有理数的乘方(规律)
【教学设计】有理数的乘方第2课时
《有理数的乘方第2课时》教学设计------探索乘方规律【教材分析】本课教材是义务教育教科书(五四学制)六年级上册第二章第九节“有理数的乘方”。
有理数的乘方是在学生学习有理数的加、减、乘、除法运算的基础上来学习的第五种运算,它既是有理数乘法的推广与延续,又是本章后面继续学习有理数的混合运算、科学记数法的基础,所以这一节的内容不仅在本章中和今后学习实数的混合运算中都占有十分重要的地位。
并且为学生今后学习第六种运算--开方运算奠定了基础。
本教材安排第2课时,目的是一是通过探索乘方运算的符号规律,培养学生的符号意识、符号意识、运算能力;二是通过几个问题情境的探索,让学生进一步理解乘方的意义和运算,感受当底数大于1时,乘方运算的结果增长得很快。
【学情分析】在第1课时中学生已经学习了乘方的概念,理解了乘方的意义,会进行简单的乘方运算,但对乘方运算结果的变化规律缺乏整体性的认识。
由于初一的学生模仿能力比较强,能够在教师的引导下,通过计算、观察、分析、交流、归纳等数学活动,总结发现乘方的运算规律。
针对初一学生的价值观还未成熟,所以在本堂课的结束利用“乘方效应”来激励学生,渗透励志情感教育。
【教学目标】知识与能力目标:掌握有理数的乘方运算,探索并掌握乘方运算的符号规律,培养学生的数感、符号意识、运算能力。
过程与方法目标:1. 通过几个问题情境的探索,让学生进一步理解乘方的意义和运算,感受当底数大于1时,乘方运算的结果增长得很快。
2.通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力。
情感态度价值观目标:通过对实例的讲解,让学生体会数学与生活的密切联系。
体会乘方结果的惊人,培养对数学探究的兴趣。
教学重点:有理数的乘方运算规律。
教学难点:理解乘方的意义。
【教学过程】一、学前准备(2分钟)1.式子n a 表示的意义是 。
2.在n a 中,a 叫做 ,n 叫做 ,乘方的结果叫做 。
3.计算有理数的加、减 、乘、除运算时,要先确定符号再计算,那么进行乘方运算时是否也要先确定符号呢?设计意图:不仅复习了乘方概念,还用类比的思想引导学生学习本课知识。
有理数的乘除乘方
有理数的乘、除及乘方运算一、知识要点:1. 有理数的乘法法则:(1) 两数相乘,同号 ,异号 ,并把 .任何数同0相乘,都得 .(2) 不等于0的数相乘,积的正负号由 的个数决定,当负因数有奇数个时,积为 ;当负因数有偶数个时,积为 .几个数相乘,有一个因数为0,积就为 .2. 乘积是 的两个数互为倒数3. 有理数的除法法则:除以一个数等于乘上 .两数相除,同号 ,异号 ,并把绝对值相除.0除以任何一个不等于0的数,都得0.4. 有理数的乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.二、典型例题:例1、计算:(1)⎪⎭⎫ ⎝⎛-⨯÷-43875.3 (2)532121⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-(3)⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯22176412(4)()[]2432611--⨯--例2、如果0,0><+ab b a ,则a 0,b 0. 如果()03<-ab ,则ab 0. 如果02>-b a ,则b .例3、已知a 、b 为有理数,下列说法中,正确的是( )A.若a >b,则a 2>b 2B. 若︱a ︱>b,则a 2>b 2B. 若 a 3>b 3,则a 2>b 2 D. a >︱b ︱,则a 2>b 2例4、已知:a 、b 互为倒数,c 、d 互为相反数,|m |=5,n 是绝对值最小的数,求5ab -(c+d)×2008 - n + m 的值。
例5、计算:(-2)100+(-2)101的是( )A. 2100 B.-1 C.-2 D.-2100三、练习:1. 用四舍五入法把3.1415926精确到千分位是 .2. 用科学记数法表示302400,应记为 .3. 若m,n 互为相反数,xy 互为倒数,则(m +n )+5xy = ;4. 若 3-x 与9+y 互为相反数,求y x -的值5. 一个数的相反数比它的本身大,则这个数是 ( )A.正数B.负数C.0D.负数和06. 如果10<<a ,那么aa a 1,,2之间的大小关系是( ) A .a a a 12<< B .a a a 12<< C . 21a a a << D . a a a<<21 7. 下列计算错误的个数是 ( ) ①221⎪⎭⎫ ⎝⎛=4 ②-52=25 ③2516542= ④811912=⎪⎭⎫ ⎝⎛-- ⑤-(-14 ) =1 ⑥()001.01.03=-- ⑦ 55=-=a ,a 则 ⑧ -a=-2则a = 2 8. A 、5个 B 、4个 C 、3个 D 、2个9. 平方等于4的数是 ,立方等于—8的数是 。
有理数乘方的规律探究
探究二:数字规律
变式5、观察下面一列数,回答下列问题 1, 2, 4, 8, 16, 32, •••
20 ,21 ,22 ,23 ,24 ,25 , …
(1)第2015个数是多少? 2n-1 (2)第n个数是多少?
第1个数 20 21 22 23 24
22014
… …
第2个数 第3个数 第4个数 第5个数 第6个数 第7个数 第8个数 25 26 27
3、观察下面一列数,根据得出的规律,回答下列问题 2, 4, 8, 16, 32, 64, •••
21 ,22 ,23 ,24 ,25 ,26 , …
(1)根据你得出的规律,第2015个数是多少?22015 (2)第n个数是多少? 2n
第1个数 21 第2个数 第3个数 第4个数 第5个数 第6个数 第7个数 第8个数 22 23 24 25 26 27 28 … …
南昌市铁路第一中学 杨文斌
复习巩固,探究新知
n a 1、n个a相乘可以写成的形式 ;
2、负数的奇数次方是 负 数, 负数的偶数次方是 正 数; 3、一个数可以看成它本身的 1 次方; 0 a 4、 = 1 ( a 0)。
探究一:周期性规律
1、观察下列算式,你能发现什么规律? 21=2 ,22= 4 ,23= 8 ,24=1 6 , 25=3 2,26=64 ,27=128 ,28=25 6 ,… 4 用你所发现的规律得出2 2010 的末位数字是_____ 2010 ÷4=502 … …余2
1.5.1.1有理数的乘方(教案)
-负数的奇数次方是负数,偶数次方是正数;
-零的任何正数次方都是零;
-乘方的乘法法则:(a^n)×(a^m) = a^(n+m);
-乘方的除法பைடு நூலகம்则:(a^n)÷(a^m) = a^(n-m),其中a≠0。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的数学抽象能力:通过学习有理数的乘方,使学生能够从具体实例中抽象出乘方的概念和性质,形成对有理数乘方的理解和认识。
3.重点难点解析:在讲授过程中,我会特别强调有理数乘方的定义和性质、运算法则这两个重点。对于难点部分,比如负数的奇数次方和偶数次方,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘方相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过折叠纸张来演示2的幂次方增长速度,从而理解乘方的意义。
在讲解有理数乘方的性质时,特别是负数的奇数次方和偶数次方,学生们的掌握程度不一。我意识到,这可能是因为他们在之前的数学学习中,对负数的认识不够深入。针对这一点,我计划在下一节课前,先对负数进行复习,帮助学生建立正确的负数概念,再引入乘方的性质,这样可能会更有助于他们的理解。
此外,实践活动中的小组讨论,学生们表现得相当积极。他们能够将乘方知识应用到实际问题中,并提出自己的见解。但在实验操作环节,我发现有些小组在操作过程中并没有完全理解乘方的原理,仅仅是为了完成操作而操作。针对这个问题,我认为在以后的实践活动中,应加强对学生的引导,确保他们在操作前能够充分理解乘方的概念和原理。
五、教学反思
在今天的教学过程中,我发现学生们对于有理数乘方的概念和性质的理解存在一些困难。在讲解有理数乘方的定义时,虽然通过生活中的实例引入,但部分学生仍然感到抽象,难以把握。因此,我决定在接下来的教学中,尝试采用更多的直观教具和实际操作,比如使用积木或者纸片折叠等方式,让学生更直观地感受到乘方的意义。
《有理数的乘方》教案 探究版
《有理数的乘方》教案新课标要求知识与技能1.通过实际背景,使学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义.2.能够正确进行有理数的乘方运算,并让学生经历探索乘方的有关规律的过程.过程与方法经历“做数学”和“用数学”的过程,感受数学的奇妙性,领会重要的数学建模思想、归纳思想,形成数感、符号感,发展抽象思维.情感与态度认识数学与生活的密切联系,体验充满着探索与创造的数学活动,感受数学的严谨性,提高数学素养,通过参与数学学习活动,对数学充满好奇心和求知欲,形成主动学习态度,培养科学探索精神,提升人文素质,鼓励猜想,倡导参与,与人合作,学会倾听、欣赏和感悟,建立自信心.教学重点理解有理数乘方的意义,掌握运算方法.教学难点理解幂的符号确定过程.教学过程一、创设问题、引入新知(可播放动画《有理数的乘方》导入2)某种细胞每30分钟便由一个分裂成两个.经过3小时这种细胞由1个能分裂成多少个?设计意图:由生动、有趣的问题引入,激发学生的学习兴趣,营造和谐主动探索的环境.二、小组合作,探究新知:1.这个细胞分裂一次可得多少个细胞?分裂两次呢?分裂三次呢?四次呢?那么,3小时共分裂了多少次?有多少个细胞?六次: 2×2×2×2×2×2个.2.请比较细胞分裂四次后的个数式子:2×2×2×2和细胞分裂六次后的个数式子:2×2×2×2×2×2.这两个式子有什么相同点?这样的运算能像平方、立方那样简写吗?2×2×2×2记作24;2×2×2×2×2×2记作26.=a n 读作“a 的n 次方”.设计意图:充分调动学生的学习积极性,使学生认识到数学的发展是不断进行推广的.3.以上乘法与前面学习过乘法有什么不同?求n 个相同因数的积的运算叫做乘方.乘方的结果叫做幂.在a n 中,a 叫做底数,n 叫做指数.当a n 看作a 的n 次方的结果时,也可读作a 的n 次幂.例如;在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂.一个数可以表示成这个数本身的一次方,例如,5=51, 指数1通常省略不写.设计意图:激活学生已有的知识结构,通过类比、联想、归纳,学生在最近发展区内实现知识重构,进而引进有理数的乘方的有关概念,同时也培养学生归纳和概括的能力,让学生在活动中感受数学符号的简洁美.4.提出问题:在a n 中,底数a 表示什么?指数n 表示什么?a n 就是多少个什么相乘? 归纳:底数a 表示相同的因数,可以是任何有理数.指数n 表示相同因数的个数,现阶段是正整数.练一练1:(1)74的底数是________,指数是________,74表示4个________相乘,读作________的2次方.(2)513⎛⎫- ⎪⎝⎭表示________个13-相乘,读作13-的________次方,也读作13-的________次幂,其中13-叫做________,5叫做________. 解:(1)74的底数是7,指数是4,74表示4个7相乘,读作7的4次方. (2)513⎛⎫- ⎪⎝⎭表示5个13-相乘,读作13-的5次方,也读作13-的5次幂,其中13-叫做 a n a a a a 个⨯⨯⨯⨯底数,5叫做指数.设计意图:通过对乘方的概念及意义的探索,使学生理解乘方的意义,并在理解的基础上进行乘方运算.5.取一张4开白纸,已知纸的原厚度为0.1 mm ,问:(1)将它对折1次后,厚度为多少?对折20次后呢?(2)如果每层楼平均高度为3 m ,这张白纸对折20次后有几层楼高?师生活动:学生讨论、交流并回答,通过对本题的解决,激发学习的兴趣.小结:(1)对折1次后,厚度为:0.1×2=0.2(mm ).对折20次后,厚度为:202020.12220.12⨯⨯⨯⨯=⨯个(mm ). (2)0.1×220=104 856.7(mm ).104 856.7(mm )≈105 m .105÷3=35.则对折20次后约有35层楼高.三、例题讲解例1 计算:(1)53; (2)(-3)4;(3)312⎛⎫- ⎪⎝⎭. 解:(1)53=5×5×5=125;(2)(-3)4=(-3)×(-3)×(-3)×(-3)=81;(3)31111122228⎛⎫⎛⎫⎛⎫⎛⎫-=-⨯-⨯-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 注意:(1)负数的乘方,在书写时一定要把整个负数(连同符号),用小括号括起来.这也是辨认底数的方法.(2)分数的乘方,在书写时一定要把整个分数用小括号括起来.设计意图:通过例题的学习,对有理数的乘方有更进一步的理解.例2 计算: (1)-(-2)3; (2)-24; (3)234-.解:(1)-(-2)3=-[(-2)×(-2)×(-2)]=-(-8)=8;(2)-24=-(2×2×2×2)=-16;(3)23339 444⨯-=-=-.设计意图:例题讲解时要让学生明确有理数的乘方运算是由有理数的乘法来进行的,要引导学生不断地回顾幂的意义.例3计算:(1)102,103,104,105;(2)(-10)2,(-10)3,(-10)4,(-10)5.师生活动:学生独立完成,检验知识是否掌握.教师一方面要引导学生不断地回顾幂的意义.熟练有理数的乘方运算.另一方面要指出题目的特点.鼓励学生尽可能多地从运算结果中观察、发现正数幂的符号特点,负数幂的符号特点等等.解:(1)102=100,103=1 000,104=10 000,105=100 000;(2)(-10)2=100,(-10)3=-1 000,(-10)4=10 000,(-10)5=-100 000.想一想:观察例3的结果,你能发现什么规律?与同伴进行交流.正数的任何次方都是正数,负数的偶数次的幂是正数,负数的奇数次的幂是负数.想一想:你见过拉面师傅拉面条吗?拉面师傅将一个粗面条拉长、两头捏合,再拉长、捏合,重复这样,就拉成许多根细面条了.据报道,在一次比赛中,某拉面师傅用1 kg面粉拉出约209万根面条,你知道怎样得出这个结果的吗?解:第一次:21=2,第二次:22=4,第三次:23=8,…,第n次:2n.拉面师傅拉出约209万根面条,即2n≈2 090 000,n大约等于21,即拉面师傅拉21次,就约得到209万根面条.设计意图:继续体会当指数不断增加时,底数大于1 的幂的增长速度相当快,同时让学生感悟数学知识的生活运用之多.四、课堂练习1.(1)(-7)8中,底数、指数各是什么?(2)(-10)8中-10叫做什么数?8叫做什么数?(-10)8是正数还是负数?解:(1)(-7)8中,底数是-7,指数是8.(2)(-10)8中-10叫做底数.8叫做指数.(-10)8是正数.2.计算:(1)(-3)3;(2)(-1.5)2;(3)-53;(4)-(-3)2;(5)-(-2)3;(6)232⎛⎫- ⎪⎝⎭;(7)232⎛⎫-- ⎪⎝⎭;(8)217⎛⎫- ⎪⎝⎭;(9)243-.解:(1)(-3)3=(-3)×(-3)×(-3)=-27;(2)(-1.5)2=(-1.5)×(-1.5)=2.25;(3)-53=-5×5×5=-125;(4)-(-3)2=-(-3)×(-3)=-9;(5)-(-2)3=-(-2)×(-2)×(-2)=-(-8) =8;(6)233392224⎛⎫⎛⎫-=-⨯=-⎪ ⎪⎝⎭⎝⎭;(7)233392224⎡⎤⎛⎫⎛⎫⎛⎫--=--⨯-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦;(8)2111177749⎛⎫⎛⎫⎛⎫-=-⨯-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(9)244416 333⨯-=-=-.3.判断下列各式结果的符号,你能发现什么规律?(1)(-5)4;(2)(-5)5;(3)-(-5)6;(4)-(-5)7.解:(1)正号;(2)负号;(3)负号;(4)正号.规律:负数的奇次幂是负数,负数的偶次幂是正数.设计意图:通过练习,使学生加深对乘方意义的理解与掌握.五、课堂小结1.有理数乘方的概念是什么?2.你知道有理数乘方的各部分分别叫什么吗?3.有理数乘方的符号规律是什么?设计意图:通过小结,进一步巩固所学知识,使学生所学知识系统化.六、布置作业1.计算:(1)72;(2)(-6)3;(3)323⎛⎫⎪⎝⎭;(4)-32;(5)325-;(6)334⎛⎫-- ⎪⎝⎭.2.计算:(1)-34;(2)-(-3)3;(3)4 2 3⎛⎫ ⎪⎝⎭-;(4)2 4 5⎛⎫ ⎪⎝⎭;(5)232-;(6)325⎛⎫-- ⎪⎝⎭.3.一个数的平方为16,这个数可能是几?一个数的平方可能是零吗?4.1 m长的木棒,第1次截去一半,第2次截去剩下部分的一半,如此截下去,第7次后剩下的木棒有多长?设计意图:考查了有理数乘方的有关概念以及计算有理数的乘方.参考答案:1.(1)72=7×7=49;(2)(-6)3=(-6) ×(-6)×(-6) =-216;(3)322228 333327⎛⎫=⨯⨯=⎪⎝⎭;(4)-32=-3×3=-9;(5)322228 555⨯⨯-=-=-;(6)33333272744446464⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--=--⨯-⨯-=--=⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.2.(1)-34=-(3×3×3×3)=-81;(2)-(-3)3=-[(-3)×(-3)×(-3)]=27;(3)422222163333381⎛⎫⎛⎫=-⨯⨯⨯=-⎪ ⎪⎝⎭⎝⎭-;(4)244416 55525⎛⎫=⨯=⎪⎝⎭;(5)23332224-=-=-⨯; (6)3222285555125⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--=--⨯-⨯-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 3.4或-4;可能,0的平方是0.4.解:7112128⎛⎫= ⎪⎝⎭(m ). 答:第7次后剩下的木棒有1128m 长.七、课堂检测1.43-()表示( ). A .4个(-3)相加 B .-3×4C .4个(-3)相乘D .3个(-4)相乘2.62-表示( ).A .6个-2相乘B .6个2相乘的相反数C .2个-6相乘D .2个6的相反数3.下列各组数中,相等的一组是( ).A .()33-与33- B .34与43C .()23-与23-D .23-和-3+(-3)4.在(-2)4中,指数是________,底数是________,在225⎛⎫ ⎪⎝⎭中底数是________,指数是________.5.把(-5)×(-5)×(-5)写成幂的形式是________,把111111117777⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭写成幂的形式是________.6.(-3)2________,-32=________,-33=________,(-3)3=________. 7.计算:(1)30.1-();(2)20.1-();(3)50;(4)47-. 设计意图:考查了有理数乘方的有关概念和计算.参考答案:1.C.2.B.3.A.4.4,2-,25,2.5.3(5)-,4117⎛⎫⎪⎝⎭.6.9,9-,27-,27-.7.(1)30.10.001-=-();(2)20.10.01-=();(3)50=0;(4)472401-=-.。
七年级数学有理数的乘除和乘方
____ 2 3 1
22 22 ____ 2 2 2
3.怀化市2006年的国民生产总值约为亿元,预计2007年比上一年增长, 用科学计数法表示2007年怀化市的国民生产总值. ____
4.某省有67440000人,按要求分别取这个数的近似数,并指出近似数的有效数字. (1)精确到十万位; (2)精确到百万位; (3)精确到千万位.
有理数除法法则: 1、两数相除,同号得正,异号得负,并把绝对值相除。零与任何不等 于0的数相除都得零。 2、除以一个数等于乘以这个数的倒数(0不能作除数) 倒数与倒数的性质: 1除以一个不为0的数得这个数的倒数(0没有倒数)。 倒数的性质有:(1)互为倒数两数的积为1; (2)有理数a(a≠0)的倒数为
用科学记数法写出下列各数:
10000, 800000, 56000000, 7400000
下列用科学记数法表示的、 由四舍五入法得到的近似数, 各精确到哪一位?各有几个 有效数字? 4 ① 3.79×10 ;
2 ②5.040×10 ;
用四舍五入法,按括号内 要求取近似值。
(2) -7.56×104 (保留2个有效数字);
64,
64,
3
64
1 1 1 1
10 11 12
13
(5) 3 (2)
3
4
(1) 2 (2) 4
10 3
计算
(0.25)
2003
(4)
2004
(1)
2007
1 1 2 2 1 2 1 3 3 1 2 3 3 4 4 4 2 1 2 3 4 2 5 5 5 5
1 a;
有理数的乘方
有理数的乘方知识点:1、乘方的意义:求n个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂,记作:。
其中a为底数,n为指数。
读作:a的n次方或a的n次幂。
2、乘方运算的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.(注:0的任何正数次幂都是0。
)(一句话确定符号:底正得正;底负,奇负偶正。
)创设情境,呈现内容:你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多根细的面条,请同学们想一下拉面馆的师傅,这样拉1次,有几根面条?2次?3次?捏合4次后能拉出多少根细面条?20次后,30次后呢?回答问题并说说你的看法:(1)捏合一次有几根?(2)捏合二次有几根?(3)捏合三次有几根?(4)捏合四次有几根?……(5)捏合二十次有几根?……(6)捏合三十次有几根?(问)你能不能用一个简单的式子来表示呢?(问)在小学,我们学了正方形的面积公式和正方体的体积公式,现在我们一起来回忆下它们分别是什么?(边长都为a )(问)同学们想一想:正方形的面积公式a · a 可以用表示,正方体的体积公式a ·a ·a 可以用a 3。
那么我们上面提到的运算能像平方、立方那样简写吗?回到回答问题并说说你的看法,按顺序写下:2;22;23;24 ;25;…… (引出乘方的概念:求n 个相同因数的积的运算,叫做乘方。
)an 读作“a 的n 次方”,或读作“a 的n 次幂”.例1:填一填。
(1)26中底数是_____,指数是_____.读作:______________________。
(2))43(4中底数是______,指数是______.读作:_____________________。
(3))5(4 中底数是______,指数是______.读作:_____________________。
(4)9中底数是_____,指数是________。
有理数的乘方及混合运算(提高)知识讲解
有理数的乘方、混合运算及科学记数法(提高)【学习目标】1.理解有理数乘方的定义;2. 掌握有理数乘方运算的符号法则,并能熟练进行乘方运算;3. 进一步掌握有理数的混合运算.4. 会用科学记数法表示大数. 【要点梳理】要点一、有理数的乘方定义:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).即有:n a a a a n ⋅⋅⋅=个.在na 中,a 叫做底数, n 叫做指数.要点诠释: (1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果. (2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写. 要点二、乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,如 2a ≥0.要点诠释:(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数. 要点三、有理数的混合运算有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:(1)有理数运算分三级,并且从高级到低级进行运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第三级运算;(2)在含有多重括号的混合运算中,有时根据式子特点也可按大括号、中括号、小括号的顺序进行.(3)在运算过程中注意运算律的运用. 要点四、科学记数法把一个大于10的数表示成10n a ⨯的形式(其中a 是整数数位只有一位的数,l ≤|a |<10,n 是正整数),这种记数法叫做科学记数法,如42000000=74.210⨯. 要点诠释:(1)负数也可以用科学记数法表示,“-”照写,其它与正数一样,如-3000=3310-⨯; (2)把一个数写成10na ⨯形式时,若这个数是大于10的数,则n 比这个数的整数位数少1.【典型例题】类型一、有理数的乘方1. 计算:(1)44443333----;;();() (2)3333222(2)3333--;();(-); 【答案与解析】解:由乘方的定义可得: (1)43=3×3×3×3=81; -43=-(3×3×3×3)=-81;4(3)(3)(3)(3)(3)81-=-⨯-⨯-⨯-=; 4(3)[(3)(3)(3)(3)]81--=--⨯-⨯-⨯-=-(2)322228333⨯⨯==; 322228()()()()333327=⨯⨯=; 322228()()()()333327-=-⨯-⨯-=-; 3(2)(2)(2)(2)883333--⨯-⨯---=-=-=【总结升华】注意()na -与n a -的意义的区别.22()nn a a -=(n 为正整数),2121()n n a a ++-=-(n 为正整数). 举一反三:【变式】已知2a <,且24a -=,则3a 的倒数的相反数是 . 【答案】18类型二、乘方运算的符号法则2.不做运算,判断下列各运算结果的符号.(-2)7,(-3)24,(-1.0009)2009,553⎛⎫⎪⎝⎭,-(-2)2010【思路点拨】理解乘方的意义,掌握乘方的符号法则. 【答案与解析】解:根据乘方的符号法则判断可得:(-2)7运算的结果是负;(-3)24运算的结果为正;(-1.0009)2009运算的结果是负;553⎛⎫⎪⎝⎭运算的结果是正;-(-2)2010运算的结果是负. 【总结升华】 “一看底数,二看指数”,当底数是正数时,结果为正;当底数是0,指数不为0时,结果是0;当底数是负数时,再看指数,若指数为偶数,结果为正;若指数是奇数,结果为负. 举一反三: 【变式】(2015春•富阳市校级期中)计算(﹣2)2015+(﹣2)2014所得的结果是( ) A .﹣2 B . 2 C . ﹣22014 D .22015 【答案】C .解:(﹣2)2015+(﹣2)2014=(﹣2)2014(﹣2+1)=22014×(﹣1)=﹣22014. 类型三、有理数的混合运算3.计算:(1)-(-3)2+(-2)3÷[(-3)-(-5)](2)[73-6×(-7)2-(-1)10]÷(-214-24+214)(3)3112222233⎛⎫⎛⎫-+⨯-- ⎪ ⎪⎝⎭⎝⎭;(4)()2311113121121324424340.2⎛⎫⎛⎫⎛⎫÷-++-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- 【答案与解析】解:(1)-(-3)2+(-2)3÷[(-3)-(-5)] =-9+(-8)÷(-3+5) =-9+(-8)÷2 =-9+(-4)=-13(2)[73-6×(-7)2-(-1)10]÷(-214-24+214) =(7×72-6×72-1)÷(-214+214-24) =[72×(7-6)-1]÷(-24) =(49-1)÷(-24) =-2(3)有绝对值的先去掉绝对值,然后再按混合运算.原式11221111[(2)]82338324=-+⨯--=--=- (4)将带分数化为假分数,小数化为分数后再进行运算.()23311113121121324424340.215457551()()241162434()5125724241251652316056125403912040⎛⎫⎛⎫⎛⎫÷-++-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-=÷-++-⨯--=-⨯-⨯+⨯+=--++=【总结升华】有理数的混合运算,确定运算顺序是关键,细心计算是运算正确的前提. 类型四、科学记数法4.(2015•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为( ) A .0.675×105 B . 6.75×104 C . 67.5×103 D .675×102【思路点拨】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【答案】B .将67500用科学记数法表示为:6.75×104.【总结升华】将一个绝对值较大的数写成科学记数法10na ⨯的形式时,其中1≤|a|<10,n 为比整数位数少1的数.在进行运算时,a 部分和10n的部分分别运算,然后再把结果整理成10na ⨯的形式. 类型五、探索规律5.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎡⎤⎡⎤---⎛⎫-+++ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦; 第3个数:234511(1)(1)(1)(1)11111423456⎡⎤⎡⎤⎡⎤⎡⎤-----⎛⎫-+++++ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦;…第n 个数:232111(1)(1)(1)111112342n n n -⎡⎤⎡⎤⎡⎤----⎛⎫-++++ ⎪⎢⎥⎢⎥⎢⎥+⎝⎭⎣⎦⎣⎦⎣⎦….那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( ). A .第10个数 B .第11个数 C .第12个数 D .第13个数 【答案】A【解析】第1个数结果为11022-=;第2个数结果为111326-=-;第3个数结果为111424-=-;…;发现运算中在112-⎛⎫+ ⎪⎝⎭后边的各式为43653456⨯⨯⨯⨯…,分子、分母相约为1,所以第n 个数结果为1112n -+,把第10、11、12、13个数分别求出,比较大小即可.【总结升华】解答此类问题的方法一般是:从所给的特殊情形入手,再经过猜想归纳,从看似杂乱的问题中找出内在的规律,使问题变得有章可循. 举一反三:【变式】观察下面三行数:①-3,9,-27,81,-243,729,… ②0,12,-24,84,-240,732,… ③-1,3,-9,27,-81,243,… (1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和. 【答案】解:(1)第①行数的规律是:-3,(-3)2,(-3)3,(-3)4,…;(2)第②行数是第①行数相应的数加3,即:-3+3,(-3)2+3,(-3)3+3,(-3)4+3,…;第③行数是第①行数相应的数的13,即133-⨯,21(3)3-⨯,31(3)3-⨯,41(3)3-⨯,…; (3)每行数中的第10个数的和是:1010101(3)[(3)3](3)3-+-++-⨯=59049+59052+19683=137784.。
有理数的乘除及乘方
有理数的乘除及乘方一、有理数的乘法1.有理数乘法法则:(1)两数相乘,同号得 ,异号得 ,并把绝对值 .(2)任何数同零相乘,都得 .例题:①(-3) ×(+8)=__________;②173()()64-⨯+=________;③8( 2.3)()5-⨯-=__________; ④123()()54+⨯+=__________;⑤2()05-⨯=__________. (3)几个不等于0的数相乘,积的符号是由负因数的个数绝定的,当负因数有奇数个时,积得 ,当负因数有偶数个时,积得 .例题:①(-5)×(-6)×3×(-2)=__________;②(-2)×3×4×(-1)×(-3) =__________;③(-3)×(-1)×2×(-6)×0×(-2)=__________.2.有理数的乘法的运算律:交换律:a ×b=________; 结合律:(ab)c=__________=________;分配律: a(b+c)=___________. 例题:计算①118(0.36)()()411-⨯+⨯- ②-13×23-0.34×27+13×(-13)-57×0.34 ③231()243412--⨯ ④-3.14×35.2+6.28×(-23.3)-1.57×36.4 二、有理数的除法1.有理数除法法则:(1)两数相除,同号得 ,异号得 ,并把绝对值________.(2)0不能做除数,零除以任何一个__________零的数,都得零. (3)除以一个不为零的数等于乘以这个数的_________.注意:除法没有分配律,有括号时要先作括号内的.例题1:①(+28)÷(-7)=___________; ②515()()124+÷-=_______________; ③4(0.24)()5-÷-=_____________; ④23110()÷-=___________; ⑤5( 2.4)()3-÷+=___________; ⑥18()(0.72)5-÷-=____________.例题2:化简下列各式:①246-=________; ②279--=___________;③213-=__________;④07-=________. ④23110()÷-=___________; ⑤5( 2.4)()3-÷+=___________; ⑥18()(0.72)5-÷-=____________.例题3:计算①(-120)÷(-5)÷(-8) ②(-49)÷1(2)3-÷73÷(3)- ③18÷11()63- ④2(4)3-÷127-三、有理数的乘方1.求几个_________因数的积的运算,叫乘方.乘方的结果叫做_______.乘方是特殊的乘法运算.如果有n 个a 相乘,可以写为n a .nn a a a a = 个其中,n a 叫做a 的n 次方.也叫做a 的n 次幂. a 叫做幂的_________,a 可以取任何有理数;n 叫做幂的_________,可取任何正整数. 例题1:把下列各式写成乘方运算的形式,并指出底数和指数各是什么?①(-1.5)·(-1.5)·(-1.5)·(-1.5)=____________________底数是__________指数是____________.②111111555555⨯⨯⨯⨯⨯=____________________ 底数是__________指数是____________.例题2:① (-3)4=_________; ②0.53=_______; ③-44=________; ④-(-2)6=________⑤32()3=_______.2.幂运算性质:(1)正数的任何次幂都是________(正,负)数,负数的______(奇,偶)次幂是负数,负数的偶次幂是______数. (2)任何一个不为_______的数的零次幂都等于_______.例题1: ①(-5)4=_______; ②-54=________;③(-1)101=_______; ④-1100=_______;⑤302()3-=________.例题2:计算①2221(6)()72(3)3-÷--+⨯- ②232100(2)(2)()(2)3÷---÷-+- ③23118(3)5()(15)52-÷-+⨯---÷ ④0322004111()()(1)(2)(1)2216⎡⎤--÷--⨯-÷-⎢⎥⎣⎦3.有理数的混合运算的顺序;先算乘方,再算乘除,最后算加减.同级运算从左到右.如果有括号先算括号里面的,按小括号,中括号,大括号依次进行.例题:计算①()3111(2)30.4122⎧⎫⎡⎤⎛⎫----+⨯-÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭ (注意运算顺序) ②753()18 1.456 3.9569618-+⨯-⨯+⨯ (应用分配律)③()()()21034454512242⎡⎤-⨯---÷--+⎣⎦(化繁为简) 四、有效数字和科学记数法1.科学记数法:把一个大于10的数记成a×10n 的形式,其中a 是整数位数只有_______的数, 即110a ≤<,n 是比原数的整数部分的位数少1的正整数.像这种记数法叫____________.例.8900000=8.9×106 286000=2.86×105 1003400=1.0034×106 例题1:用科学记数法表示下列各数. ①135000;②329.506;③1000000000.例题2:下列各数是用科学记数法表示的,请写出这个数. ①5.7×105;②3.72×107;③2.0×109.2.近似数就是与实际很接近的数.精确度是近似数的精确程度,一般有两种形式(1)一个近似数四舍五入到哪一位,就称这个近似数精确到哪一位.例.π≈3 (精确到个位) π≈3.1 (精确到0.1, 或叫做精确到十分位)π≈3.14(精确到0.01, 或叫做精确到百分位)π≈3.141(精确到 , 或叫做精确到 .)π≈3.1416(精确到 , 或叫做精确到 .)(2)一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字.一个近似数有几个有效数字就称这个近似数保留几个有效数字.例题:用四舍五入法对下列各数取近似数. ①0.056846(保留4个有效数字) ②4672164(保留5个有效数字) ③2.5(保留3个有效数字) ④0.005876(保留3个有效数字)。
有理数的乘方重难点题型归纳总结(含答案)
有理数的乘方-重难点题型即有:.在【题型1 有理数乘方的概念】【例1】(2020秋•甘井子区期末)(−23)3表示的意义是( ) A .(−23)×(−23)×(−23) B .(−23)×3 C .−2×2×23 D .−23×3×3【解题思路】根据题目中的式子和有理数乘方的意义,可以解答本题. 【解答过程】解:(−23)3表示的意义是(−23)×(−23)×(−23), 故选:A .【变式1-1】把−(−23)(−23)(−23)(−23)写成乘方的形式是( )A .−243B .−(23)4C .(−23)4D .−(−23)4【解题思路】根据幂的意义即可得出答案,求n 个相同因数积的运算,叫做乘方.na a a a n ⋅⋅⋅=个【解答过程】解:−23当底数的时候,要加括号,故A 选项错误; 底数是−23,故B 选项错误;在最前面有一个负号,故C 选项错误;原式写成乘方的形式是﹣(−23)4,故D 选项正确; 故选:D .【变式1-2】(2020秋•安居区期中)关于(﹣5)4的说法正确的是( ) A .﹣5是底数,4是幂B .﹣5是底数,4是指数,625是幂C .﹣5是底数,4是指数,﹣625是幂D .5是底数,4是指数【解题思路】利用乘方的意义判断即可.【解答过程】解:关于(﹣5)4的说法正确的是﹣5是底数,4是指数,625是幂.故选:B .【变式1-3】(2020秋•浑源县期中)将 写成幂的形式,正确的是( ) A .2m 3nB .2m 3nC .2m n 3D .m 23n【解题思路】根据有理数的乘方解答即可.【解答过程】解:将 写成幂的形式为:2m 3n,故选:A .【题型2 有理数乘方的运算】【例2】(2020秋•含山县期末)下列各式结果相等的是( ) A .﹣22与(﹣2)2B .233与(23)3C .﹣(﹣2)与﹣|﹣2|D .﹣12021与(﹣1)2021【解题思路】各式计算得到结果,即可作出判断.【解答过程】解:A 、﹣22=﹣4,(﹣2)2=4,不相等,不符合题意; B 、233=83,(23)3=827,不相等,不符合题意;C 、﹣(﹣2)=2,﹣|﹣2|=﹣2,不相等,不符合题意;D 、﹣12021=﹣1,(﹣1)2021=﹣1,相等,符合题意. 故选:D .【变式2-1】(2020秋•镇平县期中)下列各对数中,数值相等的是( ) A .﹣(﹣3)2与﹣(﹣2)3 B .﹣32与(﹣3)2 C .﹣3×23与﹣32×2D .﹣23与(﹣2)3【解题思路】根据乘方的定义分别求解可得.【解答过程】解:A .﹣(﹣3)2=﹣9,﹣(﹣2)3=8,不相等; B .﹣32=﹣9,(﹣3)2=9,不相等; C .﹣3×23=﹣24,﹣32×2=﹣18,不相等; D .﹣23=﹣8,(﹣2)3=﹣8,相等; 故选:D .【变式2-2】(2020春•西湖区校级月考)下列说法中正确的是( ) A .﹣a n 和(﹣a )n 一定是互为相反数B .当n 为奇数时,﹣a n 和(﹣a )n 相等C .当n 为偶数时,﹣a n 和(﹣a )n 相等D .﹣a n 和(﹣a )n 一定不相等【解题思路】根据有理数的乘方的定义,分n 是奇数和偶数两种情况讨论求解即可. 【解答过程】解:当n 为奇数时,﹣a n 和(﹣a )n 相等, 当n 为偶数时,﹣a n 和(﹣a )n 一定互为相反数. 故选:B .【变式2-3】(2020秋•涞水县期末)设n 是自然数,则(−1)n +(−1)n+22的值为( )A .1或﹣1B .0C .﹣1D .0或1【解题思路】分n 为奇数和偶数两种情况,根据有理数乘方运算法则计算可得. 【解答过程】解:若n 为奇数,则n +2也是奇数,此时(−1)n +(−1)n+22=−1−12=−1;若n 为偶数,则n +2也为偶数,此时(−1)n +(−1)n+22=1+12=1;故选:A .【题型3 偶次乘方的非负性】【例3】(2021春•沙坪坝区期中)已知(2x ﹣4)2+|x +2y ﹣8|=0,则(x ﹣y )2021= . 【解题思路】由非负数的意义求出x 、y 的值,再代入计算即可. 【解答过程】解:∵(2x ﹣4)2+|x +2y ﹣8|=0, ∴2x ﹣4=0,x +2y ﹣8=0, 解得,x =2,y =3,∴(x ﹣y )2021=(2﹣3)2021=(﹣1)2021=﹣1, 故答案为:﹣1.【变式3-1】(2020秋•崇川区校级期中)若a 、b 为整数,且|a ﹣2|+(b +3)2020=1,则b a = . 【解题思路】先利用绝对值和乘方的意义得到a =1或3,b =﹣3或a =2,b =﹣4或﹣2,然后利用的意义进行计算.【解答过程】解:∵|a ﹣2|≥0,(b +3)2020≥0, 而a 、b 为整数,∴|a ﹣2|=1,(b +3)2020=0或|a ﹣2|=0,(b +3)2020=1,∴a=1或3,b=﹣3或a=2,b=﹣4或﹣2,当a=1,b=﹣3时,b a=﹣3;当a=3,b=﹣3时,b a=(﹣3)3=﹣27;当a=2,b=﹣4,b a=(﹣4)2=16;当a=2,b=﹣2时,b a=(﹣2)2=4;综上所述,b a=(﹣3)3=﹣27;的值为﹣3或﹣27或4或16.故答案为﹣3或﹣27或4或16.【变式3-2】(2020秋•衡水期中)对于|a﹣1|﹣3及﹣(b+3)2+2,佳佳和音音提出了两个观点佳佳的观点:|a﹣1|﹣3有最小值,最小值为3音音的观点:﹣(b+3)2+2有最大值,最大值为2对于以上观点,则()A.佳佳和音音均正确B.佳佳正确,音音不正确C.佳佳不正确,音音正确D.佳佳和音音均不正确【解题思路】根据有理数的平方、绝对值的定义解答即可.【解答过程】解:因为|a﹣1|≥0,所以|a﹣1|﹣3有最小值,最小值为﹣3;因为(b+3)2≥0,所以﹣(b+3)2≤0,所以﹣(b+3)2+2有最大值,最大值为2,所以佳佳不正确,音音正确,故选:C.【变式3-3】(2020秋•蓬溪县期中)若a、b有理数,下列判断:①a2+(b+1)2总是正数;②a2+b2+1总是正数;③9+(a﹣b)2的最小值为9;④1﹣(ab+1)2的最大值是0其中错误的个数是()A.1B.2C.3D.4【解题思路】直接利用偶次方的性质分别分析得出答案.【解答过程】解:①a2+(b+1)2总是非负数,故此选错误;②a2+b2+1总是正数,正确;③9+(a ﹣b )2的最小值为9,正确;④1﹣(ab +1)2的最大值是1,故此选项错误. 故选:B .【题型4 含乘方的混合运算】【例4】(2021春•金山区期末)计算:−32÷[4−(−1)2]+[23−(12)2]×24.【解题思路】利用有理数混合运算的法则运算:先做乘方,再做乘除,最后做加减,有括号的先做括号里面的.【解答过程】解:原式=﹣9÷(4﹣1)+(23−14)×24=﹣9÷3+(23×24−14×24)=﹣3+(16﹣6) =﹣3+10 =7.【变式4-1】(2020秋•郯城县期末)计算:[2+(﹣5)2]÷3×13−|﹣4|+23. 【解题思路】先算乘方,再算乘除,最后算加减.同级运算,从左往右计算. 【解答过程】解:原式=[2+25]÷3×13−4+8 =27÷3×13−4+8 =9×13−4+8 =3﹣4+8 =7.【变式4-2】(2021春•奉贤区期中)计算:−12012−[2−(−3)2]−(138+213−3.75)×24.【解题思路】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.注意乘法分配律的灵活运用. 【解答过程】解:−12012−[2−(−3)2]−(138+213−3.75)×24=﹣1﹣(2﹣9)−118×24−73×24+154×24 =﹣1+7﹣33﹣56+90 =7.【变式4-3】(2021春•浦东新区月考)计算:(−1)2021+12÷|−34|×(−4)−(−22)×(−114). 【解题思路】根据有理数的乘方、有理数的乘除法和加减法可以解答本题. 【解答过程】解:(−1)2021+12÷|−34|×(−4)−(−22)×(−114) =(﹣1)+12×43×(﹣4)﹣(﹣4)×(−54) =(﹣1)﹣64﹣5 =﹣70.【题型5 乘方的应用规律】【例5】(2020秋•卢龙县期末)一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第100次剪完后剩下绳子的长度是( ) A .(13)99mB .(23)99mC .(13)100mD .(23)100m【解题思路】根据有理数的乘方的定义解答即可. 【解答过程】解:∵第一次剪去绳子的23,还剩13m ;第二次剪去剩下绳子的23,还剩13(1−23)=(13)2m ,……∴第100次剪去剩下绳子的23后,剩下绳子的长度为(13)100m ;故选:C .【变式5-1】(2021春•松北区期末)某种细菌在培养过程中,每半小时分裂1次,每次一分为二,若这种细菌由一个分裂到16个,那么这个过程要经过 分钟.【解题思路】根据细菌在培养过程中,每半小时分裂1次,则n 小时后,分裂到22n 个,从而列方程求解.【解答过程】解:设经过n小时,根据题意,得22n=16,2n=4,n=2.2小时=120分钟,故答案为:120.【变式5-2】看过西游记的同学都知道:孙悟空会分身术,他摇身一变就变成2个悟空;这两个悟空摇身一变,共变成4个悟空;这4个悟空再变,又变成8个悟空…假设悟空一连变了30次,那么会有多少个孙悟空?【解题思路】根据有理数乘方的定义,可推断出变化30次,孙悟空的个数2×2×...×2(30个2相乘)=230(个).【解答过程】解:变化一次,孙悟空的个数为2=21(个);变化两次,孙悟空的个数为2×2=22=4(个);变化三次,孙悟空的个数为2×2×2=23=8(个);变化四次,孙悟空的个数为2×2×2×2=24=16(个);...以此类推,变化30次,孙悟空的个数2×2×...×2(30个2相乘)=230(个).∴悟空一连变了30次,会有230个孙悟空.【变式5-3】(2020秋•农安县期中)有一种纸的厚度为0.1毫米,若拿两张重叠在一起,将它对折一次后,厚度为22×0.1毫米.(1)对折2次后,厚度为多少毫米?(2)对折6次后,厚度为多少毫米?【解题思路】(1)根据对折规律确定出所求厚度即可;(2)根据对折规律确定出所求厚度即可.【解答过程】解:(1)根据题意得:2×22×0.1=0.8(毫米);(2)根据题意得:25×22×0.1=12.8(毫米).【题型6 乘方应用中的新定义问题】【例6】(2021•永州)定义:若10x=N,则x=log10N,x称为以10为底的N的对数,简记为lgN,其满足运算法则:lgM+lgN=lg(M•N)(M>0,N>0).例如:因为102=100,所以2=lg100,亦即lg100=2;lg4+lg3=lg12.根据上述定义和运算法则,计算(lg2)2+lg2•lg5+lg5的结果为()A.5B.2C.1D.0【解题思路】根据题意,按照题目的运算法则计算即可.【解答过程】解:(lg2)2+lg2•lg5+lg5=lg2(lg2+lg5)+lg5=lg2+lg5=1g10=1.故选:C.【变式6-1】(2020秋•驿城区校级期中)请认真阅读下面材料,并解答下列问题.如果a(a>0,a≠1)的b次幂等于N,即指数式a b=N,那么数b叫做以a为底N的对数,对数式记作:log a N=b.例如:①因为指数式22=4,所以以2为底4的对数是2,对数式记作:log24=2;②因为指数式42=16,所以以4为底16的对数是2,对数式记作:log416=2.(1)请根据上面阅读材料将下列指数式改为对数式:①62=36;②43=64;(2)将下列对数式改为指数式:①log525=2;②log327=3;(3)计算:log232.【解题思路】(1)根据对数的定义求解;(2)利用对数的定义写成幂的形式;(3)先利用乘方的意义得到25=32,然后根据对数的定义求解.【解答过程】解:(1)①62=36;对数式记作:log636=2;②43=64;对数式记作:log464=3;(2)①log525=2;指数式为52=25,②log327=3;指数式为33=27;(3)∵25=32,log232=5.【变式6-2】(2020秋•宁化县月考)(1)计算下面两组算式:①(3×5)2与32×52;②[(﹣2)×3]2与(﹣2)2×32;(2)根据以上计算结果猜想:(ab)3等于什么?(直接写出结果)(3)猜想与验证:当n为正整数时,(ab)n等于什么?请你利用乘方的意义说明理由.(4)利用上述结论,求(﹣4)2020×0.252021的值.【解题思路】(1)根据题意计算出结果即可(2)根据(1)的计算结果写出猜想即可.(3)当n为正整数时,写出猜想的结果,然后根据乘方的意义说明理由即可.(4)利用(3)的结论计算出值即可.【解答过程】解:(1)计算下面两组算式:①(3×5)2=225;32×52=9×25=225.②[(﹣2)×3]2=36;(﹣2)2×32=4×9=36.(2)根据(1)计算结果猜想:(ab)3=a3b3.(3)当n为正整数时,(ab)n=a n b n.理由:当n为正整数时.(ab)n=ab⋅ab⋯ab⋅ab︸n个ab的乘积=a⋅a⋯a⋅a︸n个a的积•b⋅b⋯b⋅b︸n个b的积=a n b n.即:当n为正整数时,(ab)n=a n b n.(4)(﹣4)2020×0.252021=(﹣4)2020×0.252020×0.25=(﹣4×0.25)2020×0.25=0.25.【变式6-3】(2020秋•聊城期中)概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)a ÷a ÷a ÷⋯⋯÷a ︸n 个a ,记作a ⓝ,读作“a 的圈n 次方”.初步探究:直接写出计算结果:2③= ,(−12)③= ;深入思考:例如(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=(−3)×(−13)×(−13)×(−13)=(−13)2=(13)2(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥= ;(−12)⑥= ;(2)算一算:22÷(−13)④×(−2)③−(−13)⑤÷33. 【解题思路】(1)利用新定义求解;(2)先把除方运算转化为乘方运算进行计算,然后进行乘除运算.【解答过程】解:2③=12,(−12)③=−2;(1)5⑥=(15)4,(−12)⑥=24; (2)22÷(−13)④×(−2)③−(−13)⑤÷33 =22÷(−3)2×(−12)1−(−3)3÷27=4×19×(−12)+27÷27=79.故答案为:12;﹣2;(1)(15)4;24;(2)79.【题型7 科学记数法的表示】【例7】(2021春•浦东新区期末)如图,是津巴布韦于2009年发行的一张面值为100万亿的津元,但这一张100万亿津元还抵不上1美元的价值,在当地,一张这样的钞票也就顶多能买一个面包.“100万亿”可以用科学记数法表示()A.1×1010B.1×1012C.1×1013D.1×1014【解题思路】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答过程】解:100万亿=100×104×108=100000000000000=1×1014.故选:D.【变式7-1】(2021•深圳模拟)2020年12月17日,嫦娥5号经历了往返76万千米的长途跋涉,顺利回家并在我国内蒙古着陆,同时将在月球采集的土壤样本带回了地球,这标志着我国探月工程嫦娥5号的任务获得了圆满的成功.其中76万千米用科学记数法可表示为()A.760000米B.7.6×108米C.7.6×107米D.7.6×109米【解题思路】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:76万千米=760000000=7.6×108米.故选:B.【变式7-2】(2021•包头)据交通运输部报道,截至2020年底,全国共有城市新能源公交车46.61万辆,位居全球第一,将46.61万用科学记数法表示为4.661×10n,则n等于()A.6B.5C.4D.3【解题思路】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数.【解答过程】解:因为46.61万=466100=4.661×105,所以将46.61万用科学记数法表示为4.661×10n,则n等于5.故选:B.【变式7-3】(2021•雨花区模拟)据中国政府网报道,截至2021年4月5日,31个省(自治区、直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗14280.2万剂次.下列说法不正确的是()A.14280.2万大约是1.4亿B.14280.2万大约是1.4×108C.14280.2万用科学记数法表示为1.42802×104D.14280.2万用科学记数法表示为1.42802×108【解题思路】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答过程】解:A、14280.2万大约是1.4亿,故本选项不合题意;B、14280.2万大约是1.4×108,故本选项不合题意;C、14280.2万用科学记数法表示为1.42802×108,故本选项符合题意;D、14280.2万=142802000=1.42802×108.故本选项不合题意;故选:C.【题型8 近似数的表示】【例8】(2021春•浦东新区期末)据报道,国新办于2021年5月11日上午就第七次全国人口普查主要数据结果举行发布会,发布会上透露全国人口已达14.1178亿人,这里的近似数“14.1178亿”精确到()A.亿位B.千万位C.万分位D.万位【解题思路】根据近似数“14.1178亿”,可知最后的数字8在万位上,从而可以解答本题.【解答过程】解:近似数“14.1178亿”精确到万位,故选:D.【变式8-1】(2021•江岸区校级自主招生)把4383800精确到万位并用科学记数法表示为()A.4.38×106B.4.3×106C.4.384×106D.43.8×105【解题思路】首先把4383800精确到万位,然后根据:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,判断出用科学记数法表示是多少即可.【解答过程】解:4383800≈4380000,4380000=4.38×106.故选:A.【变式8-2】(2020秋•高邮市期末)我市某部门2021年年初收入预算为8.24×106元,关于近似数8.24×106,是精确到()A.百分位B.百位C.千位D.万位【解题思路】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答过程】解:因为8.24×106=8240000,所以近似数8.24×106是精确到万位.故选:D.【变式8-3】(2020秋•宽城区期末)数M精确到0.01时,近似数是2.90,那么数M的范围是()A.2.8≤M<3B.2.80≤M≤3.00C.2.85≤M<2.95D.2.895≤M<2.905【解题思路】考虑两方面:①千分位舍去得到2.90;②千分位入得到2.90,据此可得答案.【解答过程】解:数M精确到0.01时,近似数是2.90,那么数M的范围是2.895≤M<2.905,故选:D.。
七年级数学《有理数的乘方》教案设计
七年级数学《有理数的乘方》教案设计有理数的乘法是继有理数的加减法之后的又一种基本运算。
有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的。
接下来是小编为大家整理的七年级数学《有理数的乘方》教案设计,希望大家喜欢!七年级数学《有理数的乘方》教案设计一教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.2.已知一个数,会求出它的正整数指数幂,渗透转化思想.3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算.教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an 中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂.说明:(1)举例94来说明概念及读法.(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.(4)乘方是一种运算,幂是乘方运算的结果.(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值.(2)注意(-2)4与-24的区别.根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)()3; (2)(-)3;(3)(-)4; (4)-;(5)-22×(-3)2; (6)-22+(-3)2.(四)总结反思,拓展升华1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂.乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-an 及()n与的区别和联系.(五)课堂跟踪反馈1.课本P42练习第1、2题.2.补充练习(1)在(-2)6中,指数为,底数为.?(2)在-26中,指数为,底数为.?(3)若a2=16,则a= .?(4)平方等于本身的数是,立方等于本身的数是.?(5)下列说法中正确的是( )A.平方得9的数是3B.平方得-9的数是-3C.一个数的平方只能是正数D.一个数的平方不能是负数(6)下列各组数中,不相等的是( )A.(-3)2与-32B.(-3)2与32C.(-2)3与-23D.|2|3与|-23|(7)下列各式中计算不正确的是( )A.(-1)2003=-1B.-12002=1C.(-1)2n=1(n为正整数)D.(-1)2n+1=-1(n为正整数)(8)下列各数表示正数的是( )A.|a+1|B.(a-1)2C.-(-a)D.||第2课时有理数的混合运算教学目标:1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算.教学难点:有理数的混合运算.教学过程:一、有理数的混合运算顺序:1.先乘方,再乘除,最后加减.2.同级运算,从左到右进行.3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【例1】计算:(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);(2)1-×[3×(-)2-(-1)4]+÷(-)3.强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.【例2】观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.二、课堂练习1.计算:(1)|-|2+(-1)101-×(0.5-)÷;(2)1÷(1)×(-)÷(-12);(3)(-2)3+3×(-1)2-(-1)4;(4)[2-(-)3]-(-)+(-)×(-1)2;(5)5÷[-(2-2)]×6.2.若|x+2|+(y-3)2=0,求的值.3.已知A=a+a2+a3+…+a2004,若a=1,则A等于多少?若a=-1,则A等于多少?三、课时小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.七年级数学《有理数的乘方》教案设计二【教学目标】(1)正确理解乘方、幂、指数、底数等概念.(2)会进行有理数乘方的运算.(3)培养探索精神,体验小组交流、合作学习的重要性.【教学方法】讲授法、讨论法。
《有理数的乘方》
《1.5.1 有理数的乘方》教学设计相乘为n2。
将2换做a.揭示课题并板书课题让学生通过观察发现乘方的意义实际就是几个相同因数的积,从而得到乘方运算的概念。
给出乘方概念。
对照各部分名称:指数、底数、幂出示练习并提问学生教师巡视学生的完成情况,对出现模糊概念的学生给适当的指导师强调:a.单独一个数或字母可看成是指数为1,但1省略不写b.底数是分数或负算叫做乘方,乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数学生口答把下列乘法式子写成乘方的形式:1、1×1×1×1×1×1×1= ;2、3×3×3×3×3= ;3、(-3)×(-3)×(-3)×(-3)= ;4、=⨯⨯⨯65656565;小试牛刀:(1) 5看成幂的话,底数是________,指数是________。
(2)在(-5)15中,底数是_______ ,指数是_______,(-5)15读作_______。
(3)在42-)(中,底数是_____ ,指数是_____,42-)(读作_____意义是_____,结果是_____。
(4)在42-中,底数是_____ ,指数名称,为后面习题巩固概念做知识储备。
通过简单的练习,巩固知识,理解概念。
学生容易在对底数和指数的概念理解这个地方出现问题,利用习题来提醒学生注意区分底数。
对于分数及负数做底数时,让同学准确把握易错点,从而达到突破重点难点的目的。
有理数的乘方1、求几个相同因数积的运算,叫做乘方。
乘方的结果叫做幂。
a×a×a×…×a=a n读作:a的n次方(a的n次幂)n个a2、正数的任何次幂都是正数。
负数的偶次幂是正数。
负数的奇次幂是负数。
0的任何正次幂都是0。
3、平方具有非负性六、课后反思有理数的乘方的教学目的是使学生明白乘方是一种运算,能理解幂、底数、指数的概念,能正确的书写,准确的运算,教学中不但要搞好中小学数学在《课标》体系上的衔接,还要注重学生的心理上、习惯上、方法上的衔接。
有理数的乘方
3
)
=
5
计算:3
4
=;−3爱Fra bibliotek2若a
n
> 0
,n为奇数,则a ( ).
智
.
康
20
18
/0
=
;(−1)
2n
=
.
4
=
;(−3)
4
=
;−(−3)
4
=
.
三、有理数混合运算顺序
先乘方,再乘除,最后加减; 同级运算,从左到右进行; 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 【知识拓展】 (1)在运算过程中,通常将带分数化为假分数,小数化为分数,再进行乘方、乘除运算.另外有些运算可以同时进 行,以简化解题. (2)通常把六种基本的代数运算分成三级.第一级运算时加和减,第二级运算时乘和除,第三级运算是乘方,运算 顺序的规定是,先算高级运算,再算低级运算,同级运算在一起,按从左到右的顺序计算. 计算下列各式: 1
有理数的乘方
一、乘方的定义
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a 中,a 叫做底数,n叫做指数.当a 看做a 的n次方
n n
的结果时,也可以读作“a 的n次幂”.例如在6 中,底数是6,指数是4,6 读作“6的4次方”,或“6的4次幂”.
4 4
(−2)
5
表示( ).
A. 5个−2 相乘的积 B. −2 乘5的积 C. 2个−5 相乘的积 D. 5个−2 相加的和
二、乘方运算法则
(1)负数的奇次幂是负数,负数的偶次幂是正数. (2)正数的任何次幂都是正数,0的任何正整数次幂都是0. 1 设n为自然数,则:(−1)
6/ 12
有理数的乘方知识点讲解
有理数的乘方教案
有理数的乘方教案
教学目标:
1. 理解有理数的乘方的概念和性质。
2. 能够计算有理数的乘方运算。
3. 能够应用有理数的乘方解决实际问题。
教学步骤:
引入:让学生回顾一下幂的概念,并且了解一些特殊的幂,如0的任意次方等。
1. 定义有理数的乘方:有理数a的n次方,表示a与自身连乘n次的结果。
解释乘方的特性,如a^m * a^n = a^(m+n),a^m / a^n = a^(m-n)。
2. 引导学生进行简单的乘方计算,如2^3 = 2 * 2 * 2 = 8,(-
3)^4 = (-3) * (-3) * (-3) * (-3) = 81。
3. 结合实际问题,让学生应用乘方计算。
例如,假设一辆汽车每小时行驶60公里,问3小时后汽车行驶的总距离是多少?解答:汽车每小时行驶60公里,3小时后行驶的总距离为
60^3 = 60 * 60 *60 = 216000公里。
4. 引导学生讨论一些有理数乘方的特殊情况,如0的正整数次方为0,0的零次方没有意义。
让学生思考并解释这些特殊情况的原因。
5. 组织学生进行习题训练,巩固他们对有理数乘方的理解和运算能力。
6. 总结归纳乘方的运算规律,强调在进行乘方运算时,要注意有理数的正负及零次方的特殊情况。
7. 布置课后作业,要求学生练习乘方的运算和解答乘方问题。
8. 下节课开始时进行乘方的复习和巩固,解答学生所遇到的问题。
教学资源:教材、习题册。
教学评价:观察学生的课堂表现,包括学习态度、参与度、乘方运算的准确性和解决实际问题的能力。
对学生完成的作业进行评价和批改。
七年级数学《有理数的乘方》教案设计(最新5篇)
七年级数学《有理数的乘方》教案设计(最新5篇)作为一名人民教师,有必要进行细致的教案准备工作,借助教案可以更好地组织教学活动。
来参考自己需要的教案吧!以下是人见人爱的小编分享的5篇七年级数学《有理数的乘方》教案设计,希望能够满足亲的需求。
七年级数学《有理数的乘方》教案设计篇一教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。
2.已知一个数,会求出它的正整数指数幂,渗透转化思想。
3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。
教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。
说明:(1)举例94来说明概念及读法。
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。
有理数的乘方
有理数的乘方求几个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂(mì) 。
其中底数a代表相乘的因数,指数n代表相乘因数的个数。
归纳:1、正数的任何次幂都是正数2、负数的奇次幂是负数,负数的偶次幂是正数3、0的任何次幂等于0;l的任何次幂等于14、当乘方的底数是负数或分数时,要加括号。
5、指数 n是正整数6、一个数可以看作自身的一次方。
7、1的任何次幂都为18、-1的幂很有规律: -1的奇次幂是-1 , -1的偶次幂是1注意:1、一个数可以看作是这个数的本身的一次方,如5 就是51,指数1通常省略不写。
2、底数a可以是正数、负数、0;当底数是负数或分数时,底数一定要加上括号。
这也是辩认底数的方法。
思考与讨论1、-250和(-2)50的区别.2、(-2)51表示有51个-2相乘,有奇数个(51个)负因数,于是结果的符号应是负号,而(-2)50表示有50个-2相乘,当然有偶数个(50个)负因数,结果的符号应是正号.问题探究1(1) 2×32和(2×3)2有什么区别?(2)32与23有什么区别?各等于什么?(3)-34和(-3) 4有什么区别?各等于什么?解题说明:(1) 2×32表示 2与3的平方之积,等于18;而(2×3)2表示2与3的积的平方,等于36.(2)32表示3的2次幂;而23表示2的3次幂,它们的结果分别是9和8.(3)-34表示4个3相乘的积的相反数或3的4次幂的相反数;而(-3) 4则表示4个(-3)相乘的积或(-3)的4次幂,结果分别是-81和81.有理数运算归纳:1、在进行有理数的乘方运算时要辨别清楚底数和指数,以及符号问题,避免出错. 因此,也有:先定符号,再绝对值乘方2、先乘方、再乘除、最后加减;3、同级运算,从左到右进行;如有括号,4、先做括号内的运算,按小括号、中括号、大括号依次进行例题1、若(a+3)2 + ︱b-2︱= 0 则 a b+1=解:∵(a+3)2 + ︱b-2︱= 0∴① a+3=0 ∴ a=-3∴② b-2=0 ∴ b=2∴ a b+1 = (-3)2+1 = (-3)3 =92、已知(a-1)2+(b-3)4+|3c+5|=0,求3a+2b+c的值解:∵(a-1)2+(b-3)4+|3c+5|=0∴(a-1)2 =0 ∴ a=1∴(b-3)4 =0 ∴ b=3∴|3c+5|=0 ∴ c=-(5/3)∴3a+2b+c = 3 x1+2x3+[-(5/3)]= [(27-5)/3]= - 22/3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的乘方(规律)
1.如图是一组有规律的图案,他们是用黑白两种颜色的菱形组成,第1个图案中白色菱形的个数为4,第2个图案中白色菱形的个数为7,第3个图案中白色菱形的个数为10,...,依此规律,第n个图案中白色菱形的个数为.(用含n的代数式表示)
2.下列图形都是用同样大小的“”按一定规律组成的,则第(8)个图形中“”共有个.
3.如图,用相同的小正方形按照某种规律进行摆放,第1个图形中有5个小正方形,第2个图中有11个小正方形,第3个图形中有19个
4.下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2017个梅花图案中,共有个“”图案.
5.。