西安电子科技大学讲义-随机过程

合集下载

电子科技大学随机过程覃思义sjgc课件

电子科技大学随机过程覃思义sjgc课件
选择合适的先验分布是贝叶斯分 析中的关键问题,且贝叶斯分析 可能对先验信息的依赖较强。
06
随机过程在通信中的 应用
信号检测与估计
信号检测
在通信系统中,信号检测是接收端对发送端发送的信号进行识别和判断的过程。随机过 程理论在信号检测中发挥了重要作用,通过对信号的统计特性进行分析,实现信号的有
效检测。
VS
常见的多用户检测算法包括匹配滤波 器、最小均方误差、最大似然等,这 些算法在理论上均可以利用随机过程 理论进行推导和优化。
无线通信中的信号处理
无线通信环境复杂多变,信号处理技术对于保证通信系统的 稳定性和可靠性至关重要。利用随机过程理论,可以对无线 信道中的噪声、干扰等影响因素进行分析和控制,提高信号 传输的质量和可靠性。
数学期望的性质
数学期望具有线性性质、可加性 和可交换性等性质,这些性质在 计算和推导中具有重要应用。
数学期望的运算
数学期望的运算包括求和、乘法 、极限等运算,这些运算在计算 随机变量的数学期望时是必要的 。
方差与协方差
方差的定义
方差是随机变量与其数学期望的差的平方的平均值, 用于描述随机变量取值分散的程度。
在数字信号处理、控制系统分析和离 散时间系统模拟等领域中广泛应用, 通过Z变换可以将离散时间序列转换 为复平面上的函数,从而更好地分析 系统的频率响应和稳定性。
05
随机过程优化
最优估计理论
最小方差无偏估计
在所有无偏估计中,具有最小方差的估计被称为最小方差无偏估 计。
一致性估计
随着样本量的增加,估计值会逐渐接近真实值,这种估计被称为一 致性估计。
协方差的定义
协方差是两个随机变量取值之间线性关系的度量,其 值可以为正、负或零。

随机过程[2]

随机过程[2]
随机过程——西安电子科技大学数学系 冯海林
由以上定义可得 (1) mZ(t)=mX(t)+jmY(t) t∈T
(2) DZ(t)= DX(t)+DY(t)
t∈T
(3) CX(s,t)=RZ(s,t)-mZ(s)mZ(t) s,t∈T
随机过程——西安电子科技大学数学系 冯海林
举例
Zt = ∑ X k e j ( ω t +Φk ) ,t ∈ R , 其中ω0为正常数, n为 设

mX (t ) = E[ X t ] = 0
− ∞ < t < +∞
RX ( s, t ) = E[ X s X t ]
= E[ A ]cos ω s cos ωt + E[ AB](sin ω s cos ωt + cos ω s sin ωt )
2
+ E[ B 2 ]sin ω s sin ωt 2 = σ cos ω (t − s ) − ∞ < s, t < +∞
随机过程——西安电子科技大学数学系 冯海林
5. 均方值函数 设X={Xt , t∈T}是一实值随机过程,对任意t∈T,若 E[Xt]2存在 则称E[Xt]2为随机过程X的均方值函数,记为ΦX(t).即 ΦX(t)= E[Xt]2 t∈T
随机过程——西安电子科技大学数学系 冯海林
随机过程的数字特征有如下关系 CX(s,t)=RX(s,t)-mX(s)mX(t) DX(t)=CX(t,t) ΦX(t)=RX(t,t) t∈T t∈T s,t∈T
0
n
固定正整数, X 1 , X 2 , L , X n , Φ1 , Φ 2 , L , Φ n 是相互独立 的实随机变量,且 EX k = 0, DX k = σ k2 , Φk~U[0,2π], k=1,2,…,n. 计算S.P.{Zt ,t∈R}的均值函数和相关函数.

[西安电子科大通信原理讲义]07通信原理第七讲(可编辑)

[西安电子科大通信原理讲义]07通信原理第七讲(可编辑)

《通信原理》第七讲§2.4 随机过程通过线性系统通信系统中的信号或噪声一般都是随机的,因此在以后的讨论中我们必然会遇到这样的问题:随机过程通过系统(或网络)后,输出过程将是什么样的过程?v t 等于输入信号v t 与系统的单位冲击响应h t 的卷线性系统的响应 0 i 积,即∞v t v t ?h t v τ h t ?τ dτ(2.4-1 )0 i ∫?∞ i若h t ?H ωv t ?V ω,v t ?V ω,,则有0 0 i iV ωH ωV ω(2.4-2 )0 i若线性系统是物理可实现的,则tv t v τh t ?τdτ(2.4-3 )0 ∫?∞ i或∞v t h τv t ?τdτ(2.4-4 )0 ∫0 i如果把v t 看作是输入随机过程的一个样本,则v t 可看作是输出随机过i程的一个样本。

显然,输入过程ξ t 的每个样本与输出过程ξ t 的相应样本之i间都满足式(2.4-4 )的关系。

这样,就整个过程而言,便有∞ξt h τξt ?τdτ(2.4-5)0 ∫0 i假定输入ξ t 是平稳随机过程,现在来分析系统的输出过程ξt 的统计特i性。

ξ t一、输出过程 0 的数学期望∞∞∞E [ξ t ] E [ h τ ξ t ?τ dτ ] h τ E [ξt ?τ ]dτ a ? h τ dτ0 ∫0 i ∫0 i ∫0因为∞H ω∫0 h t ej ωt dt求得∞H 0 ∫0 h t dt所以E [ξ t ] a ?H 0 (2.4-6)由此可见, 输出过程的数学期望等于输入过程的数学期望与直流传递函数H 0的乘积,且E[ξ t ]与t无关。

ξ t二、输出过程 0 的自相关函数R t ,t E [ t t ]+τ ξ ξ +τ0 1 1 0 1 0 1[ ∞∞ ]E h α ξ t ?α dα h β ξ t+τ?β dβ∫ i 1 ∫ i10 0∞∞h α h β E [ξ t ?α ξ t+τ?β ]dαdβ∫∫ i 1 i 10 0根据平稳性E [ξ t ?α ξ t +τ?β ] R τ+α?βi 1 i 1 i于是∞∞R t ,t +τ h α h β R τ+α?β dαdβR τ(2.4-7)0 1 1 ∫∫i 00 0可见, ξ t 的自相关函数只依赖时间间隔τ而与时间起点t 无关。

随机过程讲义 第一章

随机过程讲义 第一章

第一章 随机过程及其分类在概率论中,我们研究了随机变量,n 维随机向量。

在极限定理中我们研究了无穷多个随机变量,但只局限在它们之间相互独立的情形。

将上述情形加以推广,即研究一族无穷多个、相互有关的随机变量,这就是随机过程。

1. 随机过程的概念定义:设),,(P ∑Ω是一概率空间,对每一个参数T t ∈,),(ωt X 是一定义在概率空间),,(P ∑Ω上的随机变量,则称随机变量族});,({T t t X X T ∈=ω为该概率空间上的一随机过程。

其中R T ⊂是一实数集,称为指标集或参数集。

随机过程的两种描述方法: 用映射表示T X ,R T t X →Ω⨯:),(ω即),(⋅⋅X 是一定义在Ω⨯T 上的二元单值函数,固定T t ∈,),(⋅t X 是一定义在样本空间Ω上的函数,即为一随机变量;对于固定的Ω∈ω,),(ω⋅X 是一个关于参数T t ∈的函数,通常称为样本函数,或称随机过程的一次实现,所有样本函数的集合确定一随机过程。

记号),(ωt X 有时记为)(ωt X 或简记为)(t X 。

参数T 一般表示时间或空间。

常用的参数一般有:(1)},2,1,0{0 ==N T ;(2)},2,1,0{ ±±=T ;(3)],[b a T =,其中a 可以取0或∞-,b 可以取∞+。

当参数取可列集时,一般称随机过程为随机序列。

随机过程});({T t t X ∈可能取值的全体所构成的集合称为此随机过程的状态空间,记作S 。

S 中的元素称为状态。

状态空间可以由复数、实数或更一般的抽象空间构成。

实际应用中,随机过程的状态一般都具有特定的物理意义。

例1:抛掷一枚硬币,样本空间为},{T H =Ω,借此定义:⎩⎨⎧=时当出现,时当出现T 2H ,cos )(t t t X π ),(∞+-∞∈t 其中2/1}{}{==T P H P ,则)},(,)({∞+-∞∈t t X 是一随机过程。

西安电子科技大学讲义 随机过程的变换和滤波

西安电子科技大学讲义 随机过程的变换和滤波

第五章随机过程的变换和滤波概率论的主要应用之一,是从可利用的资源汇总,对随机变量做出估计。

一般将,这种问题的最优解是很难分析的。

然后,若只允许对数据进行线性运算,以及“最优性”是在均方意义下理解的话,那么问题就大大简化,这就是线性均方估计问题。

这个问题最早由维纳考虑并解决,与此同时,柯尔莫哥洛夫也独立的完成了此项工作。

他的解法完全基于正交性原理。

可简单的将此原理推广到随机过程;因而,各种看起来似乎没有关系的估值问题,都可以作为这个原理的明显应用来处理,而不需要用到变分法或任何其它高级的工具,也不需要一次又一次的重复地解同样的问题。

在下面的讨论中,我们将讨论随机信号的最优处理问题。

分别针对时间连续和时间离散的信号,将介绍在最小均方意义下具有最优逼近特性的变换。

随后我们讨论离散变化,最有线性变化和最优线性滤波的关系。

5.1 时间离散Karhunen-Loeve 变换在所有的线性变换中, Karhunen-Loeve 变换(KL变换)是一个在最小均方意义下最佳逼近随机过程的变换。

同时,KL变换是一个具有不相关系数的信号展开。

这种特性在很多数字信号处理方面如编码和模式识别有重要的应用。

这种变换适用于连续时间和离散时间信号处理。

本节将详细讨论离散情况。

不失一般性, 考虑零均值实随机过程12,.n n x x x x R x ⎛⎫ ⎪ ⎪=∈ ⎪ ⎪⎝⎭(5.1) 设 12{,,,}n U u u u =是 n 维实向量空间 n R 的一组正交基, 随机过程 x可被表示为:x U α=(5.2)这里 U 可看成由正交基构成的正交矩阵, 12(,,,)T n a ααα=。

可以看出:.TU x α=(5.3)假定:(),,1,2,,.i j j ij E i j n ααλδ== (5.4) 这里 ,1,2,,j i n λ= 是未知的实数, 且 0.j λ≥ 由(5.3)和 (5.4)可知(),,1,2,,.T T i j j ij E u xx u i j n λδ==(5.5)令:{}Tx x R E xx =(5.6)那么, (5.5)可被写成:,,1,2,,.T i j j ij x x u R u i j n λδ==(5.7)通过观察,我们可发现下列方程的解,1,2,,j u j n =也满足方程(5,7).,1,2,,.j j j xxR u u j n λ==由于 x xR 是一个协方差矩阵,他的特征值问题具有下列特征值: 1. 特征值是实数。

电子科技大学 随机过程 覃思义 第一章1sjgc1.4

电子科技大学 随机过程 覃思义 第一章1sjgc1.4
j 0 i 0
m 1 n 1
若存在实数 I, 使对任意的ε> 0, 存在δ> 0, 只要
λ max {( xi 1 xi ), ( y j 1 y j )} δ
0 i n 1 0 j m 1
( 时, 对任意分点及 xi *,y j *) 的任意取法, 不等式
a f ( x )d [ g ( x )] a
电子科技大学
b b
3) 设α,β是任意常数,则
f ( x ) d [ g ( x )].
随机变量的数字特征
以上三个等式成立的意义是: 当等号右边存 在时, 左边也存在并相等. 4) 若a < c <b, 则有
a f ( x )dg ( x ) c b a f ( x ) dg ( x ) c f ( x ) dg ( x )
dF ( x ) F ( x ) p ( x ) 0 , dx
若R-S积分存在则



f ( x )dF ( x ) f ( x ) p ( x )dx


电子科技大学
随机变量的数字特征
二、二元R-S积分简介
假定二元函数 F ( x , y ) 满足下述条件: 1) 对于平面上任意矩形 a1 x b1 , a2 y b2 ,有
均成立.
则记
a xb c yd
f ( x , y )dF ( x , y ) lim σ
λ 0
lim f ( x i* , y * ) F ( xi , x i 1 ; y j , y j 1 ) I j
λ 0 j 0 i 0
m 1 n 1
称 积 分 I 为 f ( x, y ) 关 于 F ( x, y ) 在 矩 形 {( x, y ) : a x b, c y d } 上的 R-S 积分.

随机过程-电子科技大学-彭江燕 (1)

随机过程-电子科技大学-彭江燕 (1)

5.4 齐次马氏链的状态为揭示齐次马氏链的基本结构,需对其状态按概率特性进行分类,状态分类是研究n 步转移概率的极限状态的基础.EX.1设系统有三种可能状态E={1, 2 ,3},“1”表示系统运行良好, “2”表示系统运行正常,“3”表示系统失效.电子科技大学电子科技大学以X (n )表示系统在n 时刻的状态, 并设{X (n ),n ≥0}是一马氏链. 在没有维修及更换的条件下, 其自然转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10010110902012022017333231232221131211p p p p p p p p p P 由矩阵P 可见,从“1”或“2”出发经有限次转移后总能到达“3”状态,而一旦到达“3”状态则永远停留在“3”.状态“1”, “2”与状态“3”有不同的概率特性.状态“1”, “2”与状态“3”有不同的概率特性.一、刻画状态特性的几个特征量二、状态类型分类三、状态类型判别条件四、状态间的关系五、状态空间的分解电子科技大学一、刻画状态特性的几个特征量定义5.4.4,记及对1,≥∈∀n E j i },)0(11,)(,)({ˆ)(i X n k j k X j n X P f n ij =−≤≤≠==称为(n 步)首达概率.系统从状态“i ”出发经过n 步转移后首次到达状态“j ”的概率特别地称)(n ii f 为首返概率;5.4 齐次马氏链的状态电子科技大学∑∞==1)(n n ijf称为最终概率.定义5.4.5 自状态i 出发迟早(最终)到达j 的概率为})0()(,1{i X j n X n P f ij ==≥=使存在定理5.4.1(首达概率表示式)有,及对1,≥∈∀n E j i ;10)1)(≤≤n ij f 2) 首达概率可以用一步转移概率表示为为状态i 的最终返回概率.ii f ji i i j i j i i i j i n ij n n p p p f 1211112)(−−∑∑∑≠≠≠=电子科技大学j i i i j i ji i i j i n ij n n p p p f 1211112)(−−∑∑∑≠≠≠= 证1)显然ii 1i 2j2)分析示意图如下})0(1,,2,1,)(,)({)(i X n k j k X j n X P f n ij =−=≠== .)0(1,,2,1,})({,)(⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=−====∈≠i X n k i k X j n X P E i j i k k k ∪第1步第2步第n 步()01;n ij f ≤≤电子科技大学⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧===−==−≠≠≠−i X j n X i n X i X P n j i j i j i n )0(})(,)1(,,)1({11112 ∪∪∪()(),{()},1,2,,1(0).k n ij k i j f P X n j X k i k n X i ≠⎧⎫⎪⎪====−=⎨⎬⎪⎪⎩⎭∪∑∑∑≠≠≠−=j i ji j i n 112 })0()(,)1(,,)1({11i X j n X i n X i X P n ===−=− ji i i j i j i ii j i n n p p p 1211112−−∑∑∑≠≠≠=定义5.4.2 对j ∈E , 称})0(,)(,1:min{i X j n X n n T ij ==≥=为从i 到达j 的首达时间.注:若右边是空集, 则令T ij =∞.随机变量EX.2在股票交易过程中令状态空间为E ={-1, 0, 1}各状态分别代表“下跌”,“持平”,“上升”.若X (0)=0, 有使<<<<k n n n 21电子科技大学 ,1)(,,1)(,1)(21===k n X n X n X }0)0(,1)(:min{01===X n X n t k 则121},,,,min{n n n n k == 注1T ij 表示从i 出发首次到达j 的时间.T ii 表示从i 出发首次回到i 的时间.注2 T ij 与首达概率之间有关系式:,2,1,,,},)0({)1)(∞=∈===n E j i i X n T P f ij n ij.,},)0({)2E j i i X T P f ij ij ∈=∞<=若X (0)=0, 有使 <<<<k n n n 21续EX.1设系统有三种可能状态E ={1, 2 ,3}, “1”表示系统运行良好, “2”表示系统运行正常,“3”表示系统失效.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10010110902012022017333231232221131211p p p p p p p p p P T 13(1)1313{1(0)1}f P T X ====131,20p =ji i i j i j i i i j i n ij n n p p p f 1211112)(−−∑∑∑≠≠≠= 系统的工作寿命,有电子科技大学(2)1313{2(0)1}f P T X ===13{(0)1}P T n X ≥=研究首达概率和首达时间有实际工程意义.……13{(0)1}P T n X ≥=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10010110902012022017333231232221131211p p p p p p p p p P [0,],n 是系统在内运行的可靠性有1113122321,400p p p p =+=13{(0)1}k nP T k X ∞====∑()13n k nf∞==∑电子科技大学定理5.4.2概率与首达概率有关系式,任意步转移及对1,≥∈∀n E j i ∪∞==⊂==1}{})(,)0({m ij m T j n X i X 因证:⎭⎬⎫⎩⎨⎧====∞=∪∩1}{})(,)0({m ij m T j n X i X })(,)0({j n X i X ==故.)(1)()(m n jjnm m ijn ijpfp−=∑=电子科技大学})0()({)(i X j n X P P n ij===⎭⎬⎫⎩⎨⎧=====i X j n X m T P nm ij )0(})(,{1∪},)0()({})0({1m T i X j n X P i X m T P ij nm ij ======∑=⎭⎬⎫⎩⎨⎧====∞=∪∩1}{})(,)0({m ij m T j n X i X ∪nm ij m T j n X i X 1},)(,)0({=====})(,)0({j n X i X ==故电子科技大学马氏性})()({})0(,11,)(,)({1j m X j n X P i X m k j k X j m X P nm ==⋅=−≤≤≠==∑=})()({1)(j m X j n X P f nm m ij ===∑=()1{(0)}{()(0),}nn ijij ij m P P T m X i P X n j X i T m =======∑.)(1)(m n jjnm m ijpf−=∑=定义5.4.1使,若存在对1,,≥∈∀n E j i ,0)(>n ijp称自状态i 可达状态j ,记为.j i →定理5.4.3的充分必要条件是0>ij f .j i →证:必要性因01)(>=∑∞=m m ijij ff 至少存在一个n 使,有)(>n ijf ()()()1nn m n m ijijjjm pfp−==∑()(0)0n ijjj fP ≥>定义5.4.3称若,,0}{E j T P ij ∈=∞=∑∞===1)(][n n ijij ij nfT E μ为从状态i 出发, 到达状态j 的平均时间(平均步数).充分性因j i →使,存在1≥n 01)()()(>=∑=−nm m n jjm ijn ijpfp则在中至少有一个大于零,故)()1(,,n ijijff 01)(>=∑∞=m m ijij ff 特别当i=j 称jj μ为状态j 的平均返回时间.电子科技大学二、状态类型分类状态分类是研究n 步转移概率的极限状态的基础, 能有效地揭示其深刻的统计规律.续EX.1设系统有三种可能状态E ={1, 2 ,3},“1”表示系统运行良好, “2”表示系统运行正常,“3”表示系统失效.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=∞→100100100lim )(n n P该系统的状态“3”是吸收态, 经有限步均会被吸收, 直观分析可得有必要分析各种状态的类型.电子科技大学定义5.4.6对状态i ∈E , 最终返回概率为f ii ,若f ii <1,称状态i 是非常返的(或瞬时的).若f ii =1,称状态i 是常返的;若马氏链的每个状态都是常返的, 则称为常返马氏链.f ii =1表示系统从状态i 出发几乎必定会返回状态i .定义5.4.7对常返状态i ∈E , 平均返回时间为μii ,若μii <+∞, 称状态i 是正常返的;进一步, 根据常返状态的平均返回步数再划分为两类.注若μii = +∞, 称状态i 为零常返的。

随机过程讲义(第一章)

随机过程讲义(第一章)

P (Ω ) = 1 ;
对任意两两不交的至多可数集 {An } ⊂ F , P⎛ ⎜ U An ⎞ ⎟ = P ( An ) ⎝n ⎠ ∑ n
称 P(⋅) 为 F 上的概率测度, (Ω, F , P) 称为概率空间。
1
1.4 随机变量的概念 定义:设 (Ω, F , P ) 为一概率空间, X = X ( w) 为 Ω 上的一个实值函数,若对 任意实数 x ,X −1 ((−∞, x) ) ∈ F , 则称 X 为 (Ω, F , P ) 上的一个 (实) 随机变量。 称 F ( x) = P( X < x ) = P( X ∈ (−∞, x)) = P X −1 ((−∞, x) ) 为随机变量 X 的 分布 函数。 随 机 变 量 实 质 上 是 (Ω, F ) 到 (R, B ( R ) ) 上 的 一 个 可 测 映 射 ( 函 数 ) 。 记
_______
2
α 1 , α 2 Lα m , ∑∑ ϕ (t l − t k )α l α k ≥ 0 ;
l =1 k =1
m
m
5) ϕ ( w) 为 R n 上的连续函数。 6) 有限多个独立随机变量和的特征函数等于各自特征函数的乘积; 7) 设 X = (ξ1 , Lξ n ) 为 n 维 随 机 向 量 , 特 征 函 数 为 ϕ ( w1 ,L wn ) , 则
n→∞
敛到随机变量 X ;
2)
若 E X n 存在, 且 lim E X n − X
n→∞
p
p
则称 X 1 , X 2 , L X n ,L p 阶收敛到 = 0,
随机变量 X ,特别当 p = 2 ,称为均方收敛。
3) 4)
若 P lim X n = X = 1 ,称 X 1 , X 2 , L X n ,L 几乎必然收敛到随机变量 X 。

电子科技大学 随机过程 覃思义 第一章1sjgc1.3

电子科技大学 随机过程 覃思义 第一章1sjgc1.3

y1=g1(x1,…,xn) ,…, yk=gk(x1,…,xn)
则 Yi=gi(X1,…,Xn), ( i=1,2,…,k)是随机变量. (Y1,Y2,…,Yk)的联合分布函数为:
F ( y1 , y2 , , yk ) P{Y1 y1 , Y2 y2 , , Yk yk }
P{ g1 ( X 1 , , X n ) y1 , , g k ( X 1 , , X n ) yk }
电子科技大学
随机变量的函数
2)关于一个(或几个)随机变量的函数
3)二维随机变量的变换
定理1.3.1 设(X1, X2)的联合密度为f(x1, x2),若 函数 y1 g1 ( x1 , x 2 ); y2 g 2 ( x1 , x 2 ). 满足下述条件:
电子科技大学
随机变量的函数
f [ x1 ( y1 , y 2 ), x 2 ( y1 , y 2 )] J
电子科技大学
随机变量的函数
证 Y1, Y2是随机变量,其联合分布函数为
F ( y1 , y2 ) f ( x1 , x2 )dx1dx 2
D
其中 D {( x1 , x2 ) : g1 ( x1 , x2 ) y1 , g2 ( x1 , , y2 ), x 2 x 2 ( y1 , y2 ).
x1 y1 J x 2 y1 x1 y 2 0 x 2 y 2
② 有连续的一阶偏导数; ③Jacobi行列式
则Y1=g1(X1,X2), Y2=g2(X1,X2)的联合概率密度为
做积分变换
x1 x1 ( u1 , u2 ); x2 x2 ( u1 , u2 ).
y1

电子科技大学随机过程第一章讲解

电子科技大学随机过程第一章讲解

解 1) 已求得A=a时,X t 的条件概率密度为

f
Xt
A
(
x
a)

π 0,
1 ,
a2 x2
x a;
其它. 怎样求f Xt ( x)?
电子科技大学
19.6.2
f Xt ( x) f Xt ,A( x, a)da

f Xt A( x a) f A(a)da
的随机过程 Xt (), t,以T该 函数族 为其有限维分
布函数族.
电子科技大学
19.6.2
如何确定随机过程的分布?
Ex.1.1.5 设随机过程
Xt acos(t ), t R,
其中a, ω是正常数, 随机变量Θ~U(-π, π), 试求过程的一维概率密度.
解 : 利用特征函数法
电子科技大学
19.6.2
(布朗运动) 漂浮在液面的微小粒子,不断进行
杂乱无章的运动. 这种运动是由于大量随机的、
相互独立的分子碰撞的结果. 用(Xt, Yt)表示t 时 刻粒子的位置, 由于运动的无规则性, 当时间 t 改
变时Xt 和Yt 都是随机变量, 二维随机过程{(Xt, Yt), t ≥0}描述了粒子的运动过程.
若经无穷多次碰撞

{ω1(n) } {第n次碰撞后向左},
{ω(2n) } {第n次碰撞后向右},
随机变量序列
电子科技大学
19.6.2
X
n
(ω)

1, 1,
ω ω1(n);
ω

ω(n) 2
.
(n 1,2,)
则 Xnω: n 1,2, 描述了质点的随机运动.

随机过程-电子科技大学-彭江燕 (2)

随机过程-电子科技大学-彭江燕 (2)

第一章随机过程的基本概念§1.1 随机过程的定义及分布§1.2随机过程的数字特征§1.3 随机过程的基本类型§1.1 随机过程的定义及分布1.1.1 随机过程的直观背景观察研究随机现象随时间推移的演变过程.Ex.1从杂乱电讯号的一段观察{Y(t),0< t< T}中,研究是否存在某种确定或随机信号S(t )?过程检测Ex.2监听器上收到某人的话音记录{Z(t),α<t<β}试问他是否确实是追踪对象?过程识别Ex.3 人们记录下地球50年的气温数据探究:1. 气温有什么样的周期变化?2. 在气温周期变化规律下, 随时间的推移是否有变暖的趋势?Ex.4 雷达信号干扰,0t t τt X A S N t −=⋅+≥其中N t 是随时间变化的各种随机干扰的效应.A 反映信号经发射后的能量损失,τ则反映了雷达站与障碍物间距离. 由于各种随机干扰的存在, 雷达实际接收到的信号是某雷达站在t 时刻发出信号S t , 遇到障碍物后又反射回来, 接受到的发射信号为A·S t -τ, 其中抗干扰的重点是对反映干扰的这一随机过程N t 特性的研究.特点:关注对象是一族随时间或地点变化的随机变量.“一族”可指可列无限个,或不可列无限个.任务:将有限维随机向量的概念向“无限”推广.1.1.2 概率空间与随机向量(已介绍)电子科技大学1.1.3 随机过程定义,},)ω,({T t t X ∈定义1.1.8设给定概率空间(Ω,F , P )和指标集T , 若对每个t ∈T , 有定义在(Ω,F , P )上的随机变量与之对应. 称依赖于t 的随机变量族X t 为随机过程(随机函数).Ω∈ωωX t ),(记为},)ω({T t X t ∈,},{T t X t ∈.},)({T t t X ∈注指标集T 又称参数集或参数空间.电子科技大学当T =(1,2, …,n ),),,,(},)ω,({21n X X X T t t X "=∈随机向量当T =(1,2, …, n,…),),,(},)ω,({21"X X T t t X =∈时间序列当T ={(x , y ):a <x <b , c <y <d },},)ω,({T t t X ∈平面随机场,或多维指标集随机过程随机过程是n 维随机变量,随机变量序列的一般化,是随机变量X (t ), 的集合.T t ∈电子科技大学为随机过程的状态空间(或值域).随机过程可视为质点M 随时间推移所作的随机运动变化过程.},{T t X t ∈随机事件表示随机过程在时刻t时处于状态x.}{x X t =称集合},)(:{T t x X x E t ∈==ωEx.5质点布朗运动设质点在直线上随机游动, 经随机碰撞后各以1/2的概率向左或向右移动.若经无穷多次碰撞ωω()1()2{}{} {}{}t t t t ==记第次向左,第次向右,定义随机变量序列)1,2,(.ωω1,;ωω,1)ω()(2)(1"=⎪⎩⎪⎨⎧==−=t X t t t 则描述了直线上随机质点的运动.{}"1,2,:)ω(=t X t 其参数集T ={1,2,…}, 状态空间E ={-1, 1}.电子科技大学随机过程的理解}Ωω,:)ω,{(Ω∈∈=×T t t T 定义指标集和样本空间的积集随机过程是定义在积集上的二元函数:}),ω({T t X t ∈Ω×T )(,Ω∈∈=ω,),()ω(T t t X X t ω1) 对固定的是一个定义在概率空间(Ω, F , P ) 上的随机变量;,T t ∈Ω∈ω,)ω(t X 2)当固定作为时间变量的函数,是一个定义在T 上的普通函数.Ωω0∈T t ∈)ω,(0t x )(,Ω∈∈=ω,),()ω(T t t X X t ω即对于特定的试验条件随机过程是定义在积集上的二元函数:}),ω({T t X t ∈Ω×TX(t1,ω)X(t2,ω)X(t n,ω)x(t,ω1)x(t,ω2)x(t,ω3) t1t2t n当t 变化时, 构成一族随机变量.对不同的ω得到不同的确定性函数.电子科技大学电子科技大学ω2= 1.9164ω3= 2.6099ω1=5.4938对不同的ω得到不同的确定性函数.Ex.6 随机相位正弦波X t (ω) = αcos(βt +Θ), Θ~U(0, 2π)电子科技大学定义1.1.9对每一固定ω∈Ω, 称x t (ω)是随机过程相应于ω的样本函数。

第二章、随机过程的基本概念

第二章、随机过程的基本概念

{V (t),t 0}。 1、设已给概率空间(, F, P)及参数集T (,),则称
{X (,t), ,t T},
2020年5月6日星期三
机动 目录 上页 下页 返回 结束
第2页共51页
随机过程(西电版) 2.1 随机过程的定义
第2章 随机过程的基本概念
为该概率空间上的随机过程,简记为 {X (t),t T}。
随机过程(西电版)
2.4 复随机过程
第2章 随机过程的基本概念
设 {X (t),t T},{Y (t),t T}为两个实随机过程,则称
{Z(t) X (t) iY(t),t T}
为复随机过程.
1、复随机过程的数字特征 设复随机过程 {Z (t),t T} 称
(1)均值函数为 mZ (t) E[Z (t)] mX (t) imY (t);
x2
P
A
x1,
A 2
x2
PA x1, A 2x2
3•
x1 2x2
2•
P( P(
A A
x1), x1 2x2 ), x1
2
x2 2x2
1•



1 23
x1
0,
x1
2x2 ,
x1
1或x1
2x2 ,
x2
1 2
F
0,
3
;
x1,
x2
1 3
,
x1
2x2,1
x1
2或x1
2x2 ,
0,
3
;
x1,
x2
.
2020年5月6日星期三
机动 目录 上页 下页 返回 结束
第9页共51页
随机过程2(西.电2版随) 机过程的有限维分布函数族第2章 随机过程的基本概念

通信原理课件(西安电子科技大学版)2

通信原理课件(西安电子科技大学版)2

B(t1,t2)=E{[ξ(t1)-a(t1)][ξ(t2)-a(t2)]} =




[ x1 a(t1 )][x2 a(t2 )] f2(x1,x2; t1,t2)dx1dx2

式中,t1与t2是任取的两个时刻;a(t1)与a(t2)为在t1及
t2时刻得到的数学期望;f2(x1,x2; t1,t2)为二维概率密度函 数。相关函数定义为 B(t1, t2)=R(t1, t2)-a(t1)a(t2)
Rξη(t1, t2)=E[ξ(t1)η(t2)]

(2.1 - 12)
2.2平稳随机过程
2.2.1定义
所谓平稳随机过程,是指它的统计特性不随时间的推移而 变化。设随机过程{ξ(t),t∈T},若对于任意n和任意选定t1<t2 <…<tn, tk∈T, k=1, 2, …, n,以及h为任意值,且x1, x2, …, xn∈R,有
则称f2(x1,x2; t1,t2)为ξ(t)的二维概率密度函数。
同理,任给t1, t2, …, tn∈T, 则ξ(t)的n维分布函数被定义为 Fn(x1,x2,…,xn; t1,t2,…,tn)=P{ξ(t1)≤x1,ξ(t2)≤x2,…, ξ(tn)≤xn}
2 Fn ( x1, x2 ...;t1,t2 ...,tn ) f ( x1, x2 ..., xn ; t1, t2 ...,tn ) x1 x2 ...xn
任给两个时刻t1, t2∈T,则随机变量ξ(t1)和ξ(t2)构成一个二 元随机变量{ξ(t1), ξ(t2)},称F2(x1,x2; t1,t2)=P{ξ(t1)≤x1, ξ(t2)≤x2} (2.1 - 3) 为随机过程ξ(t)的二维分布函数。 如果存在

随机过程基本知识-西安电子科技大学

随机过程基本知识-西安电子科技大学
相互独立的随机变量序列 称N(t) 是参数为 Байду номын сангаас 的Poisson过程.
复合poisson过程
定义 设 {N(t),t≥0} 是参数为λ 的Poisson过程, {Yk.k=1,2,…}是一列独立同分布的随机变量序列, 且与 {N(t),t≥0}独立
令X (t ) Yk , t 0
t-s内发生的随机事件数.
② N(t)是非负整数


实例 1.电话交换台的呼叫次数 2.放射性裂变的质点数 3.发生故障而不能工作的机器数 4.通过交通路口的车辆数 5.来到某服务窗口的顾客数 ……….. 以上实例中的呼叫,质点,机器,车辆,顾客等也 统一叫做随机点
若计数过程 {N(t),t≥0} 满足
k 1
N (t )
称 {X(t),t≥0}为复合Poisson过程.
(4)连续时间连续状态 高斯过程(正态过程) T=R, S=R
设{X(t), t ∈T }是取实值的S.P. ,若对任意的n≥1 及t1,t2,…,tn∈T, {X(t1), X(t2), …, X(tn)}是n维正 态 随机变量, 则称S.P. {X(t), t ∈T}为正态过程或高斯过程
(3) n 2, 0=t0 <t1 < <tn < ,W (tn )-W (tn -1 ), W (t2 )-W (t1 ),W (t1 )-W (t0 ) 相互独立
(4)随机过程W具有连续的样本轨道
2 1 的BM也称为标准Brown运动

根据轨道连续与否来分
样本轨道连续的随机过程
均值函数为0 功率谱密度为常数
(3)连续时间离散状态
Poisson过程 T=R+, S=N

西安电子科技大学研究生课程随机过程14

西安电子科技大学研究生课程随机过程14

k 1
n
{nt E(k ) N (t) n} P(N (t) n)
n0
k 1
n
{nt E( U(k) )} P(N (t) n)
n0
k 1
n
{nt EU(k)} P(N (t) n)
n0
k 1
{nt 1 nt} (t)n et
n0
2
n!
t2 et (t)n1
s(t s) s 2s2
2st s
2st min(s,t)
CN (s,t) RN (s,t) mN (s)mN (t)
2st min(s,t) s t min(s,t)
2)对0 s t
平稳性
P(N(t) N(s) k) P(N(t s) N(0) k) P(N(t s) k)
定理 (到达时间间隔分布) 设{N(t),t≥0} 是参数为λ 的Poisson过程,
Tn,n 1,2,L 是其到达时间间隔序列,则
T1,T2,L ,Tn,L 是相互独立同服从参数为λ 的指数分布.
证明
独立性 由于poisson过程是平稳的独立增量过程 所以 T1,T2,L ,Tn ,L 相互独立.
c. t 0, N(t)服从参数是λt 的Poisson分布,即
P(N (t) k) (t)k et , k 0,1,2,
k!
则称计数过程{N(t),t≥0}是参数(强度,比率)为λ 的 Poisson过程.
定理 设 {N(t),t≥0} 是参数为λ 的Poisson
过程,则 1) mN (t) t,t 0, DN (t) t,t 0,
得证
定理 (到达时间序列分布)
设{N(t),t≥0} 是参数为λ的Poisson过程,则其到达时间

电子科技大学随机过程第2章

电子科技大学随机过程第2章

(m n)
多元正态分布的 边缘分布仍是正 态分布
~ C 是C 保留第k1,k2,…,km 行及列所得的m 阶矩阵.
~ ~ ~ μ 也服从正态分布N (μ, C ), 其中 ( k1 , k2 ,, km ),
3.独立性问题
等价于其协方差 矩阵是对角阵.
定理2.1.3 n维正态分布随机向量(X1,X2,…, Xn)相互独立的充要条件是它们两两不相关.
由X0, V 相互独立知
0 1 0 X0 ~N 0 , 0 1 V
X s 1 s X 0 X t 1 t V
因为
由正态分布的线性变换不变性得, 当s≠t时, (Xs, Xt)T的二维概率分布是非退化正态分布
Y KCK T , R(Y ) min( R(C ), R( K )) 2
即二维以上的线性变换向量Y= KX都是退 化(奇异)联合正态分布.
电子科技大学
问题结论: 1)不能保证Y=KX 服从非退化正态分布. 2) 当|KCKT|≠0时, 随机向量Y 服从非退化 正态分布. K为行满秩矩阵 可证明 推论 非退化正态分布随机向量X的满秩线 性变换仍服从非退化正态分布.
c2 c1 1 t1 t 2 1 t1 t 3
退化, 写不 出概率密度
1 t
2 1
t1 t2 t3
t1 t2 0 t3
( t 2 t1 )( t 3 t 2 ) 1 t1 t 2 1 t1 t 3
故例中当n>2时,不能写出n维联合正态 随 机向量, 其线性变换 Y= KX, 有 1) 每一分量服从正态分布; 2) 不能构成二维以上的非退化联合正态 分布;

西安电子科技大学讲义

西安电子科技大学讲义

1-1 两班半随机二进过程定义为()X t A =或-A ,(n-1)T <t <nT 0,1,2,.......n =±±其中值A 与-A 等概率出现,T 为一正常数,0,1,2,.......n =±±(1)画出典型的样本函数图形;(2)将此过程规类;(3)该过程是确定性过程么?1-2 离散随机过程的样本函数皆为常数,即(){}(0,)!kλt k λt P K k P t e k -===()X t C ==可变常数,式中C 为一随即变量,其可能值为11,2233c c c ===及,且他们分别以概率0.6,0.3及0.1出现。

(1)X (t )是确定过程么?(2)求:在任意时刻t ,X(t)的一维概率密度。

1-3设随机过程X (t )=V t ,其中V 是在(0,1)是均匀分布的随机变量,求过程X (t )的均值和自相关函数。

1-4设随机过程2X (t)=A t+B t ,式中A,B 为两个互不相关的随机变量,且有E[A ]=4,E[B ]=7,D [A ]=0.1,D [B ]=2.求过程X (t )的均值,相关函数,协方差函数和方差。

1-5程X(t)的数学期望2E[X (t )]=t +4。

求另一随机过程 2Y (t )=t X (t )+t 的数学期望。

1-6信号X (t )=V cos 3t ,其中V 是均值为1,方差为1的随机变量。

设新的随机信号 λλ⎰t01Y (t)= X () d t 求Y (t )的均值,相关函数,协方差函数和方差。

1-7个随机过程X(t),Y(t)都是非平稳过程 ()()cos X t A t t =,Y (t )=B(t )s i nt 其中()A t ,B (t )为相互独立,各自平稳的随机过程,且他们的均值均为0,自相关函数相等。

试证明这两个过程之和()()Z t X t =+Y (t )是宽平稳的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章随机过程 1
第一章随机过程
本章主要内容:
随机过程的基本概念
●随机过程的数字特征
●随机过程的微分和积分计算
●随机过程的平稳性和遍历性
●随机过程的相关函数及其性质
●复随机过程
●正态分布的随机过程
第一章我们介绍了随机变量,随机变量是一个与时间无关的量,随机变量的某个结果,是一个确定的数值。

例如,骰子的6面,点数总是1~6,假设A面点数为1,那么无论你何时投掷成A面,它的点数都是1,不会出现其它的结果,即结果具有同一性。

但生活中,许多参量是随时间变化的,如测量接收机的电压,它是一个随时间变化的曲线;又如频率源的输出频率,它随温度变化,所以有个频率稳定度的范围的概念(即偏离标称频率的最大范围)。

这些随时间变化的
随机变量就称为随机过程。

显然,随机过程是由随机变量构成,又与时间相关。

相关文档
最新文档