液压系统设计步骤

合集下载

液压系统设计小结

液压系统设计小结

液压系统设计小结液压系统设计是现代机械制造中重要的一环。

液压系统能够实现力、速度的集成控制,并且在一些特殊工作场合,液压系统有其它传动方式无法替代的工作效果。

对于液压系统设计来说,设计方案要不仅要能够满足工作要求,还要考虑力、速、功的匹配,以及可靠性和安全性。

液压系统设计包括以下几个步骤:需求分析、系统参数确定、元件选型、系统方案设计、回路图绘制、系统试验和运行调试。

(1) 需求分析:液压系统设计的前提是了解工程技术需求。

设计人员需要与机器操作者交流,以了解系统的工作要求。

同时,还需要了解系统的工作环境、操作方式和安全要求等方面的信息。

(2) 系统参数确定:系统参数的确定对液压系统的设计有着决定性的影响。

例如,液压缸的直径、工作行程、工作半径以及工作压力等参数都需要根据实际需求进行确定。

此外,液压泵、阀门和控制器等元件的型号、安装位置以及内部参数也需要确定,以保证系统能够正常工作。

(3) 元件选型:根据系统参数和工作要求,选择合适的液压元件。

液压元件的选择需要考虑以下因素:① 额定工作压力:液压元件的额定工作压力需要大于系统工作压力。

一般规定元器件的最高工作压力应为系统工作压力的1.5-2倍。

② 流量:液压元件的流量必须满足系统工作要求。

③ 控制方式:液压元件控制方式的选择也需要针对不同情况进行调整。

电磁液压阀是常用的控制元件之一,其具有控制精度高、动作迅速等优点。

但是,所需的控制电路、电源等辅助设备比较复杂。

此外,气控和电控柔性操作和链式安全回路等也是常用的控制方式。

(4) 系统方案设计:按照选定的元件进行系统方案的设计。

系统方案的设计需要结合系统参数、工作要求以及应用环境的特点,制定相应的方案。

在系统方案确定后,应绘制液压回路图便于检查和维护。

(5) 回路图绘制:对液压回路图进行精确定位和编写。

在编写液压回路图时,应注意以下几个方面:① 正确绘制液压回路图。

按照系统方案进行液压回路图的绘制。

液压系统的设计步骤和设计要求

液压系统的设计步骤和设计要求

液压系统的设计步骤与设计要求液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行。

着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。

设计步骤 1.1液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。

一般来说,在明确设计要求之后,大致按如下步骤进行。

)确定液压执行元件的形式;1)进行工况分析,确定系统的主要参数;2)制定基本方案,拟定液压系统原理图;3)选择液压元件;4)液压系统的性能验算;5)绘制工作图,编制技术文件。

6明确设计要求1.2设计要求是进行每项工程设计的依据。

在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。

)主机的概况:用途、性能、工艺流程、作业环境、总体布局等;1)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何;2)液压驱动机构的运动形式,运动速度;3)各动作机构的载荷大小及其性质;4)对调速范围、运动平稳性、转换精度等性能方面的要求;5)自动化程序、操作控制方式的要求;6)对防尘、防爆、防寒、噪声、安全可靠性的要求;7)对效率、成本等方面的要求。

8制定基本方案和绘制液压系统图制定基本方案 3.1)制定调速方案(1液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题。

方向控制用换向阀或逻辑控制单元来实现。

对于一般中小流量的液压系统,大多通过换向阀的有机组合实现所要求的动作。

对高压大流量的液压系统,现多采用插装阀与先导控制阀的逻辑组合来实现。

速度控制通过改变液压执行元件输入或输出的流量或者利用密封空间的容积变化来实现。

容积节流调速。

——相应的调整方式有节流调速、容积调速以及二者的结合节流调速一般采用定量泵供油,用流量控制阀改变输入或输出液压执行元件的流量来调节速度。

液压系统设计简明手册

液压系统设计简明手册

液压系统设计简明手册本书是由机械电子工业部教材编辑室与全国机械制造专业教学指导委员会和教材编审委员会联合组织编写的系列机械制造简明手册中的一本。

本书着重介绍液压系统的计算和结构设计,通过具体实例叙述了液压系统设计的全过程,对液压缸、油路板、集成块和液压站的设计方法也作了详细说明,并提供实际图样作参考。

同时也收集了常用的液压元件和辅助元件的产品和安装尺寸,以便读者在设计时选用。

"第一章液压系统的设计与实例一、液压系统的设计步骤和内容二、组合机床液压系统设计实例第二章液压缸的设计一、液压缸主要尺寸的确定二、液压缸的结构设计三、液压缸的典型结构第三章集成油路的设计一、液压油路板的结构与设计二、液压集成块结构与设计三、叠加阀装置设计第四章液压站的设计一、液压油箱的设计二、液压站的结构设计第五章常用液压元件一、液压泵和液压马达二、液压阀(GE系列)第六章辅助元件一、管道二、管接头三、密封件四、滤油器五、蓄能器六、空气滤清器七、液位计附录附录A 工作介质的种类、性能和应用(摘自)附录B 常用液压与气动元件图形符号(摘自)制钉机的液压系统设计作者:广东五邑大学尹学军刘海刚摘要:本文介绍了自动制钉机液压系统的设计,采用了较先进的集成油路板式结构。

关键词:制钉机;液压系统原理图;集成油路板式结构1前言射钉枪由于其效率高,使钉受力均匀、一致,使用方便等优点而广泛用于包装、广告装饰及家具制造、制鞋业等方面。

而作为其“子弹”的排钉,也就有了大量的需求。

笔者曾在珠江三角洲地区的制钉厂调查,发现这种钉子不仅在本地区,而且在内地和港澳、东南亚等地,都有相当的需要,经济效益可观。

排钉的制造过程为:(1)压线——将一定直径、一定强度的铁丝在压辊机上压扁;(2)排线——将若干条(一般为80~150条)压扁的铁线拉直并排在一起;(3)并线——将排好的线用粘合剂粘合在一起并烘干,成为板料;(4)制钉——将板料送到制钉机上成型。

液压系统的设计

液压系统的设计

液压系统的设计液压系统设计是液压主机设计的重要组成部分,也是对前面各章内容的概括总结和综合应用。

本章主要阐述液压系统设计的一般步骤,设计内容和设计计算方法,并通过实例来说明液压系统的设计过程。

9.1 液压系统的设计步骤液压系统设计与主机的设计是紧密联系的,两者往往同时进行,互相协调。

设计液压系统时应首先明确主机对液压系统在动作、性能、工作环境等方面的要求,如执行元件的运动方式、行程、调速范围、负载条件、运行平稳性和精度、工作循环及周期、工作环境、安装空间大小、结构简单、工作安全可靠、效率高、使命寿命长、经济性好、使用维修方便等设计原则。

液压系统设计步骤大体上可按图9-1所示的内容和流程进行。

这里除了最后一项(8)外,均属性能设计范围。

这些步骤是相互关联,相互影响的,必须经反复修改才能完成。

设计步骤及方法介绍如下。

9.1.1 明确系统的设计要求设计液压系统时,首先要对液压主机的工况进行分析,明确主机对液压系统的要求,具体包括:1)主机的用途、主体布局、对液压装置的位置和空间尺寸的限制。

2)主机的工作循环,液压系统应完成的动作、动作顺序或互锁要求,以及自动化程度的要求。

3)液压执行元件的负载和运动速速的大小及其变化范围,运动平稳性、定位精度及转化精度等的要求。

4)液压系统的工作环境和工作条件。

5)工作效率、安全性、可靠性及经济性等要求。

9.1.2 分析系统工况,确定主要参数1.工况分析工况分析,就是分析主机在工作过程中各执行元件的运动速度和负载的变化规律。

它是拟定液压系统方案,选择或设计液压元件的依据。

工况分析包括动力参数分析和运动参数分析两个部分,即:1)动力参数分析就是通过计算液压执行元件的载荷大小和方向,并分析各执行元件在工作过程中可能产生的冲击、振动及过载等。

对于动作较复杂的机械设备,根据工艺要求,将各执行元件在各阶段所需克服的负载用图9-2a所示的负载-位移(F-L)曲线表示,称为负载图。

液压系统设计篇

液压系统设计篇

液压系统设计篇----4ffaa03a-7161-11ec-876d-7cb59b590d7d液压传动系统设计,除了应符合其主机在动作循环和静、动态性能等方面所提出的要求外,还必须满足结构简单、使用维护方便、工作安全可靠、性能好、成本低、效率高、寿命长等条件。

液压传动系统的设计一般依据流程图见图4-1的步骤进行设计。

图4-1液压传动系统设计流程图第一节明确设计要求要设计一个新的液压系统,首先必须明确机器对液压系统的动作和性能要求,并将这些技术要求作为设计的出发点和基础。

需要掌握的技术要求可能包括:1.机器的特性(1)充分了解主机的结构和总体布置,机构与从动件之间的连接条件和安装限制,以及其用途和工作目的。

(2)负载种类(恒定负载、变化负载及冲击负载)及大小和变化范围;运动方式(直线运动、回转运动、摆动)及运动量(位移、速度、加速度)的大小和要求的调节范围;惯性力、摩擦力、动作特性、动作时间和精度要求(定位精度、跟踪精度、同步精度)。

(3)原动机类型(电机、内燃机等)、容量(功率、速度、扭矩)和稳定性。

(4)操作方式(手动、自动)、信号处理方式(继电器控制、逻辑电路、可编程控制器、微机程序控制)。

(5)系统中每个执行器的动作顺序和动作时间之间的关系。

2.使用条件(1)设置地点。

(2)环境温度、湿度(高温、寒带、热带),粉尘种类和浓度(防护、净化等),腐蚀性气体(所有元件的结构、材质、表面处理、涂覆等),易爆气体(防爆措施),机械振动(机械强度、耐振结构),噪声限制(降低噪声措施)。

(3)维护程度和周期;维修人员的技术水平;保持空间、可操作性和互换性。

3.适用的标准和规则根据用户要求采用相关标准、法则。

4.安全性、可靠性(1)用户在安全方面是否有特殊要求。

(2)指定保修期和条件。

5.经济不能只考虑投资费用,还要考虑能源消耗、维护保养等运行费用。

6.工况分析液压系统的工况分析是为了找出各执行机构在各自工作过程中的速度和负载变化规律。

液压动力控制系统的设计

液压动力控制系统的设计

液压动力控制系统的设计简介液压动力控制系统广泛应用于各种机械设备中,其设计和优化对于提高设备的性能和效率至关重要。

本文将讨论液压动力控制系统的设计原理、关键组件以及设计步骤。

设计原理液压动力控制系统的设计原理基于流体力学和控制工程的基本原理。

系统通过控制流体的流量、压力和方向来实现对机械设备的运动控制。

设计时需要考虑的主要因素包括系统的负载要求、速度调节范围、响应时间和能源效率等。

关键组件液压动力控制系统的关键组件包括液压泵、液压马达、控制阀、油箱和油液过滤器等。

液压泵负责将机械设备所需的压力液体供应到系统中,而液压马达则将液压能量转化为机械能,驱动设备运动。

控制阀用于控制液压系统中的液压液体流动,从而实现对设备的运动控制。

油箱用于储存液压液体,并保持其所需的温度和压力。

油液过滤器则负责过滤液压液体中的杂质和颗粒,以保证系统正常运行。

设计步骤液压动力控制系统的设计步骤可以概括为以下几个方面:1. 确定设备的动力要求和性能指标:根据机械设备的工作要求和负载要求,确定系统需要提供的动力、速度范围和精度等指标。

2. 选择合适的液压元件:根据系统的动力要求和性能指标,选择合适的液压泵、液压马达和控制阀等元件,并进行组合配置。

3. 设计液压回路:根据设备的运动需要和控制要求,设计液压回路结构,确定液压元件的连接方式和控制阀的位置。

4. 进行流体力学分析:使用流体力学模拟软件对设计的液压回路进行分析,验证系统的运动性能和控制精度。

5. 进行系统集成和调试:将各个液压元件组装到一起,并进行系统集成和调试,确保系统正常运行并满足设计要求。

结论液压动力控制系统的设计对于提高机械设备的性能和效率非常重要。

通过合理选择液压元件和设计优化液压回路,可以实现对设备运动的精确控制。

在进行设计过程中,需要充分考虑负载要求、速度范围、响应时间和能源效率等因素,以获得最佳的设计方案。

(完整word版)液压系统回路设计

(完整word版)液压系统回路设计

1、液压系统回路设计1.1、 主干回路设计对于任何液压传动系统来说, 调速回路都是它的核心部分。

这种回路可以通过事先的调整或在工作过程中通过自动调整来改变元件的运行速度, 但它的主要功能却是在传递动力(功率)。

根据伯努力方程: 2d v p q C x ρ∆= (1-1)式中 q ——主滑阀流量d C ——阀流量系数v x ——阀芯流通面积p ∆——阀进出口压差ρ——流体密度其中 和 为常数, 只有 和 为变量。

液压缸活塞杆的速度:q v A= (1-2) 式中A 为活塞杆无杆腔或有杆腔的有效面积一般情况下, 两调平液压缸是完全一样的, 即可确定 和 所以要保证两缸同步, 只需使 , 由式(1-2)可知, 只要主滑阀流量一定, 则活塞杆的速度就能稳定。

又由式(1-1)分析可知, 如果 为一定值, 则主滑阀流量 与阀芯流通面积成正比即: ,所以要保证两缸同步, 则只需满足以下条件:, 且此处主滑阀选择三位四通的电液比例方向流量控制阀,如图1-1所示。

图1-1 三位四通的电液比例方向流量控制阀它是一种按输入的电信号连续地、按比例地对油液的流量或方向进行远距离控制的阀。

比例阀一般都具有压力补偿性能, 所以它输出的流量可以不受负载变化的影响。

与手动调节的普通液压阀相比, 它能提高系统的控制水平。

它和电液伺服阀的区别见表1-1。

表1-1 比例阀和电液伺服阀的比较项目 比例阀 伺服阀低, 所以它被广泛应用于要求对液压参数进行连续远距离控制或程序控制, 但对控制精度和动态特性要求不太高的液压系统中。

又因为在整个举身或收回过程中, 单缸负载变化范围变化比较大(0~50T), 而且举身和收回时是匀速运动, 所以调平缸的功率为, 为变功率调平, 为达到节能效果, 选择变量泵。

综上所可得, 主干调速回路选用容积节流调速回路。

容积节流调速回路没有溢流损失, 效率高, 速度稳定性也比单纯容积调速回路好。

为保证值一定, 可采用负荷传感液压控制, 其控制原理图如图1-2所示。

液压系统的设计计算步骤和内容

液压系统的设计计算步骤和内容
• 对于复杂的液压系统,如有若干个执行元件同时或分别完成不同的工 作循环,则有必要按上述各阶段计算总负载力,并根据上述各阶段的 总负载力和它所经历的工作时间t(或位移s),按相同的坐标绘制液压缸 的负载时间(F―t)或负载位移(F―s)图。如图9.l所示为某机床主液压缸 的速度图和负载图。
• 最大负载值是初步确定执行元件工作压力和结构尺寸的依据。 • 液压马达的负载力矩分析与液压缸的负载分析相同,只需将上述负载
设计计算
步骤和内容
4~5
>5~7
18
系统工作压力的确定
表9-3 按主机类型选择系统工作压力
设备 类型
磨床
机床
组合机床 牛头刨床
插床 齿轮加工
机床
车床 铣床 镗床
珩磨 拉床 机 龙门 床 刨床
农业机械 汽车工业 小型工程 机械及辅 助机械
工程机械 重型机械 锻压设备 液压支架
船用 系统
压力 /MPa
摆动缸
单叶片缸转角小于300°,双叶片缸转角小于150°
往复摆动运动
齿轮、叶片马达 轴向柱塞马达 径向柱塞马达
结构简单、体积小、惯性小 运动平稳、转大、转速范围宽 结构复杂、转大、转速低
设计计算
步骤和内容
高速小转矩回转运动 大转矩回转运动 低速大转矩回转运动
7
负载分析
• 负载分析就是通过计算确定各液压执行元件的负载大小和方向,并分 析各执行元件运动过程中的振动、冲击及过载能力等情况。
设计计算
步骤和内容
2
1.1 液压系统的设计依据和工况分析
液压系统的设计依据
• 设计要求是进行工程设计的主要依据。设计前必须把主机对液压系统 的设计要求和与设计相关的情况了解清楚,一般要明确下列主要问题:

液压系统设计步骤

液压系统设计步骤

液压系统设计的步骤大致如下:1.明确设计要求,进行工况分析。

2.初定液压系统的主要参数。

3.拟定液压系统原理图。

4.计算和选择液压元件。

5.估算液压系统性能。

6.绘制工作图和编写技术文件。

一、工况分析本机主要用于剪切工件装配时可通过夹紧机构来剪切不同宽度的钢板。

剪切机在剪切钢板时液压缸通过做弧形摆动提供推力。

主机运动对液压系统运动的要求:剪切机在剪切钢板时要求液压装置能够实现无级调速,而且能够保证剪切运动的平稳性,并且效率要高,能够实现一定的自动化。

该机构主要有两部分组成:机械系统和液压系统。

机械机构主要起传递和支撑作用,液压系统主要提供动力,它们两者共同作用实现剪切机的功能。

本次主要做液压系统的设计。

在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。

该系统的剪切力为400T剪切负载F=400×10000=4×106N一、运动分析主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。

1.位移循环图L—t图(1)为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。

该图清楚地表明液压机的工作循环分别由快速下行、运行压制、保压、泄压和快速回程五个阶段组成。

图(1)位移循环图2.速度循环图v—t(或v—L)工程中液压缸的运动特点可归纳为三种类型。

图(2)为种液压缸的v—t图,液压缸开始作匀加速运动,然后匀速运动,速度循坏图液压缸在总行程的一大半以上以一定的加速度作匀加速运动,然后匀减速至行程终点。

v—t图速度曲线,不仅清楚地表明了液压缸的运动规律,也间接地表明了三种工况的动力特性。

二、动力分析液压缸运动循环各阶段的总负载力。

液压系统设计流程

液压系统设计流程

液压系统的设计步骤是:一、工况分析和负荷确定。

二、系统主要技术参数的确定。

三、液压系统方案的拟定。

四、拟定液压系统工作原理图五、系统的初步计算和液压元件的选择。

六、液压系统验算。

七、编写技术文件。

一、工况分析和负荷确定一般只能分析工作循环过程中的最大负荷点或最大功率点,以这些点上的峰值作为系统设计的依据。

二、系统主要技术参数的确定(一)、系统工作压力在液压系统设计中,系统工作压力往往是预先确定的(依据设计机型参考相关资料选取),然后根据各执行元件对运动速度的要求,经过详细的计算,可以确定液压系统流量。

在外负荷已定情况下,系统压力选得越高,各液压元件的几何尺寸就越小,可以获得比较轻巧紧凑的结构,特别是对于大型挖掘机来说,选取较高的工作压力更为重要。

初选系统工作压力不等于系统的实际工作压力,要在系统设计完毕,根据执行元件的负载循环图,按已选定的液压缸两腔有效面积和液压马达排量,换算并画出其压力循环图,再计入管路系统的各项压力损失,按系统组成的型式,最后得到系统负载压力及其变化规律。

确定工作压力,应该选用国家系列标准值,我国的“公称压力及流量系列”(JB824-66),其中适用于液压挖掘机的公称压力系列值有:8、10、12.5、16、20、25、32、40MPa。

(二)、系统流量确定系统流量,应首先计算每个执行元件所需流量,然后根据液压系统采用的型式来确定系统流量。

(三)、系统液压功率三、液压系统方案的拟定(一)开式系统与闭式系统的选择液压挖掘机的作业,除行走和回转外,主要靠双作用液压缸来完成的。

双作用液压缸由于两腔面积不等,而且两腔交替频繁。

因而只能使用开式系统,即各元件回油直接回油箱。

对挖掘机的开式系统,由于布置空间的限制,油箱容积不能做得太大,一般仅是主泵流量的1~2倍,自然冷却能力不足,要附加油冷却器。

(二)泵数的选择整个系统使用两个泵,各自组成一个独立的回路。

这种系统也称为双泵双回路系统。

在双泵系统中,可将若干个要求复合动作的执行元件分配在不同的回路中。

液压系统的设计毕业设计

液压系统的设计毕业设计

液压系统的设计毕业设计液压系统的设计毕业设计引言液压系统是一种利用液体传递能量的技术,广泛应用于各个领域,如工业、农业、航空航天等。

在液压系统的设计中,需要考虑多个因素,包括系统的结构、元件的选择、流体的性质等。

本文将探讨液压系统的设计过程,并介绍一些常见的设计原则和方法。

一、液压系统的基本原理液压系统的基本原理是利用液体在封闭的管路中传递力和能量。

液压系统由液压泵、执行元件、控制阀等组成。

液压泵通过机械能转化为液压能,将液体压入管路中。

控制阀通过控制液体的流动方向和流量来实现对执行元件的控制。

执行元件将液体的能量转化为机械能,完成所需的工作。

二、液压系统的设计步骤1. 确定系统的需求:在进行液压系统的设计之前,需要明确系统的工作要求和目标。

例如,需要确定系统的工作压力、流量需求、工作环境等。

2. 选择液压元件:根据系统的需求,选择合适的液压元件,包括液压泵、执行元件、控制阀等。

在选择液压元件时,需要考虑元件的性能参数、可靠性、成本等因素。

3. 设计管路布局:根据系统的工作需求和元件的选择,设计合理的管路布局。

管路布局应考虑液体的流动路径、压力损失、泄漏等因素,以确保系统的稳定性和效率。

4. 进行系统分析:通过数学模型和仿真软件对系统进行分析,评估系统的性能和可靠性。

分析过程中需要考虑液体的性质、流动特性、压力变化等因素。

5. 进行系统优化:根据系统分析的结果,对系统进行优化。

优化的目标可以包括提高系统的效率、减少能量损失、降低成本等。

6. 进行系统测试:设计完成后,进行系统的实际测试。

测试过程中需要检查系统的各个部件是否正常工作,是否满足设计要求。

三、液压系统设计的原则和方法1. 简化系统结构:在液压系统的设计中,应尽量简化系统的结构,减少元件的数量和复杂性。

简化系统结构可以提高系统的可靠性和维护性。

2. 选择合适的元件:在选择液压元件时,应考虑元件的性能参数、可靠性、成本等因素。

选择合适的元件可以提高系统的性能和效率。

液压系统设计计算举例

液压系统设计计算举例

(9.20)
设计计算
步骤和内容
6
液压系统的发热功率
(3) 溢流阀的损失功率
k
Py
pYi qYi
式中
i 1
pYi ——各溢流阀的调整压力;
qYi ——各溢流阀的溢流量;
k——溢流阀数量。
(4) 节流功率损失
(9.21)
式中
k
Pj pji qji i 1
p ji ——各流量阀进出口压差;
q ji ——通过各流量阀的流量;
表9-5 液压缸在各工作阶段的负载值
工况 起动
负载组成 F= Ffs
负载值F/N 1962
推力 /N
F
2180 m
加速
F = Ffd + Fm 1564
1500
快进 工进 快退
F =Ffd F =Ffd + Ft F =Ffd
981 31449 981
1090 34943 1090
设计计算
设计实例
22
1 液压传动系统的设计计算步骤和内容
• 液压系统设计步骤如下: • (1) 明确液压系统的设计要求及工况分析; • (2) 主要参数的确定; • (3) 拟定液压系统原理图,进行系统方案论证; • (4) 设计、计算、选择液压元件; • (5) 对液压系统主要性能进行验算; • (6) 设计液压装置,编制液压系统技术文件。
设计计算
设计实例
19
负载分析
1. 工作负载
由切削原理可知,高速钢钻头钻铸铁孔时的轴向切削力Ft与钻头直径D(mm)、每转进给量s(mm/r) 和铸件硬度HB之间的经验计算式为
Ft 25.5Ds0.8 (HB)0.6 (9.27)
根据组合机床加工的特点,钻孔时的主轴转速n和每转进给量s

液压系统设计与计算

液压系统设计与计算
13
(2)确定执行元件的主要结构参数
以缸为例,主要结构尺寸指缸的内径D和活塞杆的直 径d,计算后按系列标准值确定D和d。
对有低速运动要求的系统,尚需对液压缸有效工作面 积进行验算,即应保证:
式中
A q min v min
(10.8)
:A—液压缸工作腔的有效工作面积;
v m in—控制执行元件速度的流量阀最小稳定流量;
17
1.3.2 选择液压泵
先根据设计要求和系统工况确定泵的类型, 然后根据液压泵的最大供油量和系统工作压力来 选择液压泵的规格。
(1) 液压泵的最高供油压力
ppp pl (10.11)
式中: p—执行元件的最高工作压力;
pl —进油路上总的压力损失。
18
(2)确定液压泵的最大供油量 液压泵的最大供油量为:
khAt (10.15)
式中: A—油箱的散热面积;
t —液压系统的温升;
k h —油箱的散热系数,其值可查阅液压设计手册。
系统的温升为 t kh A
(10.16)
计算温升值如果超过允许值,应采取适当的冷却措施。
27
1.5 绘制正式工作图和编制技术文件
10.1.5.1 绘制正式工作图 正式工作图包括液压系统原理图、液压系统装配图、
30
机床的外形示意图。
1-左主轴头;2-夹具;3-右主轴头;4-床身;5-工件
31
2.1 确定对液压系统的工作要求
根据加工要求,刀具旋转由机械传动来实现;主轴头 沿导轨中心线方向的“快进一工进—快退—停止”工作循环 拟采用液压传动方式来实现。故拟选定液压缸作执行机构。
考虑到车削进给系统传动功率不大,且要求低速稳定 性好,粗加工时负载有较大变化,故拟选用调速阀、变量 泵组成的容积节流调速方式。

液压系统设计说明书

液压系统设计说明书

液压系统设计说明书一、设计概述液压系统是一种将动力转换为机械能的传动系统,广泛应用于各种工业设备和机器中。

本次设计的液压系统主要应用于挖掘机的操作,该系统需要具备高效率、高可靠性、低能耗和易于维护的特点。

二、系统组成1. 液压泵:液压泵是液压系统的核心部件,负责提供压力油。

本设计选用柱塞泵,其具有高压力、高效率、长寿命等优点。

2. 液压缸:液压缸是将液压能转换为机械能的执行元件。

本设计选用双作用活塞缸,以满足挖掘机在挖掘和提升等不同工况下的需求。

3. 控制阀:控制阀用于控制液压油的流向和流量,从而实现执行元件的运动控制。

本设计选用方向控制阀和压力控制阀,以实现挖掘机的各种动作。

4. 油箱:油箱是液压系统的油液储存部件,具有散热、沉淀杂质等功能。

本设计选用封闭式油箱,以减少油液污染和散热不良等问题。

5. 管路与接头:管路与接头用于连接液压元件,保证液压油的流动畅通。

本设计选用耐高压、耐腐蚀的管路和标准接头,以提高系统的可靠性和安全性。

三、系统特点1. 高效率:本设计采用高效率的柱塞泵,可有效降低能量损失,提高系统效率。

2. 高可靠性:选用高质量的液压元件和管路,采用标准化的连接方式,提高了系统的可靠性和稳定性。

3. 低能耗:通过优化液压元件的参数和系统布局,降低能耗,符合绿色环保要求。

4. 易于维护:采用模块化设计,便于拆卸和维修;同时,选用易于购买的标准件,降低了维护成本。

四、系统控制本设计的液压系统采用手动控制和自动控制相结合的方式。

手动控制主要用于初次的设备调试和应急情况下的操作;自动控制则根据预设的程序,自动完成挖掘机的各种动作。

在自动控制中,还引入了传感器和电液比例阀等智能控制元件,以提高控制的精度和响应速度。

五、系统安全为确保系统的安全运行,采取了以下措施:1. 设置溢流阀和减压阀等安全保护装置,防止过载和压力过高对系统造成损坏;2. 在油箱中设置液位计和温度计,实时监测油液的液位和温度,防止油液不足或温度过高对系统造成影响;3. 在管路中设置过滤器,防止杂质进入系统对元件造成损坏;4. 设置报警装置,当系统出现异常情况时,及时发出报警信号并切断电源,确保设备和人员的安全。

简述液压系统设计的工作步骤

简述液压系统设计的工作步骤

简述液压系统设计的工作步骤液压系统设计是指根据工作需求和系统性能要求,综合考虑液压元件的选型、液压元件的布置和连接、液压系统的控制与保护等因素,设计出一个满足设备工作需求的液压系统。

液压系统设计的工作步骤主要包括以下几个方面:1.需求分析与规定:这一步骤主要是对液压系统工作的需求进行分析和规定。

需求分析包括工作压力、流量要求、工作温度范围、工作环境要求等方面的考虑,规定则是在需求分析的基础上对液压系统的工作参数进行具体规定。

2.液压元件的选型:根据工作压力、流量要求以及规定的工作参数,从液压元件产品手册、厂家技术资料和液压元件选型手册中选取合适的液压元件。

液压元件的选型包括选取合适的液压泵、阀门、执行元件等。

3.系统图的绘制:根据工作需求和选定的液压元件,绘制出液压系统的结构图和工作原理图。

结构图主要是表现液压系统各个部件之间的布置关系和连接方式,工作原理图则是表现液压系统各个部件之间的工作原理和控制关系。

4.系统参数计算:根据液压元件的选型和系统图,对液压系统各个部分的参数进行计算。

主要包括液压泵的排量和功率计算、液压缸的有效面积计算、阀门的流量和压力损失计算等。

这些参数计算的正确与否直接影响到液压系统的性能指标是否得以实现。

5.系统接口设计:液压系统在工作过程中需要与其他机械系统或电气系统进行配合,因此需要进行系统接口设计。

主要包括液压系统与机械系统的连接方式、液压系统与电气系统的控制信号传递方式等。

6.控制与保护系统设计:液压系统控制与保护是液压系统工作的关键环节,所以需要进行相应的控制与保护系统设计。

包括设计液压系统的控制方式(手动控制、自动控制等)、液压系统的安全保护装置(压力开关、过载保护等)等。

7.系统布置与装配:设计完液压系统后,需要进行系统布置与装配。

主要包括选择系统的布置位置、液压元件的安装位置和固定方式、管路的布置与连接等。

合理的系统布置与装配能够减小液压系统的压力损失和泄漏,提高系统的工作效率和可靠性。

第九章液压系统的设计与计算

第九章液压系统的设计与计算

按各执行元件在工作中的速度v以及位移s或经历的时间t 绘制v-s或v-t速度循环图。
三、确定液压系统的主要参数
液压系统的主要参数——工作压力和流量是选择液压元 件的主要依据,而系统的工作压力和流量分别取决于液压执 行元件工作压力、回路上压力损失和液压执行元件所需流量 、回路泄漏,所以确定液压系统的主要参数实质上是确定液 压执行元件的主要参数。 1. 初选液压系统的主要参数 执行元件工作压力是确定其结构参数的重要依据。工作 压力选得低一些,对液压系统工作平稳性、可靠性和降低噪 声等都有利,但对液压系统和元件的体积、重量就相应增大 ;工作压力选得过高,虽然液压元件结构紧凑,但对液压元 件材质、制造精度和密封要求都相应提高,制造成本也相应 提高。执行元件的工作压力一般可根据负载进行选择。
二、液压系统的工况分析和系统的确定
对执行元件负载分析与运动分析,也称为液压系统的工 况分析。工况分析就是分析每个液压执行元件在各自工作过 程中负载与速度的变化规律,一般执行元件在一个工作循环 内负载、速度随时间或位移而变化的曲线——用负载循环图 和速度循环图表示。 1. 负载分析 液压缸与液压马达运动方式不同,但他们的负载都是由 工作负载、惯性负载、摩擦负载、背压负载等组成的。 (1) 工作负载 FW 包括切削力、夹紧力、挤压力、重力等, 其方向与液压缸运动方向相反时为正,相同时为负;
2. 确定执行元件的主要结构参数 (1)确定液压缸主要结构参数 根据负载分析得到的最
大负载Fmax和初选的液压缸工作压力p,再设定液压缸回
油腔背压pb以及杆径比d/D,即可由第四章中液压缸的力 平衡公式来求出缸的内径D、活塞杆直径d和缸的有效工作
面积A,其中D、d值应圆整为标准值 。
(2)确定液压马达排量VM 排量VM 由马达的最大负载扭矩Tmax、

液压系统设计方法

液压系统设计方法

液压系统设计方法液压系统是一种通过液体传递能量的系统,广泛应用于各种工业和机械设备中。

液压系统设计的目标是实现高效、可靠的能量传递和控制,同时满足系统的性能要求。

下面是液压系统设计的一般方法和步骤。

第一步:明确系统的工作要求在液压系统设计之前,首先需要明确系统的工作要求,包括工作条件、所需输出力或动力、速度和精度要求等。

这些要求将直接影响到系统的设计和选型。

第二步:选择液压元件在液压系统中,液压元件起到能量传递和控制的作用。

选择适合系统要求的液压元件是液压系统设计的核心步骤之一、常见的液压元件包括液压泵、阀门、缸体、马达等。

在选择液压元件时,需要考虑其技术参数、工作压力范围、流量要求、密封性能和可靠性等。

第三步:设计液压系统布局液压系统布局是指液压元件在系统中的位置和连接方式。

液压系统布局的设计直接影响液压系统的性能和工作效率。

在设计液压系统布局时,需要考虑以下几个因素:1.系统的可维修性和易操作性,便于维护和检修。

2.尽量减少管路的长度和对流动的阻力,提高系统的工作效率。

3.避免液压元件之间的相互干扰和干涉,确保系统的正常工作。

第四步:计算和选择液压元件参数在设计液压系统时,需要计算和选择液压元件的参数。

例如,液压泵的流量和压力选择要根据系统的工作需求来确定,阀门的开口面积需要根据所需流量来计算,缸体的尺寸和活塞面积需要根据所需输出力来选择等。

第五步:进行系统的动态和静态模拟在液压系统设计的过程中,进行系统的动态和静态模拟可以帮助工程师预测系统的性能和响应。

动态模拟可以用于分析系统的运动特性和响应时间,判断系统是否满足要求;静态模拟可以用于分析系统的压力分布和流动性能,优化设计。

第六步:进行系统的试验验证总结:。

液压系统课程设计

液压系统课程设计

液压传动系统课程设计指导老师:设计者:班级:机电08级学号:同组人:目录一.设计目标及参数1.设计目标2.设计要求及参数二.液压系统方案设计1、确定液压泵类型及调速方式2、选用执行元件3、快速运动回路和速度换接回路4、换向回路的设计5、组成液压系统绘原理图三.主要参数的选择设定1. 定位液压缸主要参数的确定2. 夹紧缸的主要参数设计3.主控缸主要参数确定4.液压泵的参数计算5.电动机的选择四.液压元件和装置的选择1.液压阀及过滤器的选择2.油管的选择3.油箱容积的确定五.验算液压系统的性能。

1.沿程压力损失计算∑2.局部压力损失r p∆六液压系统发热和温升验算七电气控制系统设计1.PLC控制编程图八实验报告1 实验目的2 试验设备3 试验原理4 实验步骤5 实验数据及处理九分析思考题十设计总结十一参考文献一设计目标及参数设计一专用双行程铣床。

工件安装在工作台上,工作台往复运动由液压系统实现。

双向铣削。

工件的定位和夹紧由液压实现,铣刀的进给由机械步进装置完成,每一个行程进刀一次。

机床的工作循环为:手工上料——按电钮——工件自动定位,夹紧——工作台往复运动铣削工件若干次——拧紧铣削——夹具松开——手工卸料(泵卸载)定位缸的负载200N ,行程100mm ,动作时间1s ; 夹紧缸的负载2000N ,行程15mm ,动作时间1s ; 工作台往复运动行程(100-270)mm 。

方案:单定量泵进油路节流高速,回油有背压,工作台双向运动速度相等,但要求前四次速度为01υ,然后自动切换为速度02υ,再往复运动四次。

设计参数:前四次速度为01υ,切削负载(N )为15000N ,工作台(液压缸)复复运动速度(m/min)为:0.8~8。

后四次速度为02υ,切削负载(N )为7500N,工作台(液压缸)往复运动速度(m/min)为0.4~4,结构设计为:往复运动液压缸设计二 液压系统方案设计1、确定液压泵类型及调速方式参考一般机床液压系统,选用双作用叶片泵单泵供油。

第9章液压系统设计与计算-

第9章液压系统设计与计算-
积)。
• 快进时:
差动系统
p F A1 A2
qv快 (A1A2)
非差动系统
p1

F A1
A2 A1
p2
q v快A1
P pq
•工进时:
p1
A2 A1
F pb A1
q v工A1
P p工q工
• 快退
p1
A2 A1
pb

F A1
qv快退A2
P pq
图9-2 组合机床执行元件工况图
Ff f FN
(9-2)
式中 FN——运动部件及外负载对支撑面的正压力; f——摩擦系数,分 静摩擦系数( fS≤0.2~0.3)和动摩擦系数(fd ≤0.05~0.1)。
(3)惯性负载 Fa 惯性负载是运动部件的速度变化时,由其惯性而产生的负
载,可用牛顿第二定律计算:
Fa
ma Gv g t
液压缸推力F(N)
F =( Ffs + FL ± Fg) /ηm F =( Ffd + FL +Fa± Fg) /ηm F =( Ffd + FL± Fg) /ηm F =( Ffd + FL — Fa± Fg) /ηm F =( Ffd + FL ± Fg) /ηm F =( Ffd + FL — Fa± Fg) /ηm F =( Ffs + Fa ± Fg) /ηm
来验பைடு நூலகம்,即
A q min v min
(9-5)
qmin—流量阀最小稳定流量。
液压马达:排量的计算式为
2T
V
p Mm
(9-6)
式中 T—液压马达的总负载转矩,N.m; ηMm—液压马达的机械效率; p—液压马达的工作压力,pa; V—所求液压马达的排量,m3/r。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章液压系统的设计7.1液压系统简介液压传动系统主要由以下五部分组成:1、能源装置------把机械能转换成流体的压力能的装置,一常见的就是液压泵。

2、执行元件------把流体的压力能转换成机械能输出的装置,可以是作直线运动的液压缸,也可以是作回转运动的液压马达。

3、控制元件------对液压系统中流体的压力、流量和流动方向进行控制和调节的装置,以及进行信号转换,逻辑运算和放大等功能的信号控制元件。

如溢流阀、节流阀、换向阀等。

4、辅助元件------保证系统正常工作所需的上述三种以外的装置。

如油箱、过滤器、管件等。

5、工作介质------传递能量和信号的介质。

液压系统以液压油为工作介质。

7.2液压系统的优点与机械传动、电力拖动系统相比,液压传动具有以下优点:1、液压传动的各种元件,可以根据需要方便、灵活地来布置。

2、重量轻、体积小、运动惯性小、反应速度快。

3、操纵控制方便,可实现大范围的无级调速(调速范围达2000:1)。

4、可自动实现过载保护。

5、一般采用矿物油作为工作介质,相对运动面可自行润滑,使用寿命长;6、很容易实现直线运动。

7、很容易实现机器的自动化,当采用电液联合控制后,不仅可实现更高程度的自动控制过程,而且可以实现遥控。

8、液压元件属于机械工业基础件,标准化、系列化和通用化程度较高,有利于缩短机器的设计、制造周期和降低制造成本。

7.3液压系统的使用要求及速度负载特性分析7.3.1使用要求砂轮回转试验机是用来检查砂轮回转强度的设备,在砂轮回转试验过程中需要保证开关门可靠的关紧。

由于砂轮回转试验机需要自动化控制,要求开关门能够自动关紧和打开。

因此要求液压系统具备电磁换向阀,而非手动换向阀。

要求换向信号发出后,阀芯能够灵敏地移到预定的工作位置;换向信号撤出后,阀芯能在弹簧力的作用下自动恢复到常位。

液压系统工作在室内、噪声大、以及粉尘多的环境。

液压系统执行元件选为液压缸。

开关门行程为870mm ,开门速度为0.01m/s ,关门速度为0.02m/s 。

7.3.2负载特性分析开关门的材料为Q235钢,其密度3/7850m Kg =ρ。

开关门的体积为:303.003.0952.0045.1m m m m V ≈⨯⨯=开关门的质量为:235.5Kg 0.03m 7850Kg/m m 33=⨯=⨯=V ρ开关门的重量为:2355N 10N/Kg 235.5Kg g m G =⨯=⨯=由于工作时液压杆推动门往水平方向往复运动,故液压缸的外负载为摩擦负载。

摩擦负载:摩擦负载即为开关门运动时候的摩擦阻力:静摩擦阻力 N 5.0672355N 3.0μs =⨯==G F fs动摩擦阻力 N 4712355N 2.0μd =⨯==G F fd其中:静摩擦系数:3.0=s μ,动摩擦系数:2.0=d μ。

故液压缸的外负载.5N 1771471N 06.5N 7F =+=设液压缸的机械效率9.0cm =η,则液压缸的驱动力为:N N F F cm 3.13089.0/5.1177/===η总,为安全和方便计算,取N F 1310=总。

由于该回转试验机的开关门机构采用双根活塞杆推动,故单个液压缸的驱动力为: N N F F F 65521310221====总。

7.4液压系统的方案设计7.4.1确定回路方式选用开式回路,即执行元件的排油回油箱,油液经过沉淀冷却后再进入液压泵的进口。

7.4.2选用液压油液普通液压系统选用矿物型液压油作工作介质,该系统为室内设备,选用普通液压油。

L-HL液压油(2003GB)。

/-T2.76317.4.3选择执行元件系统要求实现直线运动,并且运动为水平方向,故选用活塞式液压缸。

由于液压系统工作时只要求一个方向工作,反向退回,应选用单活塞液压缸。

7.4.4确定液压泵类型及调速方式系统压力MPa<,选用外啮合齿轮泵。

采用节流调速的方式,所以选用节流调P21速回路。

7.4.5选择换向回路本系统液压设备自动化程度较高,且对换向的平稳性没有严格要求。

所以选用O型三位四通的电磁换向阀的换向回路。

7.4.6绘制液压系统原理图将上述所选定的液压回路进行组合,并根据要求作必要的修改补充。

即组成如图7.1所示的液压系统图。

为了便于观察调整压力,在液压泵的进口处设置测压点。

图7.2为电磁铁动作顺序图。

图7.2 电磁铁动作顺序图7.1液压系统传动图7.5液压系统的主要参数计算7.5.1执行元件主要结构尺寸计算液压系统主要参数的设计、计算过程见第5章。

各参数的计算结果如下:液压缸的内径mm D 50=,活塞的直径mm d 32=,缸筒壁厚mm 5=δ,缸筒外径mm 60D 1=,缸底厚度mm h 15=。

7.5.2计算液压缸所需的流量液压缸的最大流量m ax qA v q ⨯=max max (7-1) 式中:A —液压缸的有效面积(2m );max v —液压缸的最大速度(s m /)。

代入数据,得:s m m s m A v q /1024.01012.0/02.034222max max --⨯=⨯⨯=⨯=7.5.3液压泵的性能参数计算1.确定液压泵的最高工作压力p P∑∆+≥P P P p 1 (7-2) 式中:1P —执行元件的最高工作压力;∑∆P —执行元件进油路上的压力损失,简单系统Pa P 510)5~2(⨯=∆∑,这里取Pa P 5105⨯=∆∑。

MPa m N A A P FP cm 55.01012.0655222121≈⨯=+=-η 因此,由公式(7-9)可得:MPa MPa MPa P P P p 05.15.055.01=+=∆+≥∑2.确定液压泵的最大流量p q∑≥max q K q p (7-3) 式中:∑max q —同时动作的各执行元件所需流量之和的最大值;对于工作过程中始终用流量阀节流调速的系统,还需加上溢流阀的最小溢流量,一般取()sm /1005.0~033.033-⨯或min /3~2L 。

K —泄漏系数,一般取3.1~1.1=K ,大流量时取小值,反之取大值。

取泄漏系数K=1.2。

设溢流阀的最小溢流量为min /3L则:s m s m s m L q K q p /108.0/1005.0/1024.02.1min /3343334max ---⨯=⨯+⨯⨯=+≥∑ 即:min /8.4L q p ≥3.选择液压泵的规格型号根据液压系统图中拟定的液压泵的形式及上述计算得到的压力和流量值,查液压设计手册选取相应的液压泵规格。

为了保证系统不致因过渡过程中过高的动态压力作用被破坏,液压泵应有一定的压力储备量,所选泵的额定压力一般要比最大工作压力大25%~60%(高压系统取下值,中低压系统取大值)。

因此,选定的液压泵规格型号为:CB -B6型外啮合齿轮泵,该泵的额定压力为MPa 5.2,额定转速为min /1450r ,额定流量为min /6L ,驱动功率为Kw 31.0,总效率72.0=p η。

7.5.6电动机的选择根据压力和流量选定液压泵的规格之后,驱动液压泵的电动机功率可按下式计算: p p p q p P η/= (7-4) 式中:P —电动机功率(W );p p —液压泵最大工作压力(Pa );p q —液压泵的输出流量(s m /3);p η—液压泵总效率,可由液压泵产品样本查出。

按照式(7-11)选取的电动机功率需有一定的功率储备,但允许短时间超载25%。

因此:w s m Pa q p P p p p 34872.0/101105.2/346=⨯⨯⨯==-η参照YB 系列三相异步电动机主要技术参数(19915339/-T JB ),选取电动机型号为:YB801-4型异步电动机。

该电动机额定功率为0.55Kw ,满载转速为min /1390r ,额定转矩为m N ∙3.2。

7.6液压元件和装置的选择7.6.1控制阀的选择根据系统的最大工作压力和通过阀的实际最大流量由产品样本确定阀的规格和型号,被选定阀的额定压力和额定流量应大于或等于系统的最大工作压力和阀的实际流量,必要时通过阀的实际流量可略大于该阀的额定流量,但不允许超过20%,以免压力损失过大,引起噪声和发热。

选择流量阀时还应考虑最小稳定流量是否满足工作部件最低运动速度要求。

本液压系统所选的液压元件见图7.3所示:图7.3 液压元件7.6.2辅助元件的选择1.过滤器的选用液压油中往往含有颗粒状杂质,会造成液压元件相对运动表面的磨损、滑阀卡滞、节流孔口堵塞,使系统工作可靠性大为降低。

在系统中安装一定精度的滤油器,是保证液压系统正常工作的必要手段。

滤油器的过滤精度是指滤芯能够滤除的最小杂质颗粒的大小,以直径d 作为颗粒公称尺寸,按精度可分为粗滤油器(mm d 1.0≥),普通滤油器(mm d 01.0≥),精滤油器(mm d 005.0≥),特精滤油器(mm d 001.0≥)。

一般对滤油器的基本要求是:(1)能满足液压系统对过滤精度要求,即能阻挡一定尺寸的杂质进入系统。

(2)滤芯应有足够强度,不会因压力而损坏。

(3)通流能力大,压力损失小。

(4)易于清洗或更换滤芯。

选择过滤器的依据有以下几点:(1)承载能力:按系统管路工作压力确定。

(2)过滤精度:按被保护元件的精度要求确定,选择时可参阅下表。

(3)通流能力:按通过最大流量确定。

(4)阻力压降:应满足过滤材料强度与系数要求。

过滤器的安装:吸油滤油器一般安装在油泵的吸油口处,用以保护油泵和其他液压元件,以避免吸入污染杂质,可以有效的控制液压系统的清洁度。

根据泵的要求,可用粗的或普通精度的滤油器,为了不影响泵的吸油性能,防止发生气穴现象,滤油器的过滤能力应为泵流量的两倍以上,压力损失不得超过0.01~0.035MPa。

2.油管和管接头的选择1)油管类型的选择液压系统中使用的油管分硬管和软管,选择的油管应有足够的通流截面和承压能力,同时,应尽量缩短管路,避免急转弯和截面突变。

(1)钢管:中高压系统选用无缝钢管,低压系统选用焊接钢管,钢管价格低,性能好,使用广泛。

(2)铜管:紫铜管工作压力在6.5~10MPa以下,易变曲,便于装配;黄铜管承受压力较高,达25MPa,不如紫铜管易弯曲。

铜管价格高,抗震能力弱,易使油液氧化,应尽量少用,只用于液压装置配接不方便的部位。

(3)软管:用于两个相对运动件之间的连接。

高压橡胶软管中夹有钢丝编织物;低压橡胶软管中夹有棉线或麻线编织物;尼龙管是乳白色半透明管,承压能力为 2.5~8MPa,多用于低压管道。

因软管弹性变形大,容易引起运动部件爬行,所以软管不宜装在液压缸和调速阀之间。

2)油管尺寸的确定(1)油管内径d 按下式计算: vq v q d 13.14==π (7-5) 式中:q —通过油管的最大流量(s m /3);V —管道内允许的流速(s m /)。

相关文档
最新文档