概率论与数理统计学习体会
概率论与数理统计学习心得(3篇)
概率论与数理统计学习心得概率论与数理统计是数学中非常重要的一门学科,它研究的是不确定性和统计规律。
在我的学习过程中,我深刻认识到它对于科学研究和实际应用的重要性。
通过学习概率论与数理统计,我对于随机事件的发生规律有了更加深入的了解,并且能够运用统计方法对真实世界中的数据进行分析,提取有用的信息。
以下是我学习概率论与数理统计的一些心得体会。
首先,在学习概率论方面,我深刻认识到概率的本质是对随机事件发生的可能性的度量。
学习概率论的过程中,我充分了解了概率的基本概念,诸如样本空间、随机事件、事件的概率等等。
同时,我也学习了概率的基本运算规则,例如事件的并、交、差等。
通过理论知识的学习和实例的练习,我逐渐掌握了如何计算复杂事件的概率,比如利用条件概率、全概率公式和贝叶斯公式等。
这些知识使我能够对不确定性进行有条理的量化,并且能够运用这些方法解决实际问题。
在学习数理统计方面,我认识到统计是从数据中获取信息的一种科学方法。
学习数理统计的过程中,我了解了统计的基本概念、统计数据的处理和统计推断等内容。
学习统计的基本方法包括数据的整理、描述统计和推断统计。
通过学习数据整理的方法,我能够对收集到的数据进行清洗、整理和概括。
在描述统计方法的学习中,我学会了如何用图表、统计指标和数值特征等来描述数据的特征和规律。
在推断统计的学习中,我了解了如何通过样本来推断总体的统计特征,并对所得到的统计结果进行合理的推断和判断。
这些方法使我能够从大量的数据中提取有用的信息,并对数据的真实情况进行合理的判断。
此外,学习概率论与数理统计还使我了解了一些常见的概率分布和统计分布。
在学习概率分布的过程中,我接触到了一些经典的概率分布,如二项分布、泊松分布、正态分布等。
通过学习这些分布的特点和性质,我能够对实际问题中的随机现象建立起合理的数学模型,并进行定量分析和预测。
在学习统计分布的过程中,我了解了一些常见的统计分布,如t分布、卡方分布、F分布等。
概率论与数理统计心得
浅谈概率论、数理统计作者:我认为概率论的核心思想就是利用已有的数学工具去研究不确定的现从而总出其一般化的规律。
而数理统计则是以概率论为理论基础,基于有效的观测,收集,整理,分析带有随机性的数据来研究随机现象。
研究随机现象数量规律的数学分支。
随机现象是指这样的客观现象但我们观察它时,所得的结果不能预先确定,而只是多种可能结果中的一种。
在自然界和人类社会中,存在着大量的随机现象。
例如,掷一硬币,可能出现正面或反面;测量一物体长度,由于仪器及观察受到环境的影响,每次测量结果可能有差异;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。
这些都是随机现象。
随机现象的实现和对它的观察称为随机试验,随机试验的每一可能结果称为一个基本事件,一个或一组基本事件又通称随机事件。
事件的概率则是衡量该事件发生的可能性的量度。
虽然在一次随机试验中发生某个事件是带有偶然性的,但那些可以在相同条件下大量重复的随机试验却往往呈现出明显的数量规律性。
人们在长期实践中已逐步觉察到某些这样的规律性,并在实际中应用它。
例如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的近旁,越远则越少,因之其分布状况呈现“中间大、两头小”及某种程度的对称性(即近似于正态分布)。
大数律及中心极限定理就是描述和论证这些规律性的。
在实际中,人们往往还需要研究在时间推进中某一特定随机现象的演变情况,描述这种演变的就是概率论中的随机过程。
例如,微小粒子在液体中因受周围分子的随机碰撞而形成不规则的运动(即布朗运动)也是一随机过程。
研究随机过程的统计特性,计算与过程有关的某些事件的概率,特别是研究与过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。
总之,概率论与实际有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用。
我认为在概率的发展史中,随机变量的引入是一个重大的进步,将研究对象有随机事件发展为随机变量,使其得以用数学的语言来表述,将工科数学分析的成果应用于此,将其函数化,并利用微积分的方法来研究。
2024年概率论与数理统计 学习心得(二篇)
2024年概率论与数理统计学习心得概率论与数理统计是一门重要的数学课程,对于我个人来说,在2024年学习这门课程是一次非常有意义的学习经历。
通过学习概率论与数理统计这门课程,我加深了对随机现象的认识,并学会了运用统计方法进行数据分析和决策。
首先,我学习了概率论的基本概念和性质。
概率论主要研究随机事件发生的规律,通过学习概率论,我了解到了事件与样本空间的关系,研究了事件的概率和性质,学会了运用事件的概率进行事件的推理和决策。
在学习过程中,我通过大量的例题和习题,掌握了计算概率的方法和技巧,提高了解决实际问题的能力。
其次,我学习了统计学的基本原理和方法。
统计学是一门研究如何从已知的样本信息中推断总体特征和进行决策的学科。
通过学习统计学,我了解了随机变量和概率分布的概念,学会了描述随机变量的概率分布和性质。
同时,我也学会了利用样本数据进行参数估计和假设检验的方法,提高了对实际问题的分析和解决能力。
在学习概率论与数理统计的过程中,我也深刻认识到了数学的抽象思维和逻辑思维的重要性。
在解决问题的过程中,往往需要运用严密的推理和分析,将问题分解为更简单的子问题,并通过归纳和演绎的思维方式逐步解决。
这种思维方式不仅在数学领域有用,对于其他领域的问题分析和解决也有很大的帮助。
此外,通过学习概率论与数理统计,我还培养了良好的问题解决能力和数据分析能力。
在学习过程中,我经常遇到一些实际问题,需要利用所学的方法和技巧进行求解。
这种实际问题的训练,提高了我分析问题和解决问题的能力,使我对统计分析和数据处理有了更深入的理解。
最后,学习概率论与数理统计也让我深刻认识到了数据的重要性和使用数据进行决策的合理性。
在现代社会,数据无处不在,对于各行各业的决策都起着重要的作用。
通过学习概率论与数理统计,我了解了如何对数据进行概括和整理,如何通过数据分析进行决策,提高了对数据的理解和运用能力。
总的来说,学习概率论与数理统计是一次很有意义的经历。
概率论与数理统计心得3000字
概率论与数理统计心得3000字概率论与数理统计是数学中的重要分支,也是应用数学中的基础学科。
在学习这门课程的过程中,我深刻地体会到了其在现实生活中的重要性和应用价值。
下面我将从三个方面总结我在学习概率论与数理统计中的所得到的心得体会。
概率论与数理统计教会了我如何正确地看待和分析数据。
在现代社会中,数据无处不在,而概率论与数理统计提供了一种科学、系统的方法来分析和理解这些数据。
通过学习概率论与数理统计,我了解到了如何对数据进行描述和总结,如何利用统计方法对数据进行推断和预测。
概率论与数理统计教会了我如何正确地处理和解读数据,使我能够更加准确地理解和分析现实生活中的问题。
概率论与数理统计培养了我严谨的思维方式和科学的研究方法。
在学习过程中,我需要掌握和运用一系列的概念、公式和定理,需要进行大量的计算和推导。
这要求我在学习过程中保持高度的集中力和耐心,培养了我良好的思维习惯和科学的研究方法。
概率论与数理统计教会了我如何进行逻辑思考和严密的推理,使我在解决问题时能够正确地分析和判断,提高了我的分析和解决问题的能力。
概率论与数理统计提高了我对世界的认识和理解。
通过学习概率论与数理统计,我了解到了许多有趣的概念和现象,如随机变量、概率分布、假设检验等。
这些概念和现象不仅仅存在于数学领域,而是贯穿于各个学科和领域。
概率论与数理统计使我能够更加深刻地理解和解释这些概念和现象,拓宽了我的知识面和视野。
总的来说,学习概率论与数理统计是一次非常有意义的经历。
它不仅提供了一种科学的方法来分析和理解现实生活中的问题,还培养了我严谨的思维方式和科学的研究方法。
通过学习概率论与数理统计,我提高了对数据的分析和处理能力,加深了对世界的认识和理解。
我相信,在今后的学习和研究中,我会继续运用概率论与数理统计的知识,不断提高自己的能力和水平,为科学研究和实际应用做出更大的贡献。
概率论与数理统计学习心得标准(3篇)
概率论与数理统计学习心得标准概率论与数理统计是一门非常重要且广泛应用于各个学科领域的数学课程。
在学习过程中,我深刻体会到了概率论与数理统计的理论知识对于实际问题的解决以及决策的帮助是非常大的。
下面我将结合自己的学习经验,总结出概率论与数理统计学习的心得体会。
首先,概率论与数理统计的学习需要具备坚实的数学基础。
概率论与数理统计的内容涉及到概率、随机变量、概率分布、数理统计、估计与检验等多个方面的知识,这些内容的掌握需要对数学有一定的基础和思维能力。
在学习概率论与数理统计之前,我提前巩固了概率论、高等数学和线性代数等相关的数学知识,确保自己可以更好地理解和应用概率论与数理统计的知识。
其次,概率论与数理统计的学习需要注重理论与实践的结合。
概率论与数理统计的学习不仅仅是掌握理论知识,更需要通过实际问题的分析与解决来加深对概率论与数理统计的理解。
在学习过程中,我注重将理论知识与实际问题相结合,通过做习题和实际案例分析来巩固和应用所学知识。
通过实践,我深刻体会到了概率论与数理统计的实际应用价值,也提高了自己的问题分析和解决能力。
第三,概率论与数理统计的学习需要注重逻辑思维的训练。
在概率论与数理统计的学习过程中,逻辑思维是非常重要的。
概率论与数理统计的知识体系较为复杂,需要运用逻辑思维进行推理和证明。
在学习过程中,我注重培养自己的逻辑思维能力,通过大量的例题和练习题来提高自己的逻辑思维能力和解题能力。
同时,我也注重与同学之间的讨论和交流,通过互相分享想法和思路,进一步提高自己的逻辑思维和解题能力。
第四,概率论与数理统计的学习需要注重实践应用能力的培养。
概率论与数理统计的知识是为了解决实际问题而存在的,只有将所学的知识应用到实际中才能发挥其真正的价值。
在学习过程中,我注重通过实际案例的分析和解决来培养自己的实践应用能力。
我参与了一些数理统计建模和数据分析的项目,在实践中学习和应用概率论与数理统计的方法和技巧,进一步提高自己的实践应用能力。
概率论与数理统计学期总结和感想
概率论与数理统计学期总结和感想
这学期我学习了概率论与数理统计课程,整个学期的学习,有许多新的想法,以及我的深刻的总结。
首先,对概率论的学习,使我对概率的概念有了更深刻的认识,了解了概率的定义以及概率的基本表示方法,并且了解了如何使用概率论来分析和解决实际问题。
概率论中,最重要的部分是期望和方差,期望和方差是我们分析系统性能和随机现象的两个主要指标,学习期望和方差上,让我更加了解了概率论中的许多概念,让我有能力用数学的方法解决实际问题。
其次,我学习了数理统计课程,数理统计是概率论的一个重要的分支,它的主要用途是用统计方法来分析和求解基本的理论问题,而不只是实际应用。
在学习数理统计课程中,我学习了不同类型的统计量,以及如何求取和应用它们,并且学习了分布和卡方检验、假设检验和拟合等方法,进一步让我系统的了解了如何用统计的方法分析和求解实际问题。
最后,这学期学习概率论与数理统计课程让我对数学中的概率论有了更深入的认识,使我有能力用数学的方法分析和求解实际问题,并且,更重要的是,这学期的学习让我更加加深了对于概率论和数学的热爱。
回顾这学期,我经历了许多有意义的事情,无论是学习知识,还是与老师老师和同学交流,都是我本学期最宝贵的经历。
在未来的学习和工作中,我一定会利用所学到的知识和技能,成为一名优秀的科
学研究者。
小结:
总的来说,这学期的学习概率论与数理统计使我更加深入的了解了概率的概念,并有能力用数理工具来分析和求解真实问题,此外,本学期的学习也让我对概率论和数学的热爱更加深厚,未来的学习和工作中,我一定会还会利用所学知识和技能,成为一名优秀的科学研究者。
概率与数理统计学习心得模板(3篇)
概率与数理统计学习心得模板概率与数理统计是一门重要的数学学科,它在现代科学和工程技术中发挥着重要的作用。
在学习过程中,我从理论和实践两个方面深入学习了概率与数理统计的基本理论、方法和应用。
通过掌握了概率与数理统计的相关知识和技能,我对统计数据的分析和概率事件的评估能力得到了提升。
以下是我在学习概率与数理统计过程中的心得体会。
一、对概率的理解和应用概率是研究随机事件发生的概率大小的一种数学方法。
在学习概率的过程中,我通过学习了概率的定义、性质、基本运算法则,并了解了概率分布、随机变量等重要概念。
通过掌握了这些基本理论和方法,我能够准确地评估事件的概率。
在应用方面,概率可以帮助我们对未知事件进行预测和分析,为决策提供科学的依据。
通过学习概率与数理统计,我了解到概率在风险评估、投资分析、财务管理等领域中的应用。
例如,通过对市场走势和股票价格的概率分析,可以为投资决策提供指导;在保险业中,可以通过概率分析来确定保险赔付数额,为保险公司和投保人提供保障。
这些应用让我深刻地认识到概率在现实生活中的重要性和实用性。
二、对数理统计的理解和应用数理统计是概率论在统计实践中的应用。
在学习数理统计的过程中,我熟悉了一些重要的概念和方法,如样本、总体、估计、假设检验等。
掌握了这些知识后,我能够对收集到的数据进行分析,并对总体的特征进行推断。
在应用方面,数理统计可以帮助我们通过样本数据对总体属性进行推断。
通过学习数理统计,我了解到统计的基本过程,即数据的收集、整理、分析和解释的过程。
在实际应用中,数理统计可以应用于社会调查、市场调研、医学研究等领域。
例如,在社会调查中,可以通过对样本数据的分析,推断出总体的特征,从而为社会治理和决策提供支持;在医学研究中,可以通过对受试者的数据进行分析,推断出新药的疗效,从而为临床治疗提供依据。
这些应用使我深刻认识到数理统计在现实生活中的广泛应用。
三、理论与实践相结合在学习概率与数理统计的过程中,理论与实践是密不可分的。
概率论与数理统计学习心得
概率论与数理统计学习心得学习概率论与数理统计是我大学期间的一门重要课程。
通过学习这门课程,我深刻理解到概率论和数理统计在实际生活中的广泛应用,并且掌握了一些基本的概率论和数理统计的方法和技巧。
下面是我学习概率论与数理统计的心得体会:概率论是一门研究随机现象和随机过程的数学理论,它在现实生活中有着广泛的应用。
比如,在生活中,我们经常会遇到各种各样的风险和不确定性,概率论可以帮助我们计算和评估这些风险和不确定性的大小。
通过概率论的学习,我了解到了一些重要的概念和定理,比如概率、随机变量、概率分布、条件概率等等。
这些概念和定理在实际应用中非常有用,它们可以帮助我们分析和预测各种概率事件的发生。
概率论的学习过程中,我掌握了一些重要的方法和技巧。
比如,计算复合事件的概率时,可以使用加法原理和乘法原理;计算随机变量的期望值和方差时,可以使用定义公式或者特征函数的方法;根据大数定律和中心极限定理,可以用频率来近似计算概率。
这些方法和技巧在实际应用中非常实用,可以帮助我们快速准确地计算概率。
数理统计是一门研究如何从样本中去推断总体特征的学科,它在现实生活中也有着广泛的应用。
比如,在市场调研中,我们需要通过对少数样本的调查,来推断整个市场的情况;在医学研究中,我们需要通过对少数病例的观察,来推断整个人群的病情。
通过数理统计的学习,我了解到了一些重要的概念和定理,比如样本、总体、参数、统计量、抽样分布等等。
这些概念和定理在实际应用中非常有用,它们可以帮助我们分析和推断各种统计问题。
数理统计的学习过程中,我掌握了一些重要的方法和技巧。
比如,构造适当的统计量来推断总体参数;根据大样本的性质来做假设检验和置信区间估计;构造适当的统计模型来分析实际问题。
这些方法和技巧在实际应用中非常实用,可以帮助我们进行统计推断和统计分析。
概率论与数理统计的学习过程中,我发现了一些重要的思想和原则。
比如,随机性是自然界的一种基本规律,我们必须要适应和接受这种随机性;在实际问题中,要善于抽象和建模,将实际问题转化为数学问题;要善于利用数据和信息来进行决策和判断;要注重方法的合理性和可靠性,不要盲目追求结果。
概率论与数理统计 学习心得(3篇)
概率论与数理统计学习心得概率论与数理统计是一门应用广泛的学科,涉及到许多实际问题的分析和解决。
通过学习这门课程,我深刻体会到了概率论与数理统计在实际生活中的重要性和实用性。
以下是我在学习概率论与数理统计这门课程时的一些心得体会。
首先,概率论与数理统计的基础知识对于数据的分析和解释非常重要。
在现代社会中,我们每天都会接触到大量的数据,如股票价格、气温变化、销售数据等等。
通过概率论与数理统计的知识,我们可以对这些数据进行分析和预测,从而更好地理解和解释这些现象。
其次,概率论与数理统计的方法能够帮助我们作出正确的决策。
在面对不确定性和风险的情况下,概率论与数理统计的方法可以帮助我们评估风险和收益,并作出最优的决策。
例如,在投资决策中,我们可以利用概率论来计算不同投资方案的风险和收益,从而选择最佳的投资方案。
另外,概率论与数理统计的方法还可以用于科学实验和调查的设计和分析。
在进行科学研究或进行市场调查时,我们需要设计实验方案或问卷调查,并分析所得数据。
概率论与数理统计的知识可以帮助我们设计合理的实验方案和问卷调查,并进行数据的分析和解释。
在学习概率论与数理统计的过程中,我最大的收获是掌握了统计推断的方法。
统计推断是根据样本数据对总体进行推断的一种方法。
通过学习统计推断的理论和方法,我不仅可以对一组数据进行描述和概括,还可以利用样本数据对总体进行估计和推断。
这对于科学研究和实际问题的解决非常重要。
此外,概率论与数理统计的学习还培养了我的分析和解决实际问题的能力。
在习题解析和实际应用中,我需要根据具体问题的特点选择合适的概率模型和统计方法,并运用所学知识进行推理和计算。
通过这样的实践,我逐渐提高了分析问题和解决问题的能力。
最后,概率论与数理统计的学习还帮助我发展了一种科学的思维方式。
概率论与数理统计的方法注重数据分析和推理的科学性和准确性。
在学习过程中,我学会了从数据和事实出发,根据统计原理进行推理和分析,并且能够对统计结论进行适当的评价和解释。
概率论与数理统计学习的感想
概率论与数理统计学习的感想第一篇:概率论与数理统计学习的感想概率论与数理统计学习的感想概率问题是研究随机现象统计规律性的学科, 是近代数学的一个重要组成部分,生活中概率与统计知识应用非常普遍,科学家对实验统计的数据的分析,企业对产品质量检查,产品的市场分析,人口普查,有奖债券,国家彩票等等都用到了概率与统计学的基本知识;许多政治选举的结果,医疗上的决定也取决于统计的数据,因此掌握基本的概率论与数理统计知识并加以灵活运用非常必要。
由于高中学过排列组合、概率统计的一些基本知识,并且生物课程中遗传学中也接触到了概率的一些知识,所以开始上概率课时并没有太大压力,基本上是在高中的基础上更深入地学习概率的有关知识。
高中学习的是古典概型,等概事件,离散型随机变量,是最基础的,而大学学到的是更一般的概率统计知识,适用范围也更广。
高中的一些思维模式必须转变才能适应大学的学习:在高中某一事件概率为0等价于该事件不可能事件,某一事件的概率为1就等价与该事件是必然事件,而大学中学过几何概率后才知道高中学的不全对,几何概率中边界上概率为0但也可能发生。
学习到连续型随机变量时已经与高中学习的相差很大,对连续型随机变量求其在去某值时的概率是无意义的,只能求变量落在某一范围内的概率。
因为现实生活中的事件大多受到两个或多个因素影响,很多随机现象中,往往要涉及到多个随机变量,而且这些随机变量之间存在某种联系,因此多维随机变量的知识在生活中应用更广。
随机变量的概率密度与分布直接反映出随机变量的分布情况,随机变量的数学期望,方差等在生活中可以帮助人们做出选择。
比如大赛前选拔选手才赛,对某产品的质量估计等。
当一些随机变量的分布不易求出或不需要知道随机变量的概率分布,而只需要知道其数学期望,方差即可知道其大概分布情况。
随机变量的数学期望反映了随机变量取值的平均值,而随机变量的方差反映了随机变量离开其平均值的平均偏离大小,反映了随机变量的稳定性。
2024年哈工大概率论与数理统计学习心得(二篇)
2024年哈工大概率论与数理统计学习心得学习概率论与数理统计是作为一个工科学生, 在大学时期必修的一门课程。
在2024年, 我有幸能够在哈尔滨工业大学学习这门课程, 并且取得了一定的收获。
下面, 我将分享我在学习概率论与数理统计方面的一些心得体会。
首先, 在学习概率论方面, 我深刻体会到了概率的重要性和应用广泛性。
概率论主要研究随机事件的概率、随机变量及其概率分布等内容, 是计算机、统计学、金融等领域的基础。
通过学习概率论, 我了解到概率不仅仅是一个理论概念, 更是一种描述不确定性的工具。
在现实生活中, 我们所面临的很多问题都存在不确定性, 如天气预报、股市走势等。
通过概率论的学习, 我可以更准确地评估可能发生的事件, 并且能够采取合适的措施来降低风险。
其次, 在学习数理统计方面, 我学到了如何通过样本推断总体的特征。
数理统计主要研究如何收集数据、如何通过数据推断总体的特征并进行决策等。
在学习过程中, 我提高了数据分析能力, 掌握了抽样调查的原理和方法, 并学会了对数据进行描述、总结和分析。
通过统计数据, 我可以用合理的方法推断总体的特征, 并对未来的情况作出预测。
这对于很多实际问题的解决具有非常重要的意义, 如市场调查、产品质量控制等。
此外, 概率论与数理统计的学习还培养了我批判性思维和解决问题的能力。
在学习过程中, 我需要理解和运用各种概率模型和统计方法来解决现实生活中的问题。
这要求我们具备批判性思维, 能够对所学知识进行深入分析和理解, 并灵活运用于实际情况中。
同时, 我还需要通过编程和数学求解等方式, 对问题进行建模和求解。
通过这样的学习过程, 我逐渐培养了解决实际问题的能力, 提高了自己的综合素质。
在学习过程中, 我还发现了一些困难和挑战。
首先, 概率论和数理统计是一门比较抽象的学科, 其中涉及到的概念和理论较多, 需要我们进行艰苦的钻研和思考。
其次, 统计方法的运用需要借助计算机编程进行实现, 这要求我们具备一定的编程能力和统计软件的使用能力。
概率论与数理统计 学习心得(4篇)
概率论与数理统计学习心得概率论与数理统计是一门非常重要的数学课程,通过学习这门课程,我对概率论和统计学有了更深入的理解。
在学习的过程中,我遇到了不少困难和挑战,但是通过努力和坚持,我逐渐克服了这些困难,取得了一些进步。
首先,在学习概率论的时候,我发现最困难的是理解概率的概念和计算方法。
概率是描述随机事件发生可能性大小的数值,通过学习概率分布、事件独立性和条件概率等概念,我对概率的理解逐渐深入。
但是,计算概率的方法和公式很多,有时候很难确定使用哪种方法,这给我造成了一定的困扰。
为了克服这个困难,我重点学习了概率计算的常用方法,如排列组合、二项分布、泊松分布等,并且通过大量的练习加强了对这些方法的掌握。
其次,在学习数理统计的时候,我觉得最困难的是理解和应用抽样分布的概念。
抽样分布是指从总体中抽取一定数量的样本,然后对样本进行统计推断。
对于不同的总体和样本容量,抽样分布的形式和性质都不一样。
我通过学习正态分布、t分布和卡方分布等抽样分布的性质和应用,逐渐掌握了如何通过样本对总体进行推断的方法。
同时,我也通过实例分析和模拟实验等方法,加深了对抽样分布的理解和掌握。
此外,在学习数理统计的过程中,我还遇到了处理实际问题的困难。
数理统计是将概率论的方法应用到实际问题中,通过收集和分析数据,对总体进行推断和决策。
在实际问题中,要根据实际情况选择合适的方法和模型,并进行假设检验和置信区间估计。
这需要我对问题进行合理的抽象和建模,并运用数学方法进行计算和分析。
在实际问题中,往往还需要考虑数据的质量和可靠性,对数据进行清洗和处理。
通过不断的实践和探索,我逐渐提高了解决实际问题的能力。
总的来说,通过学习概率论与数理统计,我不仅掌握了其中的概念和方法,还培养了分析问题和解决问题的能力。
概率论与数理统计是一门与生活密切相关的学科,它在风险管理、市场预测、医学诊断等领域都有广泛的应用。
我相信通过将所学知识运用到实际问题中,并不断学习和实践,我可以不断提升自己在这个领域的能力,并为社会做出积极的贡献。
概率论与数理统计心得体会
概率论与数理统计心得体会在我学习概率论与数理统计这门课程的过程中,那真叫一个“酸甜苦辣”俱全呀!还记得刚开始接触这门课的时候,我满心期待又有些小紧张。
毕竟,一听到“概率”“统计”这些词,感觉就像是走进了一个充满神秘数字和复杂公式的世界。
随着课程的推进,我逐渐发现这门课就像是一个藏着无数宝藏的迷宫。
那些定理、公式,一开始就像拦路虎,让我有些头疼。
比如说,什么条件概率、全概率公式,搞得我晕头转向。
但慢慢地,通过不断地做练习题,我好像找到了一些窍门。
有一次,老师在课堂上讲了一个关于抽奖的例子,那可真是让我印象深刻。
假设商场搞了个抽奖活动,一等奖是一台价值万元的电脑,二等奖是一部最新款的手机,三等奖是一个智能手表。
抽奖箱里一共有 1000 张奖券,其中一等奖的奖券有 5 张,二等奖的奖券有 20 张,三等奖的奖券有 50 张。
老师让我们算一算抽到各个奖项的概率。
这可把我给难住了,我拿着笔在本子上不停地写写画画。
先算一等奖,5 除以 1000,那就是 05%的概率,哎呀,这概率也太低了吧!再算二等奖,20 除以 1000,等于 2%,嗯,好像也不太高。
最后算三等奖,50 除以 1000,是 5%。
算完之后,我心里就想,这中奖的机会咋就这么小呢?后来,老师又深入讲解了,如果一个人买了 10 张奖券,那他中一等奖的概率会变成多少。
我又开始埋头苦算,先算出不中奖的概率,然后用 1 减去不中奖的概率,算出的结果让我有点小惊喜,概率提高了不少呢!还有一次,我们在做一个关于正态分布的作业题。
题目是这样的,某班同学的考试成绩服从正态分布,平均分为70 分,标准差为10 分。
老师让我们算一下成绩在 60 分到 80 分之间的同学所占的比例。
我一开始真是毫无头绪,不知道从哪里下手。
后来,我翻了翻课本,回忆老师讲的知识点,先把 60 分和 80 分转化为标准分数,然后查正态分布表。
这个过程可真是小心翼翼,就怕算错一个数。
最后算出来,大概有 6827%的同学成绩在这个区间。
数理统计学习感想(精选5篇)
数理统计学习感想(精选5篇)第一篇:数理统计学习感想数理统计学习感想现实中常常存在这种情况,我们所掌握的数据只是部分单位的数据或有限单位的数据,而我们所关心的却是整个总体甚至是无限总体的数量特征。
例如民意测验谁会当选主席?体育锻炼对增强心脏功能是否有益?某种新药是否提高疗效?全国婴儿性别比例如何?等等。
这时只靠部分数据的描述是无法获得总体特征的知识。
我们利用统计推断的方法来解决。
所谓统计推断就是以一定的置信标准要求,根据样本数据来判断总体数量特征的归纳推理的方法。
统计推断是逻辑归纳法在统计推理的应用,所以称为归纳推理的方法。
统计推断可以用于总体数量特征的估计,也可以用于对总体某些假设的检验,所以又有不同的推断方法下面就参数估计和假设检验的基本概念及原理简单谈谈。
参数估计是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。
它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。
参数估计包括点估计和区间估计两种方法。
点估计是依据样本估计总体分布中所含的未知参数或未知参数的函数。
通常它们是总体的某个特征值,如数学期望、方差和相关系数等。
点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的估计值。
构造点估计常用的方法是:①矩估计法。
用样本矩估计总体矩,如用样本均值估计总体均值。
②最大似然估计法。
于1912年由英国统计学家R.A.费希尔提出,利用样本分布密度构造似然函数来求出参数的最大似然估计。
③最小二乘法。
主要用于线性统计模型中的参数估计问题。
④贝叶斯估计法。
基于贝叶斯学派(见贝叶斯统计)的观点而提出的估计法。
、区间估计是依据抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,作为总体分布的未知参数或参数的函数的真值所在范围的估计。
例如人们常说的有百分之多少的把握保证某值在某个范围内,即是区间估计的最简单的应用。
1934年统计学家J.奈曼创立了一种严格的区间估计理论。
《概率论与数理统计》的课程学习心得
《概率论与数理统计》的课程学习心得《概率论与数理统计》的课程学习心得篇一:《概率论与数理统计》课程学习心得有人说:“数学来源于生活,应用于生活。
数学是有信息的,信息是可以提取的,而信息又是为人们服务的。
”那么概率肯定是其中最为重要的一部分。
巴特勒主教说,对我们未来说,可能性就是我们生活最好的指南,而概率即可能。
概率论与数理统计是现代数学的一个重要分支。
近二十年来,随着计算机的发展以及各种统计软件的开发,概率统计方法在金融、保险、生物、医学、经济、运筹管理和工程技术等领域得到了广泛应用。
主要包括:极限理论、随机过程论、数理统计学、概率论方法应用、应用统计学等。
极限理论包括强极限理论及弱极限理论;随机过程论包括马氏过程论、鞅论、随机微积分、平稳过程等有关理论。
概率论方法应用是一个涉及面十分广泛的领域,包括随机力学、统计物理学、保险学、随机网络、排队论、可靠性理论、随机信号处理等有关方面。
应用统计学方法的产生主要来源于实质性学科的研究活动中,例如,最小二乘法与正态分布理论源于天文观察误差分析,相关与回归分析源于生物学研究,主成分分析与因子分析源于教育学与心理学的研究,抽样调查方法源于政府统计调查资料的搜集等等。
本研究方向在学习概率论、统计学、随机过程论等基本理论的基础上,致力于概率统计理论和方法同其它学科交叉领域的研究,以及统计学同计算机科学相结合而产生的数据挖掘的研究。
此外,金融数学也是本专业的一个主要研究方向。
它主要是通过数学建模,理论分析、推导,数值计算以及计算机模拟等理论分析、统计分析和模拟分析,以求研究和分析所涉及的理论问题和实际问题。
生活中会遇到这样的事例:有四张彩票供三个人抽取,其中只有一张彩票有奖。
第一个人去抽,他的中奖概率是25%,结果没抽到。
第二个人看了,心里有些踏实了,他中奖的概率是33%,结果他也没抽到。
第三个人心里此时乐开了花,其他的人都失败了,觉得自己很幸运,中奖的机率高达50%,可结果他同样没中奖。
哈工大概率论与数理统计学习心得范文(二篇)
哈工大概率论与数理统计学习心得范文学习《概率论与数理统计》这门课程给我带来了很大的收获和启发。
通过学习,我对概率和统计的概念、原理和方法有了更加深入的理解,也提高了数据分析和统计推断的能力。
以下是我在学习过程中的心得体会。
首先,概率论的学习使我对概率的含义和计算方法有了更清晰的认识。
在课堂上,我们学习了概率的定义、基本概念和运算规则。
通过例题和习题的训练,我逐渐熟悉了概率的计算方法,如加法法则、乘法法则、全概率公式和贝叶斯公式等。
特别是在条件概率和独立性的学习中,我更深刻地认识到了数据之间的相互关系和影响,为后续的统计推断提供了基础。
其次,数理统计的学习让我对统计的思维方式和应用能力有了明显的提高。
课程中,我们学习了一些重要的统计概念和方法,如随机变量、概率分布、抽样分布、参数估计和假设检验等。
在概率分布的学习中,我掌握了常见的离散分布和连续分布的特点和应用场景,能够根据实际情况选择合适的概率分布模型。
在参数估计和假设检验的学习中,我了解了如何通过样本数据对总体参数进行估计和推断,并能进行相关的统计推断和假设检验。
此外,课程中的案例分析和实践操作也让我收获颇丰。
通过课堂上的案例分析,我了解了概率与统计在实际问题中的应用,并学会了如何利用统计方法进行数据分析和决策支持。
课程中还配套了一些实践操作,如统计软件的使用和数据分析的实践练习,这些实践操作使我更加熟悉了数据的处理和分析过程,培养了我解决实际问题的能力。
通过学习《概率论与数理统计》,我不仅掌握了概率和统计的基本理论和方法,还提高了我分析和解决实际问题的能力。
在将来的工作和学习中,我将充分利用所学知识,运用概率论和数理统计的方法,对数据进行分析和推断,为决策和问题解决提供科学依据。
总的来说,学习《概率论与数理统计》这门课程是一次非常有益的经历。
通过这门课程,我不仅加深了对概率和统计的理解,还提高了数据分析和统计推断的能力。
这些知识和技能将直接应用到我的日常工作和学习中,为我未来的发展打下了扎实的基础。
概率论学习心得(通用6篇)
概率论学习心得概率论学习心得(通用6篇)概率论学习心得篇1率论和数理统计的思想方法已经渗透到自然科学和社会科学的许多领域,应用范围相当广泛。
所以概率论的学习对我们来说很重要,而我们该去如何学好概率论那?一学期的概率论学习很快就过去了,经过了一个学期的概率论学习,让我了解到概率论是一门逻辑性很强的学科,学好概率论可以提高分析问题、解决问题,搜集和处理信息的能力。
怎样才能学好概率论?可从以下方面着手。
上课认真听讲,课后及时复习。
适当做题,养成良好的解题习惯。
学习新知识,要特别重视课上的学习效率,寻求正确的学习方法。
上课时要紧跟老师思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同,同时要注意做笔记。
课后做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,不要边做题边翻课本,那样只是暂时的明白,离开书什么也不知道,认真独立完成作业,勤于思考。
还应该自己独自认真分析题目,尽量自己解决所有老师安排的习题,适当还做点相关资料。
经常进行整理和归纳总结。
要多做题目,熟悉各种题型。
首先要从基础题入手,以课本上的例习题为准,再找一些课外的习题,以帮助开拓思路,提高自己分析、解决问题的能力。
对于一些易错题,要备有错题本,记下自己的错误解法并且写上正确的解法,两者比较找出自己的错误所在,及时更正。
平时要养成良好的解题习惯,让自己的精力高度集中,思维敏捷。
如果平时解题时随便、粗心、大意等,所以在平时养成良好的解题习惯是非常重要的。
学习兴趣是学生心理上的一种学习需要,而学习需要是学习动机的主要因素,学习动机则是进行学习的内驱力。
概率论作为文化基础课,多数学生认为其课抽象、枯燥无味,无新鲜感而应用价值很大。
激发起学习的兴趣,这样会有高的学习质量。
因此在概率论的学习过程中,要始终注意培养学习的兴趣,使自己既学到必要的知识,又享受到一定的学习乐趣,达到提高学习质量的目的。
然而各门课程的特点不同,培养自己学习兴趣的途径和方法也不尽相同,但是深入钻研教材,根据教材的内容和特点,挖出潜在的有利于培养自己学习兴趣的积极因素并加以充分利用,这一点是共同的。
概率与数理统计学习心得(3篇)
概率与数理统计学习心得概率与数理统计是一门非常重要的数学学科,它在各个领域都有广泛的应用。
在学习这门课程的过程中,我对概率与数理统计的基本原理和方法有了更深入的理解,提高了一定的应用能力。
以下是我在学习概率与数理统计过程中的一些心得分享。
首先,在学习概率论部分时,我认识到概率是对事件发生的可能性进行定量描述的数学工具。
概率的计算分为频率概率和几何概率两种方法。
频率概率是通过重复实验来统计事件发生的频率,并用频率来估计概率。
几何概率则是通过对概率空间的几何分析来计算概率。
在实际问题中,我们要根据问题的特点选择合适的概率计算方法。
其次,在学习随机变量和概率分布时,我了解到随机变量是随机试验结果的函数,它的取值是根据试验的结果来确定的。
概率分布则是描述随机变量的取值和对应概率之间的关系。
常见的概率分布有离散型和连续型两种。
离散型概率分布描述的是随机变量取有限个或无限个离散值的概率。
连续型概率分布描述的是随机变量取某个区间内的概率。
在实际问题中,我们要根据问题的特点选择合适的概率分布来描述随机变量。
然后,在学习数理统计部分时,我了解到数理统计是根据样本信息对总体进行推断的数学方法。
样本是从总体中抽取出来的一部分观察值,总体则是我们要研究的所有观察值的集合。
在进行统计推断时,我们首先要对总体进行假设,然后利用样本数据来进行统计推断。
常见的统计推断方法有点估计和区间估计。
点估计是利用样本数据来估计总体参数的值,区间估计则是利用样本数据来估计总体参数的范围。
此外,在学习假设检验时,我了解到假设检验是通过样本数据来检验总体假设的方法。
在进行假设检验时,我们首先提出原假设和备择假设,然后利用样本数据计算出一个统计量,并根据统计量的分布来判断原假设是否可信。
常见的假设检验方法有参数检验和非参数检验。
参数检验是基于总体参数的已知分布进行假设检验的方法,非参数检验则是不依赖于总体参数分布的假设检验的方法。
最后,在学习多元统计分析时,我了解到多元统计分析是研究多个随机变量之间相互关系的统计方法。
概率论与数理统计 学习心得
概率论与数理统计学习心得概率论与数理统计是一门非常重要的数学课程,它在自然科学、社会科学以及工程技术等领域都有广泛的应用。
为了更好地掌握这门课程,我在学习过程中采取了一些方法和策略,并总结出了一些学习心得。
首先,学习概率论与数理统计需要具备一定的数学基础。
这门课程涉及到许多概念和推导,如概率、随机变量、概率分布、假设检验等。
因此,在开始学习之前,我先复习了一些数学基础知识,如数列、极限、导数、积分等。
这为后续学习打下了基础,也帮助我更好地理解课程内容。
其次,我注重理论与实践相结合。
概率论与数理统计不仅仅是一门理论课程,也包含了很多的实际应用。
为了更好地掌握这门课程,我在学习过程中注重与实际问题的结合。
我通过查阅相关的实际案例和应用文献,了解概率论与数理统计在实际应用中的作用和方法。
同时,我也通过解决一些实际问题来巩固和应用所学的知识。
另外,我还积极参加学习小组和讨论。
与他人的交流和讨论是学习的重要途径之一。
在学习概率论与数理统计的过程中,我组建了一个学习小组,大家一起讨论难点和疑惑,互相帮助和监督,这极大地提高了我对这门课程的理解和掌握。
此外,我还注重课后复习和总结。
概率论与数理统计是一门理论性较强的课程,需要不断地巩固和运用所学的知识。
因此,我每节课后都会及时复习并总结所学内容,做好笔记。
在考前,我会再次回顾整个课程,并做一些题目来检验自己的掌握情况。
通过不断地复习和总结,我将所学的知识牢固地记在了脑海中。
最后,我还积极利用网络资源进行学习。
网络资源丰富多样,有许多课程视频、教材、习题和学习资料可以供我们参考和学习。
我从网上找到了一些优质的教学视频和习题,通过观看这些教学视频和做习题来加深对概率论与数理统计的理解和掌握。
总结起来,学习概率论与数理统计需要具备一定的数学基础,注重理论与实践相结合,积极参加学习小组和讨论,注重课后复习和总结,以及利用网络资源进行学习。
通过这些方法和策略,我成功地掌握了概率论与数理统计的基本概念、原理和方法,并应用到实际问题中。
概率论心得体会
概率论心得领会【篇一:概率论与数理统计学习心得】《概率论与数理统计》学习心得资料 01 薛飞 2010021023跟着学习的深入,我们在大二放学期开了《概率论与数理统计》这一门课。
概率论与数理统计是研究随机现象统计规律性的一门数学学科,其理论与方法的应用特别宽泛,几乎遍布所有科学技术领域、工农业生产、公民经济以及我们的平时生活。
学习这门课,不单能培育我们的理论学习能力,也能在往后给科研及生活供给一种解决问题的工具。
说真话,这门课给我的第一印象就是它可能很难很抽象,很难用于实质生活中,并且关于这门课的安排与流程我并无太切实的认识。
但在第一节课上听了老师的解说我才理出了一些眉目。
这门课分为概率论与数理统计两个部分,此中概率论部分又是数理统计的基础。
我们所要课程就是环绕着这两大多数来学习的。
现在经过了一学期的学习,在收获了许多知识的同时也很有些心得领会。
第一,它给我们供给了一种解决问题的的新方法。
我们在解决问题不必定非要从正面进行解决。
在某些情况下,我们能够进行合理的预计,而后再去解决有关的问题。
并且,概率论的思想方式不是确立的,而是随机的发生的思想。
其次,在这门课程学习中,我意识到其实概率论与数理统计才是与生活密切相连的。
它用到高数的计算与思想,却其实不像高数那样抽象。
并且老师所讲例题均与平时生产和生活有关,让我理解了平时生产中如何应用数学原理解决问题,我想假定查验即是很好的解说。
最后,概率论与数理统计应当被视为工具学科,因为它对其余学科的学习是不行少的。
它对统计物理的学习有重要意义,同时关于学习经济学的人在研究某些经济规律也是十分重要的。
总之,经过学习这门课程,我们能够更理性的对待生活中的一些问题,更为慎重的办理某些问题。
最后,感谢老师近半年来的辛苦教课与谆谆教育!【篇二:概率论与数理统计学习领会】《概率论与数理统计》学习领会院校北京化工大学专业工商管理(人力资源方向)姓名史伟学号011时间2011年11月20日成绩这学期学习《概率论与数理统计》这门课,在高中的时候,我们就接触过简单的概率,知道事物的随机现象,即条件相同,事情的结果却不确立,这类不确立现象就叫做随机现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》
学习体会
院校北京化工大学
专业工商管理(人力资源方向)
姓名史伟
学号 011
时间 2011年11月20日
成绩
这学期学习《概率论与数理统计》这门课,在高中的时候,我们就接触过简单的概率,知道事物的随机现象,即条件相同,事情的结果却不确定,这种不确定现象就叫做随机现象。
这个课程内容分为两个部分:概率论和数理统计。
这两部分有着紧密的联系。
在概率论中,我们研究的的随机变量,都是在假定分布已知的情况下研究它的性质和特点;而在数理统计中,是在随机变量分布未知的前提下通过对所研究的随机变量进行重复独立的观察,并对观察值对这些数据进行分析,从而对所研究的随机变量的分布做出推断。
因此,概率论可以说是数理统计的基础。
一、学习价值
通过简单的学习,我掌握到,概率统计是真正把实际为题转化为数学问题的学问,因为它解决的并不是单纯的数学问题,而且不是给你一个命题让你去解决,是让你去构思命题,进而构建模型来想法设法解决实际问题。
在实际应用中,就更加需要去想、去假设,对问题需要有更深层次的思考,因此使概率论和数理统计这门课学起来比微积分和线性代数更加吃力,但也比它们更加实用,更贴近实际。
概率论产生于十七世纪,本来是由保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢 m局就算赢,全部赌本就归谁。
但是当其中一个人赢了 a (a<m)局,另一个人赢了 b(b<m)局的时候,赌博中止。
问:赌本应该如何分法才合理?”后者曾在1642年发明了世界上第一台机械加法计算机。
三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。
近几十年来,随着科技的蓬勃发展,概率论大量应用到国民经济、工农业生产及各学科领域。
许多兴起的应用数学如信息论、对策论、排队论、控制论、等,都是以概率论作为基础的。
概率论和数理统计是一门随机数学分支,它们是密切联系的同类学科。
但是应该指出,概率论、数理统计、统计方法又都各有它们自己所包括的不同内容。
概率论——是根据大量同类随机现象的统计规律,对随机现象出现某一结果的可能性作出一种客观的科学判断,对这种出现的可能性大小做出数量上的描述;比较这些可能性的大小、研究它们之间的联系,从而形成一整套数学理论和方法。
数理统计——是应用概率的理论来研究大量随机现象的规律性;对通过科学安排的一定数量的实验所得到的统计方法给出严格的理论证明;并判定各种方法应用的条件以及方法、公式、结论的可靠程度和局限性。
使我们能从一组样本来判定是否能以相当大的概率来保证某一判断是正确的,并可以控制发生错误的概率。
统计方法——是一上提供的方法在各种具体问题中的应用,它不去注意这些方法的的理论根据、数学论证。
应该指出,概率统计在研究方法上有它的特殊性,和其它数学学科的主要不同点有:
第一,由于随机现象的统计规律是一种集体规律,必须在大量同类随机现象中才能呈现出来,所以,观察、试验、调查就是概率统计这门学科研究方法的基石。
但是,作为数学学科的一个分支,它依然具有本学科的定义、公理、定理的,这些定义、公理、定理是来源于自然界的随机规律,但这些定义、公理、定理是确定的,不存在任何随机性。
第二,在研究概率统计中,使用的是“由部分推断全体”的统计推断方法。
这是因为它研究的对象——随机现象的范围是很大的,在进行试验、观测的时候,
不可能也不必要全部进行。
但是由这一部分资料所得出的一些结论,要全体范围内推断这些结论的可靠性。
第三,随机现象的随机性,是指试验、调查之前来说的。
而真正得出结果后,对于每一次试验,它只可能得到这些不确定结果中的某一种确定结果。
我们在研究这一现象时,应当注意在试验前能不能对这一现象找出它本身的内在规律。
让我比较感兴趣的是,概率统计在实际中的应用。
例如一个公司的决策,就需要用到概率统计。
一个公司如果投产,通过对设备生产能力,对市场估计,与如果不投产,对设备生产能力和市场估计的比较。
最终做出公司是否投产的决策。
通过这种方法,可以很快的找到怎样投资怎么去决策利益最大。
二、学习方法和注意点
学习概率论与数理统计需要注意很多东西,以下就是我从其他参考书上学习到的。
(一)、学习“概率论”要注意以下几个要点
1. 在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。
这实际上是一个抽象过程。
正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随
机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画。
此外若对一切实数集合B,知道P(X∈B)。
那么随机试验的任一随机事件的概率也就完全确定了。
所以我们只须求出随机变量X 的分布P(X∈B)。
就对随机试验进行了全面的刻画。
它的研究成了概率论的研
究中心课题。
故而随机变量的引入是概率论发展历史中的一个重要里程碑。
类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会。
2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异
要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间。
而它的取值是不确定的,
随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定的,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布。
只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解。
又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)。
P(B)>0,则A,B独立则一定相容。
类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂。
3. 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如
F(x)=P(X≤x),EX,DX等按定义都易求得。
计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞ f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握。
4. 概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过。
因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去。
这样往往能“事半功倍”。
(二)、学习“数理统计”要注意以下几个要点
1. 由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背
景,理解统计方法的直观含义。
了解数理统计能解决那些实际问题。
对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆。
例如估计未知分布的数学期望,就要考虑到①如何寻求合适的估计量的途径,②如何比较多个估计量的优劣?这样,针对①按不同的统计思想可推出矩估计和极大似然估计,而针对②又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足。
掌握了寻求估计的统计思想,具体寻求估计的步骤往往是“套路子”的,并不困难,然而如果没有从根本上理解,仅死背套路子往往会出现各种错误。
2. 许多同学在学习数理统计过程中往往抱怨公式太多,置信区间,假设检验表格多而且记不住。
事实上概括起来只有八个公式需要记忆,而且它们之间有着紧密联系,并不难记,而区间估计和假设检验中只是这八个公式的不同运用而已,关键在于理解区间估计和假设检验的统计意义,在理解基础上灵活运用这八个公式,完全没有必要死记硬背。
总之,这门课是一门很有用的课,所以学习的时候一定要找对窍门,这样才能事半功倍。