高中平面几何讲义

合集下载

高二数学竞赛班二试平面几何讲义.第七讲-----三角形的五心(一)7

高二数学竞赛班二试平面几何讲义.第七讲-----三角形的五心(一)7

高二数学竞赛班二试平面几何讲义第七讲三角形的五心(一)班级姓名一、知识要点:1.三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.2.外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.3.重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每条中线都分成定比2:1及中线长度公式,便于解题.4.蒙日定理(根心定理):平面上任意三个圆,若这三个圆圆心不共线,则三条根轴相交于一点,这个点叫它们的根心;若三圆圆心共线,则三条根轴互相平行。

注:在平面上任给两不同心的圆,则对两圆圆幂相等的点的集合是一条直线,这条线称为这两个圆的根轴。

另一角度也可以称两不同心圆的等幂点的轨迹为根轴,或者称作等幂轴。

(1)平面上任意两圆的根轴垂直于它们的连心线;(2)若两圆相交,则两圆的根轴为公共弦所在的直线;(3)若两圆相切,则两圆的根轴为它们的内公切线;5.莱莫恩(Lemoine)定理:过△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB所在直线交于P、Q、R,则P、Q、R三点共线。

直线PQR称为△ABC的莱莫恩线。

证明:由弦切角定理可以得到:sin∠ACR=sin∠ABC ,sin∠BCR=sin∠BACsin∠BAP=sin∠BCA,sin∠CAP=sin∠ABCsin∠CBQ=sin∠BAC sin∠ABQ=sin∠BCA所以,我们可以得到:(sin∠ACR/sin∠BCR)*(sin∠BAP/sin∠CAP)*(sin∠CBQ/sin∠ABQ)=1,这是角元形式的梅涅劳斯定理,所以,由此,得到△ABC被直线PQR所截,即P、Q、R共线。

二、例题精析:例1.在△ABC的边AB,BC,CA上分别取点P,Q,S.证明以△APS,△BQP,△CSQ的外心为顶点的三角形与△ABC相似.(B·波拉索洛夫《中学数学奥林匹克》)AB C KP O OO .. ..S123例2. AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△P AD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和.(第26届莫斯科数学奥林匹克)例3. △ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD 的重心. 证明OE 丄CD . (加拿大数学奥林匹克训练题)AA 'F F 'G EE 'D 'C 'PCBDABC DE FOKG例4. (2003年联赛)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B , 所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ= ∠PBC . 求证:∠DBQ=∠P AC .三、精选习题:1.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克)2.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(1988,美国数学奥林匹克)OQ CDBAP3..AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角形.4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.5.如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE=∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等.ABCE MNF四、拓展提高:6.在ΔABC 中,∠BAC=60︒,AB >AC ,点O 为ΔABC 的外心,两条高BE 、CF 的交于点H ,点M 、N 分别在线段BH 与HF 上,且满足BM=CN . 求MH +HNOH 的值.7.(2004年联赛)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K .已知25BC =,20BD =,7BE =,求AK 的长.高二数学竞赛班二试平面几何讲义第七讲 三角形的五心(一)例1. 分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外 心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C .∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3.∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K =21(∠O 2O 1S +∠SO 1K )BABCK PO O O ....S123=21(∠O 2O 1S +∠PO 1O 2) =21∠PO 1S =∠A ;同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC .另法:△APS ,△BQP ,△CSQ 的外接圆交于一点(密克点) 例2. 分析:设G 为△ABC 重心,直线PG 与AB,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′.易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′, ∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .两边各扩大3倍,有S △PBE =S △P AD +S △PCF . 例3. 分析:设AM 为高亦为中线,取AC 中点F ,E 必在DF 上且DE :EF =2:1.设 CD 交AM 于G ,G 必为△ABC 重心. 连GE ,MF ,MF 交DC 于K .易证:DG :GK =31DC :(3121-)DC =2:1.∴DG :GK =DE :EF ⇒GE ∥MF . ∵OD 丄AB ,MF ∥AB ,∴OD 丄MF ⇒OD 丄GE .但OG 丄DE ⇒G 又是△ODE 之垂心. 易证OE 丄CD .例4. 分析:由∠PBC=∠CDB ,若∠DBQ=∠P AC=∠ADQ ,则∆BDQ ∽∆DAQ .反之,若∆BDQ ∽∆DAQ .则本题成立. 而要证∆BDQ ∽∆DAQ , 只要证BD AD =DQAQ 即可. 证明:连AB .∵ ∆PBC ∽∆PDB ,∴ BD BC =PD PB ,同理,AD AC =PD P A .A A 'FF 'G EE 'D 'C 'PCBDABCDE FOKG OQ CDBAP∵ P A=PB ,∴ BD AD =BCAC .∵ ∠BAC=∠PBC=∠DAQ ,∠ABC=∠ADQ . ∴ ∆ABC ∽∆ADQ . ∴ BC AC =DQ AQ .∴ BD AD =DQ AQ . ∵ ∠DAQ=∠PBC=∠BDQ . ∴ ∆ADQ ∽∆DBQ .∴ ∠DBQ=∠ADQ=∠P AC .证毕.4.分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G为重心,连DE 到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF . (1)a 2,b 2,c 2成等差数列⇒△∽△′. 若△ABC 为正三角形,易证△∽△′. 不妨设a ≥b ≥c ,有CF =2222221c b a -+,BE =2222221b a c -+, AD =2222221a cb -+. 将a 2+c 2=2b 2,分别代入以上三式,得CF =a 23,BE =b 23,AD =c 23. ∴CF :BE :AD =a 23:b 23:c 23=a :b :c . 故有△∽△′. (2)△∽△′⇒a 2,b 2,c 2成等差数列. 当△中a ≥b ≥c 时, △′中CF ≥BE ≥AD . ∵△∽△′, ∴∆∆S S '=(a CF )2.据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有∆∆S S '=43. ∴22a CF =43⇒3a 2=4CF 2=2a 2+b 2-c 2 ⇒a 2+c 2=2b 2.结论:O 为外心,G 为重心,则a 2,b 2,c 2成等差数列⇔OG BG ⊥ 5.证明:连MN ,则由FM ⊥AM ,FN ⊥AN 知A 、M 、F 、N 四点共圆,且该圆的直径为AF .又∠AMN=∠AFN ,但∠F AN=∠MAD ,故∠MAD +∠AMN=∠F AN +∠AFN=90︒.∴MN ⊥AD ,且由正弦定理知,AMNMN=AF sin A .∴S AMDN =12 AD ·MN=12 AD ·AF sin A .连BD ,由∠ADB=∠ACF ,∠DAB=∠CAF ,得⊿ABD ∽⊿AFC . ∴ AD ∶AB=AC ∶AF ,即AD ·AF=AB ·AC . ∴ S AMDN =12 AD ·AF sin A=12 AB ·AC sin A=S ABC .6.解:记∠ACB=α,连OB 、OC ,则∠BOC=∠BHC=120︒,∴ B 、O 、H 、C 四点共圆.设此圆的半径为R ', 则2R '=BC sin120︒ =BCsin60︒=2R .HM +NH=(BH -BM )+(CN -CH )=BH -CH . 在ΔBCH 中,∠CBH=90︒-α. ∠HCB=90︒-(120︒-α)=α-30︒,∴HM +NH=BH -CH=2R (sin(α-30︒)-sin(90︒-α))=2R (sin αcos30︒-cos αsin30︒-cos α)=2 3 R sin(α-60︒).在ΔOCH 中,OH=2R sin ∠HCO=2R sin(α-30︒-30︒)=2R sin(α-60︒). ∴MH +HNOH = 3 .法2:由托勒密定理,OH BC OB HC OC BH ⋅+⋅=⋅7.在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K ,已知BC=25,BD=20,BE=7,求AK 的长.解:∵ BC=25,BD=20,BE=7, ∴ CE=24,CD=15.∵ AC ·BD=CE ·AB ,⇒ AC=65AB , ①24252015CD GHP∵BD⊥AC,CE⊥AB,⇒B、E、D、C共圆,⇒AC(AC-15)=AB(AB-7),⇒65AB(65AB-15)=AB(AB-18),∴AB=25,AC=30.⇒AE=18,AD=15.∴DE=12AC=15.延长AH交BC于P,则AP⊥BC.∴AP·BC=AC·BD,⇒AP=24.连DF,则DF⊥AB,∵AD=DC,DF⊥AB.⇒AF=12AE=9.∵D、E、F、G共圆,⇒∠AFG=∠ADE=∠ABC,⇒∆AFG∽∆ABC,∴AKAP=AFAB,⇒AK=9⨯2425=21625.法2:由托勒密定理,算15DE=11。

高一数学立体几何讲义

高一数学立体几何讲义

I. 基础知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将空间分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线——共面有且仅有一个公共点;平行直线——共面没有公共点;异面直线——不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[) 180,0∈θ) (直线与直线所成角(] 90,0∈θ)(斜线与平面成角() 90,0∈θ)(直线与平面所成角[] 90,0∈θ) 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) 12方向相同12方向不相同③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.P OA a P αβ推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.五、 棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形......②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥: [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高) 侧面积公式S 直棱柱侧=ch ( c -底面周长,h -高 )S 正棱锥侧=1/2 ch ( c -底面周长,h -斜高 )S 正棱台侧=1/2 (c +c')h (c ,c'-上、下底面周长,h -斜高)S 圆柱侧=cl =2πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆锥侧=1/2cl =πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆台侧=1/2(c +c')l =π(r +r')l(c ,c' -上、下底面周长,r ,r -上、下底面半径)体积公式V 柱体=Sh ( S -底面积,h -高 )V 椎体=1/3Sh ( S -底面积,h -高 )()h ss s s V '31'++=台体 (S ,S -上下底面积,h -高 ) 3R 34π=球V (R 为球的半径) 24R S π=球。

高中平面几何讲义

高中平面几何讲义

高中平面几何(上海教育出版社叶中豪)知识要点三角形的特殊点重心,外心,垂心,内心,旁心,类似重心,九点圆心,Spieker点,Gergonne点,Nagel点,等力点,Fermat点, Napoleon点, Brocard 点,垂聚点,切聚点,X点,Tarry点,Steiner点,Soddy点,Kiepert双曲线特殊直线、圆Euler线,Lemoine线,极轴,Brocard轴,九点圆,Spieker圆,Brocard圆,Neuberg圆,McCay圆,Apollonius圆,Schoute圆系,第一Lemoine圆,第二Lemoine圆,Taylor圆,Fuhrmann圆特殊三角形中点三角形,垂三角形,切点三角形,切线三角形,旁心三角形,弧中点三角形,反弧中点三角形,第一Brocard三角形,第二Brocard三角形,D-三角形,协共轭中线三角形相关直线及相关三角形Simson线,垂足三角形,Ceva三角形,反垂足三角形,反Ceva三角形重心坐标和三线坐标四边形和四点形质点重心,边框重心,面积重心,Newton线,四点形的核心,四点形的九点曲线完全四边形Miquel点,Newton线,垂心线,外心圆,Gauss-Bodenmiller定理重要轨迹平方差,平方和,Apollonius圆三角形和四边形中的共轭关系等角共轭点,等角共轭线,等截共轭点,等截共轭线几何变换及相似理论平移,旋转(中心对称),对称,相似和位似,相似不动点,逆相似轴,两圆外位似中心及内位似中心Miquel定理内接三角形,外接三角形,Miquel点根轴圆幂,根轴,共轴圆系,极限点反演反演,分式线性变换(正定向和反定向)配极极点与极线,共轭点对,三线极线及三线极点,垂极点射影几何点列的交比,线束的交比,射影几何基本定理,调和点列与调和线束,完全四边形及完全四点形的调和性, Pappus定理,Desargues定理,Pascal 定理,Brianchon定理著名定理三大作图问题,勾股定理,黄金分割,鞋匠的刀,P’tolemy定理,Menelaus定理,Ceva定理,Stewart定理,Euler线,Fermat- Torricelli 问题,Fagnano- Schwarz问题,Newton线,Miquel定理,Simson线, Steiner定理,九点圆,Feuerbach定理,Napoleon定理,蝴蝶定理,Morley 定理,Mannheim定理例题和习题1.以△ABC的AB、AC两边向形外作正方形ABEP和ACFQ,AD是BC边上的高。

数学名师叶中豪整理高中数学竞赛平面几何讲义(完整版)

数学名师叶中豪整理高中数学竞赛平面几何讲义(完整版)

完全四边形与Miquel点
垂足三角形与等角共轭
反演与配极,调和四边形
射影几何
复数法及重心坐标方法
例题和习题
1.四边形ABCD中,AB=BC,DE⊥AB,CD⊥BC,EF⊥BC,且。求证: 2EF=DE+DC。(10081902.gsp)
2.已知相交两圆O和O'交于A、B两点,且O'恰在圆O上,P为圆O的AO'B弧 段上任意一点。∠APB的平分线交圆O'于Q点。求证:PQ2=PA×PB。 (10092401-1. gsp)
(09022301.gsp)
31.已知半圆圆心为O,直径为AB,一直线交半圆于C、D,交AB延长线于 P,设M是△AOC与△BOD外接圆除O点外的另一交点。求证: OM⊥MP。(10091001.gsp)
32.凸四边形ABCD内接于圆O,两组对边所在直线分别交于点E、F,对角 线AC、BD交于G,作GH⊥EF于H,圆O的弦MN经过G点。求证:GH 与圆O交点恰是△HMN的内心。(10092103-2.gsp)
实用标准文档高中平面几何学习要点几何问题的转化ptolemy定理及应用几何变换及相似理论位似及其应用完全四边形与miquel垂足三角形与等角共轭反演与配极调和四边形射影几何复数法及重心坐标方法例题和习题1
高中平面几何
学习要点
几何问题的转化
叶中豪圆幂与根轴Biblioteka P’tolemy定理及应用
几何变换及相似理论
位似及其应用
53.已知:AD是高,O、H是外心和垂心,过D作OD垂线,交AC 于E。求证:∠DHE=∠C。(09022202.gsp)
54.△ABC中,AD为边BC上的中线,E、F、G分别为AB、AC、AD上

平面几何的26个定理

平面几何的26个定理

高一数学竞赛班二试讲义第1讲 平面几何中的26个定理班级 姓名一、知识点金1. 梅涅劳斯定理:若直线l 不经过ABC ∆的顶点,并且与ABC ∆的三边,,BC CA AB 或它们的延长线分别交于,,P Q R ,则1BP CQ AR PC QA RB⋅⋅= 注:梅涅劳斯定理的逆定理也成立(用同一法证明)2. 塞瓦定理: 设,,P Q R 分别是ABC ∆的三边,,BC CA AB 或它们的延长线上的点,若,,AP BQ CR 三线共点,则1BP CQ AR PC QA RB⋅⋅= 注:塞瓦定理的逆定理也成立3. 托勒密定理:在四边形ABCD 中,有AB CD BC AD AC BD ⋅+⋅≥⋅,并且当且仅当四边形ABCD 内接于圆时,等式成立。

AB AE AC ADBC ED AC AD==⇒又4. 西姆松定理:若从ABC ∆外接圆上一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F ,则,,D E F 三点共线。

西姆松定理的逆定理:从一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F 。

若,,D E F 三点共线,则点P 在ABC ∆的外接圆上。

5. 蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 分别交PQ 于X ,Y ,则M 为XY 之中点。

证明:过圆心O 作AD 与BC 的垂线,垂足为S 、T ,,OY ,OM ,SM ,MT 。

∴AM/CM=AD/BC∵AS=1/2AD,BT=1/2BC ∴AM/CM=AS/CT又∵∠A=∠C ∴△AMS∽△CMT∴∠MSX=∠MTY∴∠OMX+∠OSX=180°∴O,S ,X ,M同理,O ,T ,∴∠MTY=∠MOY,∠MSX=∠MOX∴∠MOX=∠MOY , ∵OM⊥PQ ∴XM=YM注:把圆换成椭圆、抛物线、双曲线蝴蝶定理也成立6. 坎迪定理:设AB 是已知圆的弦,M 是AB 上一点,弦,CD EF 过点M ,连结,CF ED ,分别交AB 于,L N ,则1111LM MN AM MB-=-。

高中平面几何讲义

高中平面几何讲义

高中平面几何(上海教育出版社叶中豪)知识要点三角形的特殊点重心,外心,垂心,内心,旁心,类似重心,九点圆心,Spieker点,Gergonne点,Nagel点,等力点,Fermat点, Napoleon点, Brocard 点,垂聚点,切聚点,X点,Tarry点,Steiner点,Soddy点,Kiepert双曲线特殊直线、圆Euler线,Lemoine线,极轴,Brocard轴,九点圆,Spieker圆,Brocard圆,Neuberg圆,McCay圆,Apollonius圆,Schoute圆系,第一Lemoine圆,第二Lemoine圆,Taylor圆,Fuhrmann圆特殊三角形中点三角形,垂三角形,切点三角形,切线三角形,旁心三角形,弧中点三角形,反弧中点三角形,第一Brocard三角形,第二Brocard三角形,D-三角形,协共轭中线三角形相关直线及相关三角形Simson线,垂足三角形,Ceva三角形,反垂足三角形,反Ceva三角形重心坐标和三线坐标四边形和四点形质点重心,边框重心,面积重心,Newton线,四点形的核心,四点形的九点曲线完全四边形Miquel点,Newton线,垂心线,外心圆,Gauss-Bodenmiller定理重要轨迹平方差,平方和,Apollonius圆三角形和四边形中的共轭关系等角共轭点,等角共轭线,等截共轭点,等截共轭线几何变换及相似理论平移,旋转(中心对称),对称,相似和位似,相似不动点,逆相似轴,两圆外位似中心及内位似中心Miquel定理内接三角形,外接三角形,Miquel点根轴圆幂,根轴,共轴圆系,极限点反演反演,分式线性变换(正定向和反定向)配极极点与极线,共轭点对,三线极线及三线极点,垂极点射影几何点列的交比,线束的交比,射影几何基本定理,调和点列与调和线束,完全四边形及完全四点形的调和性, Pappus定理,Desargues定理,Pascal 定理,Brianchon定理著名定理三大作图问题,勾股定理,黄金分割,鞋匠的刀,P’tolemy定理,Menelaus定理,Ceva定理,Stewart定理,Euler线,Fermat- Torricelli 问题,Fagnano- Schwarz问题,Newton线,Miquel定理,Simson线, Steiner定理,九点圆,Feuerbach定理,Napoleon定理,蝴蝶定理,Morley 定理,Mannheim定理例题和习题1.以△ABC的AB、AC两边向形外作正方形ABEP和ACFQ,AD是BC边上的高。

高中数学竞赛-平面几何讲义(很详细)

高中数学竞赛-平面几何讲义(很详细)

HBC
(5)H 关于三边的对称点在△ABC 的外接圆上,关于三边中
点的对称点在△ABC 的外接圆上
(6)三角形任一顶点到垂心的距离
A
等于外心到对边的距离的 2 倍。 (7)设△ABC 的垂心为 H,外接圆
F
B'
半径为 R,
OH E
则 HA HB HC 2R B | cos A | | cos B | | cosC |
A
M
N
B
EF
C
D
证明:设∠BAE=∠CAF= ,∠EAF=

S AMDN

1 2
AM

AD sin

1 2
AD
AN sin(

)
= 1 AD[AF cos( )sin AF cos sin( )
2
= 1 AD AF sin(2 ) AF AD BC
从而 AB A' F = AC A' E ,又∠AFE=∠AEF

S△ABA’=
1 2
sin
AFE

AB

A'
F
=
1 2
s
in
A
EF

A
C

A'
E
=S△ACA’
由此式可知直线 AA’必平分 BC 边,即 AA’必过△
ABC 的重心
同理 BB’,CC‘必过△ABC 的重心,故结论成立。
例 3.设△ABC 的三条高线为 AD,BE,CF,自 A, B,C 分别作 AK EF 于 K,BL DF 于 L, CN ED 于 N,证明:直线 AK,BL,CN 相 交于一点。

第1讲平面及其基本性质讲义

第1讲平面及其基本性质讲义

平面及其基本性质知识点1 平面的概念平面是没有厚薄的,可以无限延伸,这是平面最基本的属性常见的桌面,黑板面,平静的水面等都是平面的局部形象指出: 平面的两个特征:①无限延展②平的(没有厚度)。

平面的表示:一般用一个希腊字母α、β、γ……来表示,还可用平行四边形对角顶点的字母来表示。

平面的画法:在立体几何中,通常画平行四边形来表示平面。

一个平面,通常画成水平放置,通常把平行四边形的锐角画成45 ,横边画成邻边的2倍长。

两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画。

集合中“∈”的符号只能用于点与直线,点与平面的关系,“⊂”和“ ”的符号只能用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言。

知识点2 公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内指出:符号语言:,,,A l B l A B l ααα∈∈∈∈⇒⊂.知识点3 公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线指出:符号语言:P ∈α,且P ∈β⇒α∩β=l ,且P ∈l .知识点4 公理3 经过不在同一条直线上的三点,有且只有一个平面指出:符号语言:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合推论1 一条直线和直线外的一点确定一个平面.(证明见课本)指出:推论1的符号语言:A a ∉⇒有且只有一个平面α,使得A α∈,l α⊂推论2 两条相交直线确定一个平面推论3 两条平行直线有且只有一个平面三、典例解析例1 用符号语言表示下列图形中点、直线、平面之间的位置关系.例2 求证:两两相交而不通过同一点的四条直线必在同一平面内。

例3 正方体ABCD-A 1B 1C 1D 1中,对角线A 1C∩平面BDC 1=O ,AC 、BC 交于点M ,求证:点C 1、O 、M 共线.例4 已知平面α、β、γ两两相交于三条直线l 1、l 2、l 3,且l 1、l 2、l 3不平行.求证:l 1、l 2、l 3相交于一点.基础练习:一、选择题:1.下面给出四个命题: ①一个平面长4m, 宽2m; ②2个平面重叠在一起比一个平面厚; ③一个平面的面积是25m 2; ④一条直线的长度比一个平面的长度大, 其中正确命题的个数是( )A. 0B.1C.2D.32.若点N 在直线a 上,直线a 又在平面α内,则点N ,直线a 与平面α之间的关系可记作( ) A、N α∈∈a B、N α⊂∈a C、N α⊂⊂a D、N α∈⊂a3.A,B,C表示不同的点,a, 表示不同的直线,βα,表示不同的平面,下列推理错误的是( ) A.A ααα⊂⇒∈∈∈∈ B B A ,;,B.βαβαβα⋂⇒∈∈∈∈B B A A ,;,=ABC.αα∉⇒∈⊄A A ,D.A,B,C α∈,A,B,C β∈且A ,B ,C 不共线α⇒与β重合4. 空间不共线的四点,可以确定平面的个数为( )A.0 B.1 C.1或4 D. 无法确定5. 空间 四点A ,B ,C ,D 共面但不共线,则下面结论成立的是( )A. 四点中必有三点共线 B. 四点中必有三点不共线C. AB ,BC ,CD ,DA 四条直线中总有两条平行D. 直线AB 与CD 必相交6. 空间不重合的三个平面可以把空间分成( )A. 4或6或7个部分B. 4或6或7或8个部分C. 4或7或8个部分D. 6或7或8个部分7.下列说法正确的是( )①一条直线上有一个点在平面内, 则这条直线上所有的点在这平面内; ②一条直线上有两点在一个平面内, 则这条直线在这个平面内; ③若线段AB α⊂, 则线段AB 延长线上的任何一点一点必在平面α内; ④一条射线上有两点在一个平面内, 则这条射线上所有的点都在这个平面内.A. ①②③B. ②③④C. ③④D. ②③8.空间三条直线交于同一点,它们确定平面的个数为n ,则n 的可能取值为( )A. 1B.1或3C. 1或2或3D.1或 4二、填空题:9.水平放置的平面用平行四边形表示时,通常把横边画成邻边的___________倍.10.设平面α与平面β交于直线 , A αα∈∈B ,, 且直线AB C =⋂ ,则直线AB β⋂=_____________.11.设平面α与平面β交于直线 , 直线α⊂a , 直线β⊂b ,M b a =⋂, 则M_______ .12.直线AB 、AD α⊂,直线CB 、CD β⊂,点E ∈AB ,点F ∈BC ,点G ∈CD ,点H ∈DA ,若直线HE ⋂直线FG=M ,则点M 必在直线___________上.三、解答题:13.判断下列说法是否正确?并说明理由.(1)平行四边形是一个平面; (2)任何一个平面图形都是一个平面;(3)空间图形中先画的线是实线,后画的线是虚线.14.如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG交于点O. 求证:B、D、O三点共线.15.证明梯形是平面图形。

高一数学讲义 第八章 空间直线与平面

高一数学讲义 第八章  空间直线与平面

高一数学讲义 第八章 空间直线与平面8.1平面及其基本性质几何里的平面与直线一样,是无限延伸的,我们不能把一个无限延伸的平面在纸上表现出来,通常用平面的一部分表示平面.例如,我们常用平行四边形表示平面(图8-1).但我们要把它想象成无限延展的.通常我们用一个希腊字母如:αβγ、、…来表示平面,也可以用表示平面的平行四边形的对角顶点的字母来表示,如平面AC .DCBAβα图81平面的基本性质公理l 如果一条直线上有两个点在同一个平面上,那么这条直线上所有的点都在这个平面上(即直线在平面上).公理2 如果两个平面存在一个公共点,那么它们所有公共点的集合是一条直线.公理3 不在同一直线上的三点确定一个平面(即经过不在同一直线上三点有且仅有一个平面). 在上述公理的基础上,可以得到以下三个推论: 推论1 一条直线和直线外一点确定一个平面.证明:如图8-2,在直线l 上任取两个点A B 、,则A B C 、、是不在同一直线上的三点,由公理3可知,经过此三点的平面有且仅有1个,设为平面α,则A B ∈、平面α,又A B 、在直线l 上,由公理1可知直线l 在平面α上.即经过直线l 和直线外一点的平面有且仅有一个.图82推论2 两条相交直线确定一个平面. 推论3 两条平行直线确定一个平面.例1.如图8-3,在正方体1111ABCD A B C D -中,点E F 、分别是棱1AA 、1CC 的中点.试画出过点1D E F 、、三点的截面.B 1C 1D 1A 1EHF GDCB A 图83解:连1D F 并延长1D F 与DC 的延长线交于点H ,联结1D E 并延长与DA 的延长线交于点G ,联结GH 与AB BC 、两条棱交于点B ,联结BE BF 、,则1BED F 就是过点1D E F 、、三点的截面.例2.如图8-4,在正方体1111ABCD A B C D -中,E F 、分别为1CC 和1AA 上的中点,画出平面1BED F 与平面ABCD 的交线.PF C E A DB A 1B 1D 1C 1图84解:在平面11AA D D 内,延长1D F ,1D F 与DA 不平行,因此1D F 与DA 必相交于一点,设为P ,则1P FD P DA ∈∈,. 又1FD ⊂平面1BED F ,AD ⊂平面ABCD 内,P ∴∈平面1BED F P ∈,平面ABCD .又B 为平面ABCD 与平面1BED F 的公共点,∴联结PB PB ,即为平面1BFD F 与平面ABCD 的交线.例3.已知E F G H 、、、分别是空间四边形ABCD (四条线段首尾相接,且联结点不在同一平面内,所组成的空间图形叫空间四边形).各边AB AD CB CD 、、、上的点,且直线EF 和HG 交于点P ,如图8-5,求证:点B D P 、、在同一条直线上.G DPF ECBA图85证明:如图直线EF 直线HG P =.P ∴∈直线EF .而EF ⊂平面ABD , P ∴∈平面ABD .同理,P ∈平面CBD ,即点P 是平面ABD 和平面CBD 的公共点.显然,点B D 、也是平面ABD 和平面CBD 的公共点,由公理2知,点B D P 、、都在平面ABD 和平面CBD 的交线上,即点B D P 、、在同一条直线上. 基础练习1.用符号语言表示下列语句(1)点A 在平面α内,但在平面β外;(2)直线a 经过平面α外一点M ;(3)直线a 在平面α内,又在平面β内,即平面α和β相交于直线a . 2.已知a b c 、、空间三条直线,且a b ∥与a b 、都相交,求证直线a b c 、、在同一个平面上. 3.怎样用两根细绳检查一张桌子的四条腿的下端是否在一个平面内?4.如图8-6所示,ABC △与111A B C △不在同一个平面内,如果三直线1AA 、1BB 、1CC 两两相交,证明:三直线111AA BB CC 、、交于一点.PC 1B 1A 1C BA图865.已知ABC △在平面α外,它的三边所在的直线分别交平面α于P Q R ,,三点,证明P Q R ,,三点在同一条直线上.6.画水平放置的正五边形的直观图. 8.2空间直线与直线之间的位置关系公理4 平行于同一条直线的两条直线平行(即平行线的传递性). 例1.如图8-7所示,设E F G H ,,,分别是空间四边形ABCD 的边AB BC CD DA ,,,上的点,且AE AH CF CGAB AD CB CDλμ====,,求证:F GH EDCBA图87(1)当λμ=时,四边形EFGH 是平行四边形; (2)当λμ≠时,四边形EFGH 是梯形. 证明:联结BD , 在ABD △中,AE AHAB ADλ==,EH BD ∴,∥且EH BD λ=. 在CBD △中,CF CGCB CDμ==,FG BD ∴,∥且FG BD μ=. EH FG ∴∥,∴顶点E F G H ,,,在由EH 和FG 确定的平面内. (1)当λμ=时,EH FG =,故四边形EFGH 为平行四边形; (2)当λμ≠时,EH FG ≠,故四边形EFGH 是梯形.等角定理 如果两条相交直线与另两条相交直线分别平行,那么这两组相交直线所成的锐角(或直角)相等.证明:当两组平行直线在同一平面内,即为初中几何中的等角定理. 当它们不在同一平面时,如图8-8所示.a 1O 1B 1A 1BA Oba 图88设直线a b 、相交于点O ,直线11a b 、相交于点1O ,且11a a b b ,∥∥,在直线a b 、上分别任取点A B 、(异于点O ),在直线11a b 、上分别任取点11A B 、(异于点1O ),使得11OA O A =,11OB O B =,111AOB AO B ∠∠,分别是a b 、,与11a b 、所成的角. 1111OA O A OA O A =,∥ ∴四边形11OO A A 为平行四边形. 1111OO AA OO AA ∴=,∥.同理1111OO BB OO BB =,∥.1111BB AA BB AA ∴=,∥.四边形11BB A A 为平行四边形. 11AB A B ∴=,因此111AOB AO B △△≌. 111AOB AO B ∴∠=∠.在平面中两条直线的位置关系可以根据交点个数来判断:当两条直线仅有1个交点时.它们是相交的;当没有交点时它们是平行的.但在空间中两条直线没有交点却未必是平行的,如图8-9直线a 在平面α上,直线b 与平面α交于点P ,且P 不在直线b 上,那么直线a 与直线b 即不平行也不相交.此时直线a 与直线b 不能在同一平面内,我们称直线a 、b 是异面直线.baP图89在空间任取一点Q 过Q 分别作a b 、的平行线11a b 、,我们把11a b 、所成的锐角或直角称为异面直线a b 、所成的角.当所成的角为90︒时称异面直线a b 、相互垂直.此外,我们把和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段长度,叫做两条异面直线的距离.例2.如图8-10,在正方体1111ABCD A B C D -中,判断下列直线之间的位置父系,并求出它们所成角的大小.A 2D 2B 2C 2D 1C 1B 1A 1D CBA图810(1)AC 与1BC ;(2)1B D 与1BC . 解:(1)AC 与1BC 是异面直线. 11AA CC ∥且11AA CC =,∴四边形11AA C C 为平行四边形,即11AC AC ∥.11AC B ∴∠为所求AC 与1BC 所成的角.易知11A C B △为等边三角形,即11π3AC B ∠=(2)1B C 与1BC 是异面直线如图8-10:在原正方体下方补一个相同大小的正方体11112222A B C D A B C D -中121B C BC ∥,12DB C ∴∠为所求1B D 与1BC 所成的角.设正方体的棱长为a ,在12DB C △中,112212π2DB B C DC DB C ==∴∠=,,,. 例3.空间四边形ABCD中,2AB BD AD BC CD =====,32AC =,延长BC 到E ,使BC CE =,取BD 中点F ,求异面直线AF 与DE 的距离和他们所成的角.F ED BA图811解:(1)2AB AD BD === ∴三角形ABD 为等边三角形 F 为BD 中点,AF BD ∴⊥,即AF FD ⊥90BC CD CE BDE DF DE ===∴∠=︒∴⊥, DF 长即为异面直线AF DE ,的距离,又112DF BD ==,AF ∴与DE 的距离为1.(2)联结CF F C ,,分别是BD ,BF 的中点, FC ∴平行且等于12DE ,AFC ∴∠即为异面直线AF 与DE 所成的角. 在等边三角形ABD中,AF == 在直角三角形BDE中,12CF DE ==. 三角形AFC 中,由余弦定理得2221cos 22AF FC AC AFC AF FC +-∠==⨯⨯.60AFC ∴∠=︒,即异面直线AF 与DF 成60︒角. 基础练习 1.从止方体的12条棱和12条面对角线中选出n 条,使得其中任意两条线段所在的直线都是异面直线,则n 的最大值为__________.2.如图8-12,已知三棱锥S ABC -中,90ABC ∠=︒,侧棱SA ⊥底面ABC ,点A 在棱SB 和SC 上的射影分别是点E F 、,求证:EF SC ⊥.SGF E CBA 图8123.已知a b 、是两条异面直线,直线a 上的两点A B 、的距离为6.直线b 上的两点C D 、的距离为8,AC BD 、的中点分别为M N 、且5MN =,见图8-13.求异面直线a b 、所成的角.图813bMNO aDCBA4.已知四面体S ABC -的所有棱长均为a .求: (1)异面直线SC 、AB 的公垂线段EF 及EF 的长; (2)异面直线EF 和SA 所成的角.5.如图8-14,等腰直角三角形ABC中,90A BC DA AC DA AB ∠=︒=⊥⊥,,,若1DA =,且E 为DA 的中点.求异面直线BE 与CD 所成角的余弦值.图814FE D CBA6.如图8-15,在正三角形ABC 中,D E F ,,分别为各边的中点,G H I J ,,,分别为AF AD BE DE ,,,的中点.将ABC △沿DE EF DF ,,折成三棱锥以后,求GH 与IJ 所成角的度数.I JH GFEDCB A 图8157.长方体1111ABCD A B C D -中,143AB AA AD ===,,则异面直线1A D 与11B D 间的距离为__________.8.空间两条异面直线a b 、所成角α,过空间一定点O 与a b ,所成角都是θ的直线l 有多少条? 8.3空间直线与平面空间中直线l 与平面α的位置关系,按照它们交点的个数分成以下三种情况:若直线l 与平面α没有公共点,那么称直线l 与平面α平行,记作l α∥;若直线l 与平面α仅有一个公共点,那么直线l 与平面α是相交的;若直线l 与平面α有1个以上的公共点,由公理1可知直线l 在平面α上.我们将直线与平面平行和相交统称为直线在平面外.直线和平面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.直线和平面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行. 例1.已知:ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上任取一点G ,过G 和AP 作平面交平面BDM 于GH .求征:AP GH ∥. 证明:如图8-16.联结AC 交BD 于O ,联结MO ,G HPOMD CBA图816ABCD 是平行四边形O ∴是AC 中点,又M 是PC 中点, AP OM ∴∥,又OM ⊂面BM DPA ∴∥平面BM D (线面平行判定定理)又PA ⊂平面PAHG ,且面PAHG 平面BMD GH =, PA GH ∴∥(线面平行的性质定理)例2.正方体1111ABCD A B C D -中,E G 、分别是BC 、11C D 的中点如图8-17.求证:EG ∥平面11BB D D .D C 1A 1C图817证明:取BD 的中点F ,联结FF 、1D F .E 为BC 的中点,EF ∴为BCD △的中位线,则EF DC ∥,且12EF CD =.G 为11C D 的中点,1D G CD ∴∥且112D G CD =,1EF D G ∴∥且1EF D G =, ∴四边形1EFD G 为平行四边形,∴1D F EG ∥,而1D F ⊂平面11BDD B ,EG ⊄平面11BDD B , ∴EG ∥平面11BDD B .直线l 与平面α相交,且与平面内所有直线都垂直,称直线l 垂直于平面α,记作l α⊥.直线l 称为平面α的垂线,l 与平向α的交点称为垂足.直线和平面垂直判定定理 如果直线l 与平面α内两条相交直线a b 、都垂直,那么直线与平面垂直. 证明:设直线a b O =,直线c 为平面α上任意一条直线 (1)当直线l 与直线c 都经过点O 时在直线l 上点O 的两侧分别取点P Q 、使得OP OQ =,在平面α上作一条直线,使它与a b c 、、分别交于点A B C 、、联结PA PB PC QA QB QC 、、、、、(见图8-18). acb αO QB A P图818OA 垂直平分PQ ,PQ QA ∴=. 同理PB QB =. PA QA PB QB AB AB ===,,, PAB QAB PC QC ∴∴=,△△≌.PQ c ∴⊥,即l c ⊥.(2)若直线l 与直线c 不都经过点O ,则过O 引l 与直线c 的平行线1l 与直线1c ,由(1)可知11l c ⊥.由等角定理可知l c ⊥.综上所述,l α⊥.直线和平面垂直性质定理 如果两条直线同垂直于一个平面,那么这两条直线平行.过空间一点P 有且仅有一条直线l 和一个平面α垂直,反之过一点P 有且仅有一个平面α与直线l 垂直,垂足Q 称为点P 在平面α上的射影,线段PQ 的大小称为点P 到平面α的距离.若一条直线与一个平面平行,则这条直线上任意一点到平面的距离,叫做这条直线到平面的距离. 若一条直线与一个平面α相交且不垂直,称直线l 与平面α斜交,直线l 为平面α的斜线,交点称为斜足.平面的斜线与其在平面上的射影所成的角称为直线与平面所成的角.最小角定理 斜线和平面所成的角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角. 例3.已知:一条直线l 和一个平面α平行.求证:直线l 上各点到平面α的距离相等. 证明:过直线l 上任意两点A B ,分别引平面α的垂线AA ,′BB ′,垂足分别为A B ,′′(见图8-19).βαB'A'B A图819AA BB αα⊥⊥,′′ AA BB ∴∥′′设经过直线AA ′和BB ′的平面为A B ββα=,′′l l A B α∴∴,∥∥′′AA BB ∴′′是平行四边形 AA BB ∴=′′即直线l 上各点到平面的距离相等例4.如图8-20,已知正方形ABCD 的边长为4,E F ,分别是边AB AD ,的中点,GC 垂直于ABCD 所在的平面,且2GC =,求点B 到平面EFG 的距离.OSGH F E DCBA图820证明:联结DB AC ,,设DB AC O = E F ,分别为AB AD ,中点DB EF ∴∥;又DB ⊄平面EFG , BD ∴∥平面EFG .∴点B 到平面EFG 的距离就是DB 到平面EFG 的距离. ∴即点O 到平面X O 的距离.设EF AC H =,在平面CHG 中,作OS GH ⊥ DB AC ⊥,又EF BD ∥ EF AC ∴⊥又GC ⊥面ABCD ,GC EF ∴⊥ EF ∴⊥面CHG EF OS ∴⊥,又OS GH ⊥ OS ∴⊥面EFG ∴OS 即为O 点到平面EFG 的距离,即为所求 直角三角形HSO 与直角三角形HGC 相似 SO HOGC GH∴=,又124GC HO AC GH =====,2SO ∴= ∴B 到平面EFG的距离为11. 例5.相交成60︒的两条直线AB AC ,和平面α所成的角分别为30︒和45︒,求这两条斜线在平面α内的射影所成的角.解:如图8-21,作平面AO ⊥平面A ,垂足为O ,O CBA图821则30ABO ∠=︒,45ACO ∠=︒,设AO h =,则2AB h =,AC =,BO =,CO h =, 在三角形ABC 中,根据余弦定理有22222(2))cos606BC h h h =+-⨯⨯︒=-.同理,在三角形BOC 中,令BOC θ∠=,则有22222)cos 4cos BC h h h θθ=+-⨯⨯=-.222264cos h h θ∴-=-.cos θ∴=,θ∴=. 三垂线定理 在平面内的一条直线,如果和平面的一条斜线的射影垂直,那么它也和这条斜线垂直.如图8-22,直线PM 为平面α的斜线,M 为斜足,Q 为P 在平面α内的射影,a 为平面α内一条直线,且a MQ ⊥.求证:a PM ⊥.图822ab a PQM证明:过点M 作的a 平行线b ,则b MQ b PQ ⊥⊥, 即b ⊥平面PMQ ,MQ ⊆平面PMQ 所以b PM a b ⊥,∥,即a PM ⊥.类似地,我们也可以证明:三垂线的逆定理 在平面内的一条直线,如果和平面的一条斜线垂直,那么它也和这条斜线的射影垂直. 基础练习1.如果三个平面αβγ、、两两相交于三条交线a b c 、、,讨论三条交线的位置关系,并证明你的结论. 2.在正方体1111ABCD A B C D -中,P 为棱AB 上一点,过点P 在空间作直线l ,使l 与平面ABCD 和平面11ABC D 均成30︒角,求这样的直线条数3.已知空间四边形ABCD P Q ,、分别是ABC △和BCD △的重心,求证:PQ ∥平面ACD .4.在棱长为a 正方体1111ABCD A B C D -中, (1)求证:11B D CD ⊥; (2)求证:1B D ⊥平面1ACD ; (3)求点D 到平面1ACD 的距离.5.正方体1111ABCD A B C D -中,求1B D 与平面11ABC D 所成角的大小.6.正方体ABCD A B C D -′′′′的棱长为a ,则异面直线CD ′与BD 间的距离等于__________. 7.正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE BD 、上各取一点P Q 、.且AP DQ =.求证:PQ ∥面BCE .8.如图8-23,已知AOB ∠在平面M 上,P 为平面外一点,满足POA ∠POB =∠θ=(θ为锐角),点P 在平面上的射影为Q .P OQFE AM 图823(1)求证点Q 在AOB ∠的平分线OT 上;(2)讨论POA ∠、POQ ∠、QOA ∠之间的关系.9.若直线l 与平面α成角π3,直线a 在平面α内,且和直线l 异面,则l 与a 所成角的取值范围是多少? 10.如图8-24,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,,,ABH HBC ABC θαβ∠=∠=∠=,求证:cos cos cos βαθ=⋅. αθβH D CB Aα图82411.如图8-25,平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M .连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.N MBA HSα图825(1)求证:NH SB ⊥;(2)这个图形中有多少个线面垂直关系? (3)这个图形中有多少个直角三角形? (4)这个图形中有多少对相互垂直的直线?12.如图8-26,在正方体1111ABCD A B C D -中,EF 为异面直线1A D 与AC 的公垂线,求证:1EF BD ∥.FE D CBAD 1C 1B 1A 1图82613.如图8-27所示,90BAC ∠=︒.在平面α内,PA 是α的斜线,60PAB PAC ∠=∠=︒.求PA 与平面α所成的角.B αA CMO NP图8278.4空间平面与平面的位置关系空间两个平面根据交点的个数可以分为:若两个平面没有交点则称两个平面互相平行;若两个平面有交点则称两个平面是相交的.平行于同一平面的两个平面互相平行,分别在两个平行平面上的直线是异面或平行的.两个平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.推论 如果一个平面内的两条相交直线,分别平行于另一个平面内的两条相交直线,那么这两个平面平行.两个平面平行的性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 例1.平行四边形ABCD 和平行四边形ABEF 不在同一平面内,M ,N 分别为对角线AC ,BF 上的点,且AM ACFN FB=.求证:MN ∥平面BEC .证明:如图8-28,在平行四边形ABCD 中,过M 作MP BC ∥交BC 于P ,联结PN .FP MNEDCBA图828AM AP AC AB =,又AM AC FN BF =,即AM FNAC BF=. ,AP FN PN AF BE AB BF∴=∴∥∥. 又MP BC ∥,∴平面MPN ∥平面CBE . 又MN ⊂平面MPN , MN ∴∥平面BEC .例2.如图8-29所示,平面α平面β,点A C α∈、,点B D β∈、,AB a =是α、β的公垂线,CD 是斜线.若AC BD b ==,CD c =,M 、N 分别是AB 和CD 的中点.图829(1)求证:MN β∥;(2)求MN 的长. 证明:(1)联结AD ,设P 是AD的中点,分别联结PM 、PN . M 是AB 的中点,PM BD ∴∥.又,PM ββ⊂∴∥. 同理N 是CD 的中点,PN AC ∴∥. AC α⊂,PN α∴∥.,,PN PM P αβ=∥PMN β∴∥. MN ⊂平面PMN ,MN β∴∥. (2)分别联结MC MD 、.1,,2AC BD b AM BM a ====又AB 是αβ、的公垂线,90CAM DBM ∴∠=∠=︒,Rt Rt ACM BDM ∴≌△△,CM DM ∴=,DMC ∴△是等腰三角形. 又N 是CD 的中点,MN CD ∴⊥.在Rt CMN △中,MN =一般地,当两个平面相交时,它们的交线l 将各平面分割为两个半平面,由两个半平面αβ、及其交线l 组成的空间图形叫做二面角(dihedral angle ),记作l αβ--.交线l 称之为二面角的棱,两个半平面αβ、叫做二面角的面.如果αβ、上分别有点P Q 、,那么二面角l αβ--也可以记作P l Q --.为了刻画二面角的大小,我们在棱l 上任取一点O ,在面αβ、上分别作棱l 的垂线OM 、ON ,则[](0,π)MON θ∠=∈称为二面角l αβ--的平面角.若π2α=,则称平面αβ⊥. 两个平面垂直的判定定理 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 两个平面垂直的性质定理 如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.例3.如图8-30,在空间四边形SABC 中,SA ⊥平面ABC ,AB BC ⊥,DE 在平面SAC 内,DE 垂直平分SC ,且分别交AC ,SC 于D ,E ,又SA AB =,SB BC =,求以BD 为棱,以BDE 和BDC 为面的二面角的大小.E DCBAS图830解:SB SC =,且E 为SC 的中点,BE SC ∴⊥. 又DE 垂直平分SC ,SC ∴⊥面,BDE SC BD ∴⊥. 又BD ⊥平面SAC ,,,BD DE BD DC ∴⊥⊥EDC ∴∠即为E BD C --的平面角.设SA a =,则,,AB a SB ==SA ⊥面ABC ,BC AB ⊥.,SB BC SC ∴⊥∴为等腰直角三角形SBC的斜边,又BC =,2,,cos ,30SC a AC SCA SCA ∴==∠=∴∠=︒. DE SC ⊥,∴在直角三角形EDC 中,60EDC ∠=︒,即为所求.例4.已知:如图8-31所示,平行四边形ABCD中,AB =AD BD ==,沿BD 将其折成一个二面角A BD C --,若折后AB CD ⊥.63223DCBA图831(1)求二面角A BD C --的大小;(2)求折后点C C 到平面ABD 的距离.解:(1)在平行四边形ABCD中AB =AD BD ==.222AB AD BD ∴=+ ,AD BD BC BD ∴⊥⊥. 作AH ⊥平面BDC ,联结DH (见图8-32).HEDCB A图832AD BD ⊥,由三垂线定理逆定理得DH BD ⊥, ∴ADH ∠是二面角A BD C --的平面角.联结BH,AB DC ⊥,由三垂线定理逆定理, 得BH DC ⊥,设垂足为E ,在直角三角形ABC中,2BD BC BE DC ⋅===,DE ∴ 三角形DHB 与三角形DBE 相似,DH DEDB BE∴=,即DE BD DH BE ⋅=在直角三角形ADH中,1cos 2DH ADH AD ∠===,π3ADH ∴∠=. 即二面角--A BD C 的大小为π3. (2)由对称性,C 到平面ABD 的距离等于A 到平面ABD 的距离. AH ⊥平面BCD ,∴点A 到平面BCD 的距离即是线段AH 的长, 直角三角形ADH中,sin 3AH AD ADH =⋅∠==, ∴点C 到平面ABD 的距离为3. 例5.如图8-33,已知A B 、在平面α上,点C 是平面外一点,且在平面α上的射影为D ,且A B D、、三点不共线,二面角C AB D --的大小为θ,求证:cos DABCABS S θ=.αM DCBA图833证明:过点D 作DM 垂直AB ,垂足为M ,联结CM . 因为,CD AB αα⊥⊆,所以CD AB ⊥,又AB DM ⊥,因此AB ⊥平面CDM ,即AB CM ⊥. 所以CMD ∠为二面角--C AB D 的平面角. 在直角三角形CDM △中有cos cos ABDCBDS DM CMD CM S θ=∠==. 例6.如图8-34,已知两异面直线,a b 所成的角为θ,它们的公垂线段AA ′的长度为d .在直线,a b 上分别取点,E F ,设,A E m AF n ==′,求EF .A'βnb a m F G A图834解:设经过b 且与AA ′垂直的平面为α,经过a 和AA ′的平面为β,c αβ=;则c a ∥,因而b ,c 所成角为θ,且AA c ⊥′;又,AA b AA a ⊥∴⊥′′, 根据两个平面垂直的判定定理,βα⊥. 在平面β内作EG c ⊥,则EG AA =′. 并且根据两个平面垂直的性质定理,EG α⊥ 联结FG ,则EG FG ⊥.在直角三角形EFG 中,222EF EG FG =+AG m =,三角形AFG 中,2222cos FG m n mn θ=+-;又22ED d =,22222cos EF d m n mn θ∴=++-,因此EF =1.已知平面αβ∥,AB ,CD 为夹在,αβ间的异面线段,E 、F 分别为AB CD 、的中点. 求证:,EF EF αβ∥∥.2.如果αβ∥,AB 和AC 是夹在平面α与β之间的两条线段,AB AC ⊥,且2AB =,直线AB 与平面α所成的角为30︒,求线段AC 长的取值范围.3.如图8-35,已知正方体1111ABCD A B C D -中,E F 、分别为1AB AA 、的中点.求平面1CEB 与平面11D FB 所成二面角的平面角的正弦值.CB E AF D 1C 1B 1A 1图8354.如图8-36,点A 在锐二面角MN αβ--的棱MN 上,在面α内引射线AP ,使AP 与MN 所成的角PAM ∠为45︒,与面β所成的角大小为30︒,求二面角MN αβ--的大小.NM APβα图8365.正方形ABCD 边长为4,点E 是边CD 上的一点,将AED △沿AE 折起到1AED 的位置时,有平面1ACD ⊥平面ABCE ,并且11BD CD ⊥.(1)判断并证明E 点的具体位置; (2)求点D ′到平面ABCE 的距离.6.在正三角形ABC 中,E F P 、、分别是AB AC BC 、、边上的点,满足12AE EB CF FA CP PB ===∶∶∶∶,如图8-37.将AEF △沿EF 折起到1A EF △的位置,使二面角1A EF B --成直二面角,联结1A B 、1A P ,如图8-38.A BP FEC图837CEF P BA 图838(1)求证:1A E ⊥平面BEP ;(2)求直线1A E 与平面1A BP 所成角的大小;(3)求二面角1B A P F --的大小(用反三角函数表示).7.如图8-39,将边长为a 的正三角形ABC 以它的高AD 为折痕折成一个二面角C AD C --′.C'DCB A图839(1)指出这个二面角的面、棱、平面角; (2)若二面角C AD C --′是直二面角,求C C ′的长; (3)求AC ′与平面C CD ′所成的角; (4)若二面角C AD C --′的平面角为120︒,求二面角A C C D --′的平面角的正切值. 8.在棱长为a 的正方体中.求异面直线BD 和1B C 之间的距离.9.设由一点S 发出三条射线,,,,SA SB SC ASB BSC ASC αβθαβθ∠=∠=∠=、、、、均为锐角,且cos cos cos θβθ⋅=.求证:平面ASB ⊥平面BSC .10.如图8-40,矩形ABCD ,PD ⊥平面ABCD ,若2PB =,PB 与平面PCD 所成的角为45︒,PB 与平面ABD 成30︒角,求:PF EDCBA图840(1)CD 的长;(2)求PB 与CD 所在的角;(3)求二面角C PB D --的余弦值. 11.如图8-41,线段PQ 分别交两个平行平面αβ、于A B 、两点,线段PD 分别交αβ、于C D 、两点,线段QF 分别交αβ、于F E 、两点,若9PA =,12AB =,12BQ =,ACF △的面积为72.求BDE △的面积.βαAB Q ED CPF图84112.如图8-42,已知正方形ABCD .E F 、分别是AB CD 、的中点.将ADE △沿DE 折起,如图8-43所示,记二面角A DE C --的大小为θ(0πθ<<).FEDCBA图842F EDCBA 图843(1)证明BF ∥平面ADE ;(2)若ACD △为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值.13.在矩形ABCD 中,已知1,AB BC a ==,PA ⊥平面ABCD ,且1PA =. (1)在BC 边上是否存在点Q ,使得PQ QD ⊥,说明理由;(2)若BC 边上有且仅有一个点Q ,使PQ QD ⊥,求AD 与平面PDQ 所成角的弦值; (3)在(2)的条件下,求出平面PQD 与平面PAB 所成角的大小.14.两个平行平面α和β将四面体ABCD 截成三部分.已知中间一部分的体积小于两端中任一部分的体积,点A 和B 到平面α的距离分别为30和20.而点A 和C 到平面β的距离分别为20和16,两个截面中有一个是梯形,点D 到平面α的距离小于24.求平面α和β截四面体所得的截面面积之比. 8.5空间向量及其坐标表示我们把具有大小和方向的量叫做向量.同向且大小相等的两个向量是同一个向量或相等的向量,大小相等方向相反的两个向量是互为负向量,大小为0的向量称为零向量.对空间任意两个向量a b 、.作OA a OC AB b ===,,则O A B 、、三点共面,见图8-44.因此,空间任意两个向量都可以用在同一平面内的两条有向线段表示.与平面向量运算一样,我们可以定义空间向量的加法、减法与数乘运算如下:a图844OB OA AB a b =+=+; CA OA OC a b =-=-;0000a a a λλλλλλ⎧>⎪⎪>⎨⎪<⎪⎩方向相同,大小,,方向相同,大小,为为- 与平面向量类似,在空间两个向量的方向相同或相反,则称他们为共线向量或平行向量,共线向量所在直线平行或重合.类似我们可以验证空间向量的加法与数乘运算满足如下规律: (1)加法交换律:a b b a +=+(2)加法结合律:()()a b c a b c ++=++ (3)数乘分配律:()a b a b λλλ+=+类似地,可以定义两个向量的夹角和向量的数量积:cos a b a b θ⋅=,其中θ为两个向量的夹角,[]0πa b θ∈,,、表示向量a b 、的大小 当π2θ=时称两个向量垂直记作a b ⊥. 与平向向量类似有下列性质成立: (1)0a b a b ⊥⇔⋅=. (2)2a a a =⋅. (3)()()ab a b λλ⋅=⋅.(4)a b b a ⋅=⋅. (5)()()()a b c a b a c ⋅+=⋅+⋅.例1.A B C D 、、、为空间不共面的四点,以A B C D 、、、四点为顶点的线段围成一个空间四面体,若AC BD BC BD ==,,求证AB CD ⊥.图845DBA解:BC AC AB BD AD AB =-=-,, BC BD =, 22BC BD ∴=.2()()BC BC BC AC AB AC AB =⋅=-⋅- 222AC AC AB AB =-⋅+.同理2222BD AD AD AB AB AD AC =-⋅+=,, AD AB AC AB ∴⋅=⋅即()AD AC AB -⋅=0.即CD AB ⋅=0,AB CD ∴⊥.通常我们将可以平移到同一个平面的向量,叫做共面向量.对空间任意两个向量,它们总是共面的,但空间任意三个向量就不一定是共面向量.如上例中a b c 、、中任意两个共面,但a b c 、、却不共面.下面讨论三个向量共面的条件.已知a b 、为不共线的向量,而a b c 、、三个向量共面,则表示可以将它们平移到同一个平面上.由平面向量唯一分解定理.存在实数()λμ,满足c a b λμ=+.反之,若存在实数对()λμ,满足c a b λμ=+,对空间任意一点O 作111OA a OB b OA a A B b λμ====,,,,则1111OB OA A B a b c λμ=+=+=即c 可以平移到O A B 、、三点所在平面上,因此a b c 、、共面.由此可得a b c 、、共面的充要条件是:存在实数对()λμ,满足c a b λμ=+.例2.求证:任意三点不共线的四点A B C D 、、、共面的充要条件是:对空间任意点O 有:OD xOA yOB zOC =++(其中1x y z ++=).证明:A B C D 、、、共面的充要条件是存在实数对()λμ,满足AD AB AC λμ=+(见图8-46).图846()()OD OA AD OB OA OC OA μμ∴-==-+-, (1)OD OA OB OC λμλμ∴=--++.令1x λμ=--,y z λμ==,,则OD xOA yOB zOC =++(其中1x y z ++=).定理 如果三个向量a b c 、、不共面,那么对于空间任意向量P ,存在唯一的实数对()x y z ,,满足:P xa yb zc =++证明:如图8-47,过空间任意点O 作OA a OB b OC c OP P ====,,,, 图847P过点P 作1PP OC ,∥交平面OAB 于点1P ;则11P OP OP PP ==+. 11PP OC PP zc z ∴=∈R ,,∥. 在平面AOB 中存在z ,y ∈R ,满足1OP xOA yOB =+, 因此有11P OP OP PP xOA yOB zOC ==+=++. 若存在111()()x y z x y z ≠,,,,也满足:111P x a y b z c =++, 则有111P xa yb zc x a y b z c =++=++. 111()()x y z x y z ≠,,,,,不妨设1x x ≠,1111y y z za b c x x x x --∴=+--.a b c ∴、、共面,矛盾.由此定理可知,如果三个向量a b c 、、,那么所有空间向量均可以由a b c 、、唯一表示,此时我们称(a b c 、、)为空间向量的一个基底,a b c 、、都叫做基本向量.如果空间的一个基底的三个基向量互相垂直,且大小为1,则称这个基底为单位正交基底,常用(i j k 、、)表示.在空间选定一点O 和一个单位正交基底(i j k 、、),以O 点为坐标原点,分别以i j k 、、的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系O xyz -,那么对于任意向量P ,存在唯一的实数对(x y z ,,)满足:P OP xi y j zk ==++,简记为()P x y z =,,,此时称点P 的坐标为()x y z ,,,见图8-48.图848若111()OA a x y z ==,,,222()OB b x y z ==,,,则 121212()a b x x y y z z +=+++,,,121212()BA OA OB a b x x y y z z =-=-=---,,,111()a x y z λλλλ=,,.例3.在直三棱柱111A B C ABC -中,π2BAC ∠=,11AB AC AA ===.已知G 与E 分别为11A B 和1CC 的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点).若GD EF ⊥,求线段DF 的长度的取值范围解:建立直角坐标系,以A 为坐标原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,则112211(00)(01)0101(00)(01)22F t t E G D t t ⎛⎫⎛⎫<<<< ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,.所以12111122EF t GD t ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,,,,,.因为GD EF ⊥,所以1221t t +=,由此推出2102t <<.又12(0)DF t t =-,,,21DF t =1DF <.例4.已知四边形ABCD 和ABEF 是两个正方形,它们所在的平面互相垂直,M AC ∈,N BF ∈,且AM FN =,见图8-49.求证:不论M 在AC 上何处,直线MN 不可能同时垂直AC 和BF .MNFEDCBA图849证明:设BA a BE b BC c BN t BF ====⋅,,,, 则()(1)()BN t a b AM t c a =⋅+=--, 于是()(1)()(1)MN BN BM t a b t c a a tb t c ⎡⎤⎡⎤=-=+---+=--⎣⎦⎣⎦, 假设MN 同时垂直AC 和BF ,则00.MN AC MN BF ⎧⋅=⎪⎨⋅=⎪⎩,由题设,知00a b b c ⋅=⋅=,, 由2(1)()(1)MN AC tb t c c a t c ⎡⎤⋅=--⋅-=-⋅⎣⎦,得10t -=即1t =.由2(1)()0MN BF tb t c a b t b ⎡⎤⋅=--⋅+=⋅=⎣⎦得0t =,矛盾!所以,MN 不可能同时垂直AC 和BF .基础练习1.如图8-50,OA a OB b OC c ===,,,M N P 、、分别为AB 、BC 、CA 的中点,试用a b c 、、表示下列向量:OM MN AN ,,.图8502.已知空间三点(202)A -,,,(212)B -,,,(303)C -,,.设a AB b AC ==,,是否存在实数k ,使向量ka b +与2ka b -互相垂直,若存在,求k 的值;若不存在,说明理由.。

2020高中数学 第2章 平面解析几何初步 2.1.2 直线的方程(第课时)一般式讲义 2

2020高中数学 第2章 平面解析几何初步 2.1.2 直线的方程(第课时)一般式讲义 2

第3课时一般式学习目标核心素养1.了解二元一次方程与直线的对应关系,掌握直线的一般形式.(重点、难点)2.根据确定直线位置的几何要素,探索并掌握直线方程几种形式之间的关系.(易错、易混点)3.能灵活应用直线方程的几种形式求直线方程.(重点)通过学习本节内容来提升学生的数学运算和数学建模核心素养。

1.直线与二元一次方程的关系(1)在平面直角坐标系中,对于任何一条直线,都可以用一个关于x,y的二元一次方程Ax+By+C=0(A,B不全为0)来表示.(2)在平面直角坐标系中,任何一个关于x,y的二元一次方程Ax+By+C=0(A,B不全为0)都表示一条直线.2.直线的一般式方程(1)在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x,y的二元一次方程;任何关于x,y的二元一次方程都表示直线.方程Ax+By+C=0(A,B不全为0)叫做直线方程的一般式.(2)对于直线Ax+By+C=0,当B≠0时,其斜率为-错误!,在y 轴上的截距为-错误!;当B=0时,在x轴上的截距为-错误!;当AB≠0时,在两轴上的截距分别为-错误!,-错误!.(3)直线一般式方程的结构特征①方程是关于x,y的二元一次方程.②方程中等号的左侧自左向右一般按x,y,常数的先后顺序排列.③x的系数一般不为分数和负数.④虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程.1。

思考辨析(1)在平面直角坐标系中,任何一个关于x,y的二元一次方程Ax+By+C=0都表示一条直线.()(2)直线的点斜式方程、两点式方程都可以化成一般式方程,反之,直线的一般式方程也都可以化成点斜式方程、两点式方程.( )(3)直线方程的一般式同二元一次方程Ax+By+C=0(A,B 不同时为零)之间是一一对应关系.()(4)方程①x+2y-3=0;②x-3=0;③y+1=0均表示直线.( )[答案] (1)×(2)×(3)√(4)√2.过点(1,2),斜率为0的直线对应的二元一次方程为________.y-2=0 [过点(1,2),斜率为0的直线方程为y=2,其对应的二元一次方程为y-2=0.]3.方程错误!-错误!=1,化成一般式为________.2x-3y-6=0 [由错误!-错误!=1,得2x-3y-6=0。

高中数学第2章平面解析几何初步2.1.3两条直线的平行与垂直讲义苏教版必修2

高中数学第2章平面解析几何初步2.1.3两条直线的平行与垂直讲义苏教版必修2

2.1.3 两直线的平行与垂直1.两条直线平行(1)若直线l1:y=k1x+b1,直线l2:y=k2x+b2,则l1∥l2⇔k1=k2且b1≠b2(k1,k2均存在).(2)设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0(或A1C2-A2C1≠0)思考:两平行直线的斜率是否一定相等.提示:只要斜率存在,则斜率一定相等.2.两条直线垂直(1)如图①,如果两条直线都有斜率且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直.即l1⊥l2⇔k1k2=-1(k1,k2均存在).(2)如图②,若l1与l2中的一条斜率不存在,另一条斜率为零,则l1与l2的位置关系是垂直.①②思考:两直线垂直,则两直线斜率乘积是否一定为-1?提示:两直线斜率存在的前提下,斜率乘积为-1.1.思考辨析(1)若直线l1与l2斜率相等,则l1∥l2. ( )(2)若直线l1∥l2(两条直线的斜率存在,分别为k1,k2),则k1=k2.( )(3)若两条直线的斜率不相等,则两直线不平行.( )[答案](1)×(2)√(3)√2.已知A(2,0),B(3,3),直线l∥AB,则直线l的斜率k=________.3 [k AB =3-03-2=3,k l =k AB =3.]3.与直线x +2y +7=0垂直的一条直线的斜率k =______.2 [直线x +2y +7=0的斜率k =-12,故与其垂直的一条直线的斜率k =2.]4.过点(0,1)且与直线2x -y =0垂直的直线的一般式方程是________.x +2y -2=0 [直线2x -y =0的斜率是k =2,故所求直线的方程是y =-12x +1,即x+2y -2=0.]12(1)l 1的斜率为1,l 2经过点P (1,1),Q (3,3);(2)l 1经过点A (-3,2),B (-3,10),l 2经过点C (5,-2),D (5,5); (3)l 1经过点A (0,1),B (1,0),l 2经过点C (-1,3),D (2,0); (4)l 1:x -3y +2=0,l 2:4x -12y +1=0.思路探究:依据斜率公式,求出斜率,利用l 1∥l 2或l 1,l 2重合⇔k 1=k 2或k 1,k 2不存在判断.[解] (1)k 1=1,k 2=3-13-1=1,k 1=k 2,∴l 1与l 2重合或l 1∥l 2.(2)l 1与l 2都与x 轴垂直,通过数形结合知l 1∥l 2.(3)k 1=0-11-0=-1,k 2=0-32-(-1)=-1,k 1=k 2,数形结合知l 1∥l 2.(4)l 1的方程可变形为y =13x +23;l 2的方程可变形为y =13x +112.∵k =13,b 1=23,k 2=13,b 2=112,∵k 1=k 2且b 1≠b 2,∴l 1∥l 2.判断两条直线平行的方法1.根据下列给定的条件,判断直线l 1与直线l 2的位置关系. (1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7);(2)l 1的倾斜角为60°,l 2经过点M (3,23),N (-2,-33). [解] (1)由题意知k 1=5-1-3-2=-45,k 2=-7-(-3)8-3=-45.因为k 1=k 2,且A ,B ,C ,D 四点不共线,所以l 1∥l 2. (2)由题意知k 1=tan 60°=3,k 2=-33-23-2-3= 3.因为k 1=k 2,所以l 1∥l 2或l 1与l 2重合.12(1)直线l 1:2x -4y +7=0,直线l 2:2x +y -5=0; (2)直线l 1:y -2=0,直线l 2:x -ay +1=0;(3)直线l 1经过点⎝ ⎛⎭⎪⎫0,54,⎝ ⎛⎭⎪⎫53,0,l 2经过点⎝ ⎛⎭⎪⎫0,-78,⎝ ⎛⎭⎪⎫76,0. 思路探究:利用两直线垂直的斜率关系判定. [解] (1)k 1=12,k 2=-2,∵k 1·k 2=12×(-2)=-1,∴l 1与l 2垂直.(2)当a =0时,直线l 2方程为x =-1,即l 2斜率不存在,又直线l 1的斜率为0,故两直线垂直.当a ≠0时,直线l 2的斜率为1a,又直线l 1的斜率为0,故两直线相交但不垂直.(3)k 1=0-5453-0=-34,k 2=0-⎝ ⎛⎭⎪⎫-7876-0=34.∵k 1·k 2≠-1,∴两条直线不垂直.1.判断两直线是否垂直的依据是:当这两条直线都有斜率的前提下,只需看它们的斜率之积是否等于-1即可,但应注意有一条直线与x 轴垂直,另一条直线与x 轴平行时,两直线也垂直.2.直接使用A 1A 2+B 1B 2=0判断两条直线是否垂直更有优势.2.判断下列各组中的直线l 1与l 2是否垂直:(1)l 1经过点A (-1,-2),B (1,2),l 2经过点M (-2,-1),N (2,1); (2)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(3)l 1经过点A (3,4),B (3,100),l 2经过点M (-10,40),N (10,40).[解] (1)直线l 1的斜率k 1=2-(-2)1-(-1)=2,直线l 2的斜率k 2=1-(-1)2-(-2)=12,k 1k 2=1,故l 1与l 2不垂直.(2)直线l 1的斜率k 1=-10,直线l 2的斜率k 2=3-220-10=110,k 1k 2=-1,故l 1⊥l 2.(3)l 1的倾斜角为90°,则l 1⊥x 轴. 直线l 2的斜率k 2=40-4010-(-10)=0,则l 2∥x 轴.故l 1⊥l 2.1.如图,设直线l 1与l 2的倾斜角分别为α1与α2,且α1<α2,斜率分别为k 1,k 2,若l 1⊥l 2,α1与α2之间有什么关系?为什么?[提示] α2=90°+α1.因为三角形任意一外角等于不相邻两内角之和.2.已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定四边形ABCD 的形状.[提示] 四边形ABCD 为直角梯形,理由如下: 如图,由斜率公式得k AB =5-32-(-4)=13,k CD =0-3-3-6=13, k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12, ∵k AB =k CD ,AB 与CD 不重合.∴AB ∥CD ,又k AD ≠k BC ,∴AD 与BC 不平行. 又∵k AB ·k AD =13×(-3)=-1,∴AB ⊥AD ,故四边形ABCD 为直角梯形.【例3】 已知点A (2,2)和直线l :3x +4y -20=0,求: (1)过点A 和直线l 平行的直线方程; (2)过点A 和直线l 垂直的直线方程.思路探究:利用两直线平行和垂直的条件求解或利用与已知直线平行与垂直的直线系方程求解.[解] 法一:∵3x +4y -20=0,∴k l =-34.(1)设过点A 与l 平行的直线为l 1.∵kl 1=k l =-34,∴l 1的方程为y -2=-34(x -2),即3x +4y -14=0.(2)设过点A 与l 垂直的直线为l 2.∵k l kl 2=-1,∴⎝ ⎛⎭⎪⎫-34×kl 2=-1,∴kl 2=43.∴l 2的方程为y -2=43(x -2),即4x -3y -2=0.法二:(1)设与直线l 平行的直线方程为3x +4y +m =0, 则6+8+m =0,∴m =-14,∴3x +4y -14=0为所求.(2)设与直线l 垂直的直线方程为4x -3y +n =0, 则8-6+n =0,∴n =-2, ∴4x -3y -2=0为所求.两直线平行或垂直的应用(1)求与已知直线平行或垂直的直线.此类问题有两种处理方法:一是利用平行与垂直的条件求斜率,进而求方程;二是利用直线系方程求解,与已知直线Ax +By +C =0平行的直线系方程为Ax +By +D =0(C ≠D ),垂直的直线系方程为Bx -Ay +D =0.(2)由直线平行或垂直求参数的值,此类问题直接利用平行和垂直的条件,列关于参数的方程求解即可.3.(1)已知四点A (5,3),B (10,6),C (3,-4),D (-6,11),求证:AB ⊥CD ; (2)已知直线l 1的斜率k 1=34,直线l 2经过点A (3a ,-2),B (0,a 2+1),且l 1⊥l 2,求实数a 的值.[解] (1)证明:由斜率公式得:k AB =6-310-5=35, k CD =11-(-4)-6-3=-53,则k AB ·k CD =-1,∴AB ⊥CD . (2)∵l 1⊥l 2,∴k 1·k 2=-1, 即34×a 2+1-(-2)0-3a =-1, 解得a =1或a =3.1.本节课的重点是理解两条直线平行或垂直的判定条件,会利用斜率判断两条直线平行或垂直,难点是利用斜率判断两条直线平行或垂直.2.本节课要重点掌握的规律方法 (1)判断两条直线平行的步骤.(2)利用斜率公式判断两条直线垂直的方法. (3)判断图形形状的方法步骤.3.本节课的易错点是利用斜率判断含字母参数的两直线平行或垂直时,对字母分类讨论.1.下列说法正确的有( ) A .若两直线斜率相等,则两直线平行 B .若l 1∥l 2,则k 1=k 2C .若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交D .若两直线斜率都不存在,则两直线平行C [A 中,当k 1=k 2时,l 1与l 2平行或重合,错误;B 中,若l 1∥l 2,则k 1=k 2或两直线的斜率都不存在,错误;D 中两直线可能重合.]2.过点(3,6),(0,3)的直线与过点(6,2),(2,0)的直线的位置关系为________. 垂直 [过点(3,6),(0,3)的直线的斜率k 1=6-33-0=2-3;过点(6,2),(2,0)的直线的斜率k2=2-06-2=3+ 2.因为k1·k2=-1,所以两条直线垂直.]3.已知直线(a-1)x+y-1=0与直线2x+ay+1=0平行,则实数a=________.2[由已知,得(a-1)a-2=0,解得a=-1或a=2,当a=-1时,两直线重合,故a =2.]4.已知直线l1:ax+3y=3,l2:x+2ay=5,若l1⊥l2,求a的值.[解]直线l1:ax+3y-3=0,直线l2:x+2ay-5=0.∵l1⊥l2,∴a×1+3×2a=0,即a=0.。

高一平面解析几何初步复习讲义

高一平面解析几何初步复习讲义

2011元旦假期数学作业高一平面解析几何初步复习讲义1.掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根. 2.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念.第1课时 直线的方程1.倾斜角:对于一条与x 轴相交的直线,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角α叫做直线的倾斜角.当直线和x 轴平行或重合时,规定直线的倾斜角为0°.倾斜角的范围为________.斜率:当直线的倾斜角α≠90°时,该直线的斜率即k =tanα;当直线的倾斜角等于90°时,直线的斜率不存在.2.过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式 .若x 1=x 2,则直线的斜率不存在,此时直线的倾斜角为90°. 3例1. 已知直线(2m 2+m -3)x +(m 2-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-23.④当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点.变式训练1.(1)直线3y – 3 x +2=0的倾斜角是 ( ) A .30° B.60° C.120° D.150° (2)设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( )A .-3,4B .2,-3C .4,-3D .4,3(3)直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( )A .7B .-77C .77D .-7 (4)直线l 经过两点(1,-2),(-3,4),则该直线的方程是 . 例2. 已知三点A (1,-1),B (3,3),C (4,5). 求证:A 、B 、C 三点在同一条直线上.变式训练2. 设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a+b+c=0.例3. 已知实数x,y 满足y=x 2-2x+2 (-1≤x≤1).试求:23++x y 的最大值与最小值.典型例题变式训练3. 若实数x,y 满足等式(x-2)2+y 2=3,那么xy的最大值为 ( ) A.21B.33 C.23D.3例4. 已知定点P(6, 4)与直线l 1:y =4x ,过点P 的直线l 与l 1交于第一象限的Q 点,与x 轴正半轴交于点M .求使△OQM 面积最小的直线l 的方程.变式训练4.直线l 过点M(2,1),且分别交x 轴y 轴的正半轴于点A 、B ,O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当MB MA 取最小值时,求直线l 的方程.1.直线方程是表述直线上任意一点M 的坐标x 与y 之间的关系式,由斜率公式可导出直线方程的五种形式.这五种形式各有特点又相互联系,解题时具体选取哪一种形式,要根据直线的特点而定.2.待定系数法是解析几何中常用的思想方法之一,用此方法求直线方程,要注意所设方程的适用范围.如:点斜式、斜截式中首先要存在斜率,截距式中横纵截距存在且不为0,两点式的横纵坐标不能相同等(变形后除处).3.在解析几何中,设点而不求,往往是简化计算量的一个重要方法.4.在运用待定数法设出直线的斜率时,就是一种默认斜率存在,若有不存在的情况时,就会出现解题漏洞,此时就要补救:较好的方法是看图,数形结合来找差距.小结归纳第2课时直线与直线的位置关系(一)平面内两条直线的位置关系有三种________.1.当直线不平行坐标轴时,直线与直线的位置关系可根据下表判定2(二)点到直线的距离、直线与直线的距离1.P(x0,y0)到直线Ax+By+C=0 的距离为______________.2.直线l1∥l2,且其方程分别为:l1:Ax+By+C1=0 l2:Ax+By+C2=0,则l1与l2的距离为.(三)两条直线的交角公式若直线l1的斜率为k1,l2的斜率为k2,则1.直线l1到l2的角θ满足.2.直线l1与l2所成的角(简称夹角)θ满足.(四)两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数.(五)五种常用的直线系方程.① 过两直线l1和l2交点的直线系方程为A1x+B1y+C1+ (A2x+B2y+C2)=0(不含l2).② 与直线y=kx+b平行的直线系方程为y=kx+m (m≠b).③ 过定点(x0, y0)的直线系方程为y-y0=k(x-x0)及x=x0.④ 与Ax+By+C=0平行的直线系方程设为Ax+By+m=0 (m≠C).⑤ 与Ax+By+C=0垂直的直线系方程设为Bx-Ay+C1=0 (AB≠0).例1. 已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,(1)试判断l1与l2是否平行;(2)l1⊥l2时,求a的值.变式训练1.若直线l 1:ax+4y-20=0,l 2:x+ay-b=0,当a 、b 满足什么条件时,直线l 1与l 2分别相交?平行?垂直?重合?例2. 直线y =2x 是△ABC 中∠C 的平分线所在的直线,若A 、B 坐标分别为A(-4,2)、B(3,1),求点C 的坐标并判断△ABC 的形状.例3. 设点A(-3,5)和B(2,15),在直线l :3x -4y +4=0上找一点p ,使PB PA 为最小,并求出这个最小值.变式训练3:已知过点A (1,1)且斜率为-m(m>0)的直线l 与x 、y 轴分别交于P 、Q 两点,过P 、Q 作直线2x +y =0的垂线,垂足分别为R 、S ,求四边形PRSQ 的面积的最小值.1.处理两直线位置关系的有关问题时,要注意其满足的条件.如两直线垂直时,有两直线斜率都存在和斜率为O 与斜率不存在的两种直线垂直.2.注意数形结合,依据条件画出图形,充分利用平面图形的性质和图形的直观性,有助于问题的解决.3.利用直线系方程可少走弯路,使一些问题得到简捷的解法.4.解决对称问题中,若是成中心点对称的,关键是运用中点公式,而对于轴对称问题,一般是转化为求对称点,其关键抓住两点:一是对称点的连线与对称轴垂直;二是两对称点的中点在对称轴上,如例4第3课时 圆的方程1. 圆心为C(a 、b),半径为r 的圆的标准方程为_________________.2.圆的一般方程x2+y2+Dx+Ey+F=0(其中D2+E2-4F>0),圆心为,半径r=.3.二元二次方程Ax2+Bxy +Cy2+Dx+Ey+F=0表示圆的方程的充要条件是.4.圆C:(x-a)2+(y-b)2=r2的参数方程为_________.x2+y2=r2的参数方程为________________.5.过两圆的公共点的圆系方程:设⊙C1:x2+y2+D1x+E1y+F1=0,⊙C2:x2+y2+D2x+E2y+F2=0,则经过两圆公共点的圆系方程为.典型例题例1. 根据下列条件,求圆的方程.(1) 经过A(6,5),B(0,1)两点,并且圆心在直线3x+10y+9=0上.(2) 经过P(-2,4),Q(3,-1)两点,并且在x轴上截得的弦长为6.变式训练1:求过点A(2,-3),B(-2,-5),且圆心在直线x-2y-3=0上的圆的方程.例2. 已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.变式训练2:已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4 (m∈R).(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)求直线l被圆C截得的弦长的最短长度及此时的直线方程.(例3. 知点P (x ,y )是圆(x+2)2+y 2=1上任意一点.(1)求P 点到直线3x+4y+12=0的距离的最大值和最小值; (2)求x-2y 的最大值和最小值; (3)求12--x y 的最大值和最小值.变式训练3:已知实数x 、y 满足方程x 2+y 2-4x+1=0. (1)求y-x 的最大值和最小值;(2)求x 2+y 2的最大值和最小值.例4. 设圆满足:①截y 轴所得的弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1.在满足条件①②的所有圆中,求圆心到直线l :x -2y=0的距离最小的圆的方程。

高等几何讲义第一章欧氏平面及仿射平面上的变换仿射坐标及仿射坐标变换

高等几何讲义第一章欧氏平面及仿射平面上的变换仿射坐标及仿射坐标变换

§1 变换与变换群
• 4.变换群
• 若集合 S 上的某些变换构成的集合 G 满足条件 : 1. G 中任二变换的乘积仍属于 G ; 2. G 中每一变换 T 的逆 T 1也属于 G , 则称 G 为集合 S 上的一个变换群.
• 由定义知:任何变换群一定包含恒等变换.
• 可以证明:平面上绕定点 O 的旋转变换的集合 G 是一个变换群,称为旋转群.记为 G1 .
|OM/| |OM|,MOM/
的点变换称为以 O 为中心的旋转变换,简称
旋转,记为R .其表达式为:y M/
R

x/ y/
xcos ysin xsin ycos
(1.3)
j
oi
M x
§1 变换与变换群
• 例4.镜射变换 对平面上的定直线,使原象点 M与象点M/之间的线段被 垂直平分的点变换称 为以 为轴的镜射变换,简称镜射.建立如图坐
主要内容
欧氏几何 仿射几何 射影几何
第一章:欧氏平面及仿射平面上的变换,仿
射坐标及仿射坐标变换

重点讨论共点性与共线性
教 材 基
射 影 几
第二章:射影平面的定义,射影坐标, 交比,调和共轭,对偶原理 第三章:射影变换,包括透视、一维射
本 框 架

影变换、直射、对射、配极 第四章:配极与二次曲线、一维射影变 换与二次曲线、二次曲线的射影分类
标系,则其表达式为: y
Mox: xy//
x
y
(1.4)
M
j
Oi
x
M/
§1 变换与变换群
• 例5.平行射影 二平面
、 / 交于直线 ,向量
M
与二平面都不平行.对

高中数学专题讲义:平面解析几何

高中数学专题讲义:平面解析几何

高中数学专题讲义:平面解析几何第1讲 直线的方程最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知 识 梳 理1.直线的倾斜角与斜率 (1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;②规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0;③范围:直线的倾斜角α的取值范围是[0,π). (2)直线的斜率①定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan__α;②斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.2.直线方程的五种形式名称 几何条件 方程 适用条件 斜截式 纵截距、斜率 y =kx +b 与x 轴不垂直的直线点斜式 过一点、斜率 y -y 0=k (x -x 0) 两点式过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线 截距式 纵、横截距x a +y b =1 不过原点且与两坐标轴均不垂直的直线 一般式Ax +By +C =0(A 2+B 2≠0)所有直线3.若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,则其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示.( )(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k 1=-1,k 2=1,k 1<k 2. (2)当直线斜率为tan(-45°)时,其倾斜角为135°. (3)两直线的斜率相等,则其倾斜角一定相等.(4)当直线的斜率不存在时,不可以用方程y -y 0=k (x -x 0)表示. 答案 (1)× (2)× (3)× (4)× (5)√2.(2017·衡水金卷)直线x -y +1=0的倾斜角为( ) A.30°B.45°C.120°D.150°解析 由题得,直线y =x +1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°,故α=45°,故选B. 答案 B3.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过( ) A.第一象限B.第二象限C.第三象限D.第四象限解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-CB >0,故直线经过第一、二、四象限,不经过第三象限. 答案 C4.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =______.解析 ∵A ,B ,C 三点共线,∴k AB =k AC ,∴7-54-3=x -5-1-3,∴x =-3.答案 -35.(必修2P100A9改编)过点P (2,3)且在两轴上截距相等的直线方程为________. 解析 当纵、横截距为0时,直线方程为3x -2y =0;当截距不为0时,设直线方程为x a +y a =1,则2a +3a =1,解得a =5.所以直线方程为x +y -5=0. 答案 3x -2y =0或x +y -5=0考点一 直线的倾斜角与斜率(典例迁移)【例1】 (1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π6,π3 B.⎣⎢⎡⎦⎥⎤π4,π3 C.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤π4,2π3 (2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析 (1)直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2·cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3]. 又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3.(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3,∴直线l 的斜率k ∈(-∞,-3]∪[1,+∞). 答案 (1)B (2)(-∞,-3]∪[1,+∞)【迁移探究1】 若将题(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围.解 ∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02-(-1)=13,k BP =3-00-(-1)= 3.如图可知,直线l 斜率的取值范围为⎣⎢⎡⎦⎥⎤13,3.【迁移探究2】 将题(2)中的B 点坐标改为B (2,-1),其他条件不变,求直线l 倾斜角的范围. 解 如图:直线P A 的倾斜角为45°, 直线PB 的倾斜角为135°,由图象知直线l 的倾斜角的范围为[0°,45°]∪[135°,180°).规律方法 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).【训练1】 (2017·惠州一调)直线x sin α+y +2=0的倾斜角的取值范围是( ) A.[0,π) B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫π2,π 解析 设直线的倾斜角为θ,则有tan θ=-sin α.因为sin α∈[-1,1],所以-1≤ tan θ≤1,又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π,故选B. 答案 B考点二 直线方程的求法【例2】 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0≤α<π), 从而cos α=±31010,则k =tan α=±13. 故所求直线方程为y =±13(x +4). 即x +3y +4=0或x -3y +4=0.(2)由题设知纵横截距不为0,设直线方程为xa +y12-a=1, 又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0. 由点线距离公式,得|10-5k |k 2+1=5,解得k =34. 故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.规律方法 根据各种形式的方程,采用待定系数的方法求出其中的系数,在求直线方程时凡涉及斜率的要考虑其存在与否,凡涉及截距的要考虑是否为零截距以及其存在性. 【训练2】 求适合下列条件的直线方程: (1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形. 解 (1)设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(4,1), ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +ya =1, ∵l 过点(4,1),∴4a +1a =1, ∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0.(2)由已知:设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34. 又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1), 即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0. 考点三 直线方程的综合应用【例3】 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0, 令⎩⎨⎧x +2=0,1-y =0,解得⎩⎨⎧x =-2,y =1.∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0; 当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞).(3)解 由题意可知k ≠0,再由l 的方程, 得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k | =12·(1+2k )2k =12⎝ ⎛⎭⎪⎫4k +1k +4 ≥12×(2×2+4)=4,“=”成立的条件是k >0且4k =1k ,即k =12, ∴S min =4,此时直线l 的方程为x -2y +4=0.规律方法 在求直线方程的过程中,若有以直线为载体的求面积、距离的最值问题,则可先设出直线方程,建立目标函数,再利用基本不等式求解最值.【训练3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程. 解 法一 设直线方程为x a +yb =1(a >0,b >0), 点P (3,2)代入得3a +2b =1≥26ab ,得ab ≥24,从而S △ABO =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23, 从而所求直线方程为2x +3y -12=0. 法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0), 且有A ⎝ ⎛⎭⎪⎫3-2k ,0,B (0,2-3k ),∴S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k=12⎣⎢⎡⎦⎥⎤12+(-9k)+4(-k)≥12⎣⎢⎡⎦⎥⎤12+2(-9k)·4(-k)=12×(12+12)=12.当且仅当-9k=4-k,即k=-23时,等号成立,即△ABO的面积的最小值为12.故所求直线的方程为2x+3y-12=0.[思想方法]1.直线的倾斜角和斜率的关系:(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率.(2)直线的倾斜角α和斜率k之间的对应关系:α0°0°<α<90°90°90°<α<180°k 0k>0不存在k<02.在求直线方程时,.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.[易错防范]1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.基础巩固题组(建议用时:30分钟)一、选择题1.直线3x-y+a=0(a为常数)的倾斜角为()A.30°B.60°C.120°D.150°解析 直线的斜率为k =tan α=3,又因为0°≤α<180°,所以α=60°. 答案 B2.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则直线l 的方程是( ) A.x +y -2=0 B.x -y +2=0 C.x +y -3=0D.x -y +3=0解析 圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0. 答案 D3.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π D.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π 解析 ∵直线的斜率k =-1a 2+1,∴-1≤k <0,则倾斜角的范围是⎣⎢⎡⎭⎪⎫3π4,π. 答案 B4.(2017·高安市期中)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( )A.6x -4y -3=0B.3x -2y -3=0C.2x +3y -2=0D.2x +3y -1=0解析 因为抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.答案 A5.(2016·广州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( ) A.13B.-13C.-32D.23解析 依题意,设点P (a ,1),Q (7,b ),则有⎩⎨⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.答案 B6.(2017·深圳调研)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析 当a >0,b >0时,-a <0,-b <0.选项B 符合. 答案 B7.(2016·衡水一模)已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( ) A.y =3x +2 B.y =3x -2 C.y =3x +12D.y =-3x +2解析 ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2,故选A. 答案 A8.(2017·福州模拟)若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴、y 轴上的截距之和的最小值为( ) A.1B.2C.4D.8解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥2+2b a ·ab =4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4. 答案 C 二、填空题9.已知三角形的三个顶点A (-5,0,),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.答案 x +13y +5=010.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎭⎪⎫π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是________.解析 当π6≤α<π4时,33≤tan α<1,∴33≤k <1. 当2π3≤α<π时,-3≤tan α<0, 3≤k <0,∴k ∈⎣⎢⎡⎭⎪⎫33,1∪[-3,0).答案 [-3,0)∪⎣⎢⎡⎭⎪⎫33,111.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为____________. 解析 ①若直线过原点,则k =-43, 所以y =-43x ,即4x +3y =0.②若直线不过原点,设直线方程为x a +ya =1, 即x +y =a .则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案 4x +3y =0或x +y +1=012.直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点________. 解析 直线l 的方程变形为a (x +y )-2x +y +6=0, 由⎩⎨⎧x +y =0,-2x +y +6=0,解得x =2,y =-2, 所以直线l 恒过定点(2,-2). 答案 (2,-2)能力提升题组 (建议用时:15分钟)13.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( )A.4x -3y -3=0B.3x -4y -3=0C.3x -4y -4=0D.4x -3y -4=0解析 由题意可设直线l 0,l 的倾斜角分别为α,2α,因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝ ⎛⎭⎪⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0. 答案 D14.(2017·成都诊断)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-12 B.[-1,0] C.[0,1]D.⎣⎢⎡⎦⎥⎤12,1 解析 由题意知y ′=2x +2,设P (x 0,y 0),则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案 A15.已知直线l 过坐标原点,若直线l 与线段2x +y =8(2≤x ≤3)有公共点,则直线l 的斜率的取值范围是________.解析 设直线l 与线段2x +y =8(2≤x ≤3)的公共点为P (x ,y ). 则点P (x ,y )在线段AB 上移动,且A (2,4),B (3,2),设直线l 的斜率为k .又k OA =2,k OB =23.如图所示,可知23≤k ≤2. ∴直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤23,2.答案 ⎣⎢⎡⎦⎥⎤23,216.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是________. 解析 直线OA 的方程为y =x , 代入半圆方程得A (1,1),∴H (1,0),直线HB 的方程为y =x -1, 代入半圆方程得B ⎝ ⎛⎭⎪⎫1+32,-1+32. 所以直线AB 的方程为y -1-1+32-1=x -11+32-1,即3x +y -3-1=0. 答案3x +y -3-1=0第2讲 两直线的位置关系最新考纲 1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知 识 梳 理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解;重合⇔方程组有无数个解.3.距离公式(1)两点间的距离公式平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|=(x2-x1)2+(y2-y1)2. 特别地,原点O(0,0)与任一点P(x,y)的距离|OP|=x2+y2.(2)点到直线的距离公式平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0的距离d=|Ax0+By0+C|A2+B2.(3)两条平行线间的距离公式一般地,两条平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=|C1-C2| A2+B2.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)当直线l1和l2的斜率都存在时,一定有k1=k2⇒l1∥l2.()(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.()(3)若两直线的方程组成的方程组有唯一解,则两直线相交.()(4)已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.()(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.()解析(1)两直线l1,l2有可能重合.(2)如果l1⊥l2,若l1的斜率k1=0,则l2的斜率不存在.答案(1)×(2)×(3)√(4)√(5)√2.(2016·北京卷)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1B.2C. 2D.2 2解析圆(x+1)2+y2=2的圆心坐标为(-1,0),由y=x+3得x-y+3=0,则圆心到直线的距离d=|-1-0+3|12+(-1)2= 2.答案 C3.(2017·郑州调研)直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m=()A.2B.-3C.2或-3D.-2或-3解析 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或-3.故选C. 答案 C4.直线2x +2y +1=0,x +y +2=0之间的距离是________. 解析 先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324. 答案3245.(必修2P89练习2改编)已知P (-2,m ),Q (m ,4),且直线PQ 垂直于直线x +y +1=0,则m =________.解析 由题意知 m -4-2-m =1,所以m -4=-2-m ,所以m =1.答案 1考点一 两直线的平行与垂直【例1】 (1)已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a 等于( ) A.-1 B.2 C.0或-2D.-1或2(2)已知两直线方程分别为l 1:x +y =1,l 2:ax +2y =0,若l 1⊥l 2,则a =________.解析 (1)若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0;当a ≠0时,两直线平行,则有a -11=2a ≠13,解得a =-1或2. (2)因为l 1⊥l 2,所以k 1k 2=-1.即(-1)·⎝ ⎛⎭⎪⎫-a 2=-1,解得a =-2. 答案 (1)D (2)-2规律方法 (1)当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.【训练1】 (1)(2017·重庆一中检测)若直线l 1:(a -1)x +y -1=0和直线l 2:3x +ay +2=0垂直,则实数a 的值为( ) A.12B.32C.14D.34(2)(2017·西安模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析 (1)由已知得3(a -1)+a =0,解得a =34.(2)由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝ ⎛⎭⎪⎫2a +3b =13+6a b +6b a ≥13+26a b ·6ba =25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案 (1)D (2)25考点二 两直线的交点与距离问题【例2】 (1)已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.(2)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析 (1)法一由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k 2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴交点坐标为⎝⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限, ∴⎩⎪⎨⎪⎧2-4k 2k +1>0,6k +12k +1>0,解得-16<k <12.法二 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2). 而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线. ∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k P A <k <k PB . ∵k P A =-16,k PB =12. ∴-16<k <12.(2)法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13. ∴直线l 的方程为y -2=-13(x +1), 即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 法二 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 答案 (1)⎝ ⎛⎭⎪⎫-16,12 (2)x +3y -5=0或x =-1规律方法 (1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.【训练2】 (1)曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( ) A.722B.922C.1122D.91010(2)(2017·河北省“五个一名校联盟”质检)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2B.823C. 3D.833解析 (1)曲线y =2x -x 3上横坐标为-1的点的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k =y ′|x =-1=2-3×(-1)2=-1,故切线l 的方程为y -(-1)=-1×[x -(-1)],整理得x +y +2=0.由点到直线的距离公式,得点P (3,2)到直线l 的距离为|3+2+2|12+12=722. (2)因为l 1∥l 2,所以1a -2=a 3≠62a ,所以⎩⎨⎧a (a -2)=3,2a 2≠18,a ≠2,a ≠0,解得a =-1,所以l 1:x -y +6=0,l 2:x-y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪⎪⎪6-232=823,故选B.答案 (1)A (2)B 考点三 对称问题【例3】 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程.解(1)设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,∴A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上. 设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得M ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎨⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线方程为9x -46y +102=0. (3)法一 在l :2x -3y +1=0上任取两点, 如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0. 法二 设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为 P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.规律方法 (1)解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.(2)如果直线或点关于点成中心对称问题,则只需运用中点公式就可解决问题.(3)若直线l 1,l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上.【训练3】 光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解 法一 由⎩⎨⎧x -2y +5=0,3x -2y +7=0,得⎩⎨⎧x =-1,y =2.∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0), 由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,又Q 点在l 上,∴3·x 0-52-2·y 02+7=0.由⎩⎪⎨⎪⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎪⎨⎪⎧x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0. 法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x=-23,又PP ′的中点Q ⎝ ⎛⎭⎪⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y 02+7=0,由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x 02-(y +y 0)+7=0.可得P 点的横、纵坐标分别为 x 0=-5x +12y -4213,y 0=12x +5y +2813, 代入方程x -2y +5=0中,化简得29x -2y +33=0, ∴所求反射光线所在的直线方程为29x -2y +33=0.[思想方法]1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l 1,l 2,l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意.2.对称问题一般是将线与线的对称转化为点与点的对称.利用坐标转移法解决问题. [易错防范]1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率,要单独考虑.2.在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中x ,y 的系数分别化为相同的形式.基础巩固题组 (建议用时:30分钟)一、选择题1.直线2x +y +m =0和x +2y +n =0的位置关系是( ) A.平行B.垂直C.相交但不垂直D.不能确定解析 直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率为k 2=-12,则k 1≠k 2,且k 1k 2≠-1.故选C. 答案 C2.(2017·刑台模拟)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 依题意得,直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎨⎧a (a -2)=3×1,a ×1≠3×1,解得a =-1,因此选C. 答案 C3.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( ) A.19x -9y =0 B.9x +19y =0 C.19x -3y =0D.3x +19y =0解析 法一由⎩⎨⎧x -3y +4=0,2x +y +5=0,得⎩⎪⎨⎪⎧x =-197,y =37,则所求直线方程为:y =37-197x =-319x ,即3x +19y =0.法二 设直线方程为x -3y +4+λ(2x +y +5)=0, 即(1+2λ)x -(3-λ)y +4+5λ=0,又直线过点(0,0), 所以(1+2λ)·0-(3-λ)·0+4+5λ=0, 解得λ=-45,故所求直线方程为3x +19y =0. 答案 D4.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A.x +2y -1=0 B.2x +y -1=0 C.x +2y +3=0D.x +2y -3=0解析 设所求直线上任一点(x ,y ),则它关于直线x =1的对称点(2-x ,y )在直线x -2y +1=0上,即2-x -2y +1=0,化简得x +2y -3=0. 答案 D5.(2017·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( ) A.7B.172C.14D.17解析 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离10,所以|2m +3|4+36=10,求得m =172,故选B. 答案 B6.平面直角坐标系中直线y =2x +1关于点(1,1)对称的直线方程是( ) A.y =2x -1 B.y =-2x +1 C.y =-2x +3D.y =2x -3解析 在直线y =2x +1上任取两个点A (0,1),B (1,3),则点A 关于点(1,1)对称的点为M (2,1),点B 关于点(1,1)对称的点为N (1,-1).由两点式求出对称直线MN 的方程为y +11+1=x -12-1,即y =2x -3,故选D. 答案 D7.(2017·成都调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( ) A.(3,3) B.(2,3) C.(1,3)D.⎝⎛⎭⎪⎫1,32解析 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎨⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).故选C. 答案 C8.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( )A.x +2y -4=0B.2x +y -1=0C.x +6y -16=0D.6x +y -8=0解析 由直线与向量a =(8,4)平行知:过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A 正确. 答案 A 二、填空题9.点(2,1)关于直线x -y +1=0的对称点为________.解析设对称点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0-1x 0-2=-1,x 0+22-y 0+12+1=0,解得⎩⎨⎧x 0=0,y 0=3,故所求对称点为(0,3).答案 (0,3)10.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 解析 由⎩⎨⎧y =2x ,x +y =3,得⎩⎨⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9. 答案 -911.(2017·沈阳检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析 显然直线l 的斜率不存在时,不满足题意; 设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2, ∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案 2x +3y -18=0或2x -y -2=012.(2016·长沙一调)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′, 所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6), 所以所求直线的方程为y -06-0=x -12-1, 即6x -y -6=0. 答案 6x -y -6=0能力提升题组 (建议用时:15分钟)13.(2017·洛阳模拟)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2的值为( ) A.102B.10C.5D.10解析 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,∴M 位于以PQ 为直径的圆上,∵|PQ |=9+1=10,∴|MP |2+|MQ |2=|PQ |2=10,故选D. 答案 D14.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( ) A.210 B.6 C.3 3D.2 5解析 易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1(4,2)与A 2(-2,0)两点间的距离. 于是|A 1A 2|=(4+2)2+(2-0)2=210. 答案 A15.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.解析 易知A (0,0),B (1,3)且两直线互相垂直, 即△APB 为直角三角形,∴|P A |·|PB |≤|P A |2+|PB |22=|AB |22=102=5.当且仅当|P A |=|PB |时,等号成立. 答案 516.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.解析 设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.∵k AC =6-23-1=2, ∴直线AC 的方程为y -2=2(x -1), 即2x -y =0.①又∵k BD =5-(-1)1-7=-1,∴直线BD的方程为y-5=-(x-1),即x+y-6=0.②由①②得⎩⎨⎧2x-y=0,x+y-6=0,解得⎩⎨⎧x=2,y=4,所以M(2,4).答案(2,4)第3讲圆的方程最新考纲掌握确定圆的几何要素,掌握圆的标准方程与一般方程.知识梳理1.圆的定义和圆的方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)充要条件:D2+E2-4F>0圆心坐标:⎝⎛⎭⎪⎫-D2,-E2半径r=12D2+E2-4F2.平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)确定圆的几何要素是圆心与半径.()(2)方程x2+y2=a2表示半径为a的圆.()(3)方程x2+y2+4mx-2y+5m=0表示圆.()(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()解析(2)当a=0时,x2+y2=a2表示点(0,0);当a<0时,表示半径为|a|的圆.(3)当(4m)2+(-2)2-4×5m>0,即m<14或m>1时才表示圆.答案(1)√(2)×(3)×(4)√2.(2015·北京卷)圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2解析由题意得圆的半径为2,故该圆的方程为(x-1)2+(y-1)2=2,故选D.答案 D3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是()A.(-1,1)B.(0,1)C.(-∞,-1)∪(1,+∞)D.a=±1解析因为点(1,1)在圆的内部,所以(1-a)2+(1+a)2<4,所以-1<a<1.答案 A4.(2016·浙江卷)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.解析由已知方程表示圆,则a2=a+2,解得a=2或a=-1.当a=2时,方程不满足表示圆的条件,故舍去.当a=-1时,原方程为x2+y2+4x+8y-5=0,化为标准方程为(x+2)2+(y+4)2=25,表示以(-2,-4)为圆心,半径为5的圆.答案(-2,-4) 55.(必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即(a+1)2+1=(a-1)2+9,解得a=2,所以圆心为C(2,0),半径|CA|=(2+1)2+1=10,∴圆C的方程为(x-2)2+y2=10.答案(x-2)2+y2=10考点一圆的方程【例1】(1)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为________.(2)已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6,则圆C的方程为________.解析(1)法一由已知k AB=0,所以AB的中垂线方程为x=3.①过B点且垂直于直线x-y-1=0的直线方程为y-1=-(x-2),即x+y-3=0,②联立①②,解得⎩⎨⎧x=3,y=0,所以圆心坐标为(3,0),半径r=(4-3)2+(1-0)2=2,所以圆C的方程为(x-3)2+y2=2.法二设圆的方程为(x-a)2+(y-b)2=r2(r>0),∵点A(4,1),B(2,1)在圆上,故⎩⎨⎧(4-a)2+(1-b)2=r2,(2-a)2+(1-b)2=r2,又∵b-1a-2=-1,解得a=3,b=0,r=2,故所求圆的方程为(x-3)2+y2=2.(2)设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F=0),将P,Q两点的坐标分别代入得⎩⎨⎧2D-4E-F=20,3D-E+F=-10.①②又令y=0,得x2+Dx+F=0.③设x1,x2是方程③的两根,由|x1-x2|=6,得D2-4F=36,④由①,②,④解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0.故所求圆的方程为x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.答案(1)(x-3)2+y2=2(2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0规律方法求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.【训练1】(1)(2016·天津卷)已知圆C的圆心在x轴的正半轴上,点M(0,5)在圆C上,且圆心到直线2x-y=0的距离为455,则圆C的方程为________.(2)(2017·武汉模拟)以抛物线y2=4x的焦点为圆心,与该抛物线的准线相切的圆的标准方程为________.解析(1)因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d=2a5=455,解得a=2,所以圆C的半径r=|CM|=4+5=3,所以圆C的方程为(x-2)2+y2=9.(2)抛物线y2=4x的焦点为(1,0),准线为x=-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x-1)2+y2=4.答案(1)(x-2)2+y2=9(2)(x-1)2+y2=4考点二与圆有关的最值问题【例2】已知实数x,y满足方程x2+y2-4x+1=0.(1)求yx的最大值和最小值;(2)求y-x的最大值和最小值;(3)求x2+y2的最大值和最小值.解原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,3为半径的圆.(1)yx的几何意义是圆上一点与原点连线的斜率,所以设yx=k,即y=kx.当直线y=kx与圆相切时,斜率k取最大值或最小值,此时|2k-0|k2+1=3,解得k=±3(如图1).所以yx的最大值为3,最小值为- 3.。

苏教版学高中数学必修二平面解析几何初步圆与圆的位置关系讲义

苏教版学高中数学必修二平面解析几何初步圆与圆的位置关系讲义

学习目标核心素养1.能根据两个圆的方程,判断两圆的位置关系.(重点)2.当两个圆有公共点时能求出它们的公共点,能运用两圆的位置关系解决有关问题.(易错点)3.了解两圆相交时公共弦所在直线的求法;了解两圆公切线的概念,会判断所给直线是不是两圆的公切线.(难点)通过学习本节内容提升学生的逻辑推理和数学运算核心素养.圆与圆的位置关系1.几何法:若两圆的半径分别为r1,r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1,r2的关系d>r1+r2d=r1+r2|r1—r2|<d<r1+r2d=|r1—r2|d<|r1—r2|错误!错误!错误!错误!1.思考辨析(1)两圆方程联立,若方程组有两个解,则两圆相交.()(2)若两个圆没有公共点,则两圆一定外离.()(3)若两圆外切,则两圆有且只有一个公共点,反之也成立.()(4)若两圆有公共点,则|r1—r2|≤d≤r1+r2. ()[答案] (1)√(2)×(3)×(4)√2.两圆x2+y2+6x+4y=0及x2+y2+4x+2y—4=0的公共弦所在的直线方程为______________.x+y+2=0 [联立错误!1—2得:x+y+2=0.]3.圆x2+y2=1与圆x2+y2+2x+2y+1=0的交点坐标为________.(—1,0)和(0,—1)[由错误!解得错误!或错误!]4.圆C1:x2+y2+4x—4y+7=0和圆C2:x2+y2—4x—10y+13=0的公切线有________条.3[圆C1的圆心坐标为C1(—2,2),半径r1=1.∵圆C2的圆心坐标为C2(2,5),半径r2=4.∴|C1C2|=错误!=5,r1+r2=5,∴两圆外切.故公切线有3条.]两圆位置关系的判定1222222(1)m=1时,圆C1与圆C2有什么位置关系?(2)是否存在m使得圆C1与圆C2内含?思路探究:(1)参数m的值已知,求解时可先找出圆心及半径,然后比较两圆的圆心距d与r1+r和|r1—r2|的大小关系.(2)假设存在m使得圆C1与圆C2内含,则圆心距d<|r1—r2|.2[解] (1)∵m=1,∴两圆的方程分别可化为:C1:(x—1)2+(y+2)2=9.C2:(x+1)2+y2=1.两圆的圆心距d=错误!=2错误!,又∵r1+r2=3+1=4,r1—r2=3—1=2,∴r1—r2<d<r1+r2,所以圆C1与圆C2相交.(2)假设存在m使得圆C1与圆C2内含,则错误!<3—1,即(m+1)2<0,显然不等式无解.故不存在m使得圆C1与圆C2内含.判断圆与圆的位置关系时,通常用几何法,即转化为判断圆心距与两圆半径的和与差之间的大小关系.1.已知圆C1:x2+y2—2ax—2y+a2—15=0,C2:x2+y2—4ax—2y+4a2=0(a>0).试求a为何值时两圆C1,C2(1)相切;(2)相交;(3)相离;(4)内含.[解] 对圆C1,C2的方程,经配方后可得:C1:(x—a)2+(y—1)2=16,C2:(x—2a)2+(y—1)2=1,∴圆心C1(a,1),r1=4,C2(2a,1),r2=1,∴|C1C2|=错误!=a,(1)当|C1C2|=r1+r2=5,即a=5时,两圆外切,当|C1C2|=r1—r2=3,即a=3时,两圆内切.(2)当3<|C1C2|<5,即3<a<5,时,两圆相交.(3)当|C1C2|>5,即a>5时,两圆外离.(4)当|C1C2|<3,即0<a<3时,两圆内含.两圆相交的问题122222(1)求公共弦所在直线的方程;(2)求公共弦的长.思路探究:错误!→错误!→错误!→错误![解] (1)设两圆的交点分别为A(x1,y1),B(x2,y2).将点A的坐标代入两圆方程,得错误!1—2,得x1—2y1+4=0,故点A在直线x—2y+4=0上.同理,点B也在直线x—2y+4=0上,即点A,B均在直线x—2y+4=0上.因为经过两点有且只有一条直线,所以直线AB的方程为x—2y+4=0,即公共弦所在直线的方程为x—2y+4=0.(2)圆C1的方程可化为(x—1)2+(y+5)2=50,所以C1(1,—5),半径r1=5错误!.C1(1,—5)到公共弦的距离d=错误!=3错误!.设公共弦的长为l,则l=2错误!=2错误!=2错误!.1.利用两圆的方程相减求两圆公共弦所在直线的方程时,必须注意只有当两圆方程中二次项的系数相同时,才能如此求解,若二次项的系数不同,需先调整方程中各项的系数.2.求两圆的公共弦长有两种方法:一是先求出两圆公共弦所在直线的方程;再利用圆的半径、弦心距、弦长的一半构成的直角三角形求解;二是联立两圆的方程求出交点坐标,再利用两点间的距离公式求弦长.2.求圆心在直线x—y—4=0上,且经过两圆x2+y2—4x—6=0和x2+y2—4y—6=0的交点的圆的方程.[解] 由错误!得错误!或错误!即两圆的交点坐标为A(—1,—1),B(3,3).设所求圆的圆心坐标C为(a,a—4),由题意可知CA=CB,即错误!=错误!,解得a=3,∴C(3,—1).∴CA=错误!=4,所以,所求圆的方程为(x—3)2+(y+1)2=16.两圆相切的问题1.若已知圆C1:x2+y2=a2(a>0)和C2:(x—2)2+y2=1,那么a取何值时C1与C2相外切?[提示] 由|C1C2|=a+1,得a+1=2,∴a=1.2.若将探究1中,C2的方程改为(x—2)2+y2=r2(r>0),那么a与r满足什么条件时两圆相切?[提示] 若两圆外切,则a+r=|C1C2|=2,即a+r=2时外切.若两圆内切,则|r—a|=|C1C2|=2.∴r—a=2或a—r=2.【例3】已知圆C1:x2+y2+4x—4y—5=0与圆C2:x2+y2—8x+4y+7=0.(1)证明:圆C1与圆C2相切,并求过切点的公切线的方程;(2)求过点(2,3)且与两圆相切于(1)中切点的圆的方程.思路探究:(1)证明|C1C2|=r1+r2,两圆方程相减得公切线方程.(2)由圆系方程设圆的方程,将已知点代入.[解] (1)把圆C1与圆C2都化为标准方程形式,得(x+2)2+(y—2)2=13,(x—4)2+(y+2)2=13;圆心与半径长分别为C1(—2,2),r1=错误!;C2(4,—2),r2=错误!,因为|C1C2|=错误!=2错误!=r1+r2,所以圆C1与圆C2相切.由错误!得12x—8y—12=0,即3x—2y—3=0,这就是过切点的两圆公切线的方程.(2)由圆系方程,可设所求圆的方程为x2+y2+4x—4y—5+λ(3x—2y—3)=0.点(2,3)在此圆上,将点坐标代入方程解得λ=错误!.所以所求圆的方程为x2+y2+4x—4y—5+错误!(3x—2y—3)=0,即x2+y2+8x—错误!y—9=0.两圆相切有如下性质(1)设两圆的圆心分别为O1,O2,半径分别为r1,r2,则两圆相切错误!(2)两圆相切时,两圆圆心的连线过切点(两圆若相交时,两圆圆心的连线垂直平分公共弦).在解题过程中应用这些性质,有时能大大简化运算.3.求与圆C:x2+y2—2x=0外切且与直线l:x+错误!y=0相切于点M(3,—错误!)的圆的方程.[解] 圆C的方程可化为(x—1)2+y2=1,圆心C(1,0),半径为1.设所求圆的方程为(x—a)2+(y—b)2=r2(r>0),由题意可知错误!解得错误!或错误!所以所求圆的方程为(x—4)2+y2=4或x2+(y+4错误!)2=36.1.本节课的重点是理解并掌握圆与圆的位置关系,会利用方程判断圆与圆的位置关系,以及解决有关问题,能利用直线与圆的方程解决平面几何问题.难点是利用方程判断圆与圆的位置关系.2.本节课要重点掌握的规律方法(1)判断两圆位置关系的方法及应用.(2)求两圆公共弦长的方法.3.本节课的易错点是判断两圆位置关系时易忽略相切的两种情况而丢解.1.圆(x+2)2+y2=4与圆(x—2)2+(y—1)2=9的位置关系为()A.相离B.相切C.相交D.内含C[两圆圆心分别为(—2,0),(2,1),半径分别为2和3,圆心距d=错误!=错误!.∵3—2<d<3+2,∴两圆相交.]2.已知圆C1:x2+y2—2mx+m2=1与圆C2:x2+y2+2y=8外离,则实数m的取值范围是________.(—∞,—错误!)∪(错误!,+∞)[圆C1可化为(x—m)2+y2=1,圆C2可化为x2+(y +1)2=9,所以圆心C1(m,0),C2(0,—1),半径r1=1,r2=3,因为两圆外离,所以应有C1C2>r1+r2=1+3=4,即错误!>4,解得m>错误!或m<—错误!.]3.半径长为6的圆与x轴相切,且与圆x2+(y—3)2=1内切,则此圆的方程为________.(x±4)2+(y—6)2=36 [设圆心坐标为(a,b),由题意知b=6,错误!=5,可以解得a =±4,故所求圆的方程为(x±4)2+(y—6)2=36.]4.已知圆C1:x2+y2—2mx+4y+m2—5=0,圆C2:x2+y2+2x—2my+m2—3=0,m为何值时,(1)圆C1与圆C2外切;(2)圆C1与圆C2内含.[解] 将圆C1,圆C2化为标准形式得C1:(x—m)2+(y+2)2=9,C2:(x+1)2+(y—m)2=4.则C1(m,—2),C2(—1,m),r1=3,r2=2,C1C2=错误!=错误!.(1)当圆C1与圆C2外切时,有r1+r2=C1C2,则错误!=5,解得m=—5或2,即当m=—5或2时,两圆外切.(2)当圆C1与圆C2内含时,C1C2<r1—r2,∴错误!<1,即m2+3m+2<0.∵f(m)=m2+3m+2的图象与横坐标轴的交点是(—2,0),(—1,0),∴由m2+3m+2<0,可得—2<m<—1,即当—2<m<—1时,两圆内含.。

平面几何讲义之四点共圆(内容很详实)

平面几何讲义之四点共圆(内容很详实)

BB高中数学联赛平面几何讲义之四点共圆平面几何中证四点共圆的几个基本方法 方法一:平面上有四点A B C D 、、、,若A D ∠=∠, 则A B C D 、、、四点共圆方法二 线段AC BD 、交于E ,若AE EC BE ED ⋅=⋅,则方法三 线段AC BD 、交于E ,若AE BE CE ED ⋅=⋅, 则A B C D 、、、四点共圆方法四:若四边形ABCD ,180A C ∠+∠=︒, 则A B C D 、、、四点共圆DCBPB方法四、已知 AD 是ABC △内角或外角平分线,AB AC ≠,且BD DC =,则A B C 、、证明 设BAD α∠=,因为AD AD DB DC =,所以sin sin sin sin B C BAD CAD=∠∠,所以sin sin B C =,内角时180B C +=︒,外角时B C =,所以A B C D 、、、四点共圆托勒密定理:Tolemy(托勒密定理)若四边形ABCD 是圆O 内接四边形,则AD •BC+AB •CD=AC •BD证明 在AC 上取点E,使∠EDC=∠ADB,因为∠ABD=∠ACD,所以△ABD ∼△EDC,△ADE ∼△BDC ,于是(AB/CE)=(DB/DC),(AD/AE)=(DB/BC),于是AD •BC+AB •DC=AE •BD+BD •CE=AC •BD例1、(等角共轭点性质)已知 点D E 、在ABC ∆内,ABD CBE ∠=∠,BAE CAD ∠=∠.求证ACD BCE ∠=∠.BCBB证明(一)(文武光华数学工作室南京潘成华)作E关于BC AB AC、、对称点P R Q、、,易知BRD∆≌BPD∆,ARD∆≌AQD∆,于是DP DR DQ==,所以DCP∆≌DCQ∆,得到PCD QCD∠=∠,进而BCE ACD∠=∠.证明(二)作BDS∆外接圆交AD延长线于S,可知ASC DBC ABE∠=∠=∠,得到ABE∆∽ASC∆,所以ABS∆∽AEC∆,得到ACE ASB DSB∠=∠=∠,所以BCE ACD∠=∠.南京潘成华)E是ABC∆内一点,点D在BC上,且BAE DAC∠=∠,EDB ADC∠=∠.则180AEC BED∠+∠=︒证明先证明AB BEAC EC=,过E作AB AC BC、、垂线EF EG EL、、交AB AC BC、、分别于F G L、、,直线EL AD、交于J,取AF中点K,易知B F E L、、、四点共圆,E G C L、、、四点共圆,所以sinsinFLAB C FL CEBEAC B LG LG BECE===⋅(1),(B C、是ABC∆的内角),因为EDB ADC∠=∠,所以EL LJ=,于是//KL AJ,易知A F E G、、、四点共圆,B圆心是K,BAE DAC∠=∠,所以AD FG⊥,进而//KL FG,得到KL是FG中垂线,所以FL LG=,(1)得AB BEAC EC=下面我们证明180AEC BED∠+∠=︒,因为sin sin,ACAEC EACAE∠=∠sin sin,ABBAE BAEBE∠=∠,两式相除得sin sin sinsin sin sinAEC EAC BADBAE BAE DAC∠∠∠==∠∠∠sin sinsin sinAB BAD EC BD EC BEDAC DAC BE CD BE DEC∠∠=⋅=⋅=∠∠,因为360AEC BAE BED DEC∠+∠+∠+∠=︒所以,180AEC BED∠+∠=︒证明(二)在AB取H,使得AHB PDB∠=∠,所以AHD∆∽APC∆,易知H P D B、、、四点共圆,所以180APC BPD BHD AHD∠+∠=∠+∠=︒例3、叶中豪老师2013年国庆讲义一几何题我的解答已知,D是ABC∆底边BC上任一点,P是形内一点,满足12∠=∠,34∠=∠。

高考数学一轮讲义:平面解析几何 椭圆

高考数学一轮讲义:平面解析几何 椭圆

8.5 椭圆[知识梳理] 1.椭圆的定义(1)定义:在平面内到两定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)集合语言:P ={M ||MF 1|+|MF 2|=2a ,且2a >|F 1F 2|},|F 1F 2|=2c ,其中a >c >0,且a ,c 为常数.注:当2a >|F 1F 2|时,轨迹为椭圆;当2a =|F 1F 2|时,轨迹为线段F 1F 2;当2a <|F 1F 2|时,轨迹不存在.2.椭圆的标准方程和几何性质图3.直线与椭圆位置关系的判断直线与椭圆方程联立方程组,消掉y ,得到Ax 2+Bx +C =0的形式(这里的系数A 一定不为0),设其判别式为Δ:(1)Δ>0⇔直线与椭圆相交; (2)Δ=0⇔直线与椭圆相切; (3)Δ<0⇔直线与椭圆相离. 4.弦长公式(1)若直线y =kx +b 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k 2|y 1-y 2|.(2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a ,最长为2a . 5.必记结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)已知过焦点F1的弦AB,则△ABF2的周长为4a.[诊断自测]1.概念思辨(1)平面内与两个定点F1、F2的距离之和等于常数的点的轨迹是椭圆.()(2)方程mx2+ny2=1(m>0,n>0且m≠n)表示的曲线是椭圆.()(3)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(4)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.()答案(1)×(2)√(3)√(4)√2.教材衍化(1)(选修A1-1P35例3)已知椭圆的方程是x2a2+y225=1(a>5),它的两个焦点分别为F1,F2,且F1F2=8,弦AB过点F1,则△ABF2的周长为()A.10 B.20C.241 D.441答案 D解析因为a>5,所以椭圆的焦点在x轴上,所以a2-25=42,解得a=41.由椭圆的定义知△ABF2的周长为4a=441.故选D.(2)(选修A1-1P42A组T6)已知点P是椭圆x25+y24=1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为________.答案 ⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,∴P 点坐标为⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1. 3.小题热身(1)(2014·大纲卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1答案 A解析 由题意及椭圆的定义知4a =43,则a =3,又c a =c 3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1,故选A.(2)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.答案3-1解析 由已知得直线y =3(x +c )过M ,F 1两点,所以直线MF 1的斜率为3,所以∠MF 1F 2=60°,则∠MF 2F 1=30°,∠F 1MF 2=90°,则MF 1=c ,MF 2=3c ,由点M 在椭圆Γ上知:c +3c =2a ,故e =ca =3-1.题型1 椭圆的定义及应用典例1 已知椭圆x 225+y 216=1上一点P 到椭圆一个焦点F 1的距离为3,则P 到另一个焦点F 2的距离为( )A .2B .3C .5D .7应用椭圆的定义.答案 D解析 根据椭圆的定义|PF 1|+|PF 2|=2a =10,得|PF 2|=7,故选D.[条件探究] 若将典例中的条件改为“F 1,F 2分别为左、右焦点,M 是PF 1的中点,且|OM |=3”,求点P 到椭圆左焦点的距离?解 由M 为PF 1中点,O 为F 1F 2中点,易得|PF 2|=6,再利用椭圆定义易知|PF 1|=4.典例2(2018·漳浦县校级月考)椭圆x 24+y 2=1上的一点P 与两焦点F 1,F 2所构成的三角形称为焦点三角形.(1)求PF 1→·PF 2→的最大值与最小值; (2)设∠F 1PF 2=θ,求证:S △F 1PF 2=tan θ2.(1)利用向量数量积得到目标函数,利用二次函数求最值;(2)利用余弦定理、面积公式证明.解 (1)设P (x ,y ),∴F 1(-3,0),F 2(3,0),则PF 1→·PF 2→=(-3-x ,-y )·(3-x ,-y )=x 2+y 2-3=34x 2-2, ∵x 2∈[0,4],∴34x 2-2∈[-2,1]. ∴PF 1→·PF 2→的最大值为1,最小值为-2. (2)证明:由椭圆的定义可知||PF 1|+|PF 2||=2a , |F 1F 2|=2c ,设∠F 1PF 2=θ, 在△F 1PF 2中,由余弦定理可得: |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos θ =(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|(1+cos θ),可得4c 2=4a 2-2|PF 1|·|PF 2|(1+cos θ)⇒|PF 1|·|PF 2|=2b21+cos θ,即有△F 1PF 2的面积S =12|PF 1|·|PF 2|sin ∠F 1PF 2=b 2·sin θ1+cos θ=b 2tan θ2=tan θ2.方法技巧椭圆定义的应用技巧1.椭圆定义的应用主要有两个方面:一是判定平面内动点与两定点的轨迹是否为椭圆;二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率等.2.通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.见典例2.冲关针对训练已知A ⎝ ⎛⎭⎪⎫-12,0,B 是圆⎝ ⎛⎭⎪⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为________.答案 x 2+43y 2=1解析 如图,由题意知|P A |=|PB |,|PF |+|BP |=2.所以|P A |+|PF |=2且|P A |+|PF |>|AF |,即动点P 的轨迹是以A ,F 为焦点的椭圆,a =1,c =12,b 2=34.所以动点P 的轨迹方程为x 2+43y 2=1.题型2 椭圆的标准方程及应用典例1(2018·湖南岳阳模拟)在平面直角坐标系xOy 中,椭圆C 的中心为坐标原点,F 1、F 2为它的两个焦点,离心率为22,过F 1的直线l 交椭圆C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________.在未明确焦点的具体位置时,应分情况讨论.答案 x 216+y 28=1或x 28+y 216=1解析 由椭圆的定义及△ABF 2的周长知4a =16,则a =4,又ca =22,所以c =22a =22,所以b 2=a 2-c 2=16-8=8.当焦点在x 轴上时,椭圆C 的方程为x 216+y 28=1;当焦点在y 轴上时,椭圆C 的方程为y 216+x 28=1.综上可知,椭圆C 的方程为x 216+y 28=1或x 28+y 216=1.典例2(2017·江西模拟)椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2为椭圆的左、右焦点,且焦距为23,O 为坐标原点,点P 为椭圆上一点,|OP |=24a ,且|PF 1|,|F 1F 2|,|PF 2|成等比数列,求椭圆的方程.用待定系数法,根据已知列出方程组.解 设P (x ,y ),则|OP |2=x 2+y 2=a28,由椭圆定义,|PF 1|+|PF 2|=2a ,|PF 1|2+2|PF 1|·|PF 2|+|PF 2|2=4a 2, 又∵|PF 1|,|F 1F 2|,|PF 2|成等比数列, ∴|PF 1|·|PF 2|=|F 1F 2|2=4c 2, |PF 1|2+|PF 2|2+8c 2=4a 2,∴(x +c )2+y 2+(x -c )2+y 2+8c 2=4a 2,整理得x 2+y 2+5c 2=2a 2,即a 28+5c 2=2a 2,整理得c 2a 2=38,又∵2c =23,∴c =3, ∴a 2=8,b 2=5.85方法技巧求椭圆标准方程的步骤1.判断椭圆焦点位置. 2.设出椭圆方程.3.根据已知条件,建立方程(组)求待定系数,注意a 2=b 2+c 2的应用.4.根据焦点写出椭圆方程.见典例1,2.提醒:当椭圆焦点位置不明确时,可设为x 2m +y 2n =1(m >0,n >0,m ≠n ),也可设为Ax 2+By 2=1(A >0,B >0,且A ≠B ).可简记为“先定型,再定量”.冲关针对训练已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2.P 为椭圆上的一点,PF 1与y 轴相交于M ⎝ ⎛⎭⎪⎫0,14,且M 为PF 1的中点,S △PF 1F 2=32.求椭圆的方程.解 设P (x 0,y 0)∵M 为PF 1的中点,O 为F 1F 2的中点. ∴x 0=c ,y 0=12.PF 2∥y 轴,△PF 1F 2是∠PF 2F 1=90°的直角三角形,由题意得,⎩⎪⎨⎪⎧c 2a 2+14b 2=1,12·2c ·12=32,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.4题型3 椭圆的几何性质典例 F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,则椭圆的离心率的取值范围是________.由∠F 1PF 2=90°,求出x 20=a 2(c 2-b 2)c 2后,利用x 20∈[0,a 2]求解.答案 ⎣⎢⎡⎭⎪⎫22,1解析 设P (x 0,y 0)为椭圆上一点,则x 20a 2+y 20b 2=1.PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0), 若∠F 1PF 2=90°,则PF 1→·PF 2→=x 20+y 20-c 2=0.∴x 20+b 2⎝ ⎛⎭⎪⎫1-x 20a 2=c 2,∴x 20=a 2(c 2-b 2)c 2. ∵0≤x 20≤a 2,∴0≤c 2-b 2c 2≤1.∴b 2≤c 2,∴a 2≤2c 2,∴22≤e <1.[条件探究] 将典例2中条件“∠F 1PF 2=90°”改为“∠F 1PF 2为钝角”,求离心率的取值范围.解椭圆上存在点P 使∠F 1PF 2为钝角⇔以原点O 为圆心,以c 为半径的圆与椭圆有四个不同的交点⇔b <c ,如图,由b <c ,得a 2-c 2<c 2,即a 2<2c 2,解得e =c a >22,又0<e <1,故椭圆C 的离心率的取值范围是⎝ ⎛⎭⎪⎫22,1. 方法技巧求解椭圆离心率(或其范围)常用的方法1.若给定椭圆的方程,则根据椭圆方程确定a 2,b 2,进而求出a ,c 的值,从而利用公式e =ca 直接求解.2.若椭圆的方程未知,则根据条件及几何图形建立关于a ,b ,c 的齐次等式(或不等式),化为关于a ,c 的齐次方程(或不等式),进而化为关于e 的方程(或不等式)进行求解.见典例.冲关针对训练(2015·重庆高考)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e .解 (1)由椭圆的定义,有2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2.设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 得2c =|F 1F 2| =|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)连接QF 1,由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|,因此,4a -2|PF 1|=2|PF 1|.|PF 1|=2(2-2)a ,从而|PF 2|=2a -|PF 1|=2a -2(2-2)a =2(2-1)a .由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2, 因此e =c a =|PF 1|2+|PF 2|22a = (2-2)2+(2-1)2=9-62=6- 3.题型4 直线与椭圆的综合问题角度1 利用直线与椭圆的位置关系研究椭圆的标准方程及性质典例(2014·全国卷Ⅱ)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .本题(2)用代入法列出方程,用方程组法求解.解 (1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a , 2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12或ca =-2(舍去).故C 的离心率为12.(2)由题意,得原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎨⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a =1.解得a =7,b 2=4a =28,故a =7,b =27.角度2 利用直线与椭圆的位置关系研究直线及弦的问题 典例 (2014·全国卷Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.直线与椭圆构成方程组,用设而不求的方法求弦长,再求△OPQ 的面积.解 (1)设F (c,0),由条件知,2c =233,得c = 3. 又c a =32,所以a =2,b 2=a 2-c 2=1.故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积 S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0, 所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2.方法技巧直线与椭圆相交时有关弦问题的处理方法1.合理消元,消元时可以选择消去y ,也可以消去x .见角度1典例.2.利用弦长公式、点到直线的距离公式等将所求量表示出来. 3.构造基本不等式或利用函数知识求最值.见角度2典例. 4.涉及弦中点的问题常用“点差法”解决.冲关针对训练(2015·陕西高考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E经过A ,B 两点,求椭圆E 的方程.解 (1)过点(c,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c2=bca ,由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32. (2)由(1)知,椭圆E 的方程为 x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10. 易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1,代入①得 (1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b 21+4k 2.由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12. 从而x 1x 2=8-2b 2. 于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2| =52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3.故椭圆E 的方程为x 212+y 23=1.1.(2017·浙江高考)椭圆x 29+y 24=1的离心率是( ) A.133 B.53 C.23 D.59答案 B解析 ∵椭圆方程为x 29+y 24=1,∴a =3,c =a 2-b 2=9-4=5.∴e =c a =53.故选B.2.(2017·河北衡水中学二调)设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为( )A .8B .10C .12D .15 答案 D解析 由椭圆方程x 216+y 212=1,可得c 2=4,所以|F 1F 2|=2c =4,而F 1F 2→=PF 2→-PF 1→,所以|F 1F 2→|=|PF 2→-PF 1→|,两边同时平方,得|F 1F 2→|2=|PF 1→|2-2PF 1→·PF 2→+|PF 2→|2,所以|PF 1→|2+|PF 2→|2=|F 1F 2→|2+2PF 1→·PF 2→=16+18=34,根据椭圆定义得|PF 1|+|PF 2|=2a =8,所以34+2|PF 1||PF 2|=64,所以|PF 1|·|PF 2|=15.故选D.3.(2018·武汉调研)已知直线MN 过椭圆x 22+y 2=1的右焦点F ,与椭圆交于M ,N 两点.直线PQ 过原点O 且与直线MN 平行,直线PQ 与椭圆交于P ,Q 两点,则|PQ |2|MN |=________.答案 2 2解析 解法一:由题意知,直线MN 的斜率不为0,设直线MN :x =my +1,则直线PQ :x =my .设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4).⎩⎨⎧x =my +1,x 22+y 2=1⇒(m 2+2)y 2+2my -1=0⇒y 1+y 2=-2mm 2+2,y 1y 2=-1m 2+2.∴|MN |=1+m 2|y 1-y 2|=22·m 2+1m 2+2.⎩⎨⎧x =my ,x 22+y 2=1⇒(m 2+2)y 2-2=0⇒y 3+y 4=0,y 3y 4=-2m 2+2.∴|PQ |=1+m 2|y 3-y 4|=2 2m 2+1m 2+2.故|PQ |2|MN |=2 2. 解法二:取特殊位置,当直线MN 垂直于x 轴时,易得|MN |=2b 2a =2,|PQ |=2b =2,则|PQ |2|MN |=2 2.4.(2015·安徽高考)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510.(1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解 (1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b ,又k OM =510,从而b 2a =510,进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x 5b +yb=1,点N 的坐标为⎝ ⎛⎭⎪⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝ ⎛⎭⎪⎫x 1,72,则线段NS 的中点T 的坐标为⎝ ⎛⎭⎪⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎪⎨⎪⎪⎧5b 4+x 125b+-14b +74b =1,72+12b x 1-52b=5,解得b =3.所以a =35, 故椭圆E 的方程为x 245+y 29=1.[重点保分 两级优选练]A 级一、选择题1.(2018·江西五市八校模拟)已知正数m 是2和8的等比中项,则圆锥曲线x 2+y2m =1的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±3,0)或(±5,0)D .(0,±3)或(±5,0)答案 B解析 因为正数m 是2和8的等比中项,所以m 2=16,则m =4,所以圆锥曲线x 2+y 2m =1即为椭圆x 2+y 24=1,易知其焦点坐标为(0,±3),故选B.2.(2017·湖北荆门一模)已知θ是△ABC 的一个内角,且sin θ+cos θ=34,则方程x 2sin θ-y 2cos θ=1表示( )A .焦点在x 轴上的双曲线B .焦点在y 轴上的双曲线C .焦点在x 轴上的椭圆D .焦点在y 轴上的椭圆 答案 D解析 因为(sin θ+cos θ)2=1+2sin θcos θ=916,所以sin θcos θ=-732<0,结合θ∈(0,π),知sin θ>0,cos θ<0,又sin θ+cos θ=34>0,所以sin θ>-cos θ>0,故1-cos θ>1sin θ>0,因为x 2sin θ-y 2cos θ=1可化为y 2-1cos θ+x 21sin θ=1,所以方程x 2sin θ-y 2cos θ=1表示焦点在y 轴上的椭圆.故选D.3.(2018·湖北八校联考)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59答案 B解析 由题意知a =3,b =5,c =2.设线段PF 1的中点为M ,则有OM ∥PF 2,∵OM ⊥F 1F 2,∴PF 2⊥F 1F 2,∴|PF 2|=b 2a =53.又∵|PF 1|+|PF 2|=2a =6,∴|PF 1|=2a -|PF 2|=133,∴|PF 2||PF 1|=53×313=513,故选B.4.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13答案 A解析 由题意知以A 1A 2为直径的圆的圆心为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2ab a 2+b2=a ,解得a =3b , ∴b a =13,∴e =ca =a 2-b 2a =1-⎝ ⎛⎭⎪⎫b a 2= 1-⎝ ⎛⎭⎪⎫132=63.故选A. 5.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率为( )A.32B.22C.12D.14答案 C解析 因为椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),所以c 2=a 2-b 2=m 2+n 2.因为c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,所以c 2=am,2n 2=2m 2+c 2,所以m 2=c 4a 2,n 2=c 4a 2+c 22,所以2c 4a 2+c 22=c 2,化为c 2a 2=14,所以e =c a =12.故选C.6.(2017·荔湾区期末)某宇宙飞船运行的轨道是以地球中心为一焦点的椭圆,测得近地点距地面m 千米,远地点距地面n 千米,地球半径为r 千米,则该飞船运行轨道的短轴长为( )A .2(m +r )(n +r )千米 B.(m +r )(n +r )千米 C .2mn 千米 D .mn 千米答案 A解析 ∵某宇宙飞船的运行轨道是以地球的中心F 2为一个焦点的椭圆,设长半轴长为a ,短半轴长为b ,半焦距为c , 则近地点A 距地心为a -c ,远地点B 距地心为a +c . ∴a -c =m +r ,a +c =n +r , ∴a =m +n 2+r ,c =n -m 2.又∵b 2=a 2-c 2=⎝ ⎛⎭⎪⎫m +n 2+r2-⎝ ⎛⎭⎪⎫n -m 22=mn +(m +n )r +r 2=(m +r )(n +r ).∴b =(m +r )(n +r ),∴短轴长为2b =2(m +r )(n +r )千米,故选A.7.(2017·九江期末)如图,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆与该椭圆左半部分的两个交点,且△F 2AB 是等边三角形,则该椭圆的离心率为( )A.32B.12C.3-1D.22答案 C解析 连接AF 1,∵F 1F 2是圆O 的直径,∴∠F 1AF 2=90°, 即F 1A ⊥AF 2,又∵△F 2AB 是等边三角形,F 1F 2⊥AB , ∴∠AF 2F 1=12∠AF 2B =30°, 因此,在Rt △F 1AF 2中,|F 1F 2|=2c , |F 1A |=12|F 1F 2|=c ,|F 2A |=32|F 1F 2|=3c .根据椭圆的定义,得2a =|F 1A |+|F 2A |=(1+3)c ,解得a =1+32c ,∴椭圆的离心率为e =ca =3-1.故选C.8.(2018·郑州质检)椭圆x 25+y 24=1的左焦点为F ,直线x =a 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55B.655C.855D.455答案 C解析 设椭圆的右焦点为E ,由椭圆的定义知△FMN 的周长为L =|MN |+|MF |+|NF |=|MN |+(25-|ME |)+(25-|NE |).因为|ME |+|NE |≥|MN |,所以|MN |-|ME |-|NE |≤0,当直线MN 过点E 时取等号,所以L =45+|MN |-|ME |-|NE |≤45,即直线x =a 过椭圆的右焦点E 时,△FMN 的周长最大,此时S △FMN =12×|MN |×|EF |=12×2×45×2=855,故选C.9.如图所示,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC ,BD ,设内层椭圆方程为x 2a 2+y 2b 2=1(a >b >0),若直线AC 与BD 的斜率之积为-14,则椭圆的离心率为( )A.12B.22 C.32 D.34答案 C解析 设外层椭圆方程为x 2(ma )2+y 2(mb )2=1(a >b >0,m >1),则切线AC 的方程为y =k 1(x -ma ),切线BD 的方程为y =k 2x +mb ,则由⎩⎪⎨⎪⎧y =k 1(x -ma ),(bx )2+(ay )2=a 2b 2,消去y ,得(b 2+a 2k 21)x 2-2ma 3k 21x +m 2a 4k 21-a 2b 2=0.因为Δ=(2ma 3k 21)2-4(b 2+a 2k 21)(m 2a 4k 21-a 2b 2)=0,整理,得k 21=b 2a 2·1m 2-1. 由⎩⎪⎨⎪⎧y =k 2x +mb ,(bx )2+(ay )2=a 2b 2,消去y ,得(b 2+a 2k 22)x 2+2a 2mbk 2x +a 2m 2b 2-a 2b 2=0,因为Δ2=(2a 2mbk 2)2-4×(b 2+a 2k 22)(a 2m 2b 2-a 2b 2)=0,整理,得k 22=b 2a 2·(m 2-1).所以k 21·k 22=b 4a 4.因为k 1k 2=-14,所以b 2a 2=14,e 2=c 2a 2=a 2-b 2a 2=34,所以e =32,故选C.10.(2018·永康市模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)和圆x 2+y 2=b 2,若椭圆C 上存在点P ,使得过点P 引圆O 的两条切线,切点分别为A ,B ,满足∠APB =60°,则椭圆的离心率e 的取值范围是( )A .0<e ≤32 B.12≤e <1 C.32<e <1 D.32≤e <1答案 D解析 由椭圆C :x 2a 2+y 2b 2=1(a >b >0)焦点在x 轴上, 连接OA ,OB ,OP ,依题意,O ,P ,A ,B 四点共圆, ∵∠APB =60°,∠APO =∠BPO =30°, 在直角三角形OAP 中,∠AOP =60°, ∴cos ∠AOP =b |OP |=12,∴|OP |=b12=2b ,∴b <|OP |≤a ,∴2b ≤a ,∴4b 2≤a 2, 由a 2=b 2+c 2,即4(a 2-c 2)≤a 2,∴3a 2≤4c 2,即c 2a 2≥34,∴e ≥32,又0<e <1, ∴32≤e <1,∴椭圆C 的离心率的取值范围是32≤e <1.故选D. 二、填空题11.(2017·湖南东部六校联考)设P ,Q 分别是圆x 2+(y -1)2=3和椭圆x 24+y 2=1上的点,则P ,Q 两点间的最大距离是________.答案 733解析 依据圆的性质可知,P ,Q 两点间的最大距离可以转化为圆心到椭圆上点的距离的最大值加上圆的半径3,设Q (x ,y ),则圆心(0,1)到椭圆上点的距离为d =x 2+(y -1)2=-3y 2-2y +5=-3⎝ ⎛⎭⎪⎫y +132+163,∵-1≤y ≤1,∴当y =-13时,d 取最大值433,所以P ,Q 两点间的最大距离为d max +3=733.12.(2018·广州二测)已知中心在坐标原点的椭圆C 的右焦点为F (1,0),点F 关于直线y =12x 的对称点在椭圆C 上,则椭圆C 的方程为________.答案 5x 29+5y 24=1解析 设F (1,0)关于直线y =12x 的对称点为(x ,y ),则⎩⎨⎧0+y 2=12×1+x 2,y -0x -1×12=-1,解得⎩⎪⎨⎪⎧x =35,y =45,由于椭圆的两个焦点为(-1,0),(1,0),所以2a =⎝ ⎛⎭⎪⎫35-12+⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫35+12+⎝ ⎛⎭⎪⎫452=655,a =355,又c =1,所以b 2=a 2-c 2=95-1=45,所以椭圆C 的方程为x 295+y 245=1,即5x 29+5y 24=1.13.(2018·江西五市联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),A ,B 为椭圆上的两点,线段AB 的垂直平分线交x 轴于点M ⎝ ⎛⎭⎪⎫a 5,0,则椭圆的离心率e 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫55,1 解析 设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x 1-a 52+y 21=⎝ ⎛⎭⎪⎫x 2-a 52+y 22,x 21a 2+y21b 2=1,x 22a 2+y 22b2=1,即⎩⎪⎨⎪⎧2a 5(x 1-x 2)=x 21-x 22+y 21-y 22,y 21=b 2-b2a 2x 21,y 22=b 2-b 2a2x 22,所以2a 5(x 1-x 2)=a 2-b 2a 2(x 21-x 22),所以2a 35(a 2-b 2)=x 1+x 2.又-a ≤x 1≤a ,-a ≤x 2≤a ,x 1≠x 2,所以-2a <x 1+x 2<2a ,则2a 35(a 2-b 2)<2a ,即b 2a 2<45,所以e 2>15.又0<e <1,所以55<e <1. 14.(2016·江苏高考)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案 63解析 由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c,0),∴BF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2,CF →=⎝⎛⎭⎪⎫c -32a ,-b 2,由∠BFC =90°,可得BF →·CF→=0, 所以⎝⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0,c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2, 所以c 2a 2=23,则e =c a =63.B 级三、解答题15.(2018·安徽合肥三校联考)已知椭圆的中心在原点,焦点在x 轴上,离心率为22,且椭圆经过圆C :x 2+y 2-4x +22y =0的圆心C .(1)求椭圆的方程;(2)设直线l 过椭圆的焦点且与圆C 相切,求直线l 的方程. 解 (1)圆C 方程化为(x -2)2+(y +2)2=6, 圆心C (2,-2),半径r = 6. 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则⎩⎨⎧4a 2+2b 2=1,1-⎝ ⎛⎭⎪⎫b a 2=⎝ ⎛⎭⎪⎫222,所以⎩⎪⎨⎪⎧a 2=8,b 2=4.所以所求的椭圆方程是x 28+y 24=1.(2)由(1)得椭圆的左、右焦点分别是F 1(-2,0),F 2 (2,0), |F 2C |=(2-2)2+(0+2)2=2<r = 6.F 2在圆C 内,故过F 2没有圆C 的切线,所以直线l 过焦点F 1. 设l 的方程为y =k (x +2),即kx -y +2k =0, 点C (2,-2)到直线l 的距离为d =|2k +2+2k |1+k 2, 由d =6,得|2k +2+2k |1+k2= 6. 化简,得5k 2+42k -2=0,解得k =25或k =- 2.故l 的方程为2x -5y +22=0或2x +y +22=0.16.(2018·陕西咸阳模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),且离心率e =32.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求△P AB 面积的最大值.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2.又椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1), ∴4a 2+1b 2=1.∴a 2=8,b 2=2. 故所求椭圆方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y 22=1,整理得x 2+2mx +2m 2-4=0.∵Δ=4m 2-8m 2+16>0,解得|m |<2. ∴x 1+x 2=-2m ,x 1x 2=2m 2-4. 则|AB |=1+14×(x 1+x 2)2-4x 1x 2=5(4-m 2).点P 到直线l 的距离d =|m |1+14=2|m |5. ∴S△P AB=12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+4-m 22=2.而且仅当m 2=2,即m =±2时取得最大值. ∴△P AB 面积的最大值为2.17.(2018·兰州模拟)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(-2,0),点B (2,2)在椭圆C 上,直线y =kx (k ≠0)与椭圆C 交于P ,Q 两点,直线AP ,AQ 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0), ∵椭圆的左焦点为F 1(-2,0),∴a 2-b 2=4. ∵点B (2,2)在椭圆C 上,∴4a 2+2b 2=1, 解得a 2=8,b 2=4, ∴椭圆C 的方程为x 28+y 24=1.(2)依题意点A 的坐标为(-22,0),设P (x 0,y 0)(不妨设x 0>0),则Q (-x 0,-y 0),由⎩⎨⎧y =kx ,x 28+y 24=1,得x 0=221+2k 2,y 0=22k1+2k2, ∴直线AP 的方程为y =k1+1+2k 2(x +22), 直线AQ 的方程为y =k1-1+2k2(x +22), ∴M ⎝ ⎛⎭⎪⎪⎫0,22k 1+1+2k 2,N ⎝ ⎛⎭⎪⎪⎫0,22k 1-1+2k 2, ∴|MN |=⎪⎪⎪⎪⎪⎪⎪⎪22k 1+1+2k2-22k 1-1+2k 2=22(1+2k 2)|k |. 设MN 的中点为E ,则点E 的坐标为⎝⎛⎭⎪⎫0,-2k , 则以MN 为直径的圆的方程为x 2+⎝⎛⎭⎪⎫y +2k 2=2(1+2k 2)k 2,即x 2+y 2+22k y =4, 令y =0得x =2或x =-2,即以MN 为直径的圆经过两定点P 1(-2,0),P 2(2,0).18.(2018·湖南十校联考)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.解 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3), 化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3).(2)证明:由题意知,M ,N 是椭圆C 上不同于A ,B 的两点,且AP ∥OM ,BP ∥ON ,则直线AP ,BP 的斜率必存在且不为0.因为AP ∥OM ,BP ∥ON ,所以k OM ·k ON =k AP ·k BP =-23.设直线MN 的方程为x =my +t ,代入椭圆方程x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,①设M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1,y 2是方程①的两根,所以y 1+y 2=-4mt 3+2m 2,y 2y 2=2t 2-63+2m 2. 又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2, 所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3. 又S △MON =12|t ||y 1-y 2|=12·|t |-24t 2+48m 2+723+2m 2, 所以S △MON =26t 24t 2=62,即△MON 的面积为定值62.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中平面几何(上海教育出版社叶中豪)知识要点三角形的特殊点重心,外心,垂心,内心,旁心,类似重心,九点圆心,Spieker点,Gergonne点,Nagel点,等力点,Fermat点, Napoleon点, Brocard点,聚点,切聚点,X点,Tarry点,Steiner点,Soddy点,Kiepert双曲线特殊直线、圆Euler线,Lemoine线,极轴,Brocard轴,九点圆,Spieker圆,Brocard圆,Neuberg圆,McCay圆,Apollonius圆,Schoute圆系,第一Lemoine圆,第二Lemoine圆,Taylor圆,Fuhrmann圆特殊三角形中点三角形,垂三角形,切点三角形,切线三角形,旁心三角形,弧中点三角形,反弧中点三角形,第一Brocard三角形,第二Brocard三角形,D-三角形,协共轭中线三角形相关直线及相关三角形Simson线,垂足三角形,Ceva三角形,反垂足三角形,反Ceva三角形重心坐标和三线坐标四边形和四点形质点重心,边框重心,面积重心,Newton线,四点形的核心,四点形的九点曲线完全四边形Miquel点,Newton线,垂心线,外心圆,Gauss-Bodenmiller定理重要轨迹平方差,平方和,Apollonius圆三角形和四边形中的共轭关系等角共轭点,等角共轭线,等截共轭点,等截共轭线几何变换及相似理论平移,旋转(中心对称),对称,相似和位似,相似不动点,逆相似轴,两圆外位似中心及内位似中心Miquel定理内接三角形,外接三角形,Miquel点根轴圆幂,根轴,共轴圆系,极限点反演反演,分式线性变换(正定向和反定向)配极极点与极线,共轭点对,三线极线及三线极点,垂极点射影几何点列的交比,线束的交比,射影几何基本定理,调和点列与调和线束,完全四边形及完全四点形的调和性, Pappus定理,Desargues定理,Pascal 理,Brianchon定理著名定理三大作图问题,勾股定理,黄金分割,鞋匠的刀,P’tolemy定理,Menelaus定理,Ceva定理,Stewart定理,Euler线,Fermat- Torricelli问题Fagnano- Schwarz问题,Newton线,Miquel定理,Simson线, Steiner定理,九点圆,Feuerbach定理,Napoleon定理,蝴蝶定理,Morley定理Mannheim定理例题和习题1.以△ABC的AB、AC两边向形外作正方形ABEP和ACFQ,AD是BC边上的高。

求证:直线AD、BF CE三线共点。

2.以△ABC的AB、AC两边为直角边,向两侧作等腰直角三角形ABD和ACE,使∠ABD=∠ACE=90°求证线段DE的中点的位置与顶点A的位置无关。

3.已知梯形ABCD中,AD∥BC。

分别以两腰AB、CD为边向外侧作正方形ABGE和正方形DCHF。

连接EF,设线段EF的中点为M。

求证:MA=MD。

4.△ABC中,AM是中线,H是垂心,N是AH中点,过A作外接圆切线,交对边于D点。

求证:ND⊥AM (06061602.gsp)5.△ABC中,D是BC边上一点,设O、O1、O2分别是△ABC、△ABD、△ACD的外心,求证:A、O、O1、O2四点共圆。

(Salmon定理)6.△ABC中,D是BC边上一点,设O、O1、O2分别是△ABC、△ABD、△ACD的外心,O′是A、O、O1、O2四点所共圆(Salmon圆)的圆心。

求证:(1)O′D⊥BC的充要条件是:AD恰好经过△ABC的九点圆心!B C(2)记△ABC的九点圆心为N i 。

作O′E⊥BC,垂足为E。

则N i E∥AD!(06051705.gsp) (06052901.gsp)B C7.四边形ABCD中,P点满足∠PAB=∠CAD,∠PCB=∠ACD,O1、O2分别是△ABC、△ADC的外心。

求证:△PO1B∽△PO2D。

(06060301.gsp)D8.设I是圆外切四边形ABCD的内心,求证:△IAB,△IBC,△ICD,△IDA的垂心共线。

9.已知凸四边形ABCD满足:AB+AD=BC+CD,延长BA,CD交于E点,延长BC,AD交于F点。

求证:EB+ED=FB+FD(或EA+EC=FA+FC)。

(05123102.gsp)E10.(06.8.9)设A、B、C、D是椭圆22221x ya b+=上四点。

若直线AB、CD的斜率之积22AB CDbk ka=,则直线AC、BC或直线AD、BC的斜率之积也必等于22ba。

(注:这时经过A、B、C、D四点的任意二次曲线的离心率必不小于椭圆22221x ya b+=的离心率──ca。

)(06080901.gsp)(06081201.gsp)1.在△ABC中,D是BC边上一点,设O1、O2分别是△ABD、△ACD的外心,O′是经过A、O1、O2三点的圆之圆心。

求证:O′D⊥BC的充要条件是:AD恰好经过△ABC的九点圆心。

B C【证明】取△ABC的外心O,则熟知A、O、O1、O2四点共圆(Salmon圆)。

易知△AO1O2∽△ABC,且O1O2是AD的垂直平分线。

作顶点A关于BC边的对称点A′,易看出△AO′D∽△AOA′。

设BC边高的垂足为G,再取AO连线的中点L,则LG 是△AOA′的中位线,进而知△AO′D∽△ALG。

得∠O′DA=∠LGA。

……………①再作外心O关于BC的对称点O′,由AH=2OM=OO′知A O′经过九点圆心Ni。

(注:△AHNi≌△O′ONi)由LM∥A O′知∠ADC=∠LMG;在直角梯形AOMG中,得∠LMG=∠LGM。

故∠ADC=∠LGM。

……………②而∠LGM+∠LGA=90°。

将①、②代入得∠O′DA+∠ADC=90°。

∴ O ′D ⊥BC 。

2.在△ABC 中,D 是BC 边上一点,设O 1、O 2分别是△ABD 、△ACD 的外心,O ′是经过A 、O 1、O 2三点的圆之圆心。

记△ABC 的九点圆心为N i 。

作O ′E ⊥BC ,垂足为E 。

则N i E ∥AD 。

(叶中豪提供)B C【证明】作LK ⊥AH 。

由AH =2OM ,Ni F =(OM +HG )/2易知AK =Ni F 。

……………① 又因O ′L 在BC 上的射影是EF ,而AL 在AG 上的射影是AK ,且两者夹角相等(都等于12B C ∠-∠),故O L ALEF AK'=。

……………② 由①、②知Rt △AO ′L ∽Rt △Ni EF 。

得∠AO ′L =∠Ni EF 。

……………③ME B C而由下图,又易知∠AO ′L =∠ADC 。

……………④ 由③、④得∠Ni EC =∠ADC , ∴ Ni E ∥AD 。

B C3.△ABC 中,AH 是BC 边上的高,D 是直线BC 上任一点。

O 、O 1、O 2分别是△ABC 、△ABD 、△ACD 的外心,N 、N 1、N 2分别是△ABC 、△ABD 、△ACD 的九点圆心。

设O ′是A 、O 、O 1、O 2所共圆(Salmon 圆)的圆心,作O ′E ⊥BC ,垂足为E 。

则H 、E 、N 、N 1、N 2五点共圆。

(闵飞提供)【证明】引理△ABC 中,记外心O 关于BC 边的对称点为O ′,则九点圆心Ni 是A O ′的中点。

(证略)O'C如下图,作A 、O 、O 1、O 2诸点关于BC 边的对称点,这些对称点仍构成共圆四边形。

再以A 点为位似中心,作1/2的位似变换,即可知所得到点H 、N 、N 1、N 2一定共圆。

(且顺便得知所共圆的大小恰是Salmon 圆的一半!)再在Salmon 圆上取A ″,使AA ″∥BC 。

因此O ′E 所在直线是AA ″的中垂线。

作A ″关于BC 边的对称点A ″′。

易知AA ″′的中点恰是E ,于是E 也在上述位似后的圆上。

5.四边形ABCD中,P点满足∠PAB=∠CAD,∠PCB=∠ACD,O1、O2分别是△ABC、△ADC的外心。

求证:△PO1B∽△PO2D。

(叶中豪提供)D【证法1】(田廷彦提供)B如上图,延长CP 交△ABC 的外接圆于Q 。

连接QA 、QB 、QO 1、AO 2。

在等腰△O 1BQ 和等腰△O 2AD 中,由于∠BO 1Q =2∠BCQ =2∠ACD =∠AO 2D ,故△O 1BQ ∽△O 2AD 。

………① 又在△PAQ 中,由正弦定理()()()()2112sin sin sin sin sin sin sin sin sin 180/sin sin sin /PAB BAQ DAC BCQ DAC DCA PQ PAQ PA PQA CBA CBA CBA CDA AC R R CDA CBACBA AC R R ∠+∠∠+∠∠+∠∠====∠∠∠∠-∠∠====∠∠其中R 1、R 2分别是△BAC 和△DAC 的外接圆半径。

而12sin BQ R BCQ =∠,22sin DA R ACD =∠, 故12R BQ DA R =。

由此PQ BQ PA DA=, 又∠BQP =∠BAC =∠PAD ,∴ △PQB ∽△PAD 。

………②由①、②,即可知O 1、O 2是相似三角形PQB 和PAD 中的对应点,从而得△PBO 1∽△PDO 2。

证毕。

【证法2】(柳智宇提供)柳智宇证法如下图,延长AP 、CP 分别交△ACD 的外接圆于C ′、A ′。

首先证明△DA ′C ′∽△BAC ,而O 1、O 2分别是这两个三角形的外心。

然后说明P 是这对相似三角形中的自对应点,从而△PBO 1∽△PDO 2(具体过程略)。

【证法3】(邓煜提供)见下图,在AB 上取点Q ,使得△APQ ∽△ADC (具体过程略)。

C邓煜证法重心坐标{}123::μμμ其余三点的坐标分别为:{}123::μμμ-,{}123::μμμ-,{}123::μμμ-。

直线d ,d 1,d 2,d 3的坐标分别为:123111::μμμ⎡⎤⎢⎥⎣⎦,123111::μμμ⎡⎤-⎢⎥⎣⎦,123111::μμμ⎡⎤-⎢⎥⎣⎦,123111::μμμ⎡⎤-⎢⎥⎣⎦。

易算出Newton 线d 0的坐标为:222123111::μμμ⎡⎤⎢⎥⎣⎦。

相关文档
最新文档