小学奥数 7-7-2 容斥原理之重叠问题(二).教师版
小学奥数教案-第18讲-重叠问题(教)
教师辅导讲义 学员编:年 级:四年级 课 时 数:3 学员姓名:辅导科目:数学 教师: 授课主题第18讲-重叠问题 授课类型T 同步课堂 P 实战演练 S 归纳总结 教学目标① 了解容斥原理二量重叠和三量重叠的内容 ② 掌握容斥原理在组合计数等各个方面的应用 授课日期及时段T (Textbook-Based )——同步课堂一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数, 用式子可表示成:A B A B A B =+-,则称这一公式为包含与排除原理,简称容斥原理. 图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:AB ,即阴影面积. 图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:AB ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类知识梳理1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.考点一:两量重叠问题例1、实验小学四年级二班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加.这个班有多少人参加了语文或数学兴趣小组? C BA【解析】如图所示,A 圆表示参加语文兴趣小组的人,B 圆表示参加数学兴趣小组的人,A 与B 重合的部分C (阴影部分)表示同时参加两个小组的人.图中A 圆不含阴影的部分表示只参加语文兴趣小组未参加数学兴趣小组的人,有281216-=(人);图中B 圆不含阴影的部分表示只参加数学兴趣小组未参加语文兴趣小组的人,有291217-=(人).方法一:由此得到参加语文或数学兴趣小组的有:16121745++=(人).方法二:根据包含排除法,直接可得:参加语文或数学兴趣小组的人=参加语文兴趣小组的人+参加数学兴趣小组的人-两个小典例分析图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++重叠部分A B 、B C 、C A 重叠了2次,多加了1次.2.再排除:A B C A B B C A C ++---重叠部分A B C 重叠了3次,但是在进行A B C ++-A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.A B【解析】如图,用长方形表示1~100的全部自然数,圆表示1~100中3的倍数,B圆表示1~100中5的倍数,长方形内两圆外的部分表示既不是3的倍数也不是5的倍数的数.由1003331÷=可知,1~100中3的倍数有33个;由100520÷=可知,1~100中5的倍数有20个;由10035610()可知,1~100既是3的倍数又是5的倍数的数有6个.÷⨯=由包含排除法,3或5的倍数有:3320647+-=(个).从而不是3的倍数也不是5的倍数的数有1004753-=(个).考点五:容斥原理中的最值问题例1、将1~13这13个数字分别填入如图所示的由四个大小相同的圆分割成的13个区域中,然后把每个圆内的7个数相加,最后把四个圆的和相加,问:和最大是多少?【解析】越是中间,被重复计算的越多,最中心的区域被重复计算四次,将数字按从大到小依次填写于被重复计算多的区格中,最大和为:13×4+(12+11+10+9)×3+(8+7+6+5)×2+(4+3+2+1)=240.P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、芳草地小学四年级有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?AC B【解析】如图,A圆表示学画画的人,B圆表示学钢琴的人,C表示既学钢琴又学画画的人,图中A圆不含阴影的部分表示只学画画的人,有:43376-=(人),图中B圆不含阴影的部分表示只学钢琴的人,有:583721-=(人).2、科技活动小组有55人.在一次制作飞机模型和制作舰艇模型的定时科技活动比赛中,老师到时清点发现:制作好一架飞机模型的同学有40人,制作好一艘舰艇的同学有32人.每个同学都至少完成了一项制作.问两项制作都完成的同学有多少人?AC B【解析】因为403272>,所以必有人两项制作都完成了.+=,7255由于每个同学都至少完成了一项制作,根据包含排除法可知:全组人数4032=+-完成了两项制作的人数,即5572=-完成了两项制作的人数.所以,完成了两项制作的人数为:725517-=(人).3、五年级一班共有36人,每人参加一个兴趣小组,共有A、B、C、D、E五个小组,若参加A组的有15人,参加B组的人数仅次于A组,参加C组、D组的人数相同,参加E组的人数最少,只有4人.那么,参331,100610.根据包含排除法,能被中任一个整除的数有3320+、如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于张板盖住的总面积是张纸板重叠部分的面积是多少平方厘米?5、四年级科技活动组共有63人.在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人.每个同学都至少完成了一项活动.问:同时完成这两项活动的同学有多少人?【解析】因423476+=,7663>,所以必有人同时完成了这两项活动.由于每个同学都至少完成了一项活动,根据包含排除法知,4234+-(完成了两项活动的人数)=全组人数,即76-(完成了两项活动的人数)63=.由减法运算法则知,完成两项活动的人数为766313-=(人).(也可画图分析)1、(第二届小学迎春杯数学竞赛)有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,83人懂俄语.问既懂英语又懂俄语的有多少人?【解析】方法一:在100人中懂英语或俄语的有:1001090-=(人).又因为有75人懂英语,所以只懂俄语的有:907515-=(人).从83位懂俄语的旅客中除去只懂俄语的人,剩下的8315- 68=(人)就是既懂英语又懂俄语的旅客.方法二:学会把公式进行适当的变换,由包含与排除原理,得:75839068A B A B A B =+-=+-=(人).(Summary-Embedded)——归纳总结容斥原理的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)
容斥原理森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。
”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有 80 种鸟类。
狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。
”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有 60 种兽类。
最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类 140 种。
”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是 139 种。
”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。
当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。
由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。
容斥原理 1如果被计数的事物有 A、B 两类,那么, A 类 B 类元素个数总和= 属于 A 类元素个数+ 属于 B 类元素个数—既是 A 类又是 B 类的元素个数。
即A∪B = A+B - A∩B容斥原理 2如果被计数的事物有 A、B、C 三类,那么, A 类和 B 类和 C 类元素个数总和= A 类元素个数+ B 类元素个数+C 类元素个数—既是 A 类又是 B 类的元素个数—既是 A 类又是 C 类的元素个数—既是 B 类又是 C 类的元素个数+既是 A 类又是 B 类而且是 C 类的元素个数。
即A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C容斥原理 1【例 1】★一次期末考试,某班有 15 人数学得满分,有 12 人语文得满分,并且有 4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B 类元素”,“语、数都是满分”称为“既是 A 类又是 B 类的元素”,“至少有一门得满分的同学”称为“A 类和 B 类元素个数”的总和。
小学奥数7-7-1 容斥原理之重叠问题(一).专项练习及答案解析
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:7-7-1.容斥原理之重叠问题(一)知识要点教学目标1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.两量重叠问题【例 1】 小明喜欢:踢足球、上网、游泳、音乐、语文、数学;小英喜欢:数学、英语、音乐、陶艺、跳绳。
小学奥数7-7-4 容斥原理之数论问题.专项练习及答案解析
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-知识要点教学目标1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.7-7-4 容斥原理之数论问题既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个?A B【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图,用长方形表示1~100的全部自然数,A 圆表示1~100中3的倍数,B 圆表示1~100中5的倍数,长方形内两圆外的部分表示既不是3的倍数也不是5的倍数的数.由1003331÷=可知,1~100中3的倍数有33个;由100520÷=可知,1~100中5的倍数有20个;由10035610÷⨯=()可知,1~100既是3的倍数又是5的倍数的数有6个.由包含排除法,3或5的倍数有:3320647+-=(个).从而不是3的倍数也不是5的倍数的数有1004753-=(个).【答案】53【巩固】 在自然数1100~中,能被3或5中任一个整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1003331÷=,100520÷=,10035610÷⨯=().根据包含排除法,能被3或5中任一个整除的数有3320647+-=(个).【答案】47【巩固】 在前100个自然数中,能被2或3整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图所示,A 圆内是前100个自然数中所有能被2整除的数,B 圆内是前100个自然数中所有能被3整除的数,C 为前100个自然数中既能被2整除也能被3整除的数.例题精讲 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.前100个自然数中能被2整除的数有:100250÷=(个).由1003331÷=知,前100个自然数中能被3整除的数有:33个.由10023164÷⨯=()知,前100个自然数中既能被2整除也能被3整除的数有16个.所以A 中有50个数,B 中有33个数,C 中有16个数.因为A ,B 都包含C ,根据包含排除法得到,能被2或3整除的数有:50331667+-=(个).【答案】67【例 2】 在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1~1000之间,5的倍数有10005⎡⎤⎢⎥⎣⎦=200个,7的倍数有10007⎡⎤⎢⎥⎣⎦=142个,因为既是5的倍数,又是7的倍数的数一定是35的倍数,所以这样的数有100035⎡⎤⎢⎥⎣⎦=28个.所以既不能被5除尽,又不能被7除尽的数有1000-200-142+-28=686个.【答案】686【巩固】 求在1至100的自然数中能被3或7整除的数的个数.【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 记 A :1~100中3的倍数,1003331÷=,有33个;B :1~100中7的倍数,1007142÷=,有14个;A B :1~100中3和7的公倍数,即21的倍数,10021416÷=,有4个.依据公式,1~100中3的倍数或7的倍数共有3314443+-=个,则能被3或7整除的数的个数为43个.【答案】43【例 3】 以105为分母的最简真分数共有多少个?它们的和为多少?【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 以105为分母的最简真分数的分子与105互质,105=3×5×7,所以也是求1到105不是3、5、7倍数的数有多少个,3的倍数有35个,5的倍数有21个,7的倍数有15个,15的倍数有7个,21的倍数有5个,35的倍数有3个,105的倍数有1个,所以105以内与105互质的数有105-35-21-15+7+5+3-1=48个,显然如果n与105互质,那么(105-n )与n 互质,所以以105为分母的48个最简真分数可两个两个凑成1,所以它们的和为24.【答案】48个,和24【巩固】 分母是385的最简真分数有多少个?并求这些真分数的和.【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 385=5×7×11,不超过385的正整数中被5整除的数有77个;被7整除的数有55个;被11整除的数有35个;被77整除的数有5个;被35整除的数有11个;被55整除的数有7个;被385整除的数有1个;最简真分数的分子可以有385-77-55-35+5+11+7-1=240.对于某个分数a/385如果是最简真分数的话,那么(385-a )/385也是最简真分数,所以最简真分数可以每两个凑成整数1,所以这些真分数的和为120.【答案】240个,120个【例 4】 在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有个.【考点】容斥原理之数论问题 【难度】3星 【题型】填空【关键词】西城实验【解析】 1到2008这2008个自然数中,3和5的倍数有200813315⎡⎤=⎢⎥⎣⎦个,3和7的倍数有20089521⎡⎤=⎢⎥⎣⎦个,5和7的倍数有20085735⎡⎤=⎢⎥⎣⎦个,3、5和7的倍数有200819105⎡⎤=⎢⎥⎣⎦个.所以,恰好是3、5、7中两个数的倍数的共有1331995195719228-+-+-=个.【答案】228个【例 5】 求1到100内有____个数不能被2、3、7中的任何一个整除。
(小学奥数)几何中的重叠问题
1. 瞭解容斥原理二量重疊和三量重疊的內容;2. 掌握容斥原理的在組合計數等各個方面的應用.一、兩量重疊問題 在一些計數問題中,經常遇到有關集合元素個數的計算.求兩個集合並集的元素的個數,不能簡單地把兩個集合的元素個數相加,而要從兩個集合個數之和中減去重複計算的元素個數,即減去交集的元素個數,用式子可表示成:A B A B A B =+-(其中符號“”讀作“並”,相當於中文“和”或者“或”的意思;符號“”讀作“交”,相當於中文“且”的意思.)則稱這一公式為包含與排除原理,簡稱容斥原理.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.包含與排除原理告訴我們,要計算兩個集合A B 、的並集AB 的元素的個數,可分以下兩步進行:第一步:分別計算集合A B 、的元素個數,然後加起來,即先求A B +(意思是把A B 、的一切元素都“包含”進來,加在一起);第二步:從上面的和中減去交集的元素個數,即減去C AB =(意思是“排除”了重複計算的元素個數). 二、三量重疊問題A 類、B 類與C 類元素個數的總和A =類元素的個數B +類元素個數C +類元素個數-既是A 類又是B 類的元素個數-既是B 類又是C 類的元素個數-既是A 類又是C 類的元素個數+同時是A 類、B 類、C 類的元素個數.用符號表示為:A B C A B C A B B C A C A B C =++---+.圖示如下:教學目標知識要點7-7-3.幾何中的重疊問題1.先包含——A B +重疊部分A B 計算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重疊部分A B 減去.在解答有關包含排除問題時,我們常常利用圓圈圖(韋恩圖)來幫助分析思考.【例 1】 把長38釐米和53釐米的兩根鐵條焊接成一根鐵條.已知焊接部分長4釐米,焊接後這根鐵條有多長?【考點】幾何中的重疊問題 【難度】1星 【題型】解答【解析】 因為焊接部分為兩根鐵條的重合部分,所以,由包含排除法知,焊接後這根鐵條長3853487+-=(釐米).【答案】87釐米【巩固】 把長23釐米和37釐米的兩根鐵條焊接成一根鐵條.已知焊接部分長3釐米,焊接後這根鐵條有多長?【考點】幾何中的重疊問題 【難度】1星 【題型】解答【解析】 焊接部分為兩根鐵條的重合部分,由包含排除法知,焊接後這根鐵條長:2337357+-=(釐米).【答案】57釐米【例 2】 兩張長4釐米,寬2釐米的長方形紙擺放成如圖所示形狀.把它放在桌面上,覆蓋面積有多少平方釐米?【考點】幾何中的重疊問題 【難度】1星 【題型】解答例題精講圖中小圓表示A 的元素的個數,中圓表示B 的元素的個數,大圓表示C 的元素的個數.1.先包含:A B C ++ 重疊部分A B 、B C 、C A 重疊了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重疊部分A B C 重疊了3次,但是在進行A B C ++- A B B C A C --計算時都被減掉了. 3.再包含:A B C A B B C A C A B C ++---+.图32厘米4厘米【解析】 兩個長方形如圖擺放時出現了重疊(見圖中的陰影部分),重疊部分恰好是邊長為2釐米的正方形,如果利用兩個42⨯的長方形面積之和來計算被覆蓋桌面的面積,那麼重疊部分在兩個長方形面積中各被計算了一次,而實際上這部分只需計算一次就可以了.所以,被覆蓋面積=長方形面積之和-重疊部分.於是,被覆蓋面積4222212=⨯⨯-⨯=(平方釐米).【答案】12釐米【巩固】 如圖3,一張長8釐米,寬6釐米,另一個正方形邊長為6釐米,它們中間重疊的部分是一個邊長為4釐米的正方形,求這個組合圖形的面積.【考點】幾何中的重疊問題 【難度】1星 【題型】解答图3【解析】 兩個圖形如圖擺放時出現了重疊(見圖中的陰影部分),重疊部分恰好是邊長為4釐米的正方形,如果利用長方形和正方形面積之和來計算被覆蓋桌面的面積,那麼重疊部分在長方形和正方形面積中各被計算了一次,而實際上這部分只需計算一次就可以了.所以,組合圖形的面積=長方形面積+正方形面積-重疊部分.於是,組合圖形的面積:86664468⨯+⨯-⨯=(平方釐米).【答案】68平方釐米【巩固】 一個長方形長12釐米,寬8釐米,另一個長方形長10釐米,寬6釐米,它們中間重疊的部分是一個邊長4釐米的正方形,求這個組合圖形的面積.【考點】幾何中的重疊問題 【難度】1星 【題型】解答【解析】 兩個長方形如圖擺放時出現了重疊(見圖中的陰影部分),重疊部分恰好是邊長為4釐米的正方形,如果利用兩個長方形面積之和來計算被覆蓋桌面的面積,那麼重疊部分在兩個長方形面積中各被計算了一次,而實際上這部分只需計算一次就可以了.所以,組合圖形的面積=長方形面積之和-重疊部分.於是,組合圖形的面積12810644140=⨯+⨯-⨯=(平方釐米).【答案】140平方釐米【例 3】三個面積均為50平方釐米的圓紙片放在桌面上(如圖),三個紙片共同重疊的面積是10平方釐米.三個紙片蓋住桌面的總面積是100釐米.問:圖中陰影部分面積之和是多少?【考點】幾何中的重疊問題【難度】2星【題型】解答C BA10【解析】將圖中的三個圓標上A、B、C.根據包含排除法,三個紙片蓋住桌面的總面積=(A圓面積B+圓面積C+圓面積-)(A與B重合部分面積A+與C重合部分面積B+與C重合部分面積+)三個紙片共同重疊的面積,得:100505050A=++-()(與B重合部分面積A+與C重合部分面積B+與C重合部分面積10+),得到A、B、C三個圓兩兩重合面積之和為:16010060-=平方釐米,而這個面積對應於圓上的那三個紙片共同重疊的面積的三倍與陰影部分面積的和,即:60103=⨯+陰影部分面積,則陰影部分面積為:603030-=(平方釐米).【答案】30平方釐米【巩固】如圖,已知甲、乙、丙3個圓的面積均為30,甲與乙、乙與丙、甲與丙重合部分的面積分別為6,8,5,而3個圓覆蓋的總面積為73.求陰影部分的面積.【考點】幾何中的重疊問題【難度】2星【題型】解答【解析】設甲圓組成集合A,乙圓組成集合B,丙圓組成集合C.A B C===30,A B=6,B C=8,A C=5,A B C=73,而A B C=A B C+--A B B C A C A B C--+.有73=30×3-6-8-5+A B C,即A B C=2,即甲、乙、丙三者的公共面積(⑧部分面積)為2.那麼只是甲與乙(④),乙與丙(⑥),甲與丙(⑤)的公共的面積依次為6-2=4,8-2=6,5-2=3,所以有陰影部分(①、②、③部分之和)的面積為73-4-6-3-2=58.【答案】58【例 4】如圖,三角形紙板、正方形紙板、圓形紙板的面積相等,都等於60平方釐米.陰影部分的面積總和是40平方釐米,3張板蓋住的總面積是100平方釐米,3張紙板重疊部分的面積是多少平方釐米?【考點】幾何中的重疊問題【難度】3星【題型】解答【解析】了三次.所以三張紙重疊部分的面積60310040220()(平方釐米).=⨯--÷=【答案】20平方釐米【巩固】如圖所示,A、B、C分別是面積為12、28、16的三張不同形狀的紙片,它們重疊在一起,露在外面的總面積為38.若A與B、B與C的公共部分的面積分別為8、7,A、B、C這三張紙片的公共部分為3.求A與C公共部分的面積是多少?【考點】幾何中的重疊問題【難度】3星【題型】解答【解析】設A與C公共部分的面積為x,由包含與排除原理可得:⑴先“包含”:把圖形A、B、C的面積相加:12281656++=,那麼每兩個圖形的公共部分的面積都重複計算了1次,因此要排除掉.⑵再“排除”:5687x---,這樣一來,三個圖形的公共部分被全部減掉,因此還要再補回.⑶再“包含”:56873x---+,這就是三張紙片覆蓋的面積.根據上面的分析得:5687338x=.x---+=,解得:6【答案】6。
小学奥数:容斥原理之重叠问题(一).专项练习
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-U I (其中符号“U ”读作“并”,相当于中文“和”或者“或”的意思;符号“I ”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B U 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =I (意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+U U I I I I I .图示如下:教学目标知识要点7-7-1.容斥原理之重叠问题(一)1.先包含——A B +重叠部分A B I 计算了2次,多加了1次;2.再排除——A B A B +-I把多加了1次的重叠部分A B I 减去.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.两量重叠问题【例 1】 小明喜欢:踢足球、上网、游泳、音乐、语文、数学;小英喜欢:数学、英语、音乐、陶艺、跳绳。
小学奥数7 7 1 容斥原理之重叠问题一专项练习及答案解析
(一)7-7-1.容斥原理之重叠问题教学目标1.了解容斥原理二量重叠和三量重叠的内容;掌握容斥原理的在组合计数等各个方面的应用.2.知识要点一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个(,相当于中文“和”或者“或”的数,用式子可表示成:”读作“并”其中符号“BAB?A?B?A则称这一公式为包含与排除原理,简称容斥原”读作“交”,相当于中文“且”的意思.)意思;符号“,即阴影表示大圆部分,表示大圆与小圆的公共部分,记为:理.图示如下:表示小圆部分,BACBA,即阴表示大圆与小圆的公共部分,记为:表示小圆部分,表示大圆部分,:面积.图示如下BACBA影面积.1.先包含——B?A重叠部分计算了次,多加了次;1BA2.再排除——2B?A?AB次的重叠部分减去.把多加了1BA的元素的个数,可分以下两步进行:包含与排除原理告诉我们,要计算两个集合的并集BABA、的一切元素都“包含”意思是把(第一步:分别计算集合的元素个数,然后加起来,即先求B、BA、AB?A );进来,加在一起.(第二步:从上面的和中减去交集的元素个数,即减去意思是“排除”了重复计算的元素个数)BAC?二、三量重叠问题类又是既是类元素的个数类元素个数类元素个数类与类、类元素个数的总和?CC?BB?B?AAA类类、同时是类、类的元素个数既是类又是类的元素个数既是类又是类的元素个数??CCCBABA?.图示如下:的元素个数.用符号表示为:CBAC?A?C?AB?BC??ABC?AB的元素的个数,图中小圆表示的元素的个数,中圆表示BA大圆表示的元素的个数.C1.先包含:C?A?B次.次,、重叠了多加了重叠部分、1ACBCBA2.再排除:2C?A??ABBCA?B?C次,但是在进行重叠部分重叠了CAB?CBA??3计算时都被减掉了.CC?ABAB?.3.再包含:CCA?ABB??AB?CAB?C?来帮助分析思考.(在解答有关包含排除问题时,我们常常利用圆圈图韦恩图)1ofpage8 教师版题库.容斥原理之重叠问题(一)1-7-7.例题精讲两量重叠问题小明喜欢:踢足球、上网、游泳、音乐、语文、数学;小英喜欢:数学、英语、音乐、陶艺、跳】【例1BA ________、圆。
四年级奥数第18讲-重叠问题(教)
A CB
【解析】因为 40 32 72, 72 55 ,所以必有人两项制作都完成了. 由于每个同学都至少完成了一项制作,根据包含排除法可知: 全组人数 40 32 完成了两项制作的人数, 即 55 72 完成了两项制作的人数. 所以,完成了两项制作的人数为: 72 55 17 (人).
于是,被覆盖面积 422 22 12 (平方厘米).
例 3、三个面积均为 50 平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10 平方厘米.三个 纸片盖住桌面的总面积是100 厘米.问:图中阴影部分面积之和是多少?
A
B
10
C
【解析】将图中的三个圆标上 A 、 B 、 C .根据包含排除法, 三个纸片盖住桌面的总面积 ( A 圆面积 B 圆面积 C 圆面积)( A 与 B 重合部分面积 A 与 C 重合部分面积 B 与 C 重合部分面积) 三个纸片共同重叠的面积, 得:100 (50 50 50)(A与 B 重合部分面积 A 与 C 重合部分面积 B 与 C 重合部分面积)10 , 得到 A 、 B 、 C 三个圆两两重合面积之和为:160 100 60 平方厘米, 而这个面积对应于圆上的那三个纸片共同重叠的面积的三倍与阴影部分面积的和, 即: 60 103 阴影部分面积, 则阴影部分面积为: 60 30 30 (平方厘米).
由图中可以看出,全体人员是至少采了一种的人数与两种都没采的人数之和, 则至少采了一种的人数为: 46 6 40 (人), 而至少采了一种的人数 只采了樱桃的人数 两种都采了的人数 只采了杏的人数, 所以,只采了杏的人数为: 40 18 7 15(人). 例 4、育才小学画展上展出了许多幅画,其中有 16 幅画不是六年级的,有 15 幅画不是五年级的,五、六年级 共展出 25 幅画,其他年级的画共有多少幅?
四年级奥数第18讲重叠问题(教师版)
图中 圆不含阴影的部分表示只学画画的人,有: (人),
图中 圆不含阴影的部分表示只学钢琴的人,有: (人).
2、科技活动小组有 人.在一次制作飞机模型和制作舰艇模型的定时科技活动比赛中,老师到时清点发现:制作好一架飞机模型的同学有 人,制作好一艘舰艇的同学有 人.每个同学都至少完成了一项制作.问两项制作都完成的同学有多少人?
【解析】因为焊接部分为两根铁条的重合部分,
所以,由包含排除法知,焊接后这根铁条长 (厘米).
例2、两张长 厘米,宽 厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?
【解析】两个长方形如图摆放时出现了重叠(见图中的阴影部分),
重叠部分恰好是边长为 厘米的正方形,
如果利用两个 的长方形面积之和来计算被覆盖桌面的面积,
【解析】阴影部分是有两块重叠的部分,被计算两次,
而三张纸重叠部分是被计算了三次.
所以三张纸重叠部分的面积 (平方厘米).
5、四年级科技活动组共有 人.在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有 人,装配好一架飞机模型的同学有 人.每个同学都至少完成了一项活动.问:同时完成这两项活动的同学有多少人?
本节课我学到了
我需要努力的地方是
【解析】如图,用长方形表示全班人数,
圆表示会游泳的人数, 圆表示会打篮球的人数,长方形中阴影部分表示两项都不会的人数.
由图中可以看出,全班人数 至少会一项的人数 两项都不会的人数,至少会一项的人数为: (人),全班人数为: (人).
例3、在 人参加的采摘活动中,只采了樱桃的有 人,既采了樱桃又采了杏的有 人,既没采樱桃又没采杏的有 人,问:只采了杏的有多少人?
小学奥数几何中的重叠问题
目
1.了解容斥原理二量重叠和三量重叠的内容;
2.掌握容斥原理的在组合计数等各个方面的应用.
目
一、两量重叠问题
在一些计数问题中,经常遇到有关集合元素个数的计算•求两个集合并集的元素的个数,不能简单地
把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个
数,用式子可表示成:AUB A B AI B(其中符号U”读作 并”,相当于中文 和”或者 或”的意思;符 号“I”读作 交”,相当于中文 且”的意思.)则称这一公式为包含与排除原理, 简称容斥原理.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:AI B,即阴影面积•图示如下:
二、三量重叠问题
A类、B类与C类元素个数的总和A类元素的个数B类元素个数C类元素个数 既是A类又是B类的元素个数 既是B类又是C类的元素个数 既是A类又是C类的元素个数 同时是A类、B类、C类 的元素个数.用符号表示为:AU BUC A B C AI B BI C AI C AI BI C.图示如下:
另一个长方形长10厘米宽厘米它们中间重叠的部分是个边长4厘米的正几何中的重叠问题两个长方形如图摆放时出现了重叠见图中的阴影部分重叠部分恰好是边长为厘米的正方形如果利用两个长方形面积之和来计算被覆盖桌面的面积那么重叠部分在两个长方形面积中各被计算了一次而实际上这部分只需计算一次就可以了
数学竞赛
小学奥数几何中的
几何中的重叠问题
【难度】2星 【题型】解答
将图中的三个圆标上 圆面积C圆面积)纸片共同重叠的面积,
A、B、C•根据包含排除法,三个纸片盖住桌面的总面积(A圆面积B
(A与B重合部分面积A与C重合部分面积B与C重合部分面积)三个
容斥原理_教师版
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.知识点说明 一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).知识精讲教学目标7-7 容斥原理1.先包含——A B + 重叠部分AB 计算了2次,多加了1次;二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.板块一、两量重叠问题【例 1】 两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?图32厘米4厘米【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为2厘米的正方形,如果利用两个42⨯的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积=长方形面积之和-重叠部分.于是,被覆盖面积4222212=⨯⨯-⨯=(平方厘米).【巩固】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长? 【解析】 因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长例题精讲图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,1.先包含:A B C ++ 重叠部分AB 、BC 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---3853487+-=(厘米).【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长? 【解析】 焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:2337357+-=(厘米).【例 2】 实验小学四年级二班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加.这个班有多少人参加了语文或数学兴趣小组? 【解析】 如图所示,A 圆表示参加语文兴趣小组的人,B 圆表示参加数学兴趣小组的人,A 与B 重合的部分C (阴影部分)表示同时参加两个小组的人.图中A 圆不含阴影的部分表示只参加语文兴趣小组未参加数学兴趣小组的人,有281216-=(人);图中B 圆不含阴影的部分表示只参加数学兴趣小组未参加语文兴趣小组的人,有291217-=(人). 方法一:由此得到参加语文或数学兴趣小组的有:16121745++=(人). 方法二:根据包含排除法,直接可得:参加语文或数学兴趣小组的人=参加语文兴趣小组的人+参加数学兴趣小组的人-两个小组都参加的人,即:28291245+-=(人).【巩固】 芳草地小学四年级有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人? 【解析】 解包含与排除题,画图是一种很直观、简捷的方法,可以帮助解决问题,画图时注意把不同的对象与不同的区域对应清楚.建议教师帮助学生画图分析,清楚的分析每一部分的含义.如图,A 圆表示学画画的人,B 圆表示学钢琴的人,C 表示既学钢琴又学画画的人,图中A 圆不含阴影的部分表示只学画画的人,有:43376-=(人),图中B 圆不含阴影的部分表示只学钢琴的人,有:583721-=(人).【例 3】 一个班48人,完成作业的情况有三种:一种是完成语文作业没完成数学作业;一种是完成数学作业没完成语文作业;一种是语文、数学作业都完成了.已知做完语文作业的有37人;做完数学作业的有42人.这些人中语文、数学作业都完成的有多少人? 【解析】 不妨用下图来表示:C BA CBA线段AB 表示全班人数,线段AC 表示做完语文作业的人数,线段DB 表示做完数学作业的人数,重叠部分DC 则表示语文、数学都做完的人数.根据题意,做完语文作业的有37人,即37AC =.做完数学作业的有42人,即42DB =.374279AC DB +=+=(人) ①48AB =(人)②①式减②式,就有794831DC =-=(人)所以,数学、语文作业都做完的有31人.【巩固】 四年级科技活动组共有63人.在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人.每个同学都至少完成了一项活动.问:同时完成这两项活动的同学有多少人? 【解析】 因423476+=,7663>,所以必有人同时完成了这两项活动.由于每个同学都至少完成了一项活动,根据包含排除法知,4234+-(完成了两项活动的人数)=全组人数,即76-(完成了两项活动的人数)63=.由减法运算法则知,完成两项活动的人数为766313-=(人).也可画图分析.【巩固】 实验二校一个歌舞表演队里,能表演独唱的有10人,能表演跳舞的有18人,两种都能表演的有7人.这个表演队共有多少人能登台表演歌舞? 【解析】 根据包含排除法,这个表演队能登台表演歌舞的人数为:1018721+-=(人).【巩固】 某班组织象棋和军棋比赛,参加象棋比赛的有32人,参加军棋比赛的有28人,有18人两项比赛都参加了,这个班参加棋类比赛的共有多少人? 【解析】 如图,A 圆表示参加象棋比赛的人,B 圆表示参加军棋比赛的人,A 与B 重合的部分表示同时参加两项比赛的人.图中A 圆不含阴影的部分表示只参加象棋比赛不参加军棋比赛的人,有321814-=(人);图中B 圆两项比赛都参加的只参加军棋比赛的只参加象棋比赛的BA不含阴影的部分表示只参加军棋比赛不参加象棋比赛的人,有281810-=(人).由此得到参加棋类比赛的人有14181042++=(人).或者根据包含排除法直接得:32281842+-=(人).【例 4】 (第二届小学迎春杯数学竞赛)有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,83人懂俄语.问既懂英语又懂俄语的有多少人? 【解析】 方法一:在100人中懂英语或俄语的有:1001090-=(人).又因为有75人懂英语,所以只懂俄语的有:907515-=(人).从83位懂俄语的旅客中除去只懂俄语的人,剩下的8315-68=(人)就是既懂英语又懂俄语的旅客.方法二:学会把公式进行适当的变换,由包含与排除原理,得:75839068A B A B A B =+-=+-=(人).【巩固】 名学生参47加数学和语文考试,其中语文得分95分以上的14人,数学得分95分以上的21人,两门都不在95分以上的有22人.问:两门都在95分以上的有多少人? 【解析】 如图,用长方形表示这47名学生,A 圆表示语文得分95分以上的人数,B 圆表示数学得95分以上的人数,A 与B 重合的部分表示两门都在95分以上的人数,长方形内两圆外的部分表示两门都不在95分以上的人数.由图中可以看出,全体人数是至少一门在95分以上的人数与两门都不在95分以上的人数之和,则至少一门在95分以上的人数为:472225-=(人).根据包含排除法,两门都在95分以上的人数为:14212510+-=(人).【巩固】 某班共有46人,参加美术小组的有12人,参加音乐小组的有23人,有5人两个小组都参加了.这个班既没参加美术小组也没参加音乐小组的有多少人? 【解析】 已知全班总人数,从反面思考,找出参加美术或音乐小组的人数,只需用全班总人数减去这个人数,就得到既没参加美术小组也没参加音乐小组的人数.根据包含排除法知,该班至少参加了一个小组的总人数为1223530+-=(人).所以,该班未参加美术或音乐小组的人数是463016-=(人).【巩固】 四年级一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两项比赛都参加了.一班有多少人两项比赛都没有参加?两门都不在95分以上的数学95分以上的语文95分以上的两门95分以上的AB【解析】 由包含排除法可知,至少参加一项比赛的人数是:26221236+-=(人),所以,两项比赛都没有参加的人数为:45369-=(人).【巩固】 某次英语考试由两部分组成,结果全班有12人得满分,第一部分有25人做对,第二部分有19人有错,问两部分都有错的有多少人? 【解析】 如图,用长方形表示参加考试的人数,A 圆表示第一部分对的人数.B 圆表示第二部分对的人数,长方形中阴影部分表示两部分都有错的人数.已知第一部分对的有25人,全对的有12人,可知只对第一部分的有:251213-=(人).又因为第二部分有19人有错,其中第一部分对第二部分有错的有13人,那么余下的19136-=(人)必是第一部分和第二部分均有错的,两部分都有错的有6人.【巩固】 对全班同学调查发现,会游泳的有20人,会打篮球的有25人.两项都会的有10人,两项都不会的有9人.这个班一共有多少人? 【解析】 如图,用长方形表示全班人数,A 圆表示会游泳的人数,B 圆表示会打篮球的人数,长方形中阴影部分表示两项都不会的人数.由图中可以看出,全班人数=至少会一项的人数+两项都不会的人数,至少会一项的人数为:20251035+-=(人),全班人数为:35944+= (人).【例 5】 在46人参加的采摘活动中,只采了樱桃的有18人,既采了樱桃又采了杏的有7人,既没采樱桃又没采杏的有6人,问:只采了杏的有多少人? 【解析】 如图,用长方形表示全体采摘人员46人,A 圆表示采了樱桃的人数,B 圆表示采了杏的人数.长方形中阴影部分表示既没采樱桃又没采杏的人数.由图中可以看出,全体人员是至少采了一种的人数与两种都没采的人数之和,则至少采了一种的人数为:46640-=(人),而至少采了一种的人数=只采了樱桃的人数+两种都采了的人数+只采了杏的人数,所以,只采了杏AB既采樱桃又采杏的既没采樱桃又没采杏的两部分全对的两部分都有错的只做对第二部分的只做对第一部分的会打篮球的会游泳的两项都会的两项都不会的BA的人数为:4018715--=(人).【例 6】 甲、乙、丙三个小组学雷锋,为学校擦玻璃,其中68块玻璃不是甲组擦的,52块玻璃不是乙组擦的,且甲组与乙组一共擦了60块玻璃.那么,甲、乙、丙三个小组各擦了多少块玻璃? 【解析】 68块玻璃不是甲组擦的,说明这68块玻璃是乙、丙两组擦的;52块玻璃不是乙组擦的,说明这52块玻璃是甲、丙两组擦的.如图,用圆A 表示乙、丙两组擦的68块玻璃,B 圆表示甲、丙两组擦的52块玻璃.因甲乙两组共擦了60块玻璃,那么68526060+-=(块),这是两个丙组擦的玻璃数.60230÷=(块).丙组擦了30块玻璃.乙组擦了:683038-=(块)玻璃,甲组擦了:523022-=(块)玻璃.【巩固】 育才小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的,五、六年级共展出25幅画,其他年级的画共有多少幅? 【解析】 通过16幅画不是六年级的可以知道,五年级和其他年级的画作数量之和是16,通过15幅画不是五年级的可以知道六年级和其他年级的画作数量之和是15,那也就是说五年级的画比六年级多1幅,我们还知道五、六年级共展出25幅画,进而可以求出五年级画作有13幅,六年级画作有12幅,那么久可以求出其他年级的画作共有3幅.【例 7】 一次数学测验,甲答错题目总数的14,乙答错3道题,两人都答错的题目是题目总数的16。
小学数学竞赛 几何中的重叠问题.解析版
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:AB ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.教学目标知识要点7-7-3.几何中的重叠问题1.先包含——A B +重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【例 1】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答 【解析】 因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长3853487+-=(厘米).【答案】87厘米【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答 【解析】 焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:2337357+-=(厘米). 【答案】57厘米【例 2】 两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?【考点】几何中的重叠问题 【难度】1星 【题型】解答图32厘米4厘米【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为2厘米的正方形,如果利用两个42⨯的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积=长方形面积之和-重叠部分.于是,被覆盖面积4222212=⨯⨯-⨯=(平方厘米).【答案】12厘米【巩固】 如图3,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边长为4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答图3468【解析】 两个图形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用长方形和正方形面积之和来计算被覆盖桌面的面积,那么重叠部分在长方形和正方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积+正方形面积-重叠部分.于是,组合图形的面积:86664468⨯+⨯-⨯=(平方厘米).【答案】68平方厘米【巩固】 一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答例题精讲12【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用两个长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积之和-重叠部分.于是,组合图形的面积12810644140=⨯+⨯-⨯=(平方厘米).【答案】140平方厘米【例 3】 三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?【考点】几何中的重叠问题 【难度】2星 【题型】解答CBA10【解析】 将图中的三个圆标上A 、B 、C .根据包含排除法,三个纸片盖住桌面的总面积=(A 圆面积B +圆面积C +圆面积-)(A 与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积+)三个纸片共同重叠的面积,得:100505050A =++-()(与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积10+),得到A 、B 、C 三个圆两两重合面积之和为:16010060-=平方厘米,而这个面积对应于圆上的那三个纸片共同重叠的面积的三倍与阴影部分面积的和,即:60103=⨯+阴影部分面积,则阴影部分面积为:603030-=(平方厘米).【答案】30平方厘米【巩固】 如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.【考点】几何中的重叠问题 【难度】2星 【题型】解答 【解析】 设甲圆组成集合A ,乙圆组成集合B ,丙圆组成集合C .A B C ===30,A B =6,B C =8,A C =5,A B C =73,而AB C =A B C +--A B B C A C A B C --+.有73=30×3-6-8-5+AB C ,即A B C =2,即甲、乙、丙三者的公共面积(⑧部分面积)为2.那么只是甲与乙(④),乙与丙(⑥),甲与丙(⑤)的公共的面积依次为6-2=4,8-2=6,5-2=3,所以有阴影部分(①、②、③部分之和)的面积为73-4-6-3-2=58.【答案】58【例 4】 如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?【考点】几何中的重叠问题 【难度】3星【题型】解答【解析】 阴部分的面积60310040220=⨯--÷=()(平方厘米).【答案】20平方厘米【巩固】如图所示,A、B、C分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A与B、B与C的公共部分的面积分别为8、7,A、B、C这三张纸片的公共部分为3.求A与C公共部分的面积是多少?【考点】几何中的重叠问题【难度】3星【题型】解答【解析】设A与C公共部分的面积为x,由包含与排除原理可得:⑴先“包含”:把图形A、B、C的面积相加:12281656++=,那么每两个图形的公共部分的面积都重复计算了1次,因此要排除掉.⑵再“排除”:5687x---,这样一来,三个图形的公共部分被全部减掉,因此还要再补回.⑶再“包含”:56873---+,这就是三张纸片覆盖的面积.x根据上面的分析得:5687338x=.---+=,解得:6x【答案】6一年级(上)一.准备课1.数一数2.比多少二.位置1.上、下、前、后2.左、右三.1—5的认识和加减法1.1—5的认识2.比多少3.第几4.分和合5.加法6.减法7.0四.认识图形(一)认识图形五.6—10的认识和加减法1.6和72.8和93.104.连加、连减、加减混合六.11—20各数的认识1.11—20各数的认识2.10加几、十几加几和相应的减法七.认识钟表认识钟表八.20以内的进位加法2.8、7、9加几3.5、4、3、2加几4.解决问题一年级(下)一.认识图形(二)认识图形二.20以内的退位减法1.十几减92.十几减8、7、63.十几减5、4、3、24.解决问题三.分类与整理分类与整理四.100以内数的认识1.数数、数的组成2.数的顺序、比较大小3.解决问题4.整十数加一位数及相应的减法五.认识人民币1.认识人民币2.简单的计算六.100以内的加法和减法(一)1.整十数加、减整十数2.两位数加一位数、整十数3.两位数减一位数、整十数4.解决问题七.找规律1.找规律(一)2.找规律(二)二年级(上)一.长度单位1.厘米和米2.线段二.100以内的加法和减法(二)1.加法3.连加、连减和加减混合三.角的初步认识1.认识角2.认识直角3.认识钝角和锐角四.表内乘法(一)1.乘法的初步认识2.5的乘法口诀3.2、3、4的乘法口诀4.6的乘法口诀五.观察物体(一)观察物体(一)六.表内乘法(二)7、8、9的乘法口诀七.认识时间认识时间八.数学广角—搭配(一)数学广角—搭配(一)二年级(下)一.数据收集整理数据收集整理二.表内除法(一)1.除法的初步认识2.用2-6的乘法口诀求商3.解决问题三.图形的运动(一)1.轴对称图形2.平移和旋转四.表内除法(二)1.用7、8、9的乘法口诀求商2.解决问题五.混合运算混合运算六.有余数的除法1.有余数的除法的意义和计算2.解决问题七.万以内数的认识1.1000以内数的识2 .10000以内数的认识3 .整百、整千数加减法八.克和千克克和千克九.数学广角—推理生活中的推理三年级(上)一.时、分、秒1.秒的认识2.时间的计算二.万以内的加法和减法(一)1.口算两位数加减两位数2.几百几十加减几百几十3.三位数加减三位数的估算三.测量1.毫米、分米的认识2.千米的认识3.吨的认识四.万以内的加法和减法(二)1.加法2.减法五.倍的认识倍的认识六.多位数乘一位数1.口算乘法2.笔算乘法3.含0的乘法4.估算与解决问题七.长方形和正方形1.四边形2.周长、长方形和正方形周长八.分数的初步认识1.分数的初步认识(一)2.分数的初步认识(二)3.分数的简单计算4.分数的简单应用九.数学广角——集合集合思想三年级(下)一位置与方向(一)1 认识东、南、西、北四个方向2 认识东北、东南、西北、西南四个方向二除数是一位数的除法1 口算除法2 一位数出两、三位数的笔算除法3 商的中间或末尾有0的笔算除法4 用估算解决问题三复式统计表复式统计表四两位数乘两位数1 口算乘法2 笔算乘法五面积1 面积和面积单位2 长方形、正方形面积的计算3 面积单位间的进率六.年、月、日1 年、月、日2 24时计时法七小数的初步认识1 认识小数2 简单的小数加、减法八数学广角——搭配(二)数学广角——搭配(二)四年级(上)一大数的认识1 亿以内数的认识(一)2 亿以内数的认识(二)3 数的产生、十进制计数法和亿以上数的认识4 计算工具的认识、算盘和计算器5 1亿有多大二公顷和平方千米2 认识平方千米三角的度量1 线段、直线、射线和角2 角的度量3 角的分类4 画角四三位数乘两位数1 笔算乘法(一)2 笔算乘法(二)五平行四边形和梯形1 平行与垂直2平行四边形和梯形六除数是两位数的除法1 口算除法2 笔算除法(一)3 笔算除法(二)4 笔算除法(三)5 笔算除法(四)6 商的变化规律七条形统计图条形统计图八数学广角——优化数学广角——优化四年级(下)一四则运算1 加减法的意义和各部分间的关系2 乘除法的意义和各部分间的关系3 括号二观察物体(二)观察物体(二)三运算定律1 加法运算定律2 乘法运算定律四小数的意义和性质1 小数的意义和读写法2 小数的性质和大小比较3 小数点移动引起小数大小的变化4 小数与单位换算5 小数的近似数五三角形1 三角形的特性2 三角形的分类3 三角形的内角和六小数的加法和减法2 小数加减混合运算3 整数加法运算定律推广到小数七图形的运动(二)1 轴对称2 平移八平均数与条形统计图1 平均数2 复式条形统计图九数学广角——鸡兔同笼数学广角——鸡兔同笼五年级(上)一小数乘法1 小数乘整数2 小数乘小数3 积的近似数4 整数乘法二位置位置三小数除法1 除数是整数的小数除法2 一个数除以小数3 商的近似数4 循环小数5 用计算器探索规律6 解决问题四可能性事件发生的可能性五简易方程1 用字母表示数2 方程的意义及等式的性质3 解方程4 实际问题与方法六多边形的面积1 平行四边形的面积2 三角形的面积3 梯形的面积4 组合图形的面积七数学广角——植树问题数学广角——植树问题五年级(下)一观察物体(三)观察物体(三)二因数与倍数1 因数和倍数2 2、5、3的倍数的特征3 质数和合数三长方体和正方体1 长方体和正方体的认识2 长方体和正方体的表面积3 长方体和正方体的体积4 体积单位间的进率5 容积和容积单位四分数的意义和性质1 分数的意义2 真分数和假分数3 分数的基本性质4 约分5 通分6 分数和小数的互化五图形的运动(三)图形的运动(三)六分数的加法和减法1 同分母分数加减法2 异分母分数加减法3 分数加减混合运算七折线统计图折线统计图八数学广角——找次品数学广角——找次品六年级(上)一分数乘法1 分数乘法2 小数乘分数与分数混合运算3 解决问题二位置与方向(二)位置与方向三分数除法1 倒数的认识2 分数除法3 分数四则混合运算4 分数应用题四比1 比的意义2 比的基本性质3 比的应用五圆1 圆的认识2 圆的周长3 圆的面积4 扇形六百分数(一)1 百分数的意义和写法2 百分数与小数、分数的互化3 用百分数解决问题七扇形统计图扇形统计图八数学广角——数与形六年级(下)一负数负数二百分数(二)1 折扣2 成数3 税率4 利率三圆柱与圆锥1 圆柱2 圆锥四比例1 比例的意义和基本性质2 正比例和反比例的意义3 比例的应用五数学广角——鸽巢问题数学广角——鸽巢问题小学五年级数学上册复习教学知识点归纳总结第一单元小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。
小学奥数7-7-3 几何中的重叠问题.专项练习及答案解析
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:7-7-3.几何中的重叠问题知识要点教学目标1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长3853487+-=(厘米).【答案】87厘米【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:2337357+-=(厘米). 【答案】57厘米【例 2】 两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?【考点】几何中的重叠问题 【难度】1星 【题型】解答图32厘米4厘米【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为2厘米的正方形,如果利用两个42⨯的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积=长方形面积之和-重叠部分.于是,被覆盖面积4222212=⨯⨯-⨯=(平方厘米).【答案】12厘米例题精讲图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【巩固】 如图3,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边长为4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答图3 【解析】 两个图形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用长方形和正方形面积之和来计算被覆盖桌面的面积,那么重叠部分在长方形和正方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积+正方形面积-重叠部分.于是,组合图形的面积:86664468⨯+⨯-⨯=(平方厘米).【答案】68平方厘米【巩固】 一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用两个长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积之和-重叠部分.于是,组合图形的面积12810644140=⨯+⨯-⨯=(平方厘米).【答案】140平方厘米【例 3】 三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?【考点】几何中的重叠问题 【难度】2星 【题型】解答CBA10【解析】 将图中的三个圆标上A 、B 、C .根据包含排除法,三个纸片盖住桌面的总面积=(A 圆面积B +圆面积C +圆面积-)(A 与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积+)三个纸片共同重叠的面积,得:100505050A =++-()(与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积10+),得到A 、B 、C 三个圆两两重合面积之和为:16010060-=平方厘米,而这个面积对应于圆上的那三个纸片共同重叠的面积的三倍与阴影部分面积的和,即:60103=⨯+阴影部分面积,则阴影部分面积为:603030-=(平方厘米).【答案】30平方厘米【巩固】 如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.【考点】几何中的重叠问题 【难度】2星 【题型】解答【解析】 设甲圆组成集合A ,乙圆组成集合B ,丙圆组成集合C .A B C ===30,A B =6,B C =8,A C =5,A B C =73, 而AB C =A B C +--A B B C A C A B C --+. 有73=30×3-6-8-5+A B C ,即A B C =2,即甲、乙、丙三者的公共面积(⑧部分面积)为2.那么只是甲与乙(④),乙与丙(⑥),甲与丙(⑤)的公共的面积依次为6-2=4,8-2=6,5-2=3,所以有阴影部分(①、②、③部分之和)的面积为73-4-6-3-2=58.【答案】58【例 4】 如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?【考点】几何中的重叠问题 【难度】3星 【题型】解答【解析】 阴次.所以三张纸重叠部分的面积60310040220=⨯--÷=()(平方厘米).【答案】20平方厘米【巩固】 如图所示,A 、B 、C 分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A 与B 、B 与C 的公共部分的面积分别为8、7,A 、B 、C 这三张纸片的公共部分为3.求A 与C 公共部分的面积是多少?【考点】几何中的重叠问题 【难度】3星 【题型】解答【解析】 设A 与C 公共部分的面积为x ,由包含与排除原理可得:⑴ 先“包含”:把图形A 、B 、C 的面积相加:12281656++=,那么每两个图形的公共部分的面积都重复计算了1次,因此要排除掉.⑵ 再“排除”:5687x ---,这样一来,三个图形的公共部分被全部减掉,因此还要再补回.⑶ 再“包含”:56873x ---+,这就是三张纸片覆盖的面积.根据上面的分析得:5687338x ---+=,解得:6x =.【答案】6。
7-7-2容斥原理之重叠问题(二).教师版(可编辑修改word版)
例题精讲
重叠部分 A B C 重叠了 3 次,但是在进行 A B C
模块一、三量重叠问题
A B B C A C 计算时都被减掉了.
【例 1】 一栋居民楼里的住户每户都订了3.2 再份包不含同:的报A 纸 B。如C果 该A 居B民楼B的 住C 户A只订C了 甲A 、B乙、C丙.三种报 纸,其中甲报 30 份,乙报 34 份,丙报 40 份,那么既订乙报又订丙报的有___________户。
7-7-2.容斥原理之重叠问题(二).题库
教师版
page 2 of 7
42 (2)6( 17 19 9 4 既爱打篮球又爱打排球的人数) 0 ,得到既爱打篮球又爱打排球的人数 为: 49 42 7 (人).
【答案】 7 人
【例 3】 四年级一班有 46 名学生参加 3 项课外活动.其中有 24 人参加了数学小组,20 人参加了语文小组, 参加文艺小组的人数是既参加数学小组也参加文艺小组人数的 3.5 倍,又是 3 项活动都参加人数 的 7 倍,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的 2 倍,既参加数学小 组又参加语文小组的有 10 人.求参加文艺小组的人数.
【考点】三量重叠问题 【难度】3 星 【题型】解答 【解析】设参加数学小组的学生组成集合 A,参加语文小组的学生组成集合 B,参加文艺小组的学生组成集
合 G.三者都参加的学生有 z 人.有 A B C =46, A =24, B =20, C =3.5, A C =7 A B C , B C =2 A B C , A B =10.
用式子可表示成: A B A B A B (其中符号“ ”读作“并”,相当于中文“和”或者“或”的意思;符号
“ ”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下: A 表
小学奥数专题-重叠问题(精华版)
小学奥数重叠问题专题日常生活或数学问题中,在把一些数据按照某个标准分类时,常常出现其中的一部分数据同时属于两种或两种以上不同的类别,这样在计算总数时就会出现重复计算的情况,这类问题就叫做重叠问题。
重叠问题中涉及到的容斥原理是奥数的四大原理之一,是奥数重要知识点。
学生学习奥数,一定要掌握容斥原理。
下面小编给大家分享解决重叠的方法。
1. 解答重叠问题要用到数学中一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
2. 解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次。
明确需要要求的是哪一部分,从而找出解答方法。
3. 在数学中,我们经常用平面上封闭曲线的内部代表集合和集合之间的关系。
这种图称为韦恩图(也叫文氏图)。
4. 解答重叠问题的常用方法是:先不考虑重叠的情况,把有重复包含的几个计数部分加起来,再从它们的和中排除重复部分元素的个数,使得计算的结果既无遗漏又不重复。
这个原理叫做包含与排斥原理,也叫容斥原理。
5. 容斥原理1:如果被计数的对象,被分为A、B两大类,则:被计数对象的总个数=A 类元素的个数+B类元素的个数-同时属于A类和B类的元素个数。
容斥原理2:如果被计数的对象,被分为A、B、C三大类,则:被计数对象的总个数=A 类元素的个数+B类元素的个数+C类元素的个数-同时属于A类和B类元素的个数-同时属于A类和C类元素个数-同时属于B类和C类元素个数+同时属于A类、B类、C类元素个数。
一、重叠问题之长度:(1)拼接(对接)(2)搭接(3)打结题目1:(搭接正问题:求总长度)把两段同样是20厘米长的纸条粘合在一起,形成一段更长的纸条。
中间重叠的部分是6厘米,粘好的纸条长多少厘米?题目2:(搭接反问题一:等长搭接,求原来长度)把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠的部分是6厘米,原来两条纸条各长多少厘米?题目3:(搭接反问题一:不等长搭接,求原来长度)两根木棍放在一起,从头到尾共长66厘米,其中一根木棍长48厘米,中间重叠部分长12厘米。
重叠问题2
重叠问题在日常生活中,人们常常需要统计一些数量,在统计的过程中,往往会发现有些数量重复出现。
在计数时,是必须要注意无一重复,无一遗漏。
为了使重复部分不被重复计算,人们研究出一种新的计数方法,就是先不考虑重复的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排除出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为包含排除法,也叫做容斥原理或重叠问题。
解答有关重叠问题时,我们常常利用圆圈(韦恩图)来帮助分析思考。
两量重叠问题如果被计数的事物有A、B两类,那么,A类B类元素个数总和= 属于A类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数。
先包含——属于A类元素个数+ 属于B类元素个数A和B重叠的部分计算了2次,多加了1次;再排除——属于A类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数。
把多加了1次的重叠部分(既是A类又是B类的元素个数)减去解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?3、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?4、三(4)班做完语文作业的有37人,做完数学作业的有42人,两种作业都完成的有31人,每人至少完成一种作业。
三(4)班共有学生多少人?5、有两块木板各长80厘米,钉在一起的地方长10厘米,钉好后共长多少厘米?6、三(1)班订《数学报》的有32人,订《阅读报》的有30人,两份报纸都订的有10人,全班每人至少订一种报纸。
三(1)班有学生多少人?7、把两块一样长的木板像下图这样钉在一起成了一块木板。
小学奥数几何中的重叠问题
小学奥数几何中的重叠问题1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-U I (其中符号“U ”读作“并”,相当于中文“和”或者“或”的意思;符号“I ”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B U 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =I (意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+U U I I I I I .图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.7-7-3.几何中的重叠问题教学目标知识要点1.先包含——A B +重叠部分A B I 计算了2次,多加了1次; 2.再排除——A B A B +-I把多加了1次的重叠部分A B I 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++重叠部分A B I 、B C I 、C A I 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---I I I重叠部分A B C I I 重叠了3次,但是在进行A B C ++- A B B C A C --I I I 计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+I I I I I .【例 1】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答 【解析】 因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长3853487+-=(厘米).【答案】87厘米【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答 【解析】 焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:2337357+-=(厘米). 【答案】57厘米【例 2】 两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为2厘米的正方形,如果利用两个42⨯的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积=长方形面积之和-重叠部分.于是,被覆盖面积4222212=⨯⨯-⨯=(平方厘米).【答案】12厘米【巩固】 如图3,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边长为4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 两个图形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用长方形和正方形面积之和来计算被覆盖桌面的面积,那么重叠部分在长方形和正方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积+正方形面积-重叠部分.于是,组合图形的面积:86664468⨯+⨯-⨯=(平方厘米).【答案】68平方厘米【巩固】 一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答图32厘米4厘米图3例题精讲【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用两个长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积之和-重叠部分.于是,组合图形的面积12810644140=⨯+⨯-⨯=(平方厘米).【答案】140平方厘米【例 3】 三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?【考点】几何中的重叠问题 【难度】2星 【题型】解答【解析】 将图中的三个圆标上A 、B 、C .根据包含排除法,三个纸片盖住桌面的总面积=(A 圆面积B+圆面积C +圆面积-)(A 与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积+)三个纸片共同重叠的面积,得:100505050A =++-()(与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积10+),得到A 、B 、C 三个圆两两重合面积之和为:16010060-=平方厘米,而这个面积对应于圆上的那三个纸片共同重叠的面积的三倍与阴影部分面积的和,即:60103=⨯+阴影部分面积,则阴影部分面积为:603030-=(平方厘米).【答案】30平方厘米【巩固】 如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.【考点】几何中的重叠问题 【难度】2星 【题型】解答 【解析】 设甲圆组成集合A ,乙圆组成集合B ,丙圆组成集合C .=30,=6,=8,=5,=73,而=.有73=30×3-6-8-5+,即=2,即甲、乙、丙三者的公共面积(⑧部分面积)为2.那么只是甲与乙(⑧),乙与丙(⑧),甲与丙(⑧)的公共的面积依次为6-2=4,8-2=6,5-2=3,所以有阴影部分(⑧、⑧、⑧部分之和)的面积为73-4-6-3-2=58.【答案】58【例 4】 如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?【考点】几何中的重叠问题 【难度】3星 【题型】解答【解析】 阴6412CBA10A B C ==A B I B C I A C I A B C U U A B C U U A B C +--A B B C A C A B C --+I I I I I A B C I I A B C I I叠部分的面积60310040220()(平方厘米).=⨯--÷=【答案】20平方厘米【巩固】如图所示,A、B、C分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A与B、B与C的公共部分的面积分别为8、7,A、B、C这三张纸片的公共部分为3.求A与C公共部分的面积是多少?【考点】几何中的重叠问题【难度】3星【题型】解答Array【解析】设A与C公共部分的面积为x,由包含与排除原理可得:⑧ 先“包含”:把图形A、B、C的面积相加:12281656++=,那么每两个图形的公共部分的面积都重复计算了1次,因此要排除掉.⑧ 再“排除”:5687x---,这样一来,三个图形的公共部分被全部减掉,因此还要再补回.⑧ 再“包含”:56873x---+,这就是三张纸片覆盖的面积.根据上面的分析得:5687338xx=.---+=,解得:6【答案】6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:AB ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:教学目标知识要点7-7-2.容斥原理之重叠问题(二)1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分A B 减去. 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.模块一、三量重叠问题【例 1】 一栋居民楼里的住户每户都订了2份不同的报纸。
如果该居民楼的住户只订了甲、乙、丙三种报纸,其中甲报30份,乙报34份,丙报40份,那么既订乙报又订丙报的有___________户。
【考点】三量重叠问题 【难度】3星 【题型】填空【关键词】希望杯,4年级,1试【解析】 总共有(30+34+40)÷2=52户居民,订丙和乙的有52-30=22户。
【答案】22户【例 2】 某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34人,手中有黄旗的共有26人,手中有蓝旗的共有18人.其中手中有红、黄、蓝三种小旗的有6人.而手中只有红、黄两种小旗的有9人,手中只有黄、蓝两种小旗的有4人,手中只有红、蓝两种小旗的有3人,那么这个班共有多少人?【考点】三量重叠问题 【难度】3星 【题型】解答C B A【解析】 如图,用A 圆表示手中有红旗的,B 圆表示手中有黄旗的,C 圆表示手中有蓝旗的.如果用手中有红旗的、有黄旗的与有蓝旗的相加,发现手中只有红、黄两种小旗的各重复计算了一次,应减去,手中有三种颜色小旗的重复计算了二次,也应减去,那么,全班人数为:342618943++-++-()()6250⨯=(人).【答案】50人【巩固】 某班有42人,其中26人爱打篮球,17人爱打排球,19人爱踢足球,9人既爱打篮球又爱踢足球,4人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?【考点】三量重叠问题 【难度】3星 【题型】解答【解析】 由于全班42人没有一个人三种球都不爱好,所以全班至少爱好一种球的有42人.根据包含排除法,4226171994=++-++()(既爱打篮球又爱打排球的人数0+),得到既爱打篮球又爱打排球的人数为:49427-=(人).【答案】7人【例 3】 四年级一班有46名学生参加3项课外活动.其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组也参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人.求参加文艺小组的人数.【考点】三量重叠问题 【难度】3星 【题型】解答【解析】 设参加数学小组的学生组成集合A ,参加语文小组的学生组成集合B ,参加文艺小组的学生组成集合G .三者都参加的学生有z 人.有A B C =46,A =24,B =20,C =3.5,A C =7A B C ,B C =2A B C ,A B =10. 因为A B C A B C A B A C B C A B C =++---+, 例题精讲所以46=24+20+7x-10-2x-2x+x,解得x=3,即三者的都参加的有3人.那么参加文艺小组的有3⨯7=21人.【答案】21人【巩固】五年级三班学生参加课外兴趣小组,每人至少参加一项.其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人.求这个班的学生人数.【考点】三量重叠问题【难度】3星【题型】解答C语文B美术A自然【解析】设参加自然兴趣小组的人组成集合A,参加美术兴趣小组的人组成集合日,参加语文兴趣小组的人组成集合C.A=25,B=35,C =27,B C =12,A B=8,A C=9,A B C =4.A B C=A B C A B A C B C A B C++---+.所以,这个班中至少参加一项活动的人有25+35+27-12-8-9+4=62,而这个班每人至少参加一项.即这个班有62人.【答案】62人【巩固】光明小学组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进行,参加围棋比赛的有42人,参加中国象棋比赛的有55人,参加国际象棋比赛的有33人,同时参加了围棋和中国象棋比赛的有18人,同时参加了围棋和国际象棋比赛的有10人,同时参加了中国象棋和国际象棋比赛的有9人,其中三种棋赛都参加的有5人,问参加棋类比赛的共有多少人?【考点】三量重叠问题【难度】3星【题型】解答【解析】根据包含排除法,先把参加围棋比赛的42人,参加中国象棋比赛的55人与参加国际象棋比赛的33人加起来,共是425533130++=人.把重复加一遍同时参加围棋和中国象棋的18人,同时参加围棋和国际象棋的10人与同时参加中国象棋和国际象棋的9人减去,但是,同时参加了三种棋赛的5人被加了3次,又被减了3次,其实并未计算在内,应当补上,实际上参加棋类比赛的共有:130********-+++=()(人).或者根据学过的公式:A B C A B C A B B C A C A B C=++---+,参加棋类比赛的总人数为:42553318109598++---+=(人).【答案】98人【例4】新年联欢会上,共有90人参加了跳舞、合唱、演奏三种节目的演出.如果只参加跳舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多4人;50人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有________人.【考点】三量重叠问题【难度】3星【题型】填空【关键词】西城实验【解析】设只参加合唱的有x人,那么只参加跳舞的人数为3x,由50人没有参加演奏、10人同时参加了跳舞和合唱但没有参加演奏,得到只参加合唱的和只参加跳舞的人数和为501040-=人,即340x x+=,得10x=,所以只参加合唱的有10人,那么只参加跳舞的人数为30人,又由“同时参加三种节目的人比只参加合唱的人少7人”,得到同时参加三项的有3人,所以参加了合唱的人中“同时参加了演奏、合唱但没有参加跳舞的”有:401010317---=人.【答案】17人【巩固】六年级100名同学,每人至少爱好体育、文艺和科学三项中的一项.其中,爱好体育的55人,爱好文艺的56人,爱好科学的51人,三项都爱好的15人,只爱好体育和科学的4人,只爱好体育和文艺的17人.问:有多少人只爱好科学和文艺两项?只爱好体育的有多少人?【考点】三量重叠问题【难度】3星【题型】解答【解析】只是A类和B类的元素个数,有别于容斥原理Ⅱ中的既是A类又是B类的元数个数.依题意,画图如下.设只爱好科学和文艺两项的有x人.由容斥原理,列方程得()()()++-+-+-++=55565117154151515100x即555651174152++----⨯=xx-=111100x=只爱好体育的有:551715419---=(人).11【答案】11人只爱好科学和文艺,19人只爱好体育。
【例5】在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了汉堡,6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕.2个人既带了汉堡又带了芝土蛋糕.问:⑴ 三种都带了的有几人?⑵ 只带了一种的有几个?【考点】三量重叠问题【难度】4星【题型】解答ABC【解析】如图,用A圆表示带汉堡的人,B圆表示带鸡腿的人,C圆表示带芝士蛋糕的人.⑴ 根据包含排除法,总人数=(带汉堡的人数+带鸡腿的人数+带芝士蛋糕的人数-)(带汉堡、鸡腿的人数+带汉堡、芝士蛋糕的人数+带鸡腿、芝士蛋糕的人数+)三种都带了的人数,即10664321()()三种都带了的人数,得三种都带了的人数为:10100-=(人).-++-+++⑵ 求只带一种的人数,只需从10人中减去带了两种的人数,即103214()(人).只带了一种-++=的有4人.【答案】(1)0人,(2)4人【巩固】盛夏的一天,有10个同学去冷饮店,向服务员交了一份需要冷饮的统计表:要可乐、雪碧、橙汁的各有5人;可乐、雪碧都要的有3人;可乐、橙汁都要的有2人;雪碧、橙汁都要的有2人;三样都要的只有1人,证明其中一定有1人这三种饮料都没有要.【考点】三量重叠问题【难度】4星【题型】解答【解析】略【答案】根据根据包含排除法,至少要了一种饮料的人数=(要可乐的人数+要雪碧的人数+要橙汁的人数)-(要可乐、雪碧的人数+要可乐、橙汁的人数+要雪碧、橙汁的人数)+三种都要的人数,即至少要了一种饮料的人数为:55532219()()(人).1091-=(人),所以其中有1人这三种++-+++=饮料都没有要.【例6】全班有25个学生,其中17人会骑自行车,13人会游泳,8人会滑冰,这三个运动项目没有人全会,至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀.若全班有6个人数学不及格,那么,⑴ 数学成绩优秀的有几个学生?⑵ 有几个人既会游泳,又会滑冰?【考点】三量重叠问题【难度】4星【题型】解答【解析】⑴有6个数学不及格,那么及格的有:25619-=(人),即最多不会超过19人会这三项运动之一.而又因为没人全会这三项运动,那么,最少也会有:17138219()(人)至少会这三项运动之一.于++÷=是,至少会三项运动之一的只能是19人,而这19人又不是优秀,说明全班25人中除了19人外,剩下的6名不及格,所以没有数学成绩优秀的.⑵ 上面分析可知,及格的19人中,每人都会两项运动:会骑车的一定有一部分会游泳,一部分会滑冰;会游泳的人中若不会骑车就一定会滑冰,而会滑冰的人中若不会骑车就一定会游泳,但既会游泳又会滑冰的人一定不会骑自行车.所以,全班有19172-=(人)既会游泳又会滑冰.【答案】(1)0人,(2)2人【巩固】 五年级一班共有36人,每人参加一个兴趣小组,共有A 、B 、C 、D 、E 五个小组,若参加A 组的有15人,参加B 组的人数仅次于A 组,参加C 组、D 组的人数相同,参加E 组的人数最少,只有4人.那么,参加B 组的有_______人.【考点】三量重叠问题 【难度】4星 【题型】填空【解析】 参加B ,C ,D 三组的总人数是3615417--=(人),C ,D 每组至少5人,当C ,D 每组6 人时,B 组为5人,不符合题意,所以参加B 组的有17557--=(人).【答案】7人【例 7】 五一班有28位同学,每人至少参加数学、语文、自然课外小组中的一个.其中仅参加数学与语文小组的人数等于仅参加数学小组的人数,没有同学仅参加语文或仅参加自然小组,恰有6个同学参加数学与自然小组但不参加语文小组,仅参加语文与自然小组的人数是3个小组全参加的人数的5倍,并且知道3个小组全参加的人数是一个不为0的偶数,那么仅参加数学和语文小组的人有多少人?【考点】三量重叠问题 【难度】4星 【题型】解答【解析】 参加3个小组的人数是一个不为0的偶数,如果该数大于或等于4,那么仅参加语文与自然小组的人数则大于等于20,而仅参加数学与自然小组的人有6个,这样至少应有30人,与题意矛盾,所以参加3个小组的人数为2.仅参加语文与自然小组的人数为10,于是仅参加语文与自然、仅参加数学与自然和参加3个小组的人数一共是18人,剩下的10人是仅参加数学与语文以及仅参加数学的.由于这两个人数相等,所以仅参加数学和语文小组的有5人.【答案】5人【例 8】 在一个自助果园里,只摘山莓者两倍于只摘李子者;摘了草莓、山莓和李子的人数比只摘李子的人数多3个;只摘草莓者比摘了山莓和草莓但没有摘李子者多4人;50个人没有摘草莓;11个人摘了山莓和李子但没有摘草莓;总共有60人摘了李子.如果参与采摘水果的总人数是100,你能回答下列问题吗?① 有 人摘了山莓;② 有 人同时摘了三种水果;③ 有 人只摘了山莓;④ 有 人摘了李子和草莓,而没有摘山莓;⑤ 有 人只摘了草莓.草莓李子山莓GF EDC B A【考点】三量重叠问题 【难度】3星 【题型】填空【解析】 如图,根据题意有2A C =3G C -=4B E -=50A D C ++=11D =60C D F G +++=40A B E ++=代入求解:26A =,9B =,13C =,11D =,5E =,20F =,16G =所以①有261151658A D E G +++=+++=(人)摘了山莓;②有16人同时摘了三种水果;③有26人只摘了山莓;④有20人摘了李子和草莓,而没有摘山莓;⑤有9人只摘了草莓.【答案】①有58(人)摘了山莓;②有16人同时摘了三种水果;③有26人只摘了山莓;④有20人摘了李子和草莓,而没有摘山莓;⑤有9人只摘了草莓.【例 9】 某学校派出若干名学生参加体育竞技比赛,比赛一共只有三个项目,已知参加长跑、跳高、标枪三个项目的人数分别为10、15、20人,长跑、跳高、标枪每一项的的参加选手中人中都有五分之一的人还参加了别的比赛项目,求这所学校一共派出多少人参加比赛?科学51人文艺56人17154体育55人x【考点】三量重叠问题 【难度】4星 【题型】解答【解析】 由条件可知,参加长跑的人中有2人参加其它项目,参加跳高的人中有3人参加其它项目,参加标枪的人中有4人还参加别的项目,假设只参加长跑和跳高的人数为x ,只参加长跑和标枪的人数为y ,只参加标枪和跳高的有z 人,三项都参加的有n 人.那么有以下方程组:由条件可知,参加长跑的人中有2人参加其它项目,参加跳高的人中有3人参加其它项目,参加标枪的人中有4人还参加别的项目,假设只参加长跑和跳高的人数为x ,只参加长跑和标枪的人数为y ,只参加标枪和跳高的有z 人,三项都参加的有n 人.那么有以下方程组:23 4x y n x z n z y n ++=⎧⎪++=⎨⎪++=⎩ 将3条等式相加则有2(x +y +z )+3n =9,由这个等式可以得到,n 必须是奇数,所以,n 只能是1或3、5、7……,如果n ≥3时x 、y 、z 中会出现负数.所以n =1,这样可以求得x =0,y =1,z =2.由此可得到这个学校一共派出了10+15+20-0-1-2-2×1=40人.将3条等式相加则有2(x +y +z )+3n =9,由这个等式可以得到,n 必须是奇数,所以,n 只能是1或3、5、7……,如果n ≥3时x 、y 、z 中会出现负数.所以n =1,这样可以求得x =0,y =1,z =2.由此可得到这个学校一共派出了10+15+20-0-1-2-2×1=40人. 【答案】40人模块二、四个量的重叠问题【例 10】 养牛场有2007头黄牛和水牛,其中母牛1105头,黄牛1506头,公水牛200头,那么母黄牛有头。