√8,√18,√80,√0.5, √18,√20.(2√2 ,3√2 ,4√5 ,√22,√24,2√5)2.上述化简后的二次根式有什么特点?你会怎么对它们进行分类?几个二次根式化简后被开方数相同.最简根式分别为√2 ,√5两类,即√8 ,√18 ,√0.5 ,√18为一组;√80 ,√20为一组.探究新知活动1:二次根式的乘除运算1.填空(1)√4×√9=6,√4×9= 6 ;√16×√25=20,√16×25=20;√4√9=23, √49=23;√16√25=45, √1625=45.(2)用计算器计算:√6×√7≈6.481,√6×7≈6.481 ;√6√7≈0.925 8, √67≈0.925 8.参考上面的结果,用“>”“<”或“=”填空.√4×√9 = √4×9;√16×√25=√16×25; √6×√7= √6×7;√4√9=√49; √16√25=√1625; √6√7= √67.观察上面的式子得上节课的规律:√ab=√a·√b(a≥0,b≥0);√ab =√a√b(a≥0,b>0).反过来也成立:√a ·√b =√ab (a ≥0,b ≥0);√a √b =√a b (a ≥0,b >0). 【例1】计算:(1)√6×√23; (2)√6×√3√2; (3)√2√5. 【解】(1)√6×√23 =√6×23=√4=2;(2)√6×√3√2=√6×3√2=√6×32=√9=3; (3)√2√5=√25=√2×55×5=√105. 判断下列各式是否正确,不正确的请予以改正:(1)√(−4)×(−9)=√−4×√−9 ;(2)√41225×√25=4×√1225×√25=4√1225×25=4√12=8√3.解:(1)错. √(−4)×(−9)=√36=6;(2)错. √41225×√25=√41225×25=√11225×25 =√112 =4√7.做一做:(1)3a 2·2a 3= 6a 5 ,(2)(a +b )(a -b )= a 2−b 2 ,(3)(a ±b)2=222a ab b ±+, (4)(554−772) ×18= 554×18-772×18=112-. 【例2】计算:(1)3√2×2√3; (2)(√5+1)2;(3)(√13+3)(√13−3);(4)(√12−√13)×√3; (5)√8+√18√2. 【解】(1)原式=(3×2)×(√2×√3)=6√6;(2)原式=(√5)2+2×√5×1+1=5+2√5+1=6+2√5;(3)原式=(√13)2−32=13-9=4; (4)原式=√12×√3−√13×√3=√12×3−√13×3=√36−√1=5;(5)原式=√8√2+√18√2=√82+√182=√4+√9=2+3=5.活动2:二次根式的加减运算1.(1)3x 2+2x 2= 5x 2 ;(2)x 2+2x 2+4y = 3x 2+4y .2.类比合并同类项的方法,想想如何计算√80−√45? 解:√80−√45=4√5−3√5=√5.3. √3+√5能不能再进行计算?为什么?答:不能,因为它们都是最简二次根式,且被开方数不相同,所以不能合并.【例3】计算:(1)√48+√3 ; (2)√5−√15 ; (3)(√43+√3)×√6.【解】(1)原式=4√3+√3=(4+1)√3=5√3;(2)原式=√5−√55=(1-15)√5=45√5; (3)原式=√43×√6+√3×√6=√8+√18=2√2+3√2=5√2.二次根式的加减法法则:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.注意:1.加减法的运算步骤:一化简,二判断,三合并.2.合并的前提:只有被开方数相同的最简二次根式才能进行合并.课堂练习1.下列运算错误的是( ) A.2+3=5 B.2·3=6C.6÷2=3D.2(2=2.下列各式中,与√3是同类二次根式的是( )A. √2B. √5C. √8D. √123.估计√32×√12+√2·√5的结果在( ) A.6至7之间 B.7至8之间C.8至9之间D.9至10之间4. √8与最简二次根式√m +1能合并,则m =________.5.若最简二次根式√3m −2n 2n+1与√3可以合并,求√mn 的值.参考答案1.A2.D3.B4.15.解:由题意得2n +1=2且3m -2n =3,解得n = 12,m = 43,即√mn =√12×43 =√23 =√63. 课堂小结1.二次根式的乘除运算法则√a ·√b =√ab (a ≥0,b ≥0);√a√b =√ab (a ≥0,b >0). 2.二次根式的加减法法则二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.布置作业习题2.10第1,2题板书设计7 二次根式第2课时 二次根式的运算1.二次根式的乘除运算法则:√a ·√b =√ab (a ≥0,b ≥0);√a √b=√a b (a ≥0,b >0). 2.二次根式的加减法法则:一化简,二判断,三合并.。

校八年级数学上册2.7二次根式(第2课时)教案(新版)北师大版

校八年级数学上册2.7二次根式(第2课时)教案(新版)北师大版

2.7.二次根式一.教学目标:1.进一步理解二次根式的概念,进一步熟练二次根式的化简。

2. 了解根号内含有字母的二次根式的化简3.利用二次根式的化简解决简单的数学问题.通过独立思考,能选择合理的方法解决问题.4.在运算过程中巩固知识,通过与人交流总结方法.根号内含字母的二次根式的化简对学生来说是一个难点.二、教学过程设计本节课设计了六个教学环节:第一环节:复习引入;第二环节:知识巩固;第三环节:问题解决;第四环节:知识提升;第五环节:课时小结;第六环节:作业布置.第一环节:复习引入内容:(1)最简二次根式的概念;(2)二次根式化简过程中,你有哪些体会?(3)上节课课后作业:若,,,求.你是怎样解决的?第二环节:知识巩固1.巩固提升例1 计算:(1);(2);(3).解:(1)====;(2)===;(3)======.注意:可以放手让学生独立完成,然后通过交流,发现问题,给出一个统一的意见.2.交流收集第(3)小题有多少种解决方法.让学生说说想法.3.反思以上过程每位同学都是怎样化简的,方法好不好,能做到快而准确吗?4.练习化简:(1);(2);(3).解:(1)===;(2)===;(3)======10.第三环节:问题解决如图所示,图中小正方形的边长为1,试求图中梯形的面积,你有哪些方法,与同伴交流.1.交流让学生充分发表意见.2.答案(1)直接求法.过点D作AB边上的高DE,可发现边AB,DC及DE都是某一个小直角三角形的斜边.根据勾股定理可求得AB=, CD=,DE=,面积梯形ABCD的面积是=18.(2)间接求法.将梯形ABCD补成一个5×7长方形,用长方形的面积减去3个小三角形的面积,得梯形ABCD的面积是=18.第四环节:知识提升1.知识探索问题:()等于多少?根据算术平方根的定义,可知().2.知识运用例5 化简:(1)(,);(2)();(3)(,).解:(1)===;(2)==;(3)===.3.课堂练习1.当,时化简:(1);(2);(3);(4).解:(1)====;(2)===;(3)====;(4)=======.2. 求代数式的值,其中,.解:由题知,.====.当,时,=.第五环节:课堂小结(1)二次根式的化简:二次根式的化简一定要化成最简二次根式.(2)利用式子()可将根号内含字母的二次根式化简,结果也要化成最简二次根式.第六环节:课后作业习题 2.11 1, 3补充作业:化简:(1);(2);(3);(4);(5).答案:(1);(2);(3);(4);(5).五、教学反思拓展练习1.长方形的长和宽分别为,,这个长方形的面积是.2.三角形的三边长分别是,,,这个三角形的周长是.3.直角三角形的两直角边分别是,,这个直角三角形的斜边是.4.已知,,求的值.5.化简.6.解下列方程:(1);(2).7.化简:(1);(2)。

2.7 二次根式(第2课时)

2.7 二次根式(第2课时)

B.4
C. 10
D.2 2
2. 一个长方形的长和宽分别为 10和 2 2 ,则这个长方
形的面积为___4___5___.
课堂检测
基础巩固题
2.7 二次根式
1.化简 18 2 的结果是( B )
A.9
B.3
C.3 2 D.2 3
2.下面计算结果正确的是 ( D )
A. 4 5 2 5 8 5
C. 4 3 3 2 7 5
(6)( 15+ 20) 5 =___3_+_2_
课堂检测
基础巩固题
2.7 二次根式
4. 计算:
(1) 18- 1 2
(2) 18 + 32- 1 50
3
5
解:(1)原式= 9 2- 1 =3 2- 2 = 5 2
2
22
(2)原式= 9 2 + 16 2- 1 25 2 = 3 2 +4 2- 1 5 2
2.7 二次根式
二次根
整式加
式性质 分配律 减法则
8+ 18=2 2+3 2 =(2+3) 2=5 2
化为最简 用分配 整式 二次根式 律合并 加减
依据:二次根式的性质、分配律和整式加减法则. 基本思想:把二次根式加减问题转化为整式加减问题.
连接中考
2.7 二次根式
1. 2 8 =( B )
A.4 2
文字叙述: 算术平方根的商等于被开方数商的算术平方根. 当二次根式根号外的因数(式)不为1时,可类比单项式除
以单项式法则,易得 m a m a (a 0,b 0,n 0). nb n b
探究新知
2.7 二次根式
素养考点 1 利用二次根式的除法进行计算

二次根式的乘除第二课时教案

二次根式的乘除第二课时教案

二次根式的乘除第二课时教案一、教学目标知识与技能:1. 学生能够掌握二次根式乘除法的运算方法。

2. 学生能够正确进行二次根式的乘除运算。

过程与方法:1. 通过实例分析,让学生理解二次根式乘除法的运算规律。

2. 培养学生运用二次根式乘除法解决实际问题的能力。

情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的逻辑思维能力。

2. 培养学生的团队合作精神,提高学生的解决问题能力。

二、教学重点与难点重点:1. 二次根式乘除法的运算方法。

2. 二次根式乘除法的应用。

难点:1. 二次根式乘除法中,如何正确处理根号下的乘除运算。

2. 如何在实际问题中灵活运用二次根式乘除法。

三、教学准备教师准备:1. 教学课件或黑板。

2. 相关练习题。

学生准备:1. 预习二次根式乘除法相关内容。

2. 准备好笔记本,记录重点知识点。

四、教学过程1. 复习导入:回顾上一课时所学内容,让学生回顾二次根式的定义及性质。

通过提问方式检查学生对上一课时的掌握情况。

2. 知识讲解:讲解二次根式乘除法的运算方法,通过实例分析,让学生理解并掌握二次根式乘除法的运算规律。

3. 课堂练习:在学习过程中,穿插一些练习题,让学生实时巩固所学知识。

教师应及时给予解答和指导。

4. 应用拓展:给出一些实际问题,让学生运用二次根式乘除法进行解决。

培养学生的实际应用能力。

5. 总结归纳:对本节课所学内容进行总结,强调重点知识点。

让学生整理笔记,加深记忆。

五、课后作业布置一些相关的练习题,让学生巩固所学知识。

鼓励学生自主学习,提高解题能力。

教学反思:本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。

关注学生在课堂上的参与程度,激发学生的学习兴趣,培养学生的自主学习能力。

六、教学评价评价目标:1. 学生能够理解并运用二次根式乘除法解决实际问题。

2. 学生能够正确评估自己的理解和应用能力。

评价方法:1. 课堂练习题的完成情况。

2024八年级数学上册第二章实数7二次根式第2课时二次根式的四则运算习题课件新版北师大版

2024八年级数学上册第二章实数7二次根式第2课时二次根式的四则运算习题课件新版北师大版

13
14
15
16
17
18
19
5. [教材P44例4(1)变式](1)按照二次根式的乘法法则填空:
计算:2 ×(-
2
解:原式=
-10

1
2
3
×

).

(-1)
×


×



4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
(2)计算下列各题:
①-3 ×2 ;
②-4 ·5
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
14. [教材P44例4(4)变式]下列各数中,与2- 的积不
.含
.二
次根式的是(
A
)
A. 2+
B. 2-
C. -2
D.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
15. 【新趋势·学科内综合】一个长方形的一条边的长是
18
19
12. 【新趋势·过程性学习】计算: + + .
解:原式=3 +3 +5

=8 +3

=(8+3) +

=11 .

(1)以上解答过程中,从 ③

北师大版八年级上册第二章实数第七节二次根式第二课时二次根式及其性质教案

北师大版八年级上册第二章实数第七节二次根式第二课时二次根式及其性质教案

第二章实数第七节二次根式第二课时二次根式及其性质教案二次根式的乘除运算教案一、教学目标1. 理解并掌握二次根式的乘除运算规则,理解其算术运算性质。

2. 学会对二次根式进行乘除运算,并能够应用于实际问题中。

3. 培养学生的数学思维能力和解决实际问题的能力。

二、教学重点和难点1. 教学重点:二次根式的乘除运算规则及其算术运算性质。

2. 教学难点:二次根式乘除法的应用,以及运算符的使用。

三、教学过程1. 概念和定义:讲解二次根式的定义和相关概念,包括平方根、算术平方根等,使学生对二次根式有一个初步的认识。

2. 整数乘法口诀:回顾整数乘法口诀,引导学生总结规律,为后续学习打下基础。

3. 二次根式的乘除运算:通过具体的例子,讲解二次根式的乘除运算规则,并引导学生自己推导,加深理解。

4. 运算符的使用:强调运算符的优先级和运算顺序,通过练习题使学生掌握正确的运算方法。

四、教学方法和手段1. 利用多媒体讲解二次根式的乘除运算,形象生动,易于学生理解。

2. 通过小组讨论学习二次根式的乘除运算,互相交流,发现并解决问题。

3. 阅读相关题型进行练习,巩固所学知识,提高解题能力。

五、课堂练习、作业与评价方式1. 选择练习题进行课堂练习,检验学习效果,巩固所学知识。

2. 布置作业题,要求学生在规定时间内完成,培养学生独立思考和解决问题的能力。

3. 对学生的练习和作业进行评价,给予肯定和鼓励,同时指出不足之处,提出改进意见。

六、辅助教学资源与工具1. PPT讲解:通过PPT展示,帮助学生更好地理解二次根式的概念和性质。

2. 各类题型练习:提供多种类型的练习题,包括选择题、填空题和计算题等,以便学生进行巩固和拓展。

3. 参考书籍:推荐一些相关的数学参考书籍,供学生自行阅读和学习。

七、结论本节课旨在使学生掌握二次根式的乘除运算规则和方法,并通过实际问题的解决提高其数学应用能力。

通过课堂讲解、小组讨论和练习与作业等多种方式,学生对二次根式的乘除运算有了更深入的理解和掌握。

第2课时二次根式的除法教案

第2课时二次根式的除法教案

第2课时二次根式的除法教案一、教学内容本节课我们将学习人教版八年级数学上册第12章《根式》的第二节:二次根式的除法。

具体内容包括理解二次根式除法的法则,掌握如何将二次根式进行相除,并能解决实际问题。

二、教学目标1. 理解并掌握二次根式除法的计算法则。

2. 能够正确进行二次根式的除法运算,并简化结果。

3. 能够运用二次根式除法解决简单的实际问题。

三、教学难点与重点重点:二次根式除法的计算法则及运算步骤。

难点:如何将二次根式化简,以及在实际问题中的应用。

四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。

2. 学具:学生用计算器、练习本、二次根式除法例题资料。

五、教学过程1. 实践情景引入(5分钟):通过一个实际情景,例如土地面积的换算问题,引发学生对二次根式除法的兴趣。

2. 例题讲解(15分钟):讲解二次根式除法的计算法则,并举例说明,如: \( \frac{\sqrt{45}}{\sqrt{5}} = \sqrt{\frac{45}{5}} = \sqrt{9} = 3 \)3. 随堂练习(10分钟):学生进行随堂练习,教师巡回指导,解答学生的疑问。

强调二次根式除法的注意事项,如分母不能为零,根号内不能有分数等。

5. 应用拓展(10分钟):引导学生运用二次根式除法解决更复杂的问题,如几何图形面积的计算。

六、板书设计1. 二次根式除法的计算法则。

2. 例题及解答步骤。

3. 练习题及答案。

七、作业设计1. 作业题目:\( (1) \frac{\sqrt{72}}{\sqrt{8}} \)\( (2) \frac{2\sqrt{3} + 3\sqrt{2}}{\sqrt{6}} \)\( (3) \text{应用题:一块长方形土地的长是} 5\sqrt{3} \text{米,宽是} \sqrt{12} \text{米,求这块土地的面积。

} \)2. 答案:\( (1) 3\sqrt{2} \)\( (2) \sqrt{3} + \frac{3}{\sqrt{6}} \)\( (3) 15 \text{平方米} \)八、课后反思及拓展延伸1. 反思:通过本节课的学习,学生是否真正掌握了二次根式的除法,以及在实际问题中的应用。

2024八年级数学上册第二章实数7二次根式第2课时二次根式的计算课件新版北师大版

2024八年级数学上册第二章实数7二次根式第2课时二次根式的计算课件新版北师大版

18
解:(1)

3
(3)
1
35÷
3
15;
18

6.
3
32
32
(2)


4=2.
8
8
1
3
16 5
(3) 35÷ 15=
5 ×8= 2.
3 ab3 3
(4)
2=
2 ab 2
ab3 3
ab2=2 b.
3 ab3
(4)
.
2 ab2
题型二
二次根式的加减
5 2
例 2:计算 8+ 18的结果是________.
不能合并的二次根式,仍要写到结果中.
说明:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结
合律及去括号、添括号法则仍然适用.
(2)二次根式加减运算的步骤:
①将每个二次根式都化简成最简二次根式;
②判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;
③合并同类二次根式.
知识点3:二次根式的混合运算(难点)
a1· a2· a3·…· an= a1·a2·a3·…·an(a1≥0,
a2≥0,…,an≥0).
2
(3)若二次根式相乘的结果能写成 a 的形式,则应化简,
如 16=4.
a
2.除法法则: =
b
a
b)(a≥0,b>0),

b=

(或
b
即两个二次根式相除,根指数不变,只把被开方
数相除.
注意:(1)在进行二次根式的除法运算时,对于公式中被开方数a、
7 二次根式
第2课时
二次根式的计算

16.2二次根式的运算(第2课时)讲解与例题

16.2二次根式的运算(第2课时)讲解与例题
二次根式的加减运算结果应写成最简结果或几个被开方数不相同的二次根式的和.
【例2】计算:
(1)-2-3+5+4;
(2)(-)-(-).
分析:进行二次根式的加减法可按一化(把二次根式化成最简二次根式)、二看(看被开方数是否相同)、三合并(把被开方数相同的二次根式进行合并)的步骤进行.(1)题中的每个二次根式都是最简二次根式,可直接识别出:-2与5,-3与4被开方数相同,因此可直接进行合并.
___________________________________________________________________________
___________________________________________________________________________
二次根式加减时,先将二次根式化成最简二次根式,再将同类二次根式进行合并.
(5)二次根式的加减法的一般步骤:
①将每一个二次根式化成最简二次根式;
②找出其中的同类二次根式;
③合并同类二次根式.
知识点拓展:(1)①当式子中有括号时要先去括号,并且在运算过程中应注意符号;②二次根式的加减与整式的加减相类似,体现了数学中的类比思想,在学习时应注意对比理解和应用.
__________________________________________________________________________
____________________________________________________________________________
解:(1)-2-3+5+4
=(-2+5)+(-3+4)=3+.

北师大版数学八上2-7二次根式(第2课时)教学设计

北师大版数学八上2-7二次根式(第2课时)教学设计

第二章 实数7.二次根式(第2课时)课标与教材:课标要求:了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算。

教材分析:教材用类比的方法,引入实数的运算法则,运算律等,并利用这些运算法则、运算率进行有关运算,解决有关实际问题.之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。

教学建议:在教学中先复习有理数的运算律和运算法则,让学生多计算几个能开的尽的几个根式的乘法运算,通过类比,观察得出计算法则。

二次根式(第2课时)是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》第7节内容.本节内容分为3个课时,本课时是第2课时,基于第1课时二次根式的性质得到二次根式乘除的法则以及加减运算的法则,进而利用它们进行二次根式的运算,经历本节课的学习,学生将对实数的运算,有较全面的了解,同时进一步熟练实数的运算,为今后的学习打下坚实的基础. 学情分析:学生已经知道的:在前面,学生已经掌握了实数的概念,实数的运算法则;学会了利用公式:b a b a ⋅=⋅(a ≥0,b ≥0),ba b a=(a ≥0,b >0)进行简单的实数四则运算.本课时更多的是反用上面的公式,因此,上一课时知识成为本课时很好的知识基础。

学生想知道的:怎样进行实数的运算学生能自己解决的:学生已经学习了有理数的运算法则,有了学习经验,单项式与多项式的乘法,多项式的乘法。

进行类比运算。

根据建构学生需要教师指导解决的:综合运用知识解决问题,进行确定评价。

教学目标:1、知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用.(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算.(3)正确运用公式:b a b a ⋅=⋅(a ≥0,b ≥0) ba b a=(a ≥0, b >0) 2、数学思考;能独立思考,体会数学的基本思想和思维方式,能用类比的方法解决问题,用已有知识去探索新知识.3、问题解决:在与他人合作交流过程中,能较好的理解他人的思考方法和结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的运算第2课时
【知识与技能】使学生能够利用积和商的算术平方根性质的反用进行二次根式的加减乘1. .除运算:Z*xx*k.][来源:Z|xx|k.][来源.
让学生理解实数的运算法则和运算律对于二次根式同样适用2.学会运用把不是
最简二次根式的要化成最简二次根式,如果被开方数相3..
同,应当将这些项合并【过程与方法】. 1.通过实数的运算与二次根式的运算
比较体会类比的思想. 2.通过二次根式的运算培养学生的运算能力【情感态度】:ZXXK][来源激发学生.通过对二次根式运算的学习使学生认识到事物之间是相互联系的.
学习热情,让学生充分参与到数学学习过程中来,使他们体验到成功的乐趣【教学重点】Z*X*X*K]网[来源学*科*. 二次根式加减乘除的运算【教学难点】进
行二次根式的探讨二次根式运算的方法,快速准确地运用公式和运算律运
算.:Zxxk.][来源:Zxxk.][来源一、创设情境,
导入新课积的算术平方根和商的算术平方根的前面我们学习了二次根式的两
个性质:两个式子,即
现在把等号的左边与右边交换,就可得到二次根式的乘法法则和除法法则:
【教学说明】通过回忆旧知识得出新知识,学生并不陌生,有一定的基础,掌握起来也很容易,增强了学生学习数学的自信心和勇气. K]§§X来源学§科§网Z§X科[来源学**网][二、思考探究,获取新知k.]§§[来源:Zxx二次根式的加减、乘除运算
依据上面的法则,下面的式子你会计算吗?
例1计算:
[来源:][来源:Zxxk.][来源:Zxxk.]的乘除法运【教学说明】教师引导学生尝试着直接运用法则进行二次根式算,可以作适当点拨.
注:能约分的可以先约分,运算结果必须都是最简二次根式.
同样的,二次根式也可以进行加减运算,它和以前学过的实数的运算法则、运算律仍然适用.下面的计算不妨试一试?有困难的可以和同学交流.
例2计算:
【教学说明】对于有些二次根式的运算可以运用完全平方公式和平方差公式使计算简便,这就要在解题之前观察式子的特点,教师可以引导学生合作做题,错误较多的地方教师再作矫正、强调.
根号.注:对于化简运算的结果中,如果被开方数相同,应当将这些项合并.
前面是带分数的要化成假分数.
通过上面的学习,我们已经知道了怎样进行二次根式的加减乘除运算.下面的题,你能独立做吗?
例3计算:
【教学说明】通过前面两个例题的学习,学生进行二次根式的运算有了一定的基础,让学生体验成功的喜悦.
三、运用新知,深化理解K]§§X学§科§网][来源Z§X来源[化简:1.
2.计算:
545cm,求这个直角三角一个直角三角形的两条直3.和角边长分别为cm形的面积.
【教学说明】学生自主完成,加深对二次根式运算方法和技巧的掌握,提高他们运算的正确率和计算速度.特别要结合式子的特点运用公式和法则使计算. 简便
.
四、师生互动,课堂小结
通过这节课你有哪些收获?谈谈自己的想法.
【教学说明】鼓励学生用自己的语言进行总结、归纳,特别是运算过程中要注意的几个细节,教师可以适度提醒. Z.X.X.K]科来源[学网
.
1.布置作业:习题
2.103题、中的1.
”部分2.课时作业完成《创优作业》中本课时练习的“
有待在今后的教学中花时间加二次根式的运算并非一时就能熟练地掌握的,大训练,以达到又准又快的目的.。

相关文档
最新文档