近世代数1

合集下载

近世代数复习(1)

近世代数复习(1)

第一章 基本概念1.1 集合1.集合:由一些事物所组成的一个整体.通常用大写拉丁字母,,,A B C L L 表示.2.组成一个集合的各个事物称为这个集合的元素,通常用小写拉丁字母,,,a b c L L 表示.常见符号:;,.a A a A a A ∈∉∈3.子集:若,a A a B ∀∈⇒∈则称A 是B 的子集,B 是A 的扩集,或A 包含于B , B 包含A ,记作,A B B A ⊆⊇.当A 不是B 的子集时,记作“A B ⊄”.4.真子集:若A B ⊆,且b B ∃∈,而b A ∉,则称A 是B 的真子集,记作A B ⊂.5.幂集:由给定集合A 的全体子集所组成的集合称为A 的幂集,记作()2A P A =.6.设,A B 是全集U 的两个子集.{}|A B x x A x B ⋃=∈∈或{}|A B x x A x B ⋂=∈∈且A 的余:{}=|A x x U x A '∈∉,B 在A 中的余:{}{}\||.A B x x A x B x x A x B A B ''=∈∉=∈∈=⋂且 且 例. 设},,,,,{},,,,{},,,,,,,,{g f e d a N h e c a M h g f e d c b a U ===求,\,.M N M N M N ''⋃⋂解:{}{}{}{}{},,,,,,;\,;,,,,,,;.M N a c d e f g h M N c h M b d f g N b c h M N b ⋃==''''==⋂=1.2 映射1.映射:设,A B 是两个给定的非空集合,若有一个对应法则f ,使a A ∀∈,通过f ,!b B ∃∈与其对应,则称f 是A 到B 的一个映射,记作:f A B →或f A B −−→A 称为f 的定义域,B 称为f 的陪域.b 称为a 在f 下的像,a 称为b 在f 下的 原像,记作()b f a =或:.f a b a2.映射相等:设f 是1A 到1B 的映射,g 是2A 到2B 的映射,若1122,,A B A B ==且1x A ∀∈,都有()()f x g x =,则称f 与g 相等,记作f g =.3.设,,A B C 是三个集合,f 是A 到B 的映射,g 是B 到C 的映射,规定:(()),,h x g f x x A ∀∈a则h 是A 到C 的映射,称为f 与g 的合成(或乘积),记作h g f =o ,即()(()),.g f x g f x x A =∀∈o4.设f 是A 到B 的一个映射.(1)若12,a a A ∀∈,当12a a ≠时,有12()()f a f a ≠,则称f 是A 到B 的一个单射;(2)若,b B a A ∀∈∃∈,使()f a b =,则称f 是A 到B 的一个满射;(3)若f 既是单射,又是满射,则称f 是一个双射.例如,映射:,2,,f x x x →+∀∈ a ?是从¡到¡的一一映射.设f 是A 到B 的映射,g 是B 到C 的映射,若g f o 有左逆映射,则f 有左逆映射.但是g 没有.1.3 卡氏积与代数运算1.设,A B 是两个集合,作一个新的集合:{}(,)|a b a A b B ∈∈,称这个集合是A 与B 的笛卡尔积(简称卡氏积),记作A B ⨯.例如,集合A 中含有m 个元素,集合B 中含有n 个元素,则A 与B 的卡氏积 A B ⨯中含有mn 个元素.n 个集合的卡氏积12,,,n A A A L 定义为{}12(,,,)|1,2,,,n i i a a a a A i n ∈=L L ,并记作12n A A A ⨯⨯⨯L ,或1ni i A =∏.2.设,,A B D 是三个非空集合,从A B ⨯到D 的映射称为,A B 到D 的代数运算.特别,当A B D ==时,,A A 到A 的代数运算简称为A 上的代数运算.3.设o 是集合A 上的一个代数运算,若123,,a a a A ∀∈,都有123123()(),a a a a a a =o o o o则称o 适合结合律.若12,a a A ∀∈,都有1221,a a a a =o o则称o 适合交换律.设e 是集合,B A 到A 的代数运算,⊕是A 上的代数运算,若12,,a a A b B ∀∈∈,都有1212()()(),b a a b a b a ⊕=⊕e e e则称e 对于⊕适合左分配律.设⊗是集合,A B 到A 的代数运算,⊕是A 上的代数运算,若12,,a a A b B ∀∈∈,都有1212()()(),a a b a b a b ⊕⊗=⊗⊕⊗则称⊗对于⊕适合右分配律.4.设o 是集合A 上的一个代数运算,(1)若,,a b c A ∀∈,有,a b a c b c =⇒=o o则称o 适合左消去律.(2)若,,a b c A ∀∈,有,b a c a b c =⇒=o o则称o 适合右消去律.例. 在实数集¡上规定一个代数运算ο:,2b a b a +=ο问这个代数运算ο是否适合结合律、交换律?解:(1)由于,11325353)221(3)21(,1782181)322(1)32(1=⋅+==⋅+==⋅+==⋅+=οοοοοοοο 二者不等,代数运算ο不适合结合律.(2)由于,722323,832232=⋅+==⋅+=οο 二者不等,代数运算ο不适合交换律.1.4 等价关系与集合的分类1.设,A B 是两个集合,则A B ⨯的子集R 称为,A B 间的一个二元关系.当(,)a b R ∈时,称a 与b 具有关系R ,记作aRb ;当(,)a b R ∉时,称不具有关系R ,记作aR b '.,A A 间的二元关系简称为A 上的关系.2.设:是集合A 上的一个二元关系,若满足下列性质:(1)自反性:,;a A a a ∀∈:(2)对称性:,,;a b A a b b a ∀∈⇔::(3)传递性:,,,,;a b c A a b b c a c ∀∈⇔:::则称:是A 上的一个等价关系.当a b :时,称a 与b 等价.例如,定义为“8|a b a b ⇔-:”的二元关系“:”是偶数集2¢上的一个等价关系.3.设一个集合A 分成若干个非空子集,使得A 中每一个元素属于且只属于一个元 素,则这些子集的全体称为A 的一个分类.每个子集称为一个类.类里任何一个元 素称为这个类的一个代表.集合A 上的等价关系与集合的分类之间有着本质的联系,它们可以互相决定:{}[]|.a x x A x a =∈:,4.设:是集合A 上的一个等价关系,由A 的全体不同:等价类所组成的集合族称为A 关于:的商集,记作/A :.例. 若设,,A m =∈ⅴ令 {}(,)|,,|,m R a b a b m a b =∈-¢证明m R 是整数集¢上的一个等价关系,并给出由这个等价关系所确定的¢的一个分类.证明:显然m R 是⨯ⅱ的一个子集,所以m R 是¢上的一个关系.又(1),|,a m a b ∀∈-¢所以m aR a ;(2),,a b ∀∈¢若m aR b ,则|m a b -,于是|m b a -,所以m bR a ;(3),,,a b c ∀∈¢若,m m aR b bR c ,则|,m a b -|m b c -,于是|()()m a b b c -+-,即|m a c -,所以.m aR c因此,m R 是整数集¢上的一个等价关系.由这个等价关系m R 所确定的m R 等价类为:{}[0],2,,0,,2,,m m m m =--L L{}[1],21,1,1,1,21,,m m m m =-+-+++L L{}[2],22,2,2,2,22,,m m m m =-+-+++L L………{}[1],1,1,1,21,.m m m m -=-----L L第二章 群2.1 半群1.设S 是一个非空集合,若(1)在S 中存在一个代数运算ο;(2)ο适合结合律:()(),a b c a b c =o o o o ,,,a b c S ∀∈则称S 关于ο是一个半群,记作),(οS .若半群S 的运算还适合交换律:,,,a b b a a b S =∀∈o o则称S 是交换半群.半群的代数运算“ο”通常称为乘法,并将符号“ο”省略,即b a ο记作ab ,称为a 与b 的积.一个交换半群S 的代数运算常记作“+”,并称为加法,此时结合律、交换律分别为:()(),,,,,,.a b c a b c a b c S a b b a a b S ++=++∀∈+=+∀∈2.设S 是半群,,n a S ∈∈¥,n 个a 的连乘积称为a 的n 次幂,记作n a ,即.n n a aa a =678L且有:(),,,,.nm n m n m mn a a a a a a S m n +==∀∈∈¥ 如果S 是交换半群,且代数运算是加法时,a 的n 次幂应为a 的n 倍,表示n 个a 的和,记作na ,即.n na a a a =+++6447448L相应运算性质具有下列形式:,,.a S m n ∀∈∈¥(),()(),().ma na m n a n ma nm a n a b na nb +=+=+=+2.2 群的定义1.设(,)G g 是一个有单位元的半群,若G 的每个元都是可逆元,则称G 是一个群.适合交换律的群称为交换群或阿贝尔群.交换群G 的运算常用“+”号表示,并称G 是加群.2.设G 是半群,则下列四个命题等价:(1)G 是群;(2)G 有左单位元l ,而且G a ∈∀关于这个左单位元l 都是左可逆的;(3)G 有右单位元r ,而且G a ∈∀关于这个右单位元r 都是右可逆的;(4)G b a ∈∀,方程b ya b ax ==,在G 中都有解.3.若群G 所含元素个数有限,则称G 是有限群,称G 所包含元素的个数G 是G 的阶.4.群G 的运算适合左、右消去律.2.3 元素的阶1.设G 是一个群,e 是G 的一个单位元,a G ∈,使m a e =成立的最小正整数m 称为元素a 的阶,记作a m =.若使上式成立的正整数m 不存在,则称a 是无限阶的,记作a =∞.每个元素的阶都是无限的群不存在.当G 是加群时,其运算是加法,单位元为零元0,所以上式具有下列形式:0.ma =2.设G 是一个群,a G ∈,若,b G n ∀∈∃∈¢,使n b a =则称G 是由a 生成的循环群,a 是G 的生成元,记作().G a =循环群一定是交换群.3.设()G a =是一个循环群,(1)若a m =,则G 是含有m 个元素的有限群,有()m ϕ个生成元:,(,)1,r a m r =且{}0121,,,,;m G e a a a a -==L(2)若a =∞,则G 是无限群,有两个生成元:1,a a -,且{}21012,,,,,,.G a a a a a --=L L4.设G 是m 阶群,则G 是循环群当且仅当G 有m 阶元.例. 求出模12的剩余类加群12¢的每一个元的阶与所有生成元.解:12个元素:],11[],10[],9[],8[],7[],6[],5[],4[],3[],2[],1[],0[ 阶分别为:.12,6,4,3,12,2,12,3,4,6,12,1 由于12¢是由[1]生成的12阶循环群,所以12¢的生成元为:].11[],7[],5[],1[2.4 子群1.设G 是一个群,H G ∅≠⊆,若H 对G 的乘法作成群,则称H 是群G 的一个子群,记作.H G ≤2.设G 是群,H G ∅≠⊆,则下列各命题等价:(1)H G ≤(即H 对G 的乘法构成群);(2),a b H ∀∈,有1,ab a H -∈;(3),a b H ∀∈,有1.ab H -∈3.(1)无限循环群G 的子群,除单位元子群外,都是无限循环群.而且G 的子群的个数是无限的;(2)m 阶循环群G 的子群的阶是m 的因数;反之,若n|m ,则G 恰有一个n 阶子群,从而G 的子群的个数等于m 的正因数个数.任何一个群都不能是它的两个真子群的并.例1. 设12¢是一个模12的剩余类加群,证明:{}[0],[4],[8]H =是12¢的一个子群.证明:首先[0]H ∈,从而H ≠∅.又[0][0][0],[0][4][4],[0][8][8],[4][4][8],[4][8][0],[8][8][4],+=+=+=+=+=+= 而12¢是一个交换群,所以H 对12¢的加法运算封闭. 因此12.H <¢ 例2. 求出Klein 四元群{}4,,,K e a b ab =的所有子群.解:由Lagrange 定理,{}4,,,K e a b ab =的子群的阶只能是:1,2,4.1阶子群是单位元群{}e ,4阶子群是4K 自身;2阶(素数阶)子群是由二阶元生成的循环群. 因此4K 的子群有且只有下列5个:1阶子群:{}e ;2阶子群:{}{}{}(),,(),,(),a e a b e b ab e ab ===;4阶子群:4.K2.5 变换群1.非空集合A 到A 自身的映射称为A 的变换,A 到A 自身的满射称为A 的满变换,A 到A 自身的单射称为A 的单变换,A 到A 自身的双射称为A 的一一变换,A A ={A 的所有变换}.()E A ={A 的所有一一变换}.()E A 称为A 的一一变换群,()E A 的子群称为A 的变换群.2.(1)一个包含n 个元的有限集合的一一变换称为(n 次)置换;(2)一个包含n 个元的有限集合的所有置换作成的群称为n 次对称群,记作n S ;对称群的子群称为置换群.3.设在n 次置换σ下,1j 的像是2j ,2j 的像是31,,r j j -L 的像是r j ,r j 的像是1j , 其余的数字(如果还有的话)保持不变,则称σ是一个r 项循环置换,记作()12,,,,r j j j σ=L也可以记作()()23111,,,,,,,,,.r r r j j j j j j j σσ-==L L L1项循环置换()j 是恒等置换,2项循环置换()12j j 又称为对换.4.(1)n S 中的所有偶置换作成n S 的子群(称为n 次交错群,记作n A );(2)n 次交错群n A 的阶是!.2n例1. 写出三次对称群3S 的所有元素.解:.123321,312321,231321,213321,132321,321321⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛例2. 设两个六次置换: ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=416532654321,526413654321τσ求.,,12-στστστ 解:123456,142536στ⎛⎫= ⎪⎝⎭ 2123456,134652τσ⎛⎫= ⎪⎝⎭ 1123456.231546στ-⎛⎫= ⎪⎝⎭例3. 将下列轮换的乘积表示为不相交轮换的乘积.()()()4251314234563解:记(3654),(3241),(31524)σδη===,则:1554,2411,3136,4322,5243,6665,σδηa a a a a a a a a a a a a a a a a a从而,(3654)(3241)(31524)(142)(365).=2.6 群的同态与同构1.设G 与G '都是群,f 是G 到G '的映射,若f 保持运算,即()()(),,,f xy f x f y x y G =∀∈则称f 是G 到G '的同态.若同态f 是单射,则称f 是单同态;若同态f 是满射,则称f 是满同态,并称G 与G '同态,记作G G ':;若同态f 是双射,则称f 是同构,并称G 与G '同构,记作.G G '≅2.设f 是群G 到群G '的同态,e '是G '的单位元,则称{}Im ()()|f f G f x x G ==∈是f 的同态像,称{}1()|()Kerf f e x G f x e -''==∈=是f 的同态核.3.设f 是群G 到群G '的同态,e 是G 的单位元,则(1)f 是满同态当且仅当Im ;f G '=(2)f 是单同态当且仅当{}.Kerf e =4.任意一个群G 都与一个变换群同构.5.设()G a =是循环群,则(1)若a m =,则(,);m G ≅+¢(2)若a =∞,则(,).G ≅+¢2.7 子群的陪集1.设H G ≤,在G 中定义一个(等价)关系l R :1,,.l aR b b a H a b G -⇔∈∀∈由等价关系l R 所决定的类称为H 的左陪集.包含元素a 的左陪集等于aH .2.设H G ≤,则下列各命题成立:(1)a aH ∈;(2)1.aH bH aH bH a b H b aH bH aH -=⇔⋂≠∅⇔∈⇔∈⇔⊆ 特别,;.aH H a H eH H =⇔∈=(3)在aH 与H 之间存在一个双射.3.设H G ≤,在G 中定义一个(等价)关系r R :1,,.r aR b ab H a b G -⇔∈∀∈由等价关系r R 所决定的类称为H 的右陪集.包含元素a 的左陪集等于Ha .4.(Lagrange 定理)设G 是有限群,H 是G 的子群,则||[:]||.G G H H =5.有限群G 的每一个元素的阶都是||G 的因数;素数阶的群都是循环群.例如,6阶有限群的任何子群的阶数都是其正因子:1,2,3,6. 设G 是有限群,H 是G 的正规子群,若||H 与[:]G H 互素,则H 是G 中唯一的||H 阶子群.例. 求出Klein 四元群{}4,,,K e a b ab =的所有子群.解:由Lagrange 定理,{}4,,,K e a b ab =的子群的阶只能是1,2,4,而1阶子群是单位元群{}e ,4阶子群是4K 自身.二阶(素数阶)子群是由二阶元生成的循环群,因此4K 的子群有且只有下列5个:1阶子群:{}e ;2阶子群:{}{}{}(),,(),,(),a e a b e b ab e ab ===;4阶子群:4.K2.8 正规子群与商群1.设N G ≤,若a G ∀∈都有,aN Na =则称N 是G 的正规子群或不变子群,记作.N G <2.设N G ≤,则下列各命题等价:(1)N G <(即,aN Na a G =∀∈);(2)1,,;ana N a G n N -∈∀∈∈(3)1,;aNa N a G -⊆∀∈(4)1,;aNa N a G -=∀∈(5)N 的每一个左陪集也是N 的右陪集.3.设G 是群,记作N G <,令{}/|,G N aN a G =∈规定:(),,/,aN bN ab N aN bN G N =∀∈g则(/,)G N g 是一个群,称为G 关于N 的商群.4.商群/G N 的阶是N 在G 中的指数[:]G N ,且当G 是有限群时,/G N 的阶是||.||G N 2.9 正规子群与商群1.一个群G 与它的每一个商群/G N 同态.:/,,G G N a aN a G π→∀∈a称为自然(满)同态.自然同态π的核为N.2.(同态基本定理)设f 是群G 到群G '的同态,则(1);Kerf G <(2)/Im .G Kerf f ≅3.(第一同构定理)设f 是群G 到G '的满同态,N G ''<,1()N f N -'=,则N G <,并且//.G N G N ''≅例. 设(6),(30)是整数加群¢的两个子群,证明:5(6)/(30).≅¢ 证明:令5:(6),6[6],f n n →则f 是到的一个满同态,且{}{}{}{}6(6)|(6)[0]6(6)|[6][0]6(6)|5|630|(30).Kerf n f n n n n n m m =∈==∈==∈=∈=¢因此,(30)(6)<,且5(6)/(30).≅¢ 第三章 环3.1 环的定义1、设R 是一个非空集合,具有两种代数运算:加法(记作“+”)与乘法(记作“g ”),若(1)(,)R +是一个加群;(2)(,)R g 是一个半群;(3),,a b c R ∀∈都有乘法关于加法的左右分配律:(),(),a b c a b a c b c a b a c a +=++=+g g g g g g 则称R 是一个结合环,简称环,记作(,,)R +g .2、常见环(1)数环:数集关于数的加法、乘法所作成的环.例如2.⊂⊂⊂⊂ⅱぁ?(2)R 上的n 阶全矩阵环()n M R :数环R 上全体n 阶矩阵关于矩阵加法、乘法.(3)R 上的一元多项式环[]R x :数环R 上全体一元多项式关于多项式的加法、乘法.(4)高斯(Gauss )整数环[]{|,}i m ni m n =+∈ⅱ关于数的加法、乘法作成一个环.(5)设G 是一个加群,()E End G =是G 的所有自同态所组成的集合,规定:,,E x G στ∀∈∈,()()()(),()()(()),x x x x x στστστστ+=+=g 则(,,)E +g 是一个环,称为G 的自同态环.(6)商集{}[0],[1],,[1]m m =-关于加法运算[][][],a b a b +=+与乘法运算[][][],a b ab =g作成一个环(,,)m +,称为模m 的剩余类环.3、环的初步性质环R 关于加法是一个加群,R 具有加群的运算性质:(1)00,;a a a a R +=+=∀∈(2)()()0,;a a a a a a a R -=+-=-+=∀∈(3)(),;a a a R --=∀∈(4),,,;a b c b c a a b c R +=⇔=-∀∈(5)(),(),,;a b a b a b a b a b R -+=----=-+∀∈(6)()(),(),,,,;m na mn a n a b na nb m n a b R =+=+∀∈∈¢其次,环R 关于乘法是一个半群,而且加法与乘法通过左右分配律相联,从而R 还具有如下性质:(7)(),(),,,;a b c ac bc c a b ca cb a b c R -=--=-∀∈(8)000,;a a a R ==∀∈(9)()(),()(),,;a b a b ab a b ab a b R -=-=---=∀∈00,,x y x y ⎛⎫∈ ⎪⎝⎭¡00,,x y x y ⎛⎫∈ ⎪⎝⎭¡(10)121212121111(),(),,;,,;n n n n i m n mn i j i j i j i j i j a b b b ab ab ab b b b a b a b a b a a b R a b a b a b R ====+++=++++++=+++∀∈⎛⎫⎛⎫=∀∈ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑L L L L(11)()()(),,,.na b a nb n ab n a b R ==∀∈∈¢4、若环R 的乘法运算g 适合交换律,则称R 是交换环.5、若在环R 中,半群(,)R g 有单位元,则称R 是有单位元环,或称R 是带1的环.6、设R 是一个环,0a R ≠∈,若0b R ∃≠∈,使0(0),ab ba ==则称a 是R 的一个左(右)零因子.当a 既是R 的左零因子,又是R 的右零因子时,则称a 是R 的零因子. 例如,模12的剩余类环12¢是有零因子环:[3][4][12][0]==.例1. 求所有形如的矩阵组成的环R 的零因子.解:对任意的由于00000,0a x y ⎛⎫⎛⎫⋅= ⎪ ⎪⎝⎭⎝⎭所以环R 的每个非零元素都是R 的右零因子,且每个形如00,00a a ⎛⎫≠ ⎪⎝⎭的元素都是R 的左零因子.又当0≠a 时,如果0000000,*a x y ax ay ⎛⎫⎛⎫⎛⎫⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭则有0,0==y x .所以00,0*a a ⎛⎫≠ ⎪⎝⎭不是环R 的左零因子.所以环R 的左右零因子分别是00,00a a ⎛⎫≠ ⎪⎝⎭ 与 00,x y ⎛⎫ ⎪⎝⎭y x ,不全为0. 7、设环R 不含左、右零因子,则称R 是无零因子环.8、一个有单位元、无零因子的交换环称为整环.9、设R 是一个环,若(1)R 至少包含两个元素;(2)R 有单位元;(3)R 中每个非零元都可逆;则称R 是一个除环(或体,斜域).一个交换除环称为域.除环具有以下性质:(1)设R 至少包含两个元素,则R 是除环R ⇔中全体非零元组成的集合R *关于乘法作成一个群;(2)除环R 是无零因子环;(3)在除环R 中,,,0a b R a ∀∈≠,方程ax b =与ya b =都有唯一解.(4)一个至少含有两个元素,且没有零因子的有限环是除环.(5)一个有限整环是域.11、设R 是一个环,若存在最小正整数n ,使对于所有a R ∈,都有0na =,则称n 是环R 的特征(数).若这样的n 不存在,则称环R 的特征(数)是零.环R 的特征(数)记作chR .在一个无零因子环R 中,所有非零元(对于加法)的阶全相等.12、设R 是一个环,且0chR n =>,则(1)当R 是有单位元时,n 是满足10n =g 的最小正整数;(2)当R 是无零因子时,n 是素数.13、域F 的特征或是素数,或是零.3.2 子环1、设R 是一个环,S R ∅≠⊆,若S 关于R 的加法、乘法作成环,则称S 是R 的一个子环,R 是S 的扩环,记作S R ≤.平凡子环:{0},.R非平凡子环:,{0},.S R S S R ≤≠≠2、(1)设R 是一个环,S R ∅≠⊆,则S 是R 的子环,a b S ⇔∀∈,有,.a b ab S -∈(2)设R 是一个除环(域),S R ∅≠⊆,则S 是R 的子除环(子域),a b S ⇔∀∈,有1,(0).a b ab b S --≠∈3、当S 是R 的一个子环时,S 与R 在是否可交换、有无零因子、有无单位元等性质上有一定的联系,但是并不完全一致.(1)在交换性上.①若R 是交换环,则S 也是交换环.②当S 是交换环时,R 未必是交换环. 例如20|,,().0a a b M b ⎧⎫⎛⎫∈⎨⎬ ⎪⎝⎭⎩⎭ (2)在有无零因子上.①若R 是无零因子环,则S 也是无零因子环.②当S 是无零因子环时,R 未必是无零因子环. 例如12¢有零因子[3],[4]等,但{}[0],[4],[8]没有零因子.(3)在有无单位元上.①若R 有单位元,S 可以没有单位元. 例如¢有单位元1,但其子环2¢没有单位元.②若S 有单位元,R 可以没有单位元. 例如0|,,|,.0000a b a R a b S a b ⎧⎫⎧⎫⎛⎫⎛⎫=∈=∈⎨⎬⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭ ③若R 与S 都有单位元,它们的单位元可以不同. 例如210(),;01010|,,.0000M a S a b ⎛⎫ ⎪⎝⎭⎧⎫⎛⎫⎛⎫=∈⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭¡¡ 4、设R 是环,I 是一个指标集,()i S R i I ≤∈,则i i I S R ∈≤I .5、设R 是环,T R ∅≠⊆,令{}12|,n i S x x x x T n =±∈∈∑L ?则S R ≤.上述子环S 称为由T 生成的子环,记作[]T .并称T 中元素是[]T 的生成元,T 是[]T 的生成元集.若12{,,,}l T t t t =L 是有限集,则称[]T 是有限生成的,并可以记作12[,,,]l t t t L .特别地,1[]|,m i i i i t n t n m =⎧⎫=∈∈⎨⎬⎩⎭∑ⅴ. 6、设R 是环,T R ∅≠⊆,{}|,i i M S T S R i I =⊆≤∈是R 的所有包含T 的子环族,则i i IT S ∈=I .3.3 环的同态与同构1、设R 与R '都是环,f 是R 到R '的映射,若f 保持运算,即,x y R ∀∈,有()()(),()()(),f x y f x f y f xy f x f y +=+= 则称f 是R 到R '的同态.单同态:同态f 是单射.满同态:同态f 是满射,并称R 与R '同态,记作R R ':. 同构:同态f 是双射,并称R 与R '同构,记作R R '≅. 环R 的自同态:R 与R 的同态;环R 的自同构:R 与R 的同构.2、设f 是环R 到环R '的同态.(1)若0是R 的零元,则(0)f 是R '的零元;(2),()()a R f a f a ∀∈-=-;(3)若S R ≤,则()f S R '≤;(4)若S R ''≤,则1()f S R -'≤.3、当:f R R '→是满同态时,R 与R '在是否可交换、有无零因子、有无单位元等性质上有一定的联系,但是并不完全一致.(1)在交换性上.①若R 是交换环,则R '也是交换环.②当R '是交换环时,R 未必是交换环. 例如0:.00a b a f c c ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭a (2)在有无零因子上.①当R 是无零因子环时,R '未必是无零因子环. 例如:m f ,¢没有零因子,m 是合数时,m ¢是有零因子环.②当R '是无零因子环时,R 未必是无零因子环. 例如 0:;00001010.0000a b a f c ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭a (3)在有无单位元上.①若R 有单位元1,则R '有单位元(1)f .②当R '有单位元时,R 未必有单位元. 例如010:;000000a b a f ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭a 4、设环R R '≅,则R 是整环(除环,域)R '⇔是整环(除环,域).5、设f 是环R 到环R '的同态,g 是环R '到环R ''的同态,则f 与g 的合成g f o 是环R 到环R ''的同态.6、设f 是环R 到环R '的满同态(单同态,同构),g 是环R '到环R ''的满同态(单同态,同构),则f 与g 的合成g f o 是环R 到环R ''的满同态(单同态,同构).7、设f 是环R 到环R '的同态,0'是R '的零元,则称{}|()0Kerf x R f x '=∈=是的同态核.8、设f 是环R 到环R '的同态,0是R 的零元,则f 是单同态{}0.Kerf ⇔=3.4 理想与商环1、设(,,)R +g 是一个环,(,)A +是(,)R +的一个子加群,(1)若,r R a A ∀∈∈有ra A ∈,则称A 是R 的左理想;(2)若,r R a A ∀∈∈有ar A ∈,则称A 是R 的右理想;(3)若A 既是R 的左理想,又是R 的右理想,则称A 是R 的(双侧)(双边)理想,记作A R <.若A R <,且A R ≠,则称A 是R 的真理想.理想是子环,子环不一定是理想.2、只有零理想{}0与单位理想R 的环R 称为单环. 除环是单环.3、设R 是一个环,I 是一个指标集,()i A R i I ∈<,则i i IA R ∈<I .注:理想的并集一般不是理想.5、设R 是环,T R ∅≠⊆,{}|,i i M A T A R i I =⊆∈<是R 的所有包含T 的理想族,则称i i IA ∈I 是由T 所生成的理想,记作()T .并称T 中元素是()T 的生成元,T 是()T 的生成元集.若12{,,,}l T t t t =L 是有限集,则称()T 是有限生成的,并可以记作12(,,,)l t t t L . 特别地,由一个元素a 生成的理想()a 称为主理想.3、设R 是一个环,a R ∈,T R ∅≠⊆,则{}()|,,,,i i i i a x ay sa at na x y s t R n =+++∈∈∑¢.且有(1)若R 是有单位元环,则{}()|,i i i i a x ay x y R =∈∑;(2)若R 是交换环,则{}()|,a ra na r R n =+∈∈¢;(3)若R 是有单位元的交换环,则{}()|a ra r R =∈;(4){}()|(),i i i i T x x t t T =∈∈∑.例1. 求整数环¢上一元多项式环[]x ¢的理想(2,)x ,并证明(2,)x 不是主理想. 证明:因为[]x ¢是有单位元的交换环,所以12120(2,){2()()|(),()[]}{2()|()[]},x f x xf x f x f x x a xf x f x x =+∈=+∈¢¢ 即(2,)x 是由[]x ¢中常数项为偶数的多项式组成.若(2,)(()),()[],x p x p x x =∈¢则2(()),(()),2()(),()(),(),()[],(),(),1(2,)p x x p x p x q x x p x h x q x h x x p x a x ah x a x ∈∈==∈=∈==±∈¢¢这与1(2,)x ±∉矛盾.得证.4、设R 是环,A R <,在商群{}{}(,)/(,)[]||R A x x R x A x R ++=∈=+∈中再规定:[][][],[],[]/x y xy x y R A =∀∈g ,则(/,,)R A +g 是一个环,/R A 称为R 关于A 的商环或剩余类环,[]x x A =+称为R 模A 的剩余类.5、(1)若R 是交换环,则/R A 也是交换环;(2)若R 是有单位元1的环,则/R A 有单位元[1].6、一个环R 与它的每一个商环/R A 同态.自然同态::/,[],R R A x x x A x R π→=+∀∈a . 且有.Ker A π=7、(同态基本定理)设f 是环R 到环R '的同态,则(1)Kerf R <;(2)/Im R Kerf f ≅.8、(第一同构定理)设f 是环R 到环R '的满同态,A R ''<,1()A f A -'=,则A R <,并且//R A R A ''≅.9、设f 是环R 到环R '的满同态,若A R <,则()f A R '<.3.5 素理想与极大理想1、设R 是交换环,P 是R 的一个理想,若,,a b R ab P a P ∀∈∈⇒∈或b P ∈,则称P 是R 的素理想.单位理想是素理想.当R 是无零因子交换环时,零理想也是素理想;当R 有零因子时,零理想不是素理想.2、设P 是有单位元的交换环R 的一个理想,则P 是R 的素理想/R P ⇔是整环.例1. 试求模18的剩余类环18¢的所有素理想.解:(1)18¢有6个子加群:{}{}{}{}{}18{[0]},[0],[1],,[17],([2])[0],[2],[4],[6],[8],[10],[12],[14],[16],([3])[0],[3],[6],[9],[12],[15],([6])[0],[6],[12],([9])[0],[9].=====它们也是18¢的所有子环,也是18¢的所有理想.(2)因为[2][3][6]([6]),=∈但是[2],[3]([6]),∉所以([6])不是18¢的素理想.同理可证,{0},([9])都不是18¢的素理想.(3)对于([3]),设18[],[],[][]([3])a b a b ∈∈¢,则[][]([3]),[3][0],18|3a b r ab r ab r =-=-,从而存在m ∈¢,使318,183.ab r m ab m r -==+因为3|18,所以3|ab ,从而3|a 或3|b ,因此[]([3])a ∈或[]([3])b ∈,所以([3])是18¢的素理想.同理可证,([2])也是18¢的素理想.(4)显然单位理想18¢是18¢的素理想.3、设M 是环R 一个真理想,若对于的理想N ,M N N R ⊂⇒=,则称M 是R 的极大理想.R 中包含极大理想M 的理想只有R 与M .环R 本身不是的极大理想.若R 只有平凡理想,则零理想是R 的极大理想. 一个环可以有多个极大理想,也可以没有极大理想.4、设M 是有单位元的交换环R 的一个理想,则M 是R 的极大理想/R M ⇔是域.5、在有单位元的交换环中,极大理想一定是素理想.例2. 证明:在整数环¢上一元多项式环[]x ¢中,(2,)x 是一个极大理想. 证:因为[]x ¢是有单位元的交换环,所以12120(2,){2()()|(),()[]}{2()|()[]},x f x xf x f x f x x a xf x f x x =+∈=+∈ⅱ 即(2,)x 是由[]x ¢中常数项为偶数的多项式组成.令[0],2|(0),(())[1],f f x ϕ⎧=⎨⎩其它 …………(3分) 则ϕ是满同态,且ker {()[]|(())[0]}{()[]|2|(0)}(2,),f x x f x f x x f x ϕϕ=∈==∈=¢¢ 由同态基本定理,2[](2,)x x ≅¢¢,2¢是域,则 [](2,)x x ¢ 也是域,(2,)x 是[]x ¢的极大理想. 3.6 商域1、(挖补定理)设S 是环R 的子环,S S '≅,S R '⋂=∅,则存在S '的扩环R ', 使R R '≅.2、每一个无零因子交换环R 都可以扩充为一个域F .3、无零因子交换环R 的扩域F 的构造为{}1|,F ab a R b R -*=∈∈.4、设R 是无零因子交换环,F 是R 的扩域,且{}1|,F ab a R b R -*=∈∈则称F 是R 的商域(或分式域).5、(1)设F 是环R 的商域,F '是环R '的商域,若R R '≅,则F F '≅.(2)设F 与F '都是环R 的商域,则F F '≅.即,在同构的意义下,环的商域是唯一的.(3)环R 的商域是R 的最小扩域.例如¤是¢的商域,¡不是¢的商域.3.7 多项式环1、设R '是一个有单位元1的交换环,1R R '∈≤,R α'∈,则R '中形如()2012,{0}n n i a a a a a R n ααα++++∈∈⋃L ?的元素称为R 上α的一个多项式,记作()f α;i a 称为()f α的系数,i i a α称为()f α的项.2、用[]R α表示全体R 上α的多项式所组成的集合,[]R α称为R 上α的多项式环.3、设R '是一个有单位元1的交换环,1R R '∈≤,x R '∈,若()201201,{0}0,nn i n a a x a x a x a R n a a a ++++∈∈⋃⇒====L ?L则称x 是R 上的未定元.称x 的多项式 ()2012(),{0}n n i f x a a x a x a x a R n =++++∈∈⋃L ?是一元多项式.当0n a ≠时,称n n a x 是()f x 的首项;称n a 是()f x 的首项系数;称n 是()f x 的次数,记作deg ()f x ,零多项式0没有次数.[]R x 称为R 上的一元多项式环.4、设(),()f x g x 是[]R x 中两个非零多项式,则(1)(){}deg ()()max deg (),deg ()f x g x f x g x +≤,(2)()deg ()()deg ()deg ()f x g x f x g x ≤+,且当()f x 与()g x 的最高次项系数不是零因子时,有()deg ()()deg ()deg ()f x g x f x g x =+5、设R 是一个有单位元的交换环,则一定存在R 上的未定元x ,从而存在一元多项式环[]R x .6、设(),()[]f x g x R x ∈,且()0g x ≠,若()g x 的首项系数是可逆元,则存在唯一的一对多项式(),()[]q x r x R x ∈,使()()()(),()0f x g x q x r x r x =+= 或 deg ()deg ()r x g x <.7、设R '是一个有单位元1的交换环,1R R '∈≤,12,,,n R ααα'∈L ,把环12[][][]n R αααL 称为R 上的12,,,n αααL 的多项式环,记作12[,,,]n R αααL .12[,,,]n R αααL 中的元素称为R 上12,,,n αααL 的多项式,它们都可以表示为()1212n n i i i i i i a a R ∈∑L L 其中仅有有限个120n i i i a ≠L ,12n i i i a L 称为这个多项式的系数.8、设R '是一个有单位元1的交换环,1R R '∈≤,12,,,n x x x R '∈L ,若()1212121212000,1,2,;1,2,,n n n n i i i i i i n i i i i i i j a x x x a i j n =⇒===∑L L L L L L则称12,,,n x x x L 是R 上的无关未定元.称12,,,n x x x L 的多项式()1212121212n n n n i i i i i i n i i i i i i a x x x a R ∈∑L L L L 是n 元多项式.称12[,,,]n R x x x L 是n 元多项式环.9、设R 是一个有单位元的交换环,n ∈¥,则一定存在R 上的无关未定元12,,,n x x x L ,从而存在n 元多项式环12[,,,]n R x x x L .第四章 整环里的因子分解在本章中,I 都表示整环,其单位元是1.4.1 不可约元、素元、最大公因子1、整环I 中的可逆元ε称为I 的单位.ε是单位()I ε⇔=.一个元素个数大于2的整环中至少有两个单位:1和1-.整数环只有两个单位,即1和1-.域F 中的每一个非零元都是单位.2、整环I 的全体单位关于I 的乘法构成一个交换半群.3、设,a b I ∈,若c I ∃∈,使a bc =则称b 整除a ,或b 是a 的因子,记作|b a .4、整除关系具有下列性质.(1)|,||c b b a c a ⇒;(2)|()()b a a b ⇔⊆;(3)|,|,a b b a b a εε⇔=是I 的单位()()b a ⇔=;(4)ε是I 的单位|1ε⇔;(5)设b I ∈,ε是I 的单位,若|b ε,则b 也是I 的单位;(6)设a I ∈,ε是I 的单位,则|,|a a a εε.5、设,a b I ∈,若|a b 且|b a ,则称a 与b 相伴,记作a b :.6、设,,a b c I ∈,则下列各个命题等价:(1)a b :;(2),b a εε=是I 的单位;(3)()()a b =.7、相伴关系是整环I 上的一个等价关系.8、设,a b I ∈,若|b a ,但b 不是单位,且b 与a 不相伴,则称b 是a 的真因子.9、设,a b I ∈,则b 是a 的真因子()()a b I ⇔⊂⊂.10、单位没有真因子.11、设a I ∈,且a bc =,若b 是a 的真因子,则c 也是a 的真因子.12、设a I ∈,且0a ≠,a 不是单位,若a 在I 中没有真因子,则称a 是I 的一个不可约元;若a 在I 中有真因子,则称a 是I 的一个可约元.13、设a I ∈,且0a ≠,a 不是单位,则a 是I 的可约元a bc ⇔=,且,bc 都不是单位.14、一个不可约元的相伴元也是不可约元.15、设p I ∈,且0p ≠,p 不是单位,若由|p ab 可推出|p a 或|p b ,则称p 是I 的一个素元.16、在整环I 中,每一个素元都是不可约元.17、设,a b I ∈,若d I ∃∈,使(1)|,|d a d b ;(2),|,||c I c a c b c d ∀∈⇒;则称d 是a 与b 的最大公因子. 18、最大公因子有以下基本性质:(1)(,0)a a :;(2)(,)00a b a b ⇔==:;(3)a I ∀∈与单位ε,有(,)a εε:.19、设,a b I ∈,a 与b 的最大公因子存在,且是单位,则称a 与b 互素.a 与b 互素,当且仅当除单位外,a 与b 无其他公因子20、若整环I 中任意两个元的最大公因子都存在,则,,a b c I ∈,有(1)(,(,))((,),)a b c a b c :;(2)(,)(,)c a b ca cb :;(3)(,)1,(,)1(,)1a b a c a bc ⇒:::.4.2 唯一分解环1、设a I ∈满足:(1)有一个因子分解式12r a p p p =L (i p 是I 中不可约元);(1)若同时又有因子分解式12s a q q q =L (j q 是I 中不可约元);那么s r =,并且可以适当调换因子的次序,使(1,2,,)i i q p i r =:L . 则称a 为I 中的唯一分解元,并称r 是a 的长.2、设a 是唯一分解元,若在a 的分解式中,有t 个不可约因子12,,,t p p p L 互不相伴,且其他的不可约因子都与某个i p 相伴,则a 的分解式可以写作:1212t e e e t a p p p ε=L ,其中ε是单位,i e ∈¥.这个式子称为a 的标准分解式.3、若整环I 中每一个既不是零又不是单位的元都是唯一分解元,则称I 是唯一分解环.4、在一个唯一分解环I 中,若元a 的不可约因子已知,则可确定出a 的所有真因子(至多相差单位因子),且元a 的长大于其任一真因子的长.5、在一个唯一分解环I 中,任意两个元都有最大公因子,每一个不可约元都是素元.7、若整环I 中任意两个元的最大公因子都存在,则I 中的每一个不可约元都是素元.8、若整环I 满足:(1)I 中每一个既不是零又不是单位的元a 都有一个因子分解:12r a p p p =L (i p 是I 中不可约元);(2)I 的每一个不可约元p 都是素元;则I 是唯一分解环.9、若整环I 满足:(1)I 中每一个既不是零又不是单位的元a 都有一个因子分解:12r a p p p =L (i p 是I 中不可约元);(2)I 的任意两个元都存在最大公因子;则I 是唯一分解环.例1. 设[3]{3|,}{3|,}I m n m n m n i m n =-=+-∈=+∈ⅱ?(1)ε是I 的单位2||11εε⇔=⇔=±;(2)求2的相伴元;(3)I 中适合条件2||4a =的元a 是I 的不可约元;(4)2是I 的不可约元,但不是I 的素元;(5)I 不是唯一分解环.证:(1)循环论证法.若ε是I 的单位,则I ε'∃∈,使1εε'=.两边取模的平方,得22||||1εε'=. 设3m n ε=+-,则222||3m n εεε==+是正整数.同理2||ε'也是正整数,于是2||1ε=.若2||1ε=,则2231m n +=,所以0,1n m ==±,即1ε=±.显然1±是I 的单位.(2)由(1)及相伴元的定义,2的相伴元只有2与2-.(3)因为2||4a =,所以0a ≠且不是单位.设3b m n I =+-∈是a 的一个因子,则a bc =,c I ∈,于是2224||||||a b c ==.但是对于任何正整数222,,||32m n b m n =+≠,所以2||1b =或4.若2||1b =,则b 是单位;若2||4b =,则2||1c =,于是c 是单位,所以b a :.从而a 只有平凡因子,因此a 是不可约元.(4)因为2|2|4=,由(1)知,2是I 的不可约元.下面证2不是I 的素元.首先2|(13)(13)+---.若2|13+-,则存在c I ∈,使132c +-=.于是222|13||2|||c +-=,即244||c =,从而2||1c =,1c =±,但这是不可能的.所以2/|13+-.同理2/|13--.因此2不是I 的素元.(5)I 的单位只有1与1-,从而4是I 中一个既不是零元也不是单位的元,而且422(13)(13)=⋅=+--- 因为222|2||13||13|4=+-=--=,所以都是I 的不可约元.又因为213/+-:,213/--:,所以4有两种本质上不同的不可约元的因子分解,从而4不是唯一分解元.因此[3]I =-¢不是唯一分解环.4.3 主理想环1、若整环I 的每一个理想都是主理想,则称是主理想环.例如,整数环¢和域F 上的一元多项式环[]F x 都是主理想环;但¢上的一元多项式环[]x ¢不是主理想环:(2,)x 不是主理想.2、设是一个主理想环,若在序列123,,,(,1,2,3,)i a a a a I i ∈=L L中每一个元都是前面一个元的真因子,则这个序列一定是有限序列.3、每一个主理想环都是唯一分解环.4、设I 是主理想环,,a b I ∈,则(,)()a b d d =⇔是a 与b 的一个最大公因子.5、设I 是主理想环,12,,,s a a a I ∈L ,则12(,,,)()s a a a d d =⇔L 是12,,,s a a a L 的一个最大公因子.6、设I 是一个主理想环,p 是I 中的非零元,则()p 是I 的极大理想p ⇔是I 的不可约元.4.4 欧氏环1、设I 是整环,若(1)存在一个由\{0}I I *=到非负整数集{0}⋃¥的映射ϕ;(2),,,a I b I q r I *∀∈∈∃∈,使,0b aq r r =+=或()()r a ϕϕ<;则称I 是一个欧氏环.例如,整数环¢,高斯整(数)环[]{|,}i m ni m n =+∈ⅱ,域F 上的一元多。

近世代数基础1

近世代数基础1

S
1 p

gS
2 p
g
1
(其中S
1 p
,
S p2为sylow
p子群)
8.对{e}≠G,若 G 没有非平凡正规子群,称为单群。
9.交换群 G 是单群⇔ G Z p ,p 为素数。 10.阶数最小的非交换单群是 60 阶的 5 元交代群 A5。
第 8 页 共 29 页
近世代数基础
2.6 群在集上的作用
2.4 同态
第 5 页 共 29 页
近世代数基础
1.设群(G,·)和(H,×),φ 是 G 到 H 的映射,若对 x, y G 有
(x y) (x) (y) 则称 φ 是群(G,·)到(H,×)的同态。当 φ 是单/满射时称 φ 为单/满同态。φ 的像(G 的同态像)为 Im {(x) | x G} H ;φ 的核为 Ker {x G | (x) e,e为H的恒等元} G 。当 φ 为满 同态时 Imφ=H;当 φ 为单同态时 Kerφ={e}。
是双射,且 (1) S T (S) (T ) (2) S G (S) G (3)若 S G 则 G / S G /(S)
2.5 有限群 设有限群 G 的阶为 n,子群 H、元素 a 阶为 m。
1.m|n 且 an=e。 2.设 H 在 G 中不同左陪集的个数为[G:H],称[G:H]为 H 在 G 中的指数,则 n=[G:H]m, 即|G|=|H|[G:H]。若 H G,则|G/H|=t,即|G|=|H||G/H|。
(x y) (y) (x) 则称 φ 是群(G,·)到(H,×)的反同构,称群(G,·)反同构于(H,×),记为 (G,) 1 (H ,) 。反同构关 系具有对称性。

《近世代数》教案1

《近世代数》教案1

《近世代数》教案1《近世代数》教案1教案一:近世代数概述一、教学目标1.了解近世代数的起源和发展历程;2.理解近世代数的基本概念和基本运算;3.掌握近世代数的基本定理和性质;4.培养学生的逻辑推理和证明能力。

二、教学内容1.近世代数的起源和发展历程;2.近世代数的基本概念和基本运算;3.近世代数的基本定理和性质。

三、教学重点和难点1.理解近世代数的基本概念;2.掌握近世代数的基本运算;3.理解和运用近世代数的基本定理和性质。

四、教学方法1.前置知识导入:利用历史故事或问题引入近世代数的起源;2.概念解释与讨论:通过引导学生,共同探讨近世代数的基本概念;3.理解和运用:通过实际问题,让学生理解和运用近世代数的基本定理和性质;4.案例分析和练习:通过案例分析和练习,巩固学生对近世代数的理解和应用能力;5.归纳总结:通过归纳总结,整理和进一步理解所学的知识。

五、教学过程1.前置知识导入(10分钟)-引入:《近世代数》是一门重要的数学学科,它是现代数学的基石之一、那么,你们以为近世代数是从什么时候开始出现的呢?我们来听听关于近世代数起源的故事吧。

-故事:公元16世纪,意大利的一位数学家卡尔达诺被人请到一个庄园解决一个心理障碍的问题,他最终发现了它的根源与代数方程式求解有关。

这个故事揭示了近世代数起源的一部分,下面我们一起来探索更多关于近世代数的知识。

2.概念解释与讨论(20分钟)-定义:近世代数是一门研究代数结构及其性质的学科,它主要研究了代数系统的运算规则和代数方程式的求解方法。

-基本概念:群、环、域是近世代数中的基本概念。

群是指一个非空集合和一个在这个集合上的运算,满足封闭性、结合律、单位元和逆元的性质;环是指一个非空集合和两个在这个集合上的运算,满足加法封闭性、结合律、单位元和可逆性,以及乘法封闭性和结合律;域是指一个非空集合和两个在这个集合上的运算,满足加法封闭性、结合律、单位元和可逆性,以及乘法封闭性、结合律、单位元和可逆性。

近世代数__第二版课后习题答案

近世代数__第二版课后习题答案

近世代数题解第一章基本概念§1. 11.4.5.近世代数题解§1. 22.3.近世代数题解§1. 31. 解 1)与3)是代数运算,2)不是代数运算.2. 解这实际上就是Mxxn个元素可重复的全排列数nn.3. 解例如AB=E与AB=AB—A—B.4.5.近世代数题解§1. 41.2.3.解 1)略 2)例如规定4.5.略近世代数题解§1. 51. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射.2.略3.4.5.§1. 61.2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性;3)是等价关系;4)是等价关系.3. 解 3)每个元素是一个类,4)整个实数集作成一个类.4.则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5.6.证 1)略2)7.8. 9.10.11.12.第二章群§2. 1 群的定义和初步性质一、主要内容1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子.2.群的初步性质1)群中左单位元也是右单位元且惟一;2)群中每个元素的左逆元也是右逆元且惟一:3)半群G是群方程a x=b与y a=b在G中有解(a ,b∈G).4)有限半群作成群两个消去律成立.二、释疑解难有资料指出,群有50多种不同的定义方法.但最常用的有以下四种:1)教材中的定义方法.简称为“左左定义法”;2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”;3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”;4)半群G再加上方程a x=b与y a=b在G中有解(a ,b∈G).此简称为“方程定义法”.“左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续(虽然这层手续一般是比较容易的);优点是:①不用再去证明左单位元也是右单位元,左逆元也是右逆元;②从群定义本身的条件直接体现了左与右的对称性.以施行“除法运算”,即“乘法”的逆运算.因此,群的‘方程定义法”直接体现了在群中可以施行“乘法与除法”运算.于是xx,可以施行乘法与除法运算的半群就是群.为了开阔视野,再给出以下群的另一定义.定义一个半群G如果满足以下条件则称为一个群:对Gxx任意元素a,在Gxx 都存在元素,对Gxx任意元素b都有(ab)=(ba)=b.这个定义与前面4种定义的等价性留给读者作为练习.2.在群的“方程定义法”中,要求方程a x=b与y a=b都有解缺一不可.即其中一个方程有解并不能保证另一个方程也有解.4.关于结合律若代数运算不是普通的运算(例如,数的普通加法与乘法,多项式的普通加法与乘法以及矩阵、变换和线性变换的普通加法或乘法),则在一般情况下,验算结合律是否成立比较麻烦.因此在代数系统有限的情况下,有不少根据乘法表来研究检验结合律是否成立的方法.但无论哪种方法,一般都不是太简单.5.关于消去律.根据教材推论2,对有限半群是否作成群只用看消去律是否成立.而消去律是否成立,从乘法表很容易看出,因为只要乘法表中每行和每列中的元素互异即可.6.在群定义中是否可要求有“左”单位元而每个元素有“右”逆元呢?答不可以,例如上面例2就可以说明这个问题,因为e1是左单位元,而e1与e2都有右逆元且均为e1.但G并不是群.7.群与对称的关系.1)世界万物,形态各异.但其中有无数大量事物部具有这样或那样的对称性.而在这些具有对称性的万事万物中,左右对称又是最为常见的.由群的定义本身可知,从代数运算到结合律,特别是左、右单位元和左、右逆元,均体现出左右对称的本质属性.2)几何对称.设有某一几何图形,如果我们已经找到了它的全部对称变换(即平常的反射、旋转、反演和平移变换的统称),则此对称变换的全体关于变换的乘法作成一个群,称为该图形的完全对称群.这个图形的对称性和它的完全对称群是密切相关的.凡对称图形(即经过对称变换保持不变的图形、亦即完成这种变换前后的图形重合),总存在若干个非恒等对称变换和恒等变换一起构成该图形的完全对称群.反之,如果一个图形存在着非平凡的对称变换,则该图形就是对称图形.不是对称的图形,就不能有非恒等的对称变换.显然,一个图形的对称程度越高,则该图形的对称变换就越多.也就是说它的完全对称群的阶数就越高,即图形对称程度的高低与其对称群的阶数密切相关.因此;这就启发人们用群去刽面对称图形及其性质,用群的理论去研究对称.所以人们就把群论说成是研究对称的数学理论.显然,每个n元多项式都有一个确定的n次置换群:例如n元多项式例6 任何n元对称多项式的置换群都是n次对称群.很显然,一个多元多项式的置换群的阶数越高,这个多元多项式的对称性越强.反之亦然.因此,我们通常所熟知的多元对称多项式是对称性最强的多项式.三、习题2.1解答1.略2.3.4. 5.6.§2. 2 群中元素的阶一、主要内容1.群中元素的阶的定义及例子.xx、无扭群与混合群的定义及例子.特别,有限群必为xx,但反之不成立.2.在群中若=n,则4.若G是交换群,又Gxx元素有最大阶m,则Gxx每个元素的阶都是m的因子.二、释疑解难在群中,由元素a与b的阶一般决定不了乘积ab的阶,这由教材中所举的各种例子已经说明了这一点.对此应十分注意.但是,在一定条件下可以由阶与决定阶,这就是教材xx定理4:4.一个群中是否有最大阶元?有限群中元素的阶均有限,当然有最大阶元.无限群中若元素的阶有无限的(如正有理数乘群或整数xx),则当然无最大阶元,若无限群中所有元素的阶均有限(即无限xx),则可能无最大阶元,如教材中的例4:下面再举两个(一个可换,另一个不可换)无限群有最大阶元的例子.5.利用元素的阶对群进行分类,是研究群的重要方法之一.例如,利用元素的阶我们可以把群分成三类,即xx、无扭群与混合群.而在xx中又可分出p—群p是素数),从而有2—群、3—群、5—群等等.再由教材§3. 9知,每个有限交换群(一种特殊的xx)都可惟一地分解为素幂阶循环p—群的直积,从而也可见研究p—群的重要意义.三、习题2.2解答1.2.3.4.5.推回去即得.6.§2. 3xx一、主要内容1.xx的定义和例子.特别是,特殊线性群(行列式等于l的方阵)是一般线性群(行列式不等于零的方阵)的xx.4.群的中心元和中心的定义.二、释疑解难1.关于真xx的定义.教材把非平凡的xx叫做真xx.也有的书把非G的于群叫做群G的真xx.不同的定义在讨论xx时各有利弊.好在差异不大,看参考书时应予留意.2.如果H与G是两个群,且HG,那么能不能说H就是G的xx?答:不能.因为xx必须是对原群的代数运算作成的群.例如,设G是有理数xx,而H是正有理数乘群,二者都是群,且HG但是不能说H是G的xx.答:不能这样认为.举例如下.例2设G是四元数群.则显然是G的两个xx且易知反之亦然.三、习题2.3解答1.证赂.2.证必要性显然,下证充分性.设子集H对群G的乘法封闭,则对Hxx任意元素a和任意正整数m都有am∈H.由于Hxx 每个元素的阶都有限,设=n ,则3.对非交换群一放不成立.例如,有理数域Qxx 全体2阶可逆方阵作成的乘群中,xx,的阶有限,都是2,但易知其乘积⎪⎪⎭⎫ ⎝⎛=1011ab的阶却无限.即其全体有限阶元素对乘法不封闭,故不能作成xx .4.证 由高等代数知,与所有n 阶可逆方阵可换的方阵为全体纯量方阵,由此即得证.5.证 因为(m ,n)=1,故存在整数s ,t 使 ms 十n t =1. 由此可得6.7.§2. 4循环群一、主要内容1.生成系和循环群的定义.2.循环群中元素的表示方法和xx的状况.3.循环群在同构意义下只有两类:整数xx和n次单位根乘群,其中n=1,2,3,….4.循环群的xx的状况.无限循环群有无限多个xx.n阶循环群有T(n)(n的正出数个数)个xx,且对n 的每个正因数k,有且仅有一个k阶xx.二、释疑解难1.我们说循环群是一类完全弄清楚了的群,主要是指以下三个方面:1)循环群的元素表示形式和运算方法完全确定.其xx的状况也完全清楚(无限循环群有两个xx,n阶循环群有个xx而且ak是xx(kn)=1);2)循环群的xx的状况完全清楚;3)在同构意义下循环群只有两类:一类是无限循环群,都与整数xx同构;另一类是n(n=1,2,…)阶循环群,都与n次单位根乘群同构.2.循环群不仅是一类完全弄清楚了的群,而且是一类比较简单又与其他一些群类有广泛联系的群类.例如由下一章§9可知,有限交换群可分解为一些素幂阶循环群的直积.更一般地,任何一个具有有限生成系的交换群都可分解成循环群的直积.由于循环群已完全在我们掌握之中,所以这种群(具有有限生成系的交换群)也是一类研究清楚了的群类.它在各种应用中有着非常重要的作用.例如在组合拓扑学中它就是一个主要的工具.三、习题§2. 4解答1.2.3.4. 5.6. 7.§2. 5 变换群一、主要内容1.变换群、双射变换群(特别是集合M上的对称群和n次对称群)和非双射变换群的定义及例子.2.变换群是双射变换群的充要条件;双射变换群与抽象群的关系.1)集合M上的变换群G是双射变换群G含有M的单或满)射变换;2)任何一个群都同一个(双射)变换群同构.3.有限集及无限集上非双射变换群的例子(例2和例3).二、释疑解难1.一般近世代数书中所说的“变换群”,都是由双射变换(关于变换乘法)所作成的群,即本教材所说的“双射变换群”.而本教材所说的“变换群”则是由一个集合上的一些变换(不一定是双射变换)作成的群.通过教材§5定理2和推论1可知,实际上变换群可分成两类:一类是双射变换群(全由双射变换作成的群,即通常近世代数书中所说的“变换群”),另一类是非双射变换群(全由非双射变换作成的群).在学习本书时应留意这种差异.2.本节教材定理2(若集合M上的变换群G含有M的单射或满射变换.则G必为M上的一个双射变换群,即G中的变换必全是双射变换)比有些书上相应的定理(若集合M上由变换作成的群G含有M的恒等变换,则G中的变换必全为双射变换)大为推广.因为后者要求G包含恒等变换(一个特殊的双射变换),而前者仅要求G 包含一个单(或满)射变换即可.因此,后音只是前者(本节教材定理2)的一个推论,一种很特殊的情况.两相比较,差异较大.这种差异也说明,M上的任何一个非双射变换群不仅不能包含恒等变换,而且xxM的任何单射或满射变换也不能包含.另外,在这里顺便指出,集合M上的任何双射变换群G的单位元必是M的恒等变换.3.集合M上的全体变换作成的集合T(M),对于变换的乘法作成一个有单位元的半群.在半群的讨论中,这是一类重要的半群.并且本节习题中第4题还指出,当>1时T(M)只能作成半群,而不能作成群.三、习题§2. 5解答1. 解作成有单位元半群,是单位元.但不作成群,因为无逆元.2.3. 解 G作成群:因为xx4.5.§2. 6 置换群一、主要内容1.任何(非循环)置换都可表为不相连循环之积,任何置换都可表为若干个对换之积,且对换个数的奇阴偶性不变.从而有奇、偶置换的概念,且全体n次置换xx、偶置换个数相等,各为个(n>1).2.k—循环的奇偶性、阶和逆元的确定方法,以及不相连循环乘积的奇偶性、阶和逆元的确定方法.1)k—循环与A有相反奇偶性.2)k—循环的阶为k.又(i1,i2…ik)-1=(ik,…,i2,i1 ).3)若分解为不相连循环之积.则其分解xx循环个数为奇时为奇置换,否则为偶置换.的阶为各因子的阶的最小公倍.其逆元可由k—循环的逆元来确定.3.由置换,求置换-1的方法.n次对称群sn的中心.4.传递群的定义、例子和简单性质.二、释疑解难1.研究置换群的重要意义和作用.除了教材中已经指出的(置换群是最早研究的一类群,而且每个有限的抽象群都同一个置换群同构)以外,研究置换群的重要意义和作用至少还有以下几方面:1) 置换群是一种具体的群,从置换乘法到判断置换的奇偶性以及求置换的阶和逆置换,都很具体和简单.同时它也是元素不是数的一种非交换群.在群的讨论中举例时也经常用到这种群.2) 在置换群的研究中,有一些特殊的研究对象是别的群所没有的.如置换中的不动点理论以及传递性和本原性理论等等.3) 置换群中有一些特殊的xx也是一般抽象群所没有的.例如,交代群、传递群、稳定xx和本原群等等.就教材所讲过的交代群和传递群的重要性便可以知道,介绍置换群是多么的重要.2.用循环与对换之积来表出置换的优越性.首先,书写大为简化,便于运算。

(完整版)近世代数讲义(电子教案)(1)

(完整版)近世代数讲义(电子教案)(1)

《近世代数》课程教案第一章基本概念教学目的与教学要求:掌握集合元素、子集、真子集。

集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。

理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n的剩余类。

教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n的剩余类。

教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n的剩余类.教学措施:网络远程。

教学时数:8学时.教学过程:§1 集合定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。

集合中的每个事物叫做这个集合的元素(简称元)。

定义:一个没有元素的集合叫做空集,记为∅,且∅是任一集合的子集。

(1)集合的要素:确定性、相异性、无序性。

(2)集合表示:习惯上用大写拉丁字母A ,B ,C …表示集合,习惯上用小写拉丁字母a ,b ,c …表示集合中的元素. 若a 是集合A 中的元素,则记为A a A a ∉∈否则记为,. 表示集合通常有三种方法: 1、枚举法(列举法):例:A ={1,2,3,4},B ={1,2,3,…,100}. 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。

第1章近世代数基本概念汇总

第1章近世代数基本概念汇总
2018/10/13
引言 近世代数理论的两个来源
有理运算以及开方的方法求出它的所有根,什么条件之下不能 求根。 最终解决这一问题的是法国年青数学家Galois(1811-
1832),Galois引入了扩域以及群的概念,并采用了一种全新 的理论方法发现了高次代数方程可解的法则。在Galois之后群 与域的理论逐渐成为现代化数学研究的重要领域,这是近世代 数产生的一个最重要的来源。
An到D的一个n元映射。 一的d D,则称 是A1 A2
d叫做(a1 , a2 ,
an )在之下的象; (a1, a2 ,
an ) d (a1, a2 ,
an )叫做d 在下
an )
的一个逆象(原象). 用符号表示:
: (a1, a2 ,
2018/10/13
§2 映射
A1 , A2 ,, An 的并和交分别记为:
n i 1
Ai A1
n
A2
n
An ,
i 1
Ai A1
A2
An .
x x
2018/10/13
i 1 n i 1
Ai Ai , x Ai . Ai Ai , x Ai .
§1 集合
集合的差运算: A B {x | x A但x B} 即A-B是由一切属于A但不属于B 的元素所组成。
则 不是一个A B到D的映射.
例5 设A=D=R. 定义
: a a, 若是 a 1
1 b, 这里 b2 1 则不是一个A到D的映射.
§2 映射
映射定义要注意以下几点:
1) 集合 A 1, A 2,
2) A1 , A2 ,
, An , D 可以相同;

近世代数习题第一章

近世代数习题第一章

第一章 基本概念1、设B A ,是两个有限集,证明:||||||||B A B A B A +=+ .2、设Y X ,都是有理数集,证明:法则b a ab + :δ 不是X 到Y 的映射.3、设},3,2,1{ =X ,Y 是有理数集,证明:法则2:x x δ是X 到Y 的映射.4、设X 为数域F 上的全体n 维向量构成的集合,证明:法则121),,,(:a a a a n δ是X 到F 的映射.5、设},3,2,1{ =X ,},6,4,2{ =Y ,证明:法则x x 2: δ是X 到Y 的双射.6、设X 为数域F 上的全体n 阶方阵作成的集合,},2,1,0{ =Y ,用)(A r 表示矩阵A 的秩,证明:法则)(:A r A δ是X 到Y 的满射,但不是单射.7、设Y X ,是两个有限集且||||Y X =,则X 到Y 的映射δ是满设当且仅当δ是单射.8、设},3,2,1{ =X ,证明:法则2:x x δ是X 到Y 的单射,但不是满射.9、证明:具有n 个元素的集合共可构成!n 个双射.10、判断法则b a b a +=是不是整数集的代数运算.11、判断法则1+=ab b a是不是整数集的代数运算.12、判断法则B A B A ||=是不是数域F 上的全体n 阶方阵的集合的代数运算.13、设M 是自然数集合,则M 的代数运算1+=ab b a 不满足结合律.14、变换的乘法满足结合律.15、设M 是实数集合,则M 的代数运算b a b a 32+= 是否满足结合律和交换律.16、设M 全校学生全体,规定b a aRb ,⇔同在一系.证明:这一关系是M 上的一个等价关系.17、求由等价关系)4(mod b a aRb ≡⇔所决定的整数集Z 的分类.18、设}10,6,4,2,1{=M ,规定b a aRb +⇔|4问:R 是不是M 上关系,是否满足反身性、对称性与传递性.19、设A 、B 是集合,| A |=3,| B |=2,则共可定义多少个从A 到B 的映射,其中 有多少个个单射,有多少个个满射,有多少个个双射.。

近世代数第1章1.6

近世代数第1章1.6
由 例 1 .5 .7 推 得 An S n。
A n叫 做 交 错 群 。 当 n 2时 , S n 不 是 单 群 。
命 题 1 .6 .1设 ( i1 i r ) 是 一 个 r 轮 换 , S n, 则
1
也 是 一 个 r轮 换 ,

1
( ( i1 ) ( i r )) .
1
由 于
( ( i j )) ( i j 1 ) 对 1 j r 成 立 ,

1
( ( i r )) ( i1 ),故 命 题 成 立 。
推 论 1 .6 . 1设 ( a 1 a r ) ( c1 c s ) 是 一 些 互不相交的轮换的乘积,则
即 H 2 S4.
命 题 1 .6 .2 S n (1 2 ), (1 3), , (1 n ) (1 2 ), (1 2 n ) , A n (1 2 3), (1 2 4 ), , (1 2 n ) .
证 明 : 由 (1i )(1 j )(1i ) ( ij ) 和 命 题 1 .3 .2 推 出 S n (1 2 ), (1 3), , (1 n ) .
( 2 ))(
1
(3)
1
( 4 ))。
1 1
是 {1, 2, 3, 4}的 置 换 , (1),
1 1
( 2 ),
1
Байду номын сангаас
(3),
1
(4 )互 不 相 同 。

1
(12)(34) H 2 .
(1 3)( 2 4 ) H 2,
1
同理,
(1 4 )( 2 3) H 2。

近世代数作业一

近世代数作业一

近世代数作业(一)1 若C A B A ⋂=⋂。

问:是否有C B =?把⋂改成⋃是又如何?2 设A 是有限集合,且n A =||。

证明:n A P 2|)(|=。

3 设B A ,是两个有限集合。

证明:||||||||B A B A B A +=⋂+⋃。

4 设}5,4,3,2,1{=X ,}10,8,6,4,2,0{=Y 。

试给出X 到Y 的两个单射。

5 设X 数域F 上全体n 阶方阵作成的集合,问:||:A A →α是否为X 到F 的一个映射?其中||A 为A 的行列式。

是否为满射?6 设A 与B 是数域F 上两个n 阶相似方阵,][A F 为系数属于F 的关于A 的一切多项式作成的集合。

问:法则)()(:B f A f →ϑ是否为][A F 到][B F 的映射?其中)(x f 是系数属于F 的任意多项式,是否为单射或满射?7 设M 是自然数集。

下列各法则哪些是M 的代数运算?(1) b a b a = ;(2)2-+=b a b a ;(3)a b a = 。

8设},,{c b a M =,试对M 规定两不同的代数运算。

9 设 与_集合M 的两个代数运算,如果在M 中存在元素使b a ,b a b a _≠则称 与_ 是M 的两个不同的代数运算。

如果n M =||。

问:可以为M 规定出多少不同的代数运算?10 设M 为实数集,问: b a b a 32+= ),(M b a ∈ 是否满足结合律和交换律?11设M 为实数集,代数运算是普通率乘法。

问:以下各映射是否为的自同态映射?是否为自同态满射?说明理由。

(1) ||x x →;(2)2x x →;(3)x x 2→;(4)x x -→。

12设Q 是有理数集,代数运算是普通加法。

试给出Q 的一个除恒等变换以外的自同构。

13 令}10,6,4,2,1{=M 规定||4b a aRb +⇔。

问:R 是否M 为的一个关系?是否满足反射性、对称 性和传递性?14 问:整数集Z 对运算1=b a 是否作成群?为什么?15 设}0,|),{(≠=a b a b a G 为实数且,并规定),(),(),(b ad ac d c b a += 。

近世代数第一章答案

近世代数第一章答案

近世代数第一章基本概念答案§ 1 . 集合1.A B ⊂,但B 不是A 的真子集,这个情况什么时候才能出现? 解 由题设以及真子集的定义得,A 的每一个元都属于B ,因此B A ⊂.于是由A B ⊂ B A ⊂得B A =.所以上述情况在A=B 时才能出现.2. 假设B A ⊂,?=⋂B A ?=⋃B A解 (i ) 由于B A ⊂,所以A 的每一个元都属于B ,即A 的每一个元都是A 和B 的共同元,因而由交集的定义得B A A ⋂⊂但显然有A B A ⊂⋂所以A B A =⋂(ii) 由并集的定义,B A ⋃的每一个元素都属于A 和B 之一,但B A ⊂,所以B A ⋃的每一元素都属于B :B B A ⊂⋃另一方面B A B ⋃⊂,所以B B A =⋃.§ 2 . 映射1. A ={1,2,…,100}.找一个A A ⨯到A 的映射.解 用()b a ,表示A A ⨯的任意元素,这里a 和b 都属于A .按照定义做一个满足要求的映射即可,例如 Φ: ()b a ,→a 就是这样的一个,因为Φ替A A ⨯的任何元素()b a ,规定了一个唯一的象a ,而A a ∈.读者应该自己再找几个A A ⨯到A 的映射. 2.在你为习题1所找的映射之下,是不是A 的每一个元都是A A ⨯的一个元的象?解 在上面给出的映射Φ之下,A 的每一个元素都是A A ⨯的一个元的象,因为()b a ,中的a 可以是A 的任一元素.你自己找到的映射的情况如何?有没有出现A 的元素不都是象的情况?假如没有,找一个这样的映射.§ 3 .代数运算1. A ={所有不等于零的偶数}.找一个集合D ,使得普通除法是A A ⨯到D 的代数运算.是不是找得到一个以上的这样的D ?解 一个不等于零的偶数除一个不等于零的偶数所得结果总是一个不等于零的有理数.所以取 D ={所有不等于零的有理数} 普通除法就是一个A A ⨯到D 的代数运算.可以找得到一个以上的满足要求的D .读者可以自己找几个. 2.{}c b a A ,,=.规定A 的两不同的代数运算.解 (i )我们用运算表来给出A 的一个代数运算: a b ca a a ab a a ac a a a按照这个表,通过 ,对于A 的任何两个元素都可以得出一个唯一确定的结果a 来,而a 仍属于A ,所以 是A 的人一个代数运算.这个代数运算也可以用以下方式来加以描述 : ()y x a y x o =→, 对一切A y x ∈, (ii)同理: ()y x x y x o =→, 对一切A y x ∈,也是A 的一个代数运算.读者可用列表的方法来给出这个代数运算.读者应自己给出几个A 的代数运算.§4 .结合律1. A ={所有不等于零的实数}, 是普通的除法:ba b a =o 这个代数运算适合不适合结合律?解 这个代数运算 不适合结合律.例如, 当4=a 2==c b时()122224224)(====o o o o o c b a ()()414224224==⎪⎭⎫ ⎝⎛==o o o o o c b a所以当a ,b 和c 取上述值时()()c b a c b a o o o o ≠2. A ={所有实数},代数运算: (a,b )→a+2b=a b适合不适合结合律?解读者可以用解上一题的方法来证明,所给代数运算不适合结合律.3.A={a,b,c}.由表a b ca ab cb bc ac c a b给出的代数运算适合不适合结合律?解所给代数运算 适合结合律.为了得出这个结论,需要对元素a,b,c的27(=33)种排列(元素允许重复出现)加以验证.但是利用元素a的特性,可以把验证简化.仔细考察运算表,我们发现以下规律:对集合A的任意元素x来说,都有a x=x a=x由此得出,对于有a出现的排列,结合律都成立.这一点读者可以自己验证.还剩下a不出现的排列.这样的排列共有8(=32)种.我们在这里验证4种,其余4种读者可以自己验证.(b b) b=c b=ab (b b)=b c=a所以(b b) b=b (b b)(b b) c=c c=bb (b c)=b a=b所以 (b b) c=b (b c)(b c) b=a b=bb (c b)= b a=b所以 (b c) b=b (c b)(b c) c=a c=cb (c c)=b b=c所以 (b c) c=b (c c)§5.交换律1.A={所有实数}. 是普通减法:a b= a b这个代数运算适合不适合交换律?解容易验证,当a = 1,b = 2时a b b a ≠ 所以这个代数运算不适合交换律. 2. A ={a , b ,c , d},由表 a b c da abcd b b d a c c c a b d d d c a b所给的代数运算适合不适合交换律?解 要回答这个问题,只须考察一下运算表,看一看关于主对角线对称的位置上,有没有不相同的元素.易知此运算表不对称,所以此代数运算不适合交换律。

近世代数第一章分析

近世代数第一章分析
第一章 基本概念
1.1 集合 1.2 映射与变换 1.3 代数运算 1.4 运算律 1.5 同态与同构 1.6等价关系与集合的分类
运城学院
应用数学系
1.1 集合 1.2 映射与变换
教义和性质
映射,单射,满射,双射,逆
映射的定义及例子
变换,置换等的定义及例子
φ是单射 φ是满射 φ 是双

7.映射是函数概念的推广,是对应法则,A 是定义域,B包含值域,根据B是否与值域 相等,可将映射区分为是否是满射。A中不 同元素的像可能相同,也可能不同,据此 可区分映射是否为单射。 定义:设为A到B的一个映射,如果B中 每个元素在A中都有逆像,则称为A到B的一 个满射。如果A 中不同的元素在B中的像也 不同,则称是从A到B的一个单射。如果既 是满射又是单射,则称是从A到B的一个双 射,或一一映射。
并称 στ
为 σ 与 τ 的合成或乘积。
x →σ(τ(x))
12.集合A 到自身的映射,叫做集合A的一个变换, 类似可定义单变换,满变换,双射变换(一一变 换)等。 将集合A每个元素映为自身的变换,称为A的恒 等变换,φ :A → Bφ 它是一个一 一变换。 x → x,
例:P9例9-10 定理:含有n个元素的集合共有n!个双射变换。
A B表示A是B的真子集,即B中有不存 在A的元素
A B表示A不是B的子集
A B表示A不是B的真子集 A=B A B且B A 3.如果集合A含有无穷多个元素,则记为 |A|= ∞ ,如果A含有n个元素,则记为 =n 。(A的阶),有|A∪B|+ |B∪A| = |A| + |B|
4.称集合A-B={a| a A, a B}为集合A
10.设б与 τ 都是A到B的映射,如果 x A,都有б(x)=τ (x),则称б与τ 相

《近世代数》教案1(含绪论)

《近世代数》教案1(含绪论)

韶关学院课程教学设计( 2 学时)教学过程、内容(含教与学的方法)绪论一、抽象代数发展简史1、代数的组成代数〔Algebra〕是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分.初等代数学是指19世纪上半叶以前发展的方程理论,主要研究某一方程(组)是否可解,如何求出方程所有的根(包括近似根),以及方程的根有何性质等问题.抽象代数又称近世代数,它产生于十九世纪.抽象代数是研究各种抽象的公理化代数系统的数学学科.由于代数可处理实数与复数以外的集合,例如向量、矩阵超数、变换等,这些集合分别是依它们各有的演算定律而定,而数学家将个别的演算经由抽象手法把共有的内容升华出来,并因此而达到更高层次,这就诞生了抽象代数.抽象代数,包含有群论、环论、域论、模论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科.抽象代数已经成了当代大部分数学的通用语言.2、高次方程的根式解问题什么叫代数?代数的基本问题是什么呢?代数就是字母运算学,这是法国数学家韦达的观点,也是关于代数的第一种观点.到了15-16世纪,代数学的中心问题开始转移到代数方程理论上来了,(关于代数的观点发生了变化,将代数定义为代数方程理论).我们知道,一次、二次的方程有根式解,三次和三次以上的方程是否有根式解呢?经过数学家们的努力,1542年意大利数学家卡当给出了三次方程的求根公式.这个公式实际上是泰塔格利亚发现的,卡当恳切要求泰塔格利亚把求解公式告诉他,并发誓对他保密.但卡当不顾自己的誓言,把这个方法的叙述发表在他的《重要的艺术》里.所以这个公式不应该叫卡当公式,而应叫泰塔格利亚公式.在三次方程成功地解出之后,接着卡当的学生费拉里成功的解出了四次方程.三次、四次方程有求根公式,那么五次和五次以上的方程是否有公式解呢?世界上许多数学家试图找出五次和五次以上的方程的公式解,经过了三百年没有成功.在这期间,德国数学家高斯在1799年他的博士论文中作出了代数基本定理的证明.“每个次数 1的复系数多项式在复数域中有一个根.”探求四次以上的方程的求解问题,多少数学家作了努力,但都失败了.直到1824年轻的数学家阿贝尔证明了“高于四次的一般方程用根式求解的不可能性”.这样,代数的这个问题才告一个段落.阿贝尔(1802-1829)是一个挪威的数学家,出生(1802.8.5)于一个穷牧师家里,兄弟姐妹七个,他排行第二,小学教育基本上是由父亲完成的.中学时是一个比阿贝尔大七岁的数学教师,名叫洪波义.此人学过一些纯粹数学,对中学数学很熟,他采取让学生发挥独立的工作能力的教学方法,给一些适合他们的数学问题鼓励学生们去解决.第一学年来,洪波义在学生的报告书上对阿贝尔的评语是:“一个优秀的数学天才”.他私人教阿贝尔高等数学.在中学读书的最后一年,他开始考虑当时著名的难题:五次方程的一般解问题.他按高斯对二次方程的处理方法,起初,阿贝尔以为他已经解决了用根式解一般的五次方程的问题.他的方法洪波义看不懂,也不知道有什么地方错,因此便拿去找教授看,结果也没有人了解他的东西.一位叫达根的教授劝告阿贝尔研究一些椭圆积分.后来阿贝尔用实际例子来验证,证明他的发现是错误的.当阿贝尔18岁时父亲去世了,大哥精神不正常,家庭生活十分贫困.阿贝尔上大学是由洪波义出面,希望几个教授帮忙,结果教授们和朋友们都把薪水分出一点,凑起来给阿贝尔作为学习和生活的经济来源.阿贝尔自己还写信给当局提出要求,幸运地获得了免费的宿舍.1824年,阿贝尔重新考虑了一元五次方程的根式解问题.他试图证明这个解答是不可能的.首先他成功的证明了下述定理:“可用根式求解的方程的根能以这样的形式给出,出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理函数.”然后阿贝尔用这个定理证明了高于四次的一般方程用根式求解的不可能性.阿贝尔的家境贫困,大学毕业后,他靠为一些学生补习功课而生活,好心的朋友克勤为了替阿贝尔谋求一个职业而尽力奔走,终于在1828.10.8写信告诉阿贝尔“职业是肯定有了”.但克勤不知道,我们的阿贝尔在三月肺结核病病情恶化了,4月6日,这世上少有的天才就这样怀着沉重的心情,在他未婚妻旁离开了人间.克勤的消息来迟了.“阿贝尔留下的工作,可以使以后的数学家足够忙碌150年!”法国数学家厄米特说:这话并不夸张.在和阿贝尔同时代的一个法国青年伽罗华读到了阿贝尔的著作,不到20岁,就在代数方程论上作出了卓越的贡献,创立了“伽罗华理论”.他使阿贝尔的思想得到了更好的发展.3、伽罗华和他的理论的兴起法国数学家伽罗瓦〔1811-1832〕在1832年运用“群”的思想彻底解决了用根式求解代数方程的可能性问题.他是第一个提出“群”的思想的数学家,一般称他为近世代数的创始人.伽罗瓦使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期.伽罗瓦是巴黎附近一个小镇镇长的儿子,他积极参加学生运动.伽罗华在中学时遇到了一位叫里沙的好老师(数学家),在里沙的指导下开始学习阿贝尔的著作,给出5次及5次以上方程有根式解的充要条件.他的论文三次交到法兰西科学院评审(柯西、付里叶、波松).最后是波松“完全不能理解!”.伽罗瓦是1832年5月31日死于爱情决斗.伽罗瓦提出的“伽罗瓦域”、“伽罗瓦群”和“伽罗瓦理论”都是近世代数所研究的最重要的课题.伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一.他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题.伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的.最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响.同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响.抽象代数在上一个世纪已经有了良好的开端,伽罗瓦在方程求根中就蕴蓄了群的概念.后来凯莱对群作了抽象定义(Cayley,1821-1895).他在1849年的一项工作里提出抽象群的概念,可惜没有引起反响.“过早的抽象落到了聋子的耳朵里”.直到1878年,凯莱又写了抽象群的四篇文章才引起注意.1874年,挪威数学家索甫斯·李(Sophus Lie, 1842-1899)在研究微分方程时,发现某些微分方程解对一些连续变换群是不变的,一下子接触到连续群.1882年,英国的冯·戴克(von Dyck,1856-1934)把群论的三个主要来源—方程式论,数论和无限变换群—纳入统一的概念之中,并提出“生成元”概念.1870年,克隆尼克给出了有限阿贝尔群的抽象定义;狄德金开始使用“体”的说法,并研究了代数体;1893年,韦伯定义了抽象的体.20世纪初给出了群的抽象公理系统.群论的研究在20世纪沿着各个不同方向展开.例如,找出给定阶的有限群的全体.群分解为单群、可解群等问题一直被研究着.有限单群的分类问题在20世纪七、八十年代才获得可能是最终的解决.伯恩赛德(Burnside,1852-1927年)曾提出过许多问题和猜想.如1902年问道一个群G是有限生成且每个元素都是有限阶,G是不是有限群?并猜想每一个非交换的单群是偶数阶的.前者至今尚未解决,后者于1963年解决.舒尔(Schur,1875-1941)于1901年提出有限群表示的问题.群特征标的研究由弗罗贝尼乌斯首先提出.庞加莱对群论抱有特殊的热情,他说:“群论就是那摒弃其内容而化为纯粹形式的整个数学.”这当然是过分夸大了.1843年,哈密顿(Hamilton, W. R. )发明了一种乘法交换律不成立的代数——四元数代数.第二年,Grassmann推演出更有一般性的几类代数.1857年,Cayley设计出另一种不可交换的代数——矩阵代数.1870年,克隆尼克(Kronecker)给出了有限阿贝尔群的抽象定义.4、诺特和抽象代数学的兴起有一位杰出女数学家被公认为抽象代数奠基人之一,被誉为代数女皇,她就是爱米·诺特(1882-1935), 1882年3月23日生于德国埃尔朗根,其父亲麦克斯是一位大数学家,1900年入埃朗根大学(上千名学生中只有两位女生),1907年在数学家哥尔丹指导下获博士学位.诺特的工作在代数拓扑学、代数数论、代数几何的发展中有重要影响.1907-1919年,她主要研究代数不变式及微分不变式.她在博士论文中给出三元四次型的不变式的完全组.还解决了有理函数域的有限有理基的存在问题.对有限群的不变式具有有限基给出一个构造性证明.她不用消去法而用直接微分法生成微分不变式,在格丁根大学的就职论文中,讨论连续群(李群)下不变式问题,给出诺特定理,把对称性、不变性和物理的守恒律联系在一起. 1922年,诺特终于被聘为教授,但政府不承认.1920-1927年间她主要研究交换代数与“交换算术”.1916年后,她开始由古典代数学向抽象代数学过渡.1920年,她已引入“左模”、“右模”的概念.1921年写出的《整环的理想理论》是交换代数发展的里程碑.建立了交换诺特环理论,证明了准素分解定理.1926年发表《代数数域及代数函数域的理想理论的抽象构造》,给戴德金环一个公理刻画,指出素理想因子唯一分解定理的充分必要条件.诺特的这套理论也就是现代数学中的“环”和“理想”的系统理论,一般认为抽象代数形式的时间就是1926年,从此代数学研究对象从研究代数方程根的计算与分布,进入到研究数字、文字和更一般元素的代数运算规律和各种代数结构,完成了古典代数到抽象代数的本质的转变.诺特当之无愧地被人们誉为抽象代数的奠基人之一.1927-1935年,诺特研究非交换代数与“非交换算术”.她把表示理论、理想理论及模理论统一在所谓“超复系”即代数的基础上.后又引进交叉积的概念并用决定有限维伽罗瓦扩张的布饶尔群.最后导致代数的主定理的证明,代数数域上的中心可除代数是循环代数.诺特的学生范.德.瓦尔登根据诺特和阿廷的讲稿,写成《近世代数学》一书,其研究对象从研究代数方程根的计算与分布进到研究数字、文字和更一般元素的代数运算规律和各种代数结构.这就发生了质变.由于抽象代数的一般性,它的方法和结果带有基本的性质,因而渗入到各个不同的数学分支.人们从抽象代数奠基人——诺特、阿廷等人灿烂的成果中吸取到了营养,从那以后,代数研究有了长足进展.诺特的思想通过《近世代数学》得到广泛的传播.她的主要论文收在《诺特全集》(1982年)中. 1955年范.德.瓦尔登的《近世代数学》改版为《代数学》(一、二册)(瓦尔登后来研究数学史).抽象代数的另一部分是域论.1910年施泰尼茨(Steinitz,1871-1928)发表《域的代数理论》,成为抽象代数的重要里程碑.他提出素域的概念,定义了特征数为P的域,证明了每个域可由其素域经添加而得.环论是抽象代数中较晚成熟的.尽管环和理想的构造在19世纪就可以找到,但抽象理论却完全是20世纪的产物.韦德伯恩(Wedderburn,1882-1948)《论超复数》一文中,研究了线形结合代数,这种代数实际上就是环.环和理想的系统理论由诺特给出.她开始工作时,环和理想的许多结果都已经有了,但当她将这些结果给予适当的确切表述时,就得到了抽象理论.诺特把多项式环的理想论包括在一般理想论之中,为代数整数的理想论和代数整函数的理想论建立了共同的基础.诺特对环和理想作了十分深刻的研究.人们认为这一总结性的工作在1926年臻于完成,因此,可以认为抽象代数形成的时间为1926年.1930年,毕尔霍夫建立格论,它源于1847年的布尔代数;第二次世界大战后,出现了各种代数系统的理论和布尔巴基学派;1955年,嘉当、格洛辛狄克和爱伦伯克建立了同调代数理论.到现在为止,数学家们已经研究过200多种这样的代数结构,其中最主要德若当代数和李代数是不服从结合律的代数的例子.这些工作的绝大部分属于20世纪,它们使一般化和抽象化的思想在现代数学中得到了充分的反映.到了20世纪60年代,美国代数学家贾柯勃逊编著的《抽象代数学》(一、二、三册)代替了瓦尔登的《代数学》,到了20世纪70-80年代贾柯勃逊改版为《基础代数学》(一、二册)分别于1974年和1980年出版.5、代数是研究代数系统的科学抽象代数学对于全部现代数学和一些其它科学领域都有重要的影响.抽象代数学随着数学中各分支理论的发展和应用需要而得到不断的发展.经过伯克霍夫、冯.诺伊曼、坎托罗维奇和斯通等人在1933-1938年所做的工作,格论确定了在代数学的地位.而自20世纪40年代中叶起,作为线性代数的推广的模论得到进一步的发展并产生深刻的影响.泛代数、同调代数、范畴等新领域也被建立和发展起来.中国数学家在抽象代数学的研究始于30年代.当中已在许多方面取得了有意义和重要的成果,其中尤以曾炯之、华罗庚和周炜良的工作更为显著.现在,可以笼统地把代数学解释为关于字母计算的学说,但字母的含义是在不断地拓广的.在初等代数中,字母表示数;而在高等代数和抽象代数中,字母则表示向量(或n元有序数组)、矩阵、张量、旋量、超复数等各种形式的量.可以说,代数已经发展成为一门关于形式运算的一般学说了.一个带有形式运算的集合称为代数系统,因此,代数是研究一般代数系统的一门科学.现代数学的基础课程正在更新.50年代数学系的教学计划,以“高等微积分”、“高等代数”、“高等几何”为主体.时至今日,人们认为光靠这“老三高”已不够用了,应该发展“新三高”,即抽象代数、拓扑学和泛函分析.现代数学理论是由这三根支柱撑着的.现在,我们来追寻它们形成和发展的历史足迹,并从这一侧面窥视21世纪数学的特征.参考文献:[1] 乐秀成, 刘宁. 青年数学家、战士和人:E.伽罗瓦[J]. 自然辩证法通讯, 1980,(06)[2] 胡作玄. 爱米·诺特与抽象代数学的兴起[J]. 自然辩证法通讯, 1983,(02)二、近世代数的特点、意义与学习方法1、近世代数的特点代数学经历了两个转变,它有三种观点:第一种观点:代数是字母运算学(这是韦达的观点);第二种观点:代数是代数方程理论;第三种观点:代数是研究各种代数系统(即研究群、环、域等的结构与性质).第一、第二是具体的,第三是抽象的,它的对象不一定是数,如向量、矩阵、线性变换等.由于它理论的抽象,对象的广泛,因而就带来应用的广泛性.近世代数的大多数概念是采取公理化定义,这就使它的理论更严谨,许多学科都用到近世代数的思想和方法.近世代数具有以下特点:概念的抽象性、理论的严谨性、应用的广泛性.2、学习近世代数的意义一是数学类专业的基础课程,后继课程学习的需要,更高一级学校学习的准备;二是指导中学教学与实践,处理好中学数学的有关教材内容,能在高观点下看清中学数学的来龙去脉;三是培养同学的科学思维、逻辑推理和运算的能力,以及辩证唯物论观点.3、学习方法与要求学习的四步曲:预习、听课(笔记)、复习、练习;①预习:认真看书,做好预习工作,带着问题来听课,做到有的放矢;②听课(笔记):认真听课,做好笔记,笔记的形式可以多样,与书上不同的;③复习:认真做好复习工作,多思考、多提问题.问题可以自问自答;有问题要自己先想想,再问老师.要扣概念,找模型;④练习:复习后再练习、作业,作业要独立完成,不要抄题解、不要抄别人的.请记住:预习、听课(笔记)、复习、练习,再预习等,这就是学习上的良性循环.我们一定要做到学习上的良性循环,克服恶性循环,牢牢掌握学习的主动权,努力做到:概念准、理论熟、思路活、计算快.教材:张禾瑞著的《近世代数基础》.参考书:吴品三的《近世代数》;熊全淹的《近世代数》;谢帮杰的《抽象代数学》;范.德.瓦尔登的《代数学》(一、二册);贾柯勃逊的《基础代数学》(一、二册);[美]G.伯克霍夫、S.麦克莱恩 著,王连祥、徐广善译 《近世代数概论》.三、近世代数的教学安排51课时,讲四章内容,共135页,每次课约7页.教学安排如下:第一章 基本概念 10课时(含绪论),含习题2课时;第二章 群 论 18课时,含习题4课时;第三章 环与域 16课时,含习题4课时;第四章 整环里的因子分解(2节) 5课时,含习题1课时;复习 2课时.教学内容及各章课时(见教学进度表)并参考“《近世代数》课程标准”.第一章 基本概念在普通代数里,我们计算的对象是数,计算的方法是加、减、乘、除.数学渐渐进步,我们发现,可以对于若干不是数的事物,用类似普通计算的方法加以计算.这种例子我们在高等代数里已经看到很多,例如对于向量、矩阵、线性变换等就都可以进行运算.近世代数(抽象代数)的主要内容就是研究各种代数系统,即带有运算的集合.因此我们的讨论就从最基本的概念——集合、映射开始.§1.1 集 合一、集合及其表示集合是一个不加定义的基本概念,它描述性的定义为:作为整体看的一堆东西若干个(有限或无限多个)固定事物的全体组成一个集合的事物叫做这个集合的元素.注意:1.强调“全体”,2.确定集合的表示法:1.列举法;2.性质法;3.图象法集合用大写拉丁字母A ,B ,C ,…来表示.元素用小写拉丁字母a ,b ,c ,…来表示.集合的属于与不属于的表示:a A∉∈,a A二、若干记号1.数集:N,Z,Q,R,C,*Z,*Q2.逻辑:全称号:∀(对于任意)特称号:∃(存在),|∃(存在唯一)若A则B:A B⇒A等价于B:A B⇔或者:∨,而且:∧三、空集合、子集与集合的相等空集合:一个没有元素的集合,记为∅子集:设A,B是两个集合,若x B x A⊆.∀∈⇒∈,则称B是A的子集,记为B A 空集合是任何集合的子集,即∀集合A,均有A∅⊆.为此需证明命题“x x A∀∈∅⇒∈”,但这个前提不成立.任一命题,只要前提不真,那么,无论结论如何,整个命题被认为成立,故有A∅⊆.真子集:若集合B是集合A的子集,而且至少有一个A的元不属于B,则称B是A的真子集,记为B A⊂.集合的相等:若集合A和集合B所包含的元素完全一样,则称集合A等于集合B,记为A B=⇔⊆∧⊆.=.充要条件:A B A B B A四、集合的运算、幂集合、卡氏积设A,B是全集U的两个子集,则A,B的交、并、差为:⋂=∈∧∈{|}A B x x A x B第 11 页 {|}A B x x A x B ⋃=∈∨∈\{|}A B x x A x B =∈∉但性质:交换律,结合律,分配律幂集合:设A 是给定的两个集合,A 的所有子集所组成的的集合叫做A 的幂集合,用A 2表示.例如:设{a b c}A =,,,则A 2={{a}{b}{c}{a b}{b c}{a c}{a b c}}∅,,,,,,,,,,,,. 卡氏积:设1A ,2A ,…,n A 是n 个集合集合12n 12={|(,,,),,1,2,,}n i i A A A x x a a a a A i n ⨯⨯⨯=∈= 称作集合1A ,2A ,…,n A 的积,这也是一个集合.当12n A A A === 时,记为n A .。

近世代数1

近世代数1
§2.1 基本概念
再证唯一性: 设 [a1]=[a2], [b1]=[b2] ⇒ n | (a1−a2), n | (b1−b2), ⇒ n | (a1−a2)(b1−b2) ⇒ n | (a1b1+a2b2−a1b2−a2b1) ⇒ n | {a1b1− a2b2+(a2−a1)b2+ a2(b2−b1)}⇒ n | (a1b1− a2b2), 所以 [a1a2]=[b1b2]. 所以模 n 的乘法是 Zn*中的一个二元运算. 结合律显然满足. 单位元是 [1]. 对任何 [a]∈Zn*, 由 (a, n)=1 知存在 p, q ∈ Z 使 pa +qn=1, 因而有 pa ≡ l
§2.1 基本概念
定理 4 半群 (G, ·) 是群的充要条件是: 对任何 a,b ∈G, 方程 ax=b 和 ya=b 在 G 中均有解. 必要性: 证 必要性 因为 G 是群, a 有逆元 a-1, 故可得 ax=b 的解为 x=a-1b, ya=b 的解是 y=ba-1. 充分性: 充分性 由定理 3, 只要证明 G 中有左单位元和任 意一个元素 a 有左逆元. 有左单位元: 先证 G 有左单位元 任取 a∈G, 方程 ya=a 有解, 设 其解为 e, 任取 g∈G, 方程 ax=g 有解, 设其解为 b, 即 ab=g, 于是有 eg= eab=ab=g, 因而 e 是左单位元. 有左逆元: 再证 ∀a∈G 有左逆元 因方程 ya=e 有解, 则其解就 是 a 的左逆元.
§2.1 基本概念
一个群的乘法表称为群表 群表有以下性质: 群表, 群表 (1) 每行(列)包含每一个元素. (2) 若 G 是可换群, 则它的乘法表对称于主对角线. 很容易用乘法表来定义一个集合中的二元运算, 但要 定义一个乘法表是群表就不很容易了. 一个乘法表是 群表的充分必要条件请看本节习题第 7 题. 如果一个群 G 是个有限集, 则称 G 是有限群 否则 有限群, 有限群 无限群. 称为无限群 G 的元素个数 |G| 称为群的阶. 无限群 阶 常把可换群中的运算称为加法, 故可换群又叫加群 加群. 加群 加群中的单位元叫做零元 逆元叫做负元 例如 (Z, +) 零元, 负元, 零元 负元 中零元就是 0, x 的负元是 −x.

近世代数答案(一、二三章)

近世代数答案(一、二三章)

Chapter 11、proof Let A,B,C be sets .Suppose that x ∈B,we get x ∈A ∩B orx A B A ∈- ,and x A C ∈ or x A C A ∈- since A B A C = and A B A C = .so x ∈C and B C ⊆.Similarly ,we have C B ⊆and so B=C .2、proof ① First,consider ()x A B A ∈- .Then x A ∈ or x B ∈,but x A ∉.Thisimplies if x is not an element of A ,then x B ∈.Hence x A B ∈ and()A B A - ⊆A B .Conversely, if x A B ∈ ,then by definition , x A ∈ or x B ∈.This generates two cases:(a1) If x A ∈,clearly ()x A B A ∈- ;(b2) If x B ∈,then either x A ∈ or not . i.e.,either x B ∈ and x A ∈ orx B∈ but x A ∉, in either case, we have ()x A B A ∈- .Hence A B ⊆()A B A - .Therefore ()A B A - =A B .② Suppose that ()x A B C ∈- .Then x A ∈ but x B ∉ and x C ∉. Sox A ∈-B and x A C∈- and ()()x A B A C ∈-- by definition .Hence ()A B C - ⊆()()A B A C -- .Converssely , Assume that ()()x A B A C ∈-- ,then x A ∈-B andx A C∈-,and we have ,x A ∈but x B ∉ and x C ∉.Hencex B C ∉ , x A ∈, i.e., ()x A B C ∈- .Therefore ()()A B A C -- ⊆()A B C - and,so ()A B C - =()()A B A C --3.(a) surjective (b) bijective (c) bijective4.proof if f: X →Y and g: Y →Z are functions,then their composite denoted byg ︒f, is the function X →Z given by g ︒f: X →g(f(x)) (i)suppose that (g ︒f)(a)= (g ︒f)(b), where a,b ∈X. we have g(f(a))=g(f(b)) by definition, and f(a)=f(b) since g is injective, similarly , a=b for f is injective. Therefore, g ︒f is injective.(ii)For each Z ∈Z, there is y ∈Y with g(y)=z since g is surjective, and for each y ∈ Y , there exists a ∈ x with f(a)=y since f is surjective. So for ∀z ∈Z, there is a ∈ x with (g ︒f)(a)=g(f(a))=g(y)=z. which implies g ︒f is surgective.5. proof clearly , α:R →R is a function. Suppose that α(a)= α(b) where a, b∈R are distinct. Then332211aba b =++, cross multiplying yields332323a ab b a b +=+, which simplifies to 33a b = and hence a b =,so α isinjective. for ∀given y ∈ R,321xy x =+from,we get equation320x yx y --=, which can be solved for x, i.e .for each y ∈ R,there is at leastx ∈x such that 321xy x =+.whic implies α is surjective. Therefore α isbijective.6、(a) R is reflexive, symmetric, transitive. (b) R is reflexive, not symmetric, transitive.(c ) R is reflexive, symmetric, transitive.(d) R is reflexive, symmetric, transitive.7、proof (1) For every a ∈R-{0},we have 20aa a =>, and so ,aRa (2) IfaR b, where ,{0}a b R ∈-, i.e.,0,ab > then 0ba >,i.e., bR a ,(3) If ,aRb bRc , where ,,a b c ∈{0}R -, i.e. 0,ab >0b c >,then 0a c >.i.e.,aR c .Therefore, the relation ~ is an equivalence relation .8、 There are 1,3,5,15 equivalence relations on a set S with 1,2,3 or 4 elements,separately.9、 We can list the elements of the residue classes of modulo 3: [0]={…,-9,-6,-3,0,6,9,…} [1]={…,-8,-5,-2,1,4,7,10,…} [2]={…,-7,-4,-1,2,5,8,11,…}Chapter 21、proof i)ii )For every x,y ,z ∈G ,(x*y)*z=(xy-x-y+2)*z=(xy-x-y+2)z-z-(xy-x-y+2)+2=xyz-xz-yz+z-xy+x+y x*(y*z)=x*(yz-y-z+2)=x(yz-y-z+2)-x-(yz-y-z+2)+2=xyz-xy-xz+x-yz+y+z we have (x*y)*z=x*(y*z). And so the associative law holds.3、Solution Straightforward calculation shows that 46A IB ==. ()nAB I ≠,since 1()01n n A B I -⎛⎫=≠⎪⎝⎭(0)n ≠.4、proof Suppose 222()ab a b = for all,a b G∈,then2()ab =()()ab ab =22a b =()()aa bb ,i.e., abab aabb =. Applying left cancellation , this becomes bab abb =,and by right cancellation, this reduces to ba ab =. 5、proof For every a G ∈, there is a ,1a G -∈ such that 1a a e -=(identity)So 11()nabaaba--=1aba- (1)aba-1aba-=1naba-。

近世代数1

近世代数1

近世代数近世代数是数学中的一个重要分支,它主要研究代数结构及其应用。

近世代数产生于19世纪中叶,一开始被视为是整数理论的一部分,但随着研究的深入,近世代数逐渐发展成为一门独立的数学分支。

在这篇文章中,我们将对近世代数的概念、发展以及主要结论进行探讨。

一、近世代数的概念近世代数是指从巴格-瓦列理公式出发,发展起来的一种代数学,它主要研究代数结构的一般理论。

在近世代数中,我们主要研究群、环和域这三种代数结构,这三种代数结构都可以看作一组数以及对这些数进行运算的一种集合。

群:群是一种代数结构,它包含了一组有限或无限个元素以及一种二元运算。

这种运算满足结合律、单位元素存在和逆元素存在的条件,这里的逆元素指的是一个元素与之相乘可以得到单位元素。

环:环是一种代数结构,它包含了一组有限或无限个元素以及两种二元运算。

这两种运算被称作加法和乘法,加法满足结合律、交换律、单位元素存在以及逆元素存在的条件,乘法满足结合律和分配律。

域:域是一种代数结构,它包含了一组有限或无限个元素以及两种二元运算。

这两种运算被称作加法和乘法,加法满足结合律、交换律、单位元素存在以及逆元素存在的条件,乘法满足结合律、交换律、单位元素存在以及逆元素存在的条件。

此外,对于任意的非零元素,都有其乘法逆元素存在。

二、近世代数的发展1、伽罗华理论伽罗华理论是19世纪中期出现的一种代数理论,该理论最初的研究对象是方程的根式解。

伽罗华理论的主要思想是利用群论的方法研究方程的根的性质。

2、李群和黎曼猜想20世纪初,李群的概念被引入到了数学中。

李群是一种具有光滑结构和群结构的数学对象,它将代数和几何联系起来,是现代微分几何和物理学中不可或缺的数学工具之一。

黎曼猜想是数论中的一个著名猜想,它关于大约150年前被提出,至今尚未证明。

其主要内容是,对于任意正整数n,大于1的所有素数p都满足:p的虚部等于n的平方根。

3、格罗滕迪克定理格罗滕迪克定理是当代近世代数的一个重要定理,该定理表明,任何有限群都可以表示为一些简单有限群的直积。

近世代数第1章1.1

近世代数第1章1.1
第一章:群的基本知识
1.1 定义和例子
设S是一个集合,用记号S S表示S与S 的直积,也叫笛卡儿积。
把从S S到S的一个映射f 叫做S上 的一个二元运算。
结合律:a(bc) (ab)c,对于任意的a,b,c S。 交换律:ab ba, 对于a,b S.
S中的一个元素e称为S中的一个恒等元, 如果ea ae a,对于a S成立。
对于Abel群,群运算一般叫做加法,记为a b。
由有限多个元素构成的群G叫做有限群, 其中元素的个数记作 | G |,叫做G的阶。 |G | 表示G是无限群。
设g是群G中的一个元素,如果不存在自然数n 使得gn 1,则称g为一个无限阶元素, 否则使得gn 1成立的最小的自然数n称为 元素g的阶,记作o(g)。
命题1.1.2:可逆元的逆元是唯一的。 证明:设b,b是a的逆元,则
b be b(ab) (ba)b eb b.
定义1.1.3:带有一个二元运算的非空集合G 称为一个群,如果下面三个条件成立: (1)结合律成立; (2)恒等元存在; (3)每个元素是可逆元。
例:在Z10中,令H {2, 4, 6, 8},证:H关于 剩余类的乘法构成群。
构成群,称为一般线性群,记作GLn (K ). 当n 1时它不是Abel群。
(4) K ,g 为幺半群,但它不是群, 因为元素0的逆元不存在。 K *,g 为Abel群,即为GL1(K )。 (5)最小的群只含一个元素。 (6)空集不是群。
例:设G是群.证明:如果对于任意的 x G,都有x2 e.则G是Abel群.
证明:Q (b1a1)ab b1(a1a)b b1b 1. (ab)1 b1a1.
பைடு நூலகம்

《近世代数》习题及答案

《近世代数》习题及答案

《近世代数》作业一.概念解释1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元二.判断题1.Φ是集合n A A A ⨯⨯⨯ 21列集合D 的映射,则),2,1(n i A i =不能相同。

2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。

3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。

4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。

5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。

6.环R 的非空子集S 作成子环的充要条件是:1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。

7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。

8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。

9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。

10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。

11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。

12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么*F 的任何有限子群G 必为循环群。

13. 集合A 的一个分类决定A 的一个等价关系。

( )14. 设1H ,2H 均为群G 的子群,则21H H ⋃也为G 的子群。

( )15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。

( )三.证明题1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。

近世代数课件(全)--近世代数1-0 基本概念

近世代数课件(全)--近世代数1-0 基本概念
2019/1/20
2 3
1 8
4 5
7 6
例1 用黑白两种颜色的珠子做成有5颗珠子的项链
利用枚举法,得到一共8种不同类型的项链。 随着n、m的增加,用枚举法解决越来越难, 采用群论方法解决是最简单、有效的方法。
2019/1/20
2.分子结构的计数问题 在化学中研究由某几种元素可合成多少种 不同物质的问题,由此可以指导人们在大自 然中寻找或人工合成这些物质。 例2 在一个苯环上结合H原子或CH3原子团, 问可能形成多少种不同的化合物? 如果假定苯环上相邻C原子 之间的键是互相等价的,则 此问题就是两种颜色6颗珠 子的项链问题。
2019/1/20
数学上的确切描述
设由m颗珠子做成一个项链,可用一个正m边形 来代表它,它的每个顶点代表一颗珠子。
沿逆时针方向给珠子标号, 由于每一颗珠子的颜色有n种选 择,因而用乘法原理,这些有标 号的项链共有nm种。
但其中有一些可以通过旋转一个角 度或翻转180度使它们完全重合, 我们称为是本质相同的,我们要考 虑的是无论怎么旋转、翻转都不能 使它们重合的项链类型数。
2019/1/20
8. 代数方程根式求解问题 我们知道,任何一个一元二次代数方程 可用根式表示它的两个解。对于一元三次和 四次代数方程,古人们经过长期的努力也巧 妙地做到了这一点。于是人们自然要问:是 否任何次代数方程的根均可用根式表示?许 多努力都失败了,但这些努力促使了近世代 数的产生,并最终解决了这个问题:五次以 上代数方程没有根式解。
2019/1/20
f的定义域A×A×…×A中的元素个数为 2n,f在每个元素上的取值有两种可能,所以 n 2 全部开关函数的数目为2 ,这也就是n个开 关的开关线路的数目。 如果不考虑开关的标号,则若开关线路结 构完全相同,称这些开关线路是本质相同的 。要进一步解决本质上不同的开关线路的数目 问题,必须用群论的方法。

代数学引论(近世代数)第一章答案

代数学引论(近世代数)第一章答案

第一章代数基本概念习题解答与提示(P54)1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,b G,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1]对任意a,b G,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此G为交换群.[方法2]对任意a,b G,a2b2=e=(ab)2,由上一题的结论可知G为交换群.3. 设G 是一非空的有限集合,其中定义了一个乘法ab,适合条件:(1) a(bc)=(ab)c; (2) 由ab=ac 推出a=c; (3) 由ac=bc 推出a=b;证明G 在该乘法下成一群. 证明:[方法1]设G={a 1,a 2,…,a n },k 是1,2,…,n 中某一个数字,由(2)可知若i j(I,j=1,2,…,n),有a k a i a k a j ------------<1> a i a k a j a k ------------<2>再由乘法的封闭性可知G={a 1,a 2,…,a n }={a k a 1, a k a 2,…, a k a n }------------<3> G={a 1,a 2,…,a n }={a 1a k , a 2a k ,…, a n a k }------------<4>由<1>和<3>知对任意a t G, 存在a m G,使得a k a m =a t .由<2>和<4>知对任意a t G, 存在a s G,使得a s a k =a t .由下一题的结论可知G 在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章§1.1集合§1.2映射与变换教学内容:集合,子集,集合相等的概念集合关系及运算的定义和性质映射,单射,满射,双射,逆映射的定义及例子变换,置换等的定义及例子映射的象及逆象的定义,映射的乘法教学重点:集合的关系及运算,映射变换的定义,映射的乘法在很多课程中都学过有关集合的知识,一些基本的概念和结论不再重复,这里,只复习一下不太熟悉的知识,并在符号上做一个统一的规定。

1、用Z表示整集合,Z*表示非零整数集,用ψ表示有理数集,ψ*表示非零有理数数集等。

Z+ ,ψ+…R,C…2、AB表示A是B的子集,A=B或ABAB表示A是B的真子集,即B中有不存在A的元素AB表示A不是B的子集AB表示A不是B的真子集A=BAB且BA3、如果集合A含有无穷多个元素,则记为=,如果A含有n个元素,则记为=n。

(A的阶),有+=+4、称集合A-B={aaA, aB}为集合A与B的差集。

易知有A-B=A5、集合A有很多子集,将A的所有子集放在一起(包括空集)也组成一个集合,称为A的幂集,记作P(A)。

=(=n)映射是函数的推广,函数的定义中要求有两个数集,而映射中,是一般的集合6、定义:设A,B是两个集合,如果有一个法则,他对于A中每个元素,在B中都有一个唯一确定的元素y与它对应,则称为从A到B的映射。

这种关系常表示为:AB 或:xy 或y=(x)xy且称y为x在之下的像,称x为y在之下的原像或逆像。

由定义可知,映射必须满足三个条件:①A中每个元素都有像,②A中元素的像是唯一的,③A中元素的像在B里。

例:P6例1-6例1.不是映射,不满足①例2.不是映射,不满足②例3.不是映射,不满足③例4.是映射,不单不满例4.是映射,不单,满例6.是映射,单不满7、映射是函数概念的推广,是对应法则,A是定义域,B包含值域,根据B是否与值域相等,可将映射区分为是否是满射。

A中不同元素的像可能相同,也可能不同,据此可区分映射是否为单射。

定义:设为A到B的一个映射,如果B中每个元素在A中都有逆像,则称为A到B的一个满射。

如果A 中不同的元素在B中的像也不同,则称是从A到B的一个单射。

如果既是满射又是单射,则称是从A到B的一个双射,或一一映射。

例:P7,例 4-8例7,双射,例8,满射,不单。

8、设有映射:AB,A,B.用()表示中所有元素在之下的像的全体组成的集合,称为在之下的像,()B。

用()表示中所有元素在之下的逆像全体组成的集合,称为在之下的逆像,()A。

易知:是满射(A)=B.9、设:AB是双射,(思考,为什么?),则:BA 也是一个映射,且为双射(为什么?),xy=(x) yx称为的逆映射。

注意:双射才有逆映射。

定理:设A,B是两个有限集合,且=,是A到B的一个映射,则是单射是满射是双射证明:略。

10、设б与都是A到B的映射,如果xA,都有б(x)=(x),则称б与相等,记作б=11、设:AB б:C 则ACx(x) y(y), x(x)((x))是一个A到C的映射,记为,即:AC 并称为与的合成或乘积。

x((x))12、集合A 到自身的映射,叫做集合A的一个变换,类似可定义单变换,满变换,双射变换(一一变换)等。

将集合A每个元素映为自身的变换,称为A的恒等变换,:AB 它是一个一一变换。

xx,例:P9例9-10定理:含有n个元素的集合共有n!个双射变换。

有限集合M={1,2,n}的双射变换称为一个n之置换,且常表示为=例如n=3时, M={1,2,n}有3!=6个3之置换, ,,,,,.要注意每个n之置换都有n!种写法,但习惯上第一行顺序排列,如=====。

§1.3 集合§1.4 运算律教学内容:运算的定义,变换的乘法,运算律的定义及其意义教学重点:运算及运算律的定义1、运算就是通常的运算,加,减,乘,除等的推广,简单说就是由两个东西算出来一个新的来。

下面是“教学”的定义。

定义:设M是一个集合,如果有一个法则,它对M中任意两个有次序的元素a和b,在M中都有唯一一个确定的元素d与他们对应,则称这个法则是M的一个运算。

如果用“。

”表示定义中所说的法则,即运算,由a与b通过“。

”得到的d记为a。

b=d,运算也可以用其他符号表示。

注意d必须属于M有代数运算的集合,称为代数系统例:P12 例1-52、设M是一个集合,用T(M)表示M的全体变换作成的集合,бT(M),乘积б,即xM,б(x)=б((x))也是M的一个变换,即бT(M),称之为变换的乘法,是T(M)的一个代数运算。

用表示M上的恒等变换,则бT(M),有xM,б(x)=б(x)=б(x)所以б=б=б用S(M)表示M的全体双射变换组成的集合,即S(M)T(M)可以证明两个双射变换的乘积仍是双射变换,即变换的乘积也是S(M)的一个代数运算,(证明见教材)例:P14例3、对有限集合的代数运算,常列成一个表,如A={,,}上有代数运算。

且。

=,则有这种表称为乘法表例e a b ce e a b ca a e c bb bc e ac c b a e4、设集合M有运算,若a,b,cM有(ab)c=a(bc)则称运算满足结合律。

数,多项式,矩阵,函数等对通常的加法和乘法都满足结合律。

例:P16 例1-3例1、不满足的例子,例2变换的乘法满足结合律n个元素,,相乘时,可以有很多种加括号的方式,若运算满足结合律,可以证明无论怎样叫括号结果都相等,通常这一相等的结果写成,但不能交换次序5、如果集合M的代数式运算。

满足a,bM有ab=ba则称运算满足交换律。

当集合M的运算满足结合律和交换律时,M中任意n个元素相乘时可以任意结合,任意交换次序,结果不变。

6、设集合M有两个代数运算和,如果a,b,cM,有a(bc)=(ab)(ac)则称对满足左分配律。

如果(bc) a=(ba) (ca)则称对满足右分配律。

当满足交换律时,上面两个分配律可为一个。

设集合M有两个代数运算和,满足结合律,而对满足左分配律则a,,,,有a()= (a)(a)(a)对右分配律类似7、近世代数主要研究代数系统,其中的运算一般都满足结合律。

§1.5 同态与同构§1.6 等价关系与集合的分类教学内容:同态,同构的定义与性质等价关系的定义等价关系与集合分类的关系教学重点:同态,同构的定义与性质,等价关系与集合分类1、设集合M与各有代数运算与,且是M到的映射,如果保持运算,即a,bM,总有(ab)= (a)(b)则称为代数系统M到的一个同态映射,若又是满射,则称为同态满射。

如果M到存在同态满射,则称M与同态,记为M例:P20 例12、定理:设集合M与各有代数运算与,且M,则⑴当满足结合律时,也满足结合律⑵当满足交换律时,也满足交换律证明见教材定理:设集合M有代数运算与,有代数运算与,是M到的满射,且对与及与同态,则当对满足左(右)分配律时,对也满足左(右)分配律这两个定理说明两个代数系统同态时,前面的有什么运算律,后面的也有。

3、定义;设是M到的一个(关于代数运算与)同态满射,如果又是单射(即是双射),则称是M到的一个同构映射。

如果集合M到存在同构映射,就称M与同构,记为M,否则称M与不同构。

M到自身的同态映射,称为M的自同态(映射),同样,M到自身的同构映射,称为自同构(映射)。

例: P22 例2-3 注意集合与运算4、对代数系统M,总有M ()若,则(,)若,,则(б,,б)后面会知道同构关系是一种等价关系。

5、若M={a,b,c,}有运算,={,,,}有运算,且M,则a, b, c,,则ab=c=由此可知除去元素本身的性质,代数运算名称,所有符号不同外,从运算的性质看M与并没有什么本质区别。

也正因为如此,在这门课中常把同构的代数系统等同起来,甚至不加区分。

6、设M是一个集合,如果有一个法则R,它对M中任二元素a,b可以确定是或不是符合这个法则,则称此法则为M的元素间的一个关系。

a与b符合这个法则时,记作aRb,否则n为ab例:P24 例1-37、定义:如果集合M有一个关系R满足以下条件⑴对M中任意元素a,都有aRa(反身性)⑵若aRb,则bRa(对称性)⑶若aRb,bRc,则aRc(传递性)则称这个关系是M的一个等价关系等价关系常用符号表示,当ab时,称a与b等价由前面知,同构关系是一种等价关系。

例:P25 例4-58、定义:若把集合M的全体元素分成若干个互不相交的子集(即它们的并是M,它们中任2个不同子集无共同元素),则称每个子集为M的一个分类,类的全体叫做M的一个分类。

例:M={1,2,3,10}有分类{1},{2},{10},{3,4,5,6},{7,8,9,10}及{1,3,5,7,9},{2,4,6,8}等系种分类。

9、定理:集合M的一个分类决定M的一个等价关系证明见教材定理:集合M的一个等价关系决定M的一个分类证明见教材例:P27 例6。

相关文档
最新文档