基于ANSYS的复合海缆载流量计算-郭丽丽

基于ANSYS的复合海缆载流量计算-郭丽丽
基于ANSYS的复合海缆载流量计算-郭丽丽

基于ANSYS的复合海缆载流量计算

[郭丽丽,安博文]

[上海海事大学,201306]

[ 摘要] 基于ANSYS软件,建立复合海缆在不同埋设环境下的二维稳态模型。通过分析运算,模拟了复合海缆的温度分布状态,得到复合海缆导体与光纤温度对应关系,通过间接计算得到复合海

缆在不同的埋设环境下的载流量。为海缆实时运行状况监测以及输电线路的有效利用提供了依

据。

[ 关键词]载流量,复合海缆,温度场,ANSYS

Calculation of Load Flow about Composite

Cable Based on ANSYS

[GUO Li-li, AN Bo-wen]

[Shanghai Maritime University,201306]

[ Abstract ] Based on the ANSYS software, two-dimensional steady-state model related composite cable in different buried environment had been set up. By means of analysis and

computation, the temperature distribution state of composite cable had been simulated,

according to this, the composite cable conductor and optical fiber temperature relationship

and the load flow of composite cable buried in different conditions had been obtained which

provide a basis for of real-time monitoring the running status of composite cables and

effective use of electrical transmission lines.

[ Keyword ] Load flow, Composite cable, Temperature filed, ANSYS.

1前言

随着海洋经济的兴起,海岛与大陆联网工程建设以及海上石油天然气的开采,复合海缆的应用越来越广泛,承担着海岛及采油平台间的动力传输,其安全可靠性及运行潜力是用户关注的基本要素,其中导体的载流量为用户发挥海缆运行潜力、科学调度提供直接依据。

电缆载流量是在规定条件下,导体能够连续承载而其稳定温度不超过规定值的最大电流值,载流量的大小受导体及电缆绝缘材料的材质,环境温度,热阻系数,允许最高连续工作温度等因素制约。载流量设计到输电线路的可靠性、经济性及电缆寿命等问题,是电缆运行的重要基本参数。

目前国际上通用的载流量计算标准为国际电工委员会制订的IEC-60287标准。经过多年的修改和增补,该标准基本趋于完善,但对一些特殊结构电缆或复杂铺设条件下的电缆载流量该标准仍需要实验解决,因为一些参数取值具有不确定性,如:

电缆结构材料有关的参数;

环境条件有关的参数,其数值变化范围较大,取决于电缆铺设条件;

来自于制造商和用户之间协商的参数,包括电缆运行安全阈值和运行状况,例如最高导体温度。

此外,对于直接埋地、管道、沟槽或钢管中铺设的电缆,鉴于土壤的水分迁移其热阻系数会发生巨大的变化,为了准确的计算电缆在特定环境条件下的载流量,选取相应参数数值时需特别加以考虑。

因此,IEC-60287标准实际只能满足简单环境条件下的载流量计算,当电缆实际敷设环境不同于其设定的基准参数值时,需要通过大量试验来确定相应的校正系数,存在一定的局限性,且IEC-60287中并没有提及光电复合海缆载流量的计算方法。

电缆载流量计算公式是根据电缆稳态运行时所形成的热物理温度场微分方程的求解而得。根据电缆用于交流系统还是直流系统以及敷设方式的不同,载流量的计算公式也有所不同。此外,当空气中敷设时又有直接受阳光照射和不受阳光照射之分。土壤中敷设时当电缆表面温度超过50℃时周围土壤发生水分迁移而引起土壤局部干燥,其载流量计算公式也不同[1]。

由此可以看出实际电缆载流量的计算过程是非常复杂烦琐的。到目前为止,我国没有完整的结合地理和气象条件而制订的基准载流量资料。

载流量的定义决定其数值与导体温度息息相关,而海缆是否正常工作也可以通过其中导体的温度场反映出来,但是,由于其特殊的铺设环境,无法人工进行检测。

大型通用有限元软件ANSYS能够对热传导、热对流及热辐射三种传热方式进行很好的温度场仿真计算,因此,可以通过该软件建模,模拟复合海缆的发热过程,得到其温度场分布。从而推算出电缆在特定条件下的载流量数据。

2复合海缆结构模型

2.1计算模型

本工程计算模型包括复合海缆电缆模型和埋设环境两部分。

2.1.1复合海缆建模

复合海缆结构参数由施工方提供,具体结构如下:

为便于进行温度场分析及节约计算时间,将模型几何结构简化为圆环结构。

虽然导体为立体结构,但由于各截面几何结构及材料属性均匀,因此,采用复合海缆

截面建立二维模型。

2.1.2 埋设环境建模

本工程海缆部分埋设环境包括海床、潮间带淤泥质滩涂、土壤直埋和电缆沟四种。其

中,前三种需将埋设环境作为模型的一部分。

导体通电后热辐射会对周围环境温度产生影响,目前通用的为上下左右各20米建立矩

形土壤模型,这样的边界温度基本不受导体生热影响,但考虑到实际设备的测温精度及计算时间,本工程土壤模型的矩形尺寸由不同的埋设深度决定。

2.2 建模基本假设

在建模时需做一定假设:

(1)假设计算模型在高度和宽度范围内土壤及环境温度均匀;

(2)忽略各几何结构相互之间的导热热阻;

(3)假设复合海缆材料均匀,土壤热属性均匀;

(4)导体电阻率不随温度变化。

根据以上假设,复合海缆在不同埋设环境下的热传导可以简化为二维稳态传热过程,

其传热微分方程[2]为:

0)((=????+????y

t y x t x λλ。 (1) 2.3 计算模型中边界条件的确定

2.3.1 参数确定

复合海缆各材料属性及埋设环境土壤热传导系数都会对模型最终的温度场分布产生重

要影响。

其中,复合海缆自身材料属性基本固定不变,可以在建模时直接进行设置;但是,土

壤会随着导体热辐射而产生水分迁移现象,产生水分迁移后的土壤热传导系数是产生水分迁移前自然土壤的2到4倍,如果使用单一土壤模型,则计算结果会出现较大的偏差。工程实际中对于直埋和潮间带淤泥质埋设一般采用回填0.2m 厚沙土的方法,回填的厚沙土干

燥情况下热传导系数基本稳定为0.5W/m 2℃,因此,本工程参考这一做法,在复合海缆与

埋设土壤之间建立回填厚沙土模型。

2.3.2 对流换热方程

对流换热是指固体表面与其周围接触的流体之间,由于温度差异而引起的热量交换。

对流换热可以通过牛顿冷却公式[3]来进行描述:

q=h Δt (2) 其中,q —热流密度W/m 2

h —换热系数W/m 2℃

Δt —温度差℃

由于换热系数与流体的流动形态密切相关,因此,结合实际情况在本工程项目中,空

气和海水的对流换热系数需设置多个数值分别计算。

2.3.3 传热方程

热量传递是由固体内部的温差决定的,因此导热过程与物体内部的温度分布有密切关

系,传热可以用傅里叶定律公式[2]来进行描述:

q=-λgradt (3)

其中,q 为导热热流量;负号表示导热热流永远沿着温度降低的方向;gradt 表示温度

的梯度。

3 基于ANSYS 的有限元模型仿真

3.1 模型建立

(1)定义单元类型:2 维 8 节点热实体单元,2 维 4 节点热单元 (PLANE55) 的高阶版

本,作为平面单元或轴对称环单元,用于 2 维热传导分析。每个节点只有一个自由度——温度;

(2)定义材料属性:从导热系数、比热容、密度三个方面定义个材料属性参数;

(3)几何建模

(4)划分网格:确定网格划分等级,自动进行网格划分。

生成模型如下图所示:

Zt1000直埋有限元模型

3.2 求解

(1)定义分析类型:稳态热分析;

(2)施加载荷和边界条件:

温度—将确定的温度施加到模型的特定区域

对流—模拟平面和周围流体之间的热量交换

热生成率—代表体内生成的热,单位体积内的热流率;

(3)运算求解

3.3 数据查看记录

(1

)等温图结果如下图所示:

(2)数据列表显示:具体的导体与光纤之间的温度对应关系。

4 载流量计算

在3.2求解第二步施加载荷中,热生成率由公式p=I 2r 得到,其中,通过调整导体通电

电流,可以得到对应的热生成率,不同的热生成率在ANSYS 运算中生成不同的导体温度,使其最接近载流量所规定温度的电流值即为当前环境条件下复合海缆的载流量。

5结论

运用ANSYS软件对复合海缆进行建模运算,可以深入地了解复合海缆在不同的埋设环境下的温度场分布,通过导体温度与光纤温度间的对应关系,由BOTDA测得光纤温度可以间接得到导体温度,从而完成对复合海缆运行状况的实时监测。利用其强大的仿真计算能力,可以方便快捷地得到导体电流与温度的对应关系,从而求解出不同边界条件下的复合海缆载流量数据。

[参考文献]

[1]马国栋等编著.电线电缆载流量

[2]赵镇南传热学[M].北京:高等教育出版社,2008

[3]吕柏源.挤出成型与制品应用[M].北京:化学工业出版社,2002

[4]马伟锋,崔维成,刘涛,胡震. 海底电缆观测系统的研究现状与发展趋势.海岸工程,2009,9,28(3):76.

[5]李强.基于DTS的电力电缆在线监测系统开发.中国石油大学,2009.

[6]邓凡平. ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社,2007.1.

常用低压电力电缆载流量表

常用低压电力电缆载流量表 低压电缆载流量对应表 标称面积mm2 线芯结构no/mm 绝缘厚度mm 护套厚度mm 计算外径mm 环境25℃时载流量(A)空气敷设环境25℃时载流量(A)埋土敷设成品近似重量kg/km 备注 铜芯铝芯铜芯铝芯铜芯铝芯 1*10 7*1.35 1.0 1.6 13.4 80.6 61.5 103.9 79.0 346 285 1*16 7*1.70 1.0 1.6 14.5 106.0 81.5 126.7 104.9 436 336 1*25 7*2.14 1.2 1.6 16.3 143.1 110.2 181.3 138.7 569 414 1*35 7*2.52 1.2 1.6 17.7 173.8 133.6 220.5 169.6 696 480 1*50 19*1.78 1.4 1.8 19.8 217.3 167.5 270.3 208.8 918 605 1*70 19*2.14 1.4 1.8 19.8 268.2 206.7 331.8 255.5 1272 783 1*95 19*2.52 1.6 2.0 22.0 329.7 253.4 394.3 304.2 1622 1036 1*120 37*2.03 1.6 2.0 26.2 377.4 292.6 454.7 350.7 1902 1162 1*150 37*2.25 1.8 2.0 28.4 434.6 335.0 518.3 398.6 2274 1355 1*185 37*2.52 2.0 2.2 30.9 494.0 380.5 580.9 447.3 2729 1582 1*240 61*2.25 2.2 2.2 33.6 584.0 449.4 676.3 521.5 3339 1853 1*300 61*2.52 2.4 2.6 37.0 669.9 515.2 760.0 584.1 4045 2073 2*4 2*1*2.25 0.8 1.6 15.4 38.2 28.6 47.7 37.1 385 335 2*6 2*1*2.76 1.0 1.6 17.2 47.7 37.1 59.4 45.6 480 403 2*10 2*7*1.35 1.0 1.8 20.5 63.8 48.8 77.4 59.4 661 538 2*16 2*7*1.7 1.0 1.8 23.5 85.7 65.7 106.0 80.6 998 797 2*25 2*7*2.14 1.2 2.0 27.2 112.4 85.7 138.7 106.0 1330 1019 2*35 2*7*2.52 1.2 2.2 29.9 135.7 104.9 166.4 128.3 1631 1192 2*50 2*18*1.9 1.4 2.0 27.3 169.6 130.4 202.5 155.6 1775.0 1166.0 2*70 2*18*2.25 1.4 2.2 30.3 208.8 161.1 247.0 190.8 2272.0 1419.0 2*95 2*24*2.25 1.6 2.2 33.7 254.4 196.1 294.7 226.8 2878.0 1718.0 2*120 2*24*2.55 1.6 2.6 36.7 294.7 227.9 339.2 261.8 3477.0 2012.0 2*150 2*45*2.07 1.8 2.6 39.7 338.1 260.7 382.7 293.6 4175.0 2346.0 3*4 3*1*2.25 0.8 1.6 16.0 32.9 24.4 41.3 31.8 444.0 370.0 3*6 3*1*2.76 1.0 1.6 18.0 41.3 31.8 51.9 40.3 564.0 454.0 3*10 3*7*1.35 1.0 1.8 22.2 55.1 42.4 70.0 54.1 937.0 753.0 3*16 3*7*1.7 1.0 2.0 25.0 75.3 57.2 92.2 71.0 1229.0 128.0 3*25 3*7*3.14 1.2 2.0 28.6 101.8 77.4 121.9 93.3 1643.0 1176.0

电线电缆安全载流量计算方法

电线电缆安全载流量计算方法 电气知识2008-03-25 22:19:21 阅读1433 评论0 字号:大中小 口诀1:按功率计算工作电流:电力加倍,电热加半(如5.5KW电动机的额定工作电流按“电力加倍”算得为 11A) 口诀2:按导线截面算额定载流量: 各种导线的安全载流量通常可以从手册中查找,但利用口诀再配合一些简单的心算便可直接得出。口诀如下:10下五,100上二;25、35四、三界;70、95两倍半;穿管、温度八、九折;裸线加一半;铜 线升级算。 10下五是指10个平方以下的线安全载流量为线径的五倍,如6平方毫米的铝芯线,他的安全载流量为30A 100上二是指100平方以上的线安全载流量为线径的二倍,如150平方的铝芯绝缘线安全载流量 为300A 25、35四三界是指10平方至25平方的铝芯绝缘线载流量为线径的四倍,35平方至70平方内的 线(不含70)为三倍。 70、95两倍半是指70平方与95平方的铝芯绝缘线安全载流量为线径的两倍半。 “穿管、温度,八九折”是指若是穿管敷设(包括槽板等,即线加有保护套层),不明露的,按上面方法计算后再打八折(乘0.8)。若坏境温度超过25度的,按上面线径方法计算后再打九折。对于穿管温度两条件同时时,安全载流量为上面线径算得结果打七折算 裸线加一半是指相同截面的裸铝线是绝缘铝芯线安全载流量的1.5倍。 铜线升级算即将铜导线的截面按铝芯线截面排列顺序提升一级,再按相应的铝芯线条件计算,如:35平方裸铜线,升一级按50平方铝芯线公式算得50*3*1.5=225安,即225安为35平方裸铜线的安全 载流量。 铜芯电力电缆安全载流量 序号型号规格外径(㎜)电流(A)(35℃)备注 1 VV-1KV 3×4+1×2.5 15. 2 25 2 VV-1KV 3×6+1×4 16.8 33 3 VV-1KV 3×10+1×6 18.5 44 4 VV-1KV 3×16+1×10 20.7 60 5 VV-1KV 3×25+1×1 6 22.9 81 6 VV-1KV 3×35+1×16 25.2 102 7 VV-1KV 3×50+1×25 29.7 128 8 VV-1KV 3×70+1×35 32.5 159 9 VV-1KV 3×95+1×50 38.2 195 10 VV-1KV 3×120+1×70 41.0 224 11 VV-1KV 3×150+1×70 45.4 260 12 VV-1KV 3×185+1×95 50.8 298 1 VV-1KV 3×4+1×2.5 15. 2 25 是三根4mm2加上一根2.5mm2的电缆,15.2是外径(㎜),电流是25A

最新常用电缆电缆载流量表

300V-1000V电缆载流量(本资料选自《电气工程》常用数据速查手册)

1)、8.3导线载流量。 450V/750V及以上橡胶绝缘、塑料绝缘电线的载流量。BVVB型、BLVVB型、RVVB型电线载流量见表8-24。 (2)、450V/750V及以下橡胶绝缘电力电缆的载流量。通用橡套软电缆的载流量见表8-25。 (3)、0.6/1KV聚氯乙烯绝缘电力电缆的载流量。 0.6/1KV聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆载流量见表8-26。 (4)防火电缆的载流量。 1、阻燃电缆的载流量。1)B、R系列阻燃电线、电缆的载流量见表8-27。 2)交联聚氯乙烯绝缘阻燃电力电缆的载流量见表8-28、表8-29,短路电流见表8-30。 3)聚氯乙烯绝缘阻燃电力电缆的载流量见表8-31。 (5)耐火电缆的载流量。 1)聚氯乙烯绝缘耐火电缆的载流量见表8-32。 2)BV-105型耐热聚氯乙烯绝缘铜芯电线的载流量见表8-33。3)BTTQ、BTTVQ系列耐火电缆技术数据见表8-34。 4)BTTZ、BTTVZ 系列耐火电缆技术数据见表8-35。 5)NH-YYJV系列耐火电力电缆技术数据见表8-36——8-38。 (6)表8-39。聚氯乙烯绝缘低烟低卤阻燃电力电缆的载流量。 (7)表8-40。交联聚氯乙烯绝缘低烟无卤阻燃电力电缆的载流量。

目录 表8-24 BVVB型、BLVVB型、RVVB型电线载流量 (4) 450V/750V及以下橡胶绝缘电力电缆的载流量 (4) 通用橡套软电缆的载流量见表8-25 (4) YQ、YQW、YHQ、型/ A (4) YZ、YZW、YHZ型/ A (4) YC YCW YHC型/ A (5) 0.6、1KV聚氯乙烯绝缘电力电缆的载流量 (5) 表8.26 VV22、VLV22型聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆载流量。 (5) VV22、VLV22单芯 (6) VV22 (6) VV22、VLV22 3芯 (6) VV22、VLV22 4芯 (7) VV22、VLV22 3+1芯 (7) VV22 5芯 (8) VV22 4+1芯 (8) VV22 (8) 3+2芯 (8) 防火电缆的载流量 (8) 表8-27 B、R系列阻燃电线电缆的载流量 (9) ZR-BV 300/500V (9) ZR-BV 450/750V (9) ZR-BV 450/750 (10) ZRZR-BVVB 300/500V (10) ZR-BVR 450/750V (10) ZR-BVR 450/750V (10) ZR-BV 300/500 (10) ZR-BVV 300/500V (11) ZR-RVV 300/300V (11) ZR-RVVB 300/300V (11) ZR-RVV 300/500V (11) ZR-RVVB300/500V (12) ZR-RVS (12) 300/300V (12) ZR-RVS (12) 300/300V (12) 2)交联聚氯乙烯绝缘电力电缆的载流量见表8-28、表8-29,短路电流见表8-30 (12) 表8-28 交联聚氯乙烯绝缘阻燃电力电缆的载流量 (12) ZR-YJV 0.6/1kv (12) ZR-YJV 0.6/1kv (15) 表8-29 高压交联聚氯乙烯绝缘阻燃电力电缆的载流量 (19) ZR-YJV、ZR-YJLV (19) ZR-YJV22、ZR-YJLV22 (20) ZR-YJV、ZR-YJLV (21) 表8-30 交联电缆导体短路电流(短路时间为1S) (22)

电缆载流量计算(根据电流选电缆)

电缆载流量计算(根据电流选电缆) 答:如果同时运行,则总运行功率为87KW,如果是电动机,则总电流应为180A左右,考虑到不会是同时(即同一个时刻)启动,则总负荷空气开关有250A的就够了,不需要用400A的,不过每台电动机都应该有单独的启动与控制电路。这是指总负荷端,如果是总电源控制,则用400A的也可以。3、35KW电机用 16mm2铠装电缆行吗?答:是可以用的,但是,有4平方或者最多6平方的铜芯线就完全够用了,没有必要用这么大规格的。如果空气开关是和电缆的功率范围相配合的话,那这400A空气开关所接出的电缆,因为最大可以控制的电流为400A,在三相平衡负荷中,约为200KW,而基本上,电缆每平方毫米可以通过约5A的安全电流,那么电缆截面积应为80平方毫米;但是由于没有这个规格的,则我们可以“向上靠”,取95平方毫米的铜芯电缆就可以了。导线的载流量与导线截面有关,也与导线的材料、型号、敷设方法以及环境温度等有关,影响的因素较多,计算也较复杂。各种导线的载流量通常可以从手册中查找。但利用口诀再配合一些简单的心算,便可直接算出,不必查表。1、口诀铝芯绝缘线载流量与截面的倍数关系10下五,100上二, 25、35, 四、三界,、

70、95,两倍半。穿管、温度,八、九折。裸线加一半。铜线升级算。说明口诀对各种截面的载流量(安)不是直接指出的,而是用截面乘上一定的倍数来表示。为此将我国常用导线标称截面(平方毫米)排列如下: 1、1、 5、2、 5、4、 6、 10、 16、 25、 35、 50、 70、 95、1 20、1 50、185……(1)第一句口诀指出铝芯绝缘线载流量(安)、可按截面的倍数来计算。口诀中的阿拉伯数码表示导线截面(平方毫米),汉字数字表示倍数。把口诀的截面与倍数关系排列起来如下:1~10 16、25 35、50

电缆与电线的电流计算公式

电缆及电线的电流计算公式 1、电线的载流量是这样计算的:对于1.5、2.5、4、6、10mm2的导线可将其截面积数乘以5倍。 对于16、25mm2的导线可将其截面积数乘以4倍。 对于35、50mm2的导线可将其截面积数乘以3倍。 对于70、95mm2的导线可将其截面积数乘以2.5倍。 对于120、150、185mm2的导线可将其截面积数乘以2倍。 看你的开关是多少安的用上面的工式反算一下就可以了。 2、二点五下乘以九,往上减一顺号走。 三十五乘三点五,双双成组减点五。 条件有变加折算,高温九折铜升级。 穿管根数二三四,八七六折满载流。 说明: (1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表53可以看出:倍数随截面的增大而减小。 “二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。

“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。“条件有变加折算,高温九折铜升级”。上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。如16mm’铜线的载流量,可按25mm2铝线计算。

导线载流量的计算

导线载流量的计算 关键词:导线载流量无功补偿电抗器电容器 一、一般铜导线载流量导线的安全载流量是根据所允许的线芯最高温度、冷却条件、敷设条件来确定的。一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。如:2.5mm2BVV铜导线安全载流量的推荐值2.5×8A/mm2=20A4 mm2BVV铜导线安全载流量的推荐值4×8A/mm2=32A 二、计算铜导线截面积利用铜导线的安全载流量的推荐值5~8A/mm2,计算出所选取铜导线截面积S的上下范围:S==0.125I~0.2I(mm2)S-----铜导线截面积(mm2)I-----负载电流(A) 三、功率计算一般负载分为两种,一种式电阻性负载,一种是电感性负载。对于电阻性负载的计算公式:P=UI对于日光灯负载的计算公式:P=UIcosф,其中日光灯负载的功率因数cosф=0.5。不同电感性负载功率因数不同,统一计算家庭用电器时可以将功率因数cosф取0.8。也就是说如果一个家庭所有用电器加上总功率为6000瓦,则最大电流是I=P/Ucosф=6000/220*0.8=34(A)但是,一般情况下,家里的电器不可能同时使用,所以加上一个公用系数,公用系数一般0.5。所以,上面的计算应该改写成I=P*公用系数/Ucosф =6000*0.5/220*0.8=17(A)也就是说,这个家庭总的电流值为17A。则总闸空气开关不能使用16A,应该用大于17A的。 估算口诀: 二点五下乘以九,往上减一顺号走。 三十五乘三点五,双双成组减点五。 条件有变加折算,高温九折铜升级。 穿管根数二三四,八七六折满载流。 说明: (1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。倍数随截面的增大而减小。 二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘

电线电缆载流量计算口诀.

您当前所在位置:天津金山电缆股份有限公司资料下载—电线电缆载流量计算口决下载! 天津金山电线电缆股份有限公司 导线载流量的计算口诀 导线的载流量与导线截面有关,也与导线的材料、型号、敷设方法以及环境温度等有关,影响的因素较多,计算也较复杂。 各种导线的载流量通常可以从手册中查找。但利用口诀再配合一些简单的心算,便可直接算出,不必查表。 1. 口诀铝芯绝缘线载流量与截面的倍数关系 10下五,100上二, 25、35,四、三界,. 70、95,两倍半。 穿管、温度,八、九折。 裸线加一半。 铜线升级算。 2. 说明口诀对各种截面的载流量(安)不是直接指出的,而是用截面乘上一定的倍数来表示。为此将我国常用导线标称截面(平方毫米)排列如下: 1、1.5、 2.5、 4、 6、 10、 16、 25、 35、 50、 70、 95、 120、 150、185…… (1)第一句口诀指出铝芯绝缘线载流量(安)、可按截面的倍数来计算。口诀中的阿拉伯数码表示导线截面(平方毫米),汉字数字表示倍数。把口诀的截面与倍数关系排列起来如下: 1~10 16、25 35、50 70、95 120以上 ﹀﹀﹀﹀︸ 五倍四倍三倍二倍半二倍 现在再和口诀对照就更清楚了,口诀“10下五”是指截面在10以下,载流量都是截面数值的五倍。“100上二”(读百上二)是指截面100以上的载流量是截面数值的二倍。截面为25与35是四倍和三倍的分界处。这就是口诀“25、35,四三界”。而截面70、95则为二点五倍。从上面的排列可以看出:除10以下及100以上之外,中间的导线截面是每两种规格属同一种倍数。 例如铝芯绝缘线,环境温度为不大于25℃时的载流量的计算: 当截面为6平方毫米时,算得载流量为30安; 当截面为150平方毫米时,算得载流量为300安; 当截面为70平方毫米时,算得载流量为175安; 从上面的排列还可以看出:倍数随截面的增大而减小,在倍数转变的交界处,误差稍大些。比如截面25与35是四倍与三倍的分界处,25属四倍的范围,它按口诀算为100安,但按手册为97安;而35则相反,按口诀算为105安,但查表为117安。不过这对使用的影响并不大。当然,若能“胸中有数”,在选择导线

电缆载流量对照表

线径的选择 导线的载流量与导线截面有关,也与导线的材料、型号、敷设方法以及环境温度等有关,影响的因素较多,计算也较复杂。各种导线的载流量通常可以从手册中查找。但利用口诀再配合一些简单的心算,便可直接算出,不必查表。 1. 口诀铝芯绝缘线载流量与截面的倍数关系 10下五,100上二, 25、35,四、三界, 70、95,两倍半。穿管、温度,八、九折。裸线加一半。铜线升级算。 2. 说明口诀对各种截面的载流量(安)不是直接指出的,而是用截面乘上一定的倍数来表示。为此将我国常用导线标称截面(平方毫米)排列如下: 1、1.5、 2.5、 4、 6、 10、 16、 25、 35、 50、 70、 95、 120、 150、185…… (1)第一句口诀指出铝芯绝缘线载流量(安)、可按截面的倍数来计算。口诀中的阿拉伯数码表示导线截面(平方毫米),汉字数字表示倍数。把口诀的截面与倍数关系排列起来如下: 1~10 16、25 35、50 70、95 120以上 ﹀﹀﹀﹀﹀ 五倍四倍三倍二倍半二倍 现在再和口诀对照就更清楚了,口诀“10下五”是指截面在10以下,载流量都是截面数值的五倍。“100上二”(读百上二)是指截面100以上的载流量是截面数值的二倍。截面为25与35是四倍和三倍的分界处。这就是口诀“25、35,四三界”。而截面70、95则为二点五倍。从上面的排列可以看出:除10以下及100以上之外,中间的导线截面是每两种规格属同一种倍数。 例如铝芯绝缘线,环境温度为不大于25℃时的载流量的计算: 当截面为6平方毫米时,算得载流量为30安; 当截面为150平方毫米时,算得载流量为300安; 当截面为70平方毫米时,算得载流量为175安; 从上面的排列还可以看出:倍数随截面的增大而减小,在倍数转变的交界处,误差稍大些。比如截面25与35是四倍与三倍的分界处,25属四倍的范围,它按口诀算为100安,但按手册为97安;而35则相反,按口诀算为105安,但查表为117安。不过这对使用的影响并不大。当然,若能“胸中有数”,在选择导线截面时,25的不让它满到100安,35的则可略为超过105安便更准确了。同样,2.5平方毫米的导线位置在五倍的始端,实际便不止五倍(最大可达到20安以上),不过为了减少导线内的电能损耗,通常电流都不用到这么大,手册中一般只标12安。 (2)后面三句口诀便是对条件改变的处理。“穿管、温度,八、九折”是指:若是穿管敷

电缆载流量计算方法

电缆载流量:电缆载流量是指一条电缆线路在输送电能时所通过的电流量, 在热稳定条件下,当电缆导体达到长期允许工作温度时的电缆载流量称为电缆长期允许载流量。 估算口诀 二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。条件有变加折算,高温九折铜升级。穿管根数二三四,八七六折满载流。 说明 (1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是”截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。“条件有变加折算,高温九折铜升级”。上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。如16mm’铜线的载流量,可按25mm2铝线计算。"穿管根数二三四,八七六折满载流。意思是在穿管敷设两根、三根、四根电线的情况下,其载流量分别是电工口决计算载流量(单根敷设)的80%、70%、60%。 根据电流选择电缆)导线的载流量与导线截面有关,也与导线的材料、型号、敷设方法以及环境温度等有关,影响的因素较多,计算也较复杂。各种导线的载流量通常可以从手册中查找。但利用口诀再配合一些简单的心算,便可直接算出,不必查表。 1. 口诀铝芯绝缘线载流量与截面的倍数关系 10下五,100上二,25、35,四、三界,. 70、95,两倍半。穿管、温度,八、九折。裸线加一半。铜线升级算。说明口诀对各种截面的载流量(安)不是直接指出的,而是用截面乘上一定的倍数来表示。为此将我国常用导线标称截面(平方毫米)排列如下:1、1.5、2.5、4、6、10、16、25、35、50、70、95、120、150、185…… 口诀第一部分 (1)第一句口诀指出铝芯绝缘线载流量(安)、可按截面的倍数来计算。口诀中的阿拉伯数码表示导线截面(平方毫米),汉字数字表示倍数。把口诀的截面与倍数关系排列起来如下:1~10 16、25 35、50 70、95 120以上〉〉〉〉〉五倍四倍三倍二倍半二倍现在再和口诀对照就更清楚了,口诀“10下五”是指截面在10以下,载流量都是截面数值的五倍。“100上二”(读百上二)是指截面100以上的载流量是截面数值的二倍。截面为25 与35是四倍和三倍的分界处。这就是口诀“25、35,四三界”。而截面70、95 则为二点五倍。从上面的排列可以看出:除10 以下及100以上之外,中间的导

最新电缆载流量表(有目录)

300V/1000V电缆载流量 300V/1000V电缆载流量本资料选自《电气工程》常用数据速查手册。 1)、8.3导线载流量。 450V/750V及以上橡胶绝缘、塑料绝缘电线的载流量。BVVB型、BLVVB 型、RVVB型电线载流量见表8-24。 (2)、450V/750V及以下橡胶绝缘电力电缆的载流量。通用橡套软电缆的载流量见表8-25。 (3)、0.6/1KV聚氯乙烯绝缘电力电缆的载流量。 0.6/1KV聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆载流量见表8-26。 (4)防火电缆的载流量。 1、阻燃电缆的载流量。1)B、R系列阻燃电线、电缆的载流量见表8-27。 2)交联聚氯乙烯绝缘阻燃电力电缆的载流量见表8-28、表8-29,短路电流见表8-30。 3)聚氯乙烯绝缘阻燃电力电缆的载流量见表8-31。 (5)耐火电缆的载流量。 1)聚氯乙烯绝缘耐火电缆的载流量见表8-32。 2)BV-105型耐热聚氯乙烯绝缘铜芯电线的载流量见表8-33。 3)BTTQ、BTTVQ系列耐火电缆技术数据见表8-34。 4)BTTZ、BTTVZ系列耐火电缆技术数据见表8-35。 5)NH-YYJV系列耐火电力电缆技术数据见表8-36——8-38。 (6)表8-39。聚氯乙烯绝缘低烟低卤阻燃电力电缆的载流量。 (7)表8-40。交联聚氯乙烯绝缘低烟无卤阻燃电力电缆的载流量。 表8-24 BVVB型、BLVVB型、RVVB型电线载流量 (2) 450V/750V及以下橡胶绝缘电力电缆的载流量 (3) 通用橡套软电缆的载流量见表8-25 (3) YQ、YQW、YHQ、型/ A (3) YZ、YZW、YHZ型/ A (3) YC YCW YHC型/ A (3) 0.6、1KV聚氯乙烯绝缘电力电缆的载流量 (4) 表8.26 VV22、VLV22型聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆载流量。 (4) VV22、VLV22单芯 (4) VV22 (4) VV22、VLV22 3芯 (4) VV22、VLV22 4芯 (5) VV22、VLV22 3+1芯 (5) VV22 5芯 (6) VV22 4+1芯 (6) VV22 (6) 3+2芯 (6) 防火电缆的载流量 (7) 表8-27 B、R系列阻燃电线电缆的载流量 (7) ZR-BV 300/500V (7) ZR-BV 450/750V (7) ZR-BV 450/750 (8) ZRZR-BVVB 300/500V (8) ZR-BVR 450/750V (8) ZR-BVR 450/750V (8)

电缆载流量的计算方法

电缆载流量计算——根据电流选电缆 导线的载流量与导线截面有关,也与导线的材料、型号、敷设方法以及环境温度等有关,影响的因素较多,计算也较复杂。各种导线的载流量通常可以从手册中查找。但利用口诀再配合一些简单的心算,便可直接算出,不必查表。 1. 口诀铝芯绝缘线载流量与截面的倍数关系 10下五,100上二, 25、35,四、三界,. 70、95,两倍半。 穿管、温度,八、九折。 裸线加一半。 铜线升级算。 说明口诀对各种截面的载流量(安)不是直接指出的,而是用截面乘上一定的倍数来表示。为此将我国常用导线标称截面(平方毫米)排列如下: 1、 1.5、 2.5、 4、 6、 10、 16、 25、 35、 50、 70、 95、 120、 150、 185…… (1)第一句口诀指出铝芯绝缘线载流量(安)、可按截面的倍数来计算。口诀中的阿拉伯数码表示导线截面(平方毫米),汉字数字表示倍数。把口诀的截面与倍数关系排列起来如下: 1~10 16、25 35、50 70、95 120以上

﹀﹀﹀﹀﹀ 五倍四倍三倍二倍半二倍 现在再和口诀对照就更清楚了,口诀“10下五”是指截面在10以下,载流量都是截面数值的五倍。“100上二”(读百上二)是指截面100以上的载流量是截面数值的二倍。截面为25与35是四倍和三倍的分界处。这就是口诀“25、35,四三界”。而截面70、95则为二点五倍。从上面的排列可以看出:除10以下及100以上之外,中间的导线截面是每两种规格属同一种倍数。 例如铝芯绝缘线,环境温度为不大于25℃时的载流量的计算: 当截面为6平方毫米时,算得载流量为30安; 当截面为150平方毫米时,算得载流量为300安; 当截面为70平方毫米时,算得载流量为175安; 从上面的排列还可以看出:倍数随截面的增大而减小,在倍数转变的交界处,误差稍大些。比如截面25与35是四倍与三倍的分界处,25属四倍的范围,它按口诀算为100安,但按手册为97安;而35则相反,按口诀算为105安,但查表为117安。不过这对使用的影响并不大。当然,若能“胸中有数”,在选择导线截面时,25的不让它满到100安,35的则可略为超过105安便更准确了。同样,2.5平方毫米的导线位置在五倍的始端,实际便不止五倍(最大可达到20安以上),不过为了减少导线内的电能损耗,通常电流都不用到这么大,手册中一般只标12安。 (2)后面三句口诀便是对条件改变的处理。“穿管、温度,八、九

电缆电流载流量的计算

根据电流选择电线型号 二点五下乘以九,往上减一顺号走。 三十五乘三点五,双双成组减点五。 条件有变加折算,高温九折铜升级。 穿管根数二三四,八七六折满载流。 说明: (1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。 “二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9 =22.5(A)。 从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。 “三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数 之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。即50、70mm’导线的载流量为截面数的3倍;95、120mm” 导线载流量是其截面积数的2.5倍,依次类推。 “条件有变加折算,高温九折铜升级”。上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。若铝芯绝缘线明敷在环境温度长期高于25℃的地区, 导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。如16mm’铜线的载流量,可按25mm2铝线计算 对于裸铝线的载流量,口诀指出“裸线加一半”即计算后再加一半。这是指同样截面裸铝线与铝芯绝缘线比较,载流量可加大一半。 例如对裸铝线载流量的计算: 截面为16平方毫米时,则载流量为16×4×1.5═96安,若在高温下,则载流量为16×4×1.5×0.9=86.4安。 对于铜导线的载流量,口诀指出“铜线升级算”,即将铜导线的的截面排列顺序提升一级,再按相应的铝线条件计算。 例如截面为35平方毫米裸铜线环境温度为25℃,载流量的计算为:按升级为50平方毫米裸铝线即得50×3×1.5=225安. 对于电缆,口诀中没有介绍。一般直接埋地的高压电缆,大体上可直接采用第一句口诀中的有关倍数计算。比如35平方毫米高压铠装铝芯电缆埋 地敷设的载流量为35×3=105安。95平方毫米的约为95×2.5≈238安。 三相四线制中的零线截面,通常选为相线截面的1/2左右。当然也不得小于按机械强度要求所允许的最小截面。在单相线路中,由于零线和相线 所通过的负荷电流相同,因此零线截面应与相线截面相同。

电缆载流量计算(根据电流选电缆)

电缆载流量计算——根据电流选电缆 应该用多大的电缆? 1.35KW、22kw、11kw、3kw应选用多大的电缆?(铠装的) 答:用负荷电缆就可以了,没有必要用铠装的电力电缆;35KW的可以用25平方的、22KW 的可以用16平方的、11KW可以用6平方的、每台3KW的可以用2.5或4平方的,(均指电动机连接线) 2.一个35KW、一个22kw、一个11kw、三个3kw的电机应选用多大的总空开?400A的可以吗?(分同时运行和不同时运行两种情况) 答:如果同时运行,则总运行功率为87KW,如果是电动机,则总电流应为180A左右,考虑到不会是同时(即同一个时刻)启动,则总负荷空气开关有250A的就够了,不需要用400A的,不过每台电动机都应该有单独的启动与控制电路。这是指总负荷端,如果是总电源控制,则用400A的也可以。 3.35KW电机用16mm2铠装电缆行吗? 答:是可以用的,但是,有4平方或者最多6平方的铜芯线就完全够用了,没有必要用这么大规格的。 如果空气开关是和电缆的功率范围相配合的话,那这400A空气开关所接出的电缆,因为最大可以控制的电流为400A,在三相平衡负荷中,约为200KW,而基本上,电缆每平方毫米可以通过约5A的安全电流,那么电缆截面积应为80平方毫米;但是由于没有这个规格的,则我们可以“向上靠”,取95平方毫米的铜芯电缆就可以了。 导线的载流量与导线截面有关,也与导线的材料、型号、敷设方法以及环境温度等有关,影响的因素较多,计算也较复杂。各种导线的载流量通常可以从手册中查找。但利用口诀再配合一些简单的心算,便可直接算出,不必查表。 1. 口诀铝芯绝缘线载流量与截面的倍数关系 10下五,100上二, 25、35,四、三界,. 70、95,两倍半。 穿管、温度,八、九折。 裸线加一半。 铜线升级算。 说明口诀对各种截面的载流量(安)不是直接指出的,而是用截面乘上一定的倍数来表示。为此将我国常用导线标称截面(平方毫米)排列如下: 1、1.5、 2.5、 4、 6、 10、 16、 25、 35、 50、 70、 95、 120、 150、185…… (1)第一句口诀指出铝芯绝缘线载流量(安)、可按截面的倍数来计算。口诀中的阿拉伯数码表示导线截面(平方毫米),汉字数字表示倍数。把口诀的截面与倍数关系排列起来如下:1~10 16、25 35、50 70、95 120以上 ﹀﹀﹀﹀﹀ 五倍四倍三倍二倍半二倍 现在再和口诀对照就更清楚了,口诀“10下五”是指截面在10以下,载流量都是截面数值的

电缆载流量计算公式

下面这是一条最简单的,JIS标准,所以是125平方。 单芯耐温电缆:125平方参数 导体直径:13.5 绝缘厚度:2.0 绝缘外径:17.2 护套厚度:1.25 电缆外径:19.7 导体电阻:0.146 1.導體交流電阻: R=R’(1+Y S+Y P ) 1.1 最高工作溫度下導體直流電阻R’=R 0*[1+ a 20 (θ-20)] a 20 =0.00393 =0.146*[1+ 0.00393*(90-20)] =0.1862 OHM/KM =0.0001862 OHM/M 1.2集膚效應因數: Xs2=8πf ×10-7Ks/R’ Ks=1 =8*3.1416*50*10-7/0.0001862 =0.674886 Xs4=0.455471 Ys=Xs4/(192+0.8Xs4)=0.455471/(192+0.8*0.455471)=0.0023678 *软件计算结果为:0.0023687 因软件计算中为计算到结果才进行一定位数的舍取,计算过程中都是按能计算的最大位数,所以更精确.而手工计算中间过程也只能取有限的小数位数,所以有一些较小的差异.(下同) 1.3三芯或三根單芯電纜佈設的鄰近效應因數: Y P =X P 4×(d C /s)2×{0.312×(d C /s)2+ 1.18/[Xp4/(192+0.8X p 4) ]}/(192+0.8X P 4) X P 2=8πf×10-7K P /R’ =0.674886 (如上) K P =1 不乾燥浸漬緊壓及非緊壓絞 合導體K P均為1.0 X P 4=0.455471 (d C/s)2=(13.5/39.4)2=0.117402 Y P =X P 4×(d C /s)2×{0.312×(d C/s)2 + 1.18/{[Xp4/(192+0.8X p4) ]+0.27}} /(192+0.8X P 4) =0.05347321×[0.035787+1.18/(0.0023678+0.27)]/192.36438 =0.001419 *软件计算结果为:0.001215

常用电力电缆载流量对照表(2)

铜芯铝芯 铜芯铝芯 铜芯铝芯 1*107*1.351 1.613.480.661.5103.9793462851*167*1.701 1.614.510681.5126.7104.94363361*257*2.14 1.2 1.616.3143.1110.2181.3138.75694141*357*2.52 1.2 1.617.7173.8133.6220.5169.66964801*5019*1.78 1.4 1.819.8217.3167.5270.3208.89186051*7019*2.14 1.4 1.819.8268.2206.7331.8255.512727831*9519*2.52 1.6222329.7253.4394.3304.2162210361*12037*2.03 1.6226.2377.4292.6454.7350.7190211621*15037*2.25 1.8228.4434.6335518.3398.6227413551*18537*2.522 2.230.9494380.5580.9447.3272915821*24061*2.25 2.2 2.233.6584449.4676.3521.5333918531*30061*2.52 2.4 2.637669.9515.2760584.1404520732*42*1*2.250.8 1.615.438.228.647.737.13853352*62*1*2.761 1.617.247.737.159.445.64804032*102*7*1.351 1.820.563.848.877.459.46615382*162*7*1.71 1.823.585.765.710680.69987972*252*7*2.14 1.2227.2112.485.7138.7106133010192*352*7*2.52 1.2 2.229.9135.7104.9166.4128.3163111922*50 2*18*1.9 1.4 2 27.3 169.6 130.4 202.5 155.6 1775 1166 环境25℃时载流量 (A)空气敷设环境25℃时载流量 (A)埋土敷设成品近似重量kg/km 标称面积mm 2线芯结构no/mm 绝缘厚度mm 护套厚度mm 计算外径mm

电缆及电线的电流计算公式

1、电线的载流量是这样计算的:对于、、4、6、10mm2的导线可将其截面积数乘以5倍。 对于16、25mm2的导线可将其截面积数乘以4倍。 对于35、50mm2的导线可将其截面积数乘以3倍。 对于70、95mm2 的导线可将其截面积数乘以倍。 对于120、150、185mm2的导线可将其截面积数乘以2倍。 看你的开关是多少安的用上面的工式反算一下就可以了。 2、二点五下乘以九,往上减一顺号走。 三十五乘三点五,双双成组减点五。 条件有变加折算,高温九折铜升级。 穿管根数二三四,八七六折满载流。 说明: (1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。 “二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。

“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。即50、70mm’导线的载流量为截面数的3倍; 95、120mm”导线载流量是其截面积数的2.5倍,依次类推。 “条件有变加折算,高温九折铜升级”。上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。如16mm’铜线的载流量,可按25mm2铝线计算。

常用电线电缆规格及安全载流量汇总

第一节、常用导电材料 1、铜 铜的导电性能好,在常温时有足够的机械强度,具有良好的延展性,便于加工,化学性能稳定,不易氧化和腐蚀,容易焊接,因此广泛用于制造变压器、电机和各种电器的线圈。纯铜俗称紫铜,含铜量高,根据材料的软硬程度可分为硬铜和软铜两种。铜材经过压延、拉制等工序加工后硬度增加,称作硬铜,通常用做机械强度要求较高的导电零部件。硬铜经过退火处理后硬度降低,即为软铜。软铜的电阻系数被硬铜小,适宜做电机、变压器和各类电器的线圈。在产品型号中,铜线的标志是“T”,“TV”表示硬铜,“TR”表示软铜。 2、铝 铝的导电系数虽比铜大,但它密度小。同样长度的两根导线,若要求他们的电阻值一样,则铝导线的截面积约是铜导线的1.69倍。铝资源较丰富,价格便宜,在铜材紧缺时,铝材是最好的代用品。铝导线的焊接比较困难,必须采取特殊的焊接工艺。电机和变压器上使用的铝是纯铝。由于加工方法不同,铝也有硬铝和软铝之分。用做电机、变压器线圈的大部分是软铝。在产品型号中,铝线的标志是“L”,“LV”表示硬铝,“LR”表示软铝。 第二节、常用电线电缆的品种、特点及用途电线电缆的品种很多,按照它们的性能、结构、制造工艺及使用特点可分为裸线、电磁线、绝缘电线电缆和通信电缆四种。 一、裸线 裸线只有导体部分,没有绝缘和护层结构。按产品的形状和结构不同,裸线可分为圆单线、软接线、型线和裸绞线四种。修理电机电器时经常用到的是软接线和型线。 (1)软接线。软接线是由多股铜线或镀锡铜线绞合编制而成的,其特点是柔软,耐振动、耐弯曲。常用软接线的品种见表3-1。

表3-1 常用软接线品种 (2)型线。型线是非圆形截面的裸电线,其常用品种见表3-2。 表3-2 常用型线品种 二、电磁线 电磁线应用于电机电器及电工仪表中,作为绕阻或元件的绝缘导线。常用电磁线的导电线芯有圆线和扁线两种,目前大多采用铜线,很少采用铝线。由于导线外面有绝缘材料,因此电磁线有不同的耐热等级。常用的电磁线有漆包线和绕包线两类。 (1)漆包线。漆包线的绝缘层是漆膜,广泛应用与中小型电机及微电机、干式变压器和其他电工产品中。常用的漆包线有缩醛漆包线、聚酰漆包线、聚酯亚胺漆包线、聚酰胺酰亚胺漆包线和聚酰亚胺漆包线等五类。 (2)绕包线。绕包线用玻璃丝、绝缘纸或合成树脂薄膜等紧密绕包在导电线芯上,形成绝缘层;也有在漆包线上再绕包绝缘层的。除薄膜绝缘层

相关文档
最新文档