线段的比较和度量课件

合集下载

线段的大小比较完整版课件

线段的大小比较完整版课件

线段的大小比较完整版课件一、教学内容本节课我们将探讨教材第五章“平面几何中的基本元素”中第二节“线段的大小比较”。

具体内容包括:线段的定义、线段长度的度量方法、线段大小比较的方法,以及线段等分的概念。

二、教学目标1. 理解线段的定义,掌握线段长度的度量方法。

2. 学会线段大小比较的方法,并能应用于实际问题。

3. 了解线段等分的概念,能够运用等分线段的方法解决相关问题。

三、教学难点与重点教学难点:线段大小比较的方法,线段等分的实际应用。

教学重点:线段的定义,线段长度的度量方法,线段大小比较的方法。

四、教具与学具准备1. 教具:黑板、粉笔、尺子、圆规、直角三角板。

2. 学具:练习本、铅笔、直尺、圆规。

五、教学过程1. 导入:通过展示生活中常见的线段,如跳绳的长度、书桌的长度等,引导学生认识到线段在生活中的广泛应用。

2. 新课导入:(1)讲解线段的定义,强调线段是有限长的直线部分。

(2)介绍线段长度的度量方法,演示如何使用尺子测量线段长度。

(3)引导学生发现,当线段长度相等时,线段大小相同;当线段长度不等时,可以通过比较长度来判断线段的大小。

3. 实践操作:(1)让学生分组讨论,如何比较两条线段的大小。

4. 例题讲解:(1)给出两条线段,让学生比较大小。

(2)通过分析题目,引导学生运用所学知识解决问题。

5. 随堂练习:(1)让学生完成教材第5页的练习题1。

(2)教师挑选部分题目进行讲解,分析解题思路。

6. 知识拓展:(1)介绍线段等分的概念。

(2)演示如何使用尺子和圆规进行线段等分。

(1)回顾本节课所学内容,强调线段大小比较的方法。

(2)提醒学生注意线段等分在实际问题中的应用。

六、板书设计1. 板书线段的大小比较2. 主要内容:(1)线段的定义(2)线段长度的度量方法(3)线段大小比较的方法(4)线段等分的概念及方法七、作业设计1. 作业题目:(1)教材第5页的练习题2。

(2)自编题目:给出两条线段,让学生比较大小,并说明理由。

线段的比较课件

线段的比较课件

利用夹角的大小来比较两条同向线段的
相似性。
3
案例3 :找出与给定线段距离最
近的线段
通过测量线段间的垂线距离,找出与给 定线段最接近的线段。
总结
适用场合
线段比较适用于各种几何学和工程学领域,如建筑 设计和航空航天工程。
注意事项
在比较线段时,要考虑各种因素,如长度、夹角和 垂线距离,以获得准确的比较结果。
Q& A
线段比较存在哪些问题?
线段比较可能存在误差,尤其是在测量和角度计算方面。
如何应用线段比较到工程实践中?
线段比较可用于优化设计、解决几何问题和进行结构分析。
2 方向
线段的方向取决于从一个端点到另一个端点的指向。
比较方法
同一个起点的 线段比较
比较不同终点的线段, 结合长度和夹角。
同一个终点的 线段比较
比较不同起点的线段, 结合长度和夹角。
同向线段比较
比较方向相同的线段, 可以通过夹角来衡量 两个线段的差异。
反向线段比较
比较方向相反的线段, 同样可以使用夹角来 进行比较。
比较标准
1 长度的对比
通过比较线段的长度,可 以确定哪个线段更长或更 短。
2 夹角的对比
夹角可以帮助我们判断两 个线段的相对方向和倾斜 程度。
3 垂线距离的对比
利用垂线距离可以测量两 个线段之间的彼此关系。
实例演练
1
案例1 :比较两个不同起点线段
的长度
案例2 :比较两个同向线段的夹角
2
通过测量两个线段的长度,找出哪个线 段更长。
线段的比较ppt课件
线段的比较,让我们一起探索线段的基本性质和比较方法,以及如何应用线 段比较到真端点连接而成的直线段,是几何学中的基本图形之一。线段的长度和方向可以帮助我们进行比较 和分析。

比较线段的长短优质课比赛一等奖完整版精品课件

比较线段的长短优质课比赛一等奖完整版精品课件

比较线段长短优质课比赛一等奖完整版精品课件一、教学内容本节课,我们将在教材第三章“几何初步”中第二节“线段”深入探讨如何比较线段长短。

具体内容包括认识线段定义,掌握线段度量方法,以及如何在实际问题中应用这些知识。

我们将详细讲解如何使用直尺和圆规进行线段比较,并引入实际情景,让学生在实践中理解和掌握。

二、教学目标1. 知识与技能:学生能理解线段定义,掌握比较线段长短方法。

2. 过程与方法:通过实践操作,培养学生动手能力和解决问题能力。

3. 情感态度价值观:激发学生对几何学兴趣,培养严谨科学态度。

三、教学难点与重点教学难点:线段比较方法在实际问题中应用。

教学重点:线段定义理解,线段比较方法掌握。

四、教具与学具准备1. 教具:多媒体课件、直尺、圆规、不同长度线段模型。

2. 学具:学生用直尺、圆规、练习本。

五、教学过程1. 实践情景引入:展示不同长度绳子,提问如何判断它们长度。

2. 知识讲解:a. 线段定义及性质。

b. 比较线段长短方法:直接比较和工具测量。

3. 例题讲解:a. 比较给定线段长度。

b. 应用题:实际问题中线段比较应用。

4. 随堂练习:学生独立完成线段比较练习题。

5. 互动讨论:分组讨论,分享解题思路和方法。

六、板书设计1. 线段定义及性质。

2. 线段比较方法。

3. 例题及解题步骤。

4. 难点提示。

七、作业设计1. 作业题目:2. 答案:a. AB < CD < EFb. MN = 5cm,OP = 8cm,QR = 12cm八、课后反思及拓展延伸1. 反思:本节课学生对线段定义和比较方法理解程度,以及在实际问题中应用能力。

2. 拓展延伸:a. 研究线段和、差、倍、分。

b. 探讨线段在生活中应用,如测量、设计等。

重点和难点解析:在教学过程中,有几个细节是我需要特别关注和详细说明。

一、实践情景引入我深知实践情景引入对于学生理解抽象概念重要性。

在比较线段长短这一节课中,我特意设计展示不同长度绳子,并提出问题,让学生从实际情境中感知线段长短。

七年级 第2讲 线段比较

七年级  第2讲  线段比较

第二讲 比较线段的长短一、两点间的距离两点的距离的定义:连接两点间的线段的长度,叫做这两点的距离. 例1 两点间的距离是指( )A .连接两点的线段的长度B .连接两点的线段C .连接两点的直线的长度D .连接两点的直线例2 如图所示,有一个正方体盒子放在桌面上,一只虫子在顶点A 处,一只蜘蛛在顶点B 处,蜘蛛沿着盒子表面准备偷袭虫子,那么蜘蛛要想最快地捉住虫子,应该怎样走?你能画出来吗?与你的同伴交流一下. 二、线段的基本事实关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短. 例3〈实际应用题〉如图,小明家到小颖家有三条路,小明想尽快到小颖家,应选线路___.三、尺规作图及比较线段的长短尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图,利用尺规作图可以将一条线段移到另一条线段上.用直尺(无刻度)和圆规作一条线段等于已知线段的步骤:(1)利用直尺(无刻度)作一条射线AB ;(2)用圆规量出已知线段的长度a (测量时使圆规两只脚的顶点分别与线段两端点重合,则圆规两只脚的顶点之间的距离即为线段的长度);(3)在射线AB 上用圆规截取AC 使AC =a ,则线段AC 即为所求的线段,如图. 例4 如图,已知线段AB ,用尺规作一条线段等于已知线段AB . 线段长短的比较方法:(1)度量法,用刻度尺分别量出两条线段的长度再比较;(2)叠合法,使两条线段的一个端点重合,另一个端点在同一侧,从而比较出两条线段的长短. 四、线段的中点 1.中点的概念 :若点M 把线段AB 分成相等的两条线段AM 和BM , 则点M 叫线段AB 的中点. 2.对线段的中点的认识:(1)线段的中点是线段上的点,且把线段分成相等的两条线段; (2)一条线段的中点有且只有一个;(3)如图,若M 是AB 的中点,则①AM =BM = AB ;12②AB =2AM =2BM ;③AM +BM =AB 且AM =BM .反过来也成立.例5 已知M 是线段AB 上的一点,下列条件中不能判定M 是线段AB 的中点的是( )个. A .AB =2AM B .BM = AB C .AM =BM D .AM +BM =AB五、课堂检测1.把两点之间线段的__________,叫做这两点之间的距离.两点之间的距离是一个数,它不是线段. 2. 若点B 在直线AC 上,线段AB =10,BC =5,则A ,C 两点间的距离是( )A .5B .15C .5或15D .无法确定3.(中考•徐州)点A ,B ,C 在同一数轴上,其中点A ,B 表示的数分别为-3,1,若BC =2,则AC 等于( )A .3B .2C .3或5D .2或64.两点之间的所有连线中,__________最短.简单说成两点之间________最短. 5.如图,从A 地到B 地共有三条路,其中走________最近,理由是________________________.6.如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是( )A .经过一点有无数条直线B .经过两点,有且仅有一条直线C .两点之间,线段最短D .以上都不对7.比较两条线段的长短,我们可以用刻度尺分别测量出它们的________来比较,即度量法,或者把其中的一条线段移到__________________作比较,即叠合法. 8.下列图形中能比较大小的是( )A .两条线段B .两条直线C .直线与射线D .两条射线9.如图,AB =CD ,则AC 与BD 的大小关系是( )A .AC >BDB .AC <BD C .AC =BDD .无法确定10.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条较长的绳子,请你为他们选择一种合适的方法( )A .把两条大绳的一端对齐,另外两端在公共端点的同侧,然后拉直两条大绳,另一端在外面的即为长绳B .把两条绳子接在一起C .把两条绳子重合,观察另一端情况D .没有办法挑选11.把一条线段分成__________的两条线段的点,叫做线段的中点.若点M 是线段AB 的中点,则有AM =________= ________,或AB =2________=2________.121212.(中考•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________.13.(中考•长沙)如图,C,D是线段AB上的两点,且D是线段AC的中点,若AB=10 cm,BC=4 cm,则AD的长为()A.2 cm B.3 cm C.4 cm D.6 cm14.已知线段AB=8 cm,点C是直线AB上一点,BC=2 cm,若M是AB的中点,N是BC的中点,则线段MN的长度是()A.5 cm B.7 cm或3 cm C.5 cm或3 cm D.7 cm15.已知数轴上有点A,B,C,它们所表示的有理数分别是6,-8,x.(1)求线段AB的长;(2)求线段AB的中点D表示的数;(3)已知AC=8,求x的值.16.平面上有A,B两点,且AB=7 cm.(1)若在该平面上找一点C,使CA+CB=7 cm,则点C在何处?(2)若使CA+CB>7 cm,则点C在何处?(3)是否存在点C,使得CA+CB<7 cm?17.已知线段a,b,c(a>c),如图所示.求作:线段AB,使AB=a+b-c.18.如图,已知点A,B,C,D,E在同一直线上,且AC=BD,点E是线段BC的中点.(1)点E是线段AD的中点吗?说明理由;(2)当AD=10,AB=3时,求线段BE的长度.19.如图,若线段AB =20 cm ,点C 是线段AB 上一点,M ,N 分别是线段AC ,BC 的中点. (1) 求线段MN 的长.(2)根据(1)中的计算过程和结果,设AB =a ,其他条件不变,你能猜出MN 的长度吗?请用一句简洁的话表达你发现的规律.【思路点拨】本题的解题关键是先将MN 分成MC ,NC 两段,而MC = AC ,NC = BC ,后又将 AC + BC 转化成 AB 进行计算.1212121212。

4.3 线段的长短比较

4.3  线段的长短比较

万向思维精品图书
A、B、C、D四点在同一直线上(如图),若AB = CD, 则AC = CD。(填“>”、“=”或“<”)
AB
CD
已知A、B是数轴上的两点,AB = 2,点B表示的数是-1, 那么点A表示的数是 1或-3 。
A
B
A
-5 -4 -3 -2 -1 0 1 2
AC
B
M
则线段AC就是所求作的线段。
万向思维精品图书
怎样的点是线段的中点?
操作:把纸条对折,找出它的中点。 定义:把线段分成相等的两条线段的点,叫做这条线段
的中点。
A
M
B
因为点M是线段AB的中点,
所以 AM=BM= 1 AB 2
说明:
线段的中点必须在线段上。
把线段分成相等的三条线段的点,叫做这条线段的三等分点。
n
作法:(1)作射线AM; (2)在射线AM上顺次截取AB = m,BC = n。
A
B
C
M
则线段AC就是所求作的线段。
万向思维精品图书
已知:线段m、n。(如图)
m
求作:线段AC,使AC = m - n。
n
作法:(1)作射线AM;
(2)在射线AM上截取AB = m。
(3)在线段AB上截取BC = n。
万向思维精品图书
教学课件
数学 七年级上册 沪科版
万向思维精品图书
第4章 直线与角
4.3 线段的长短比较
万向思维精品图书
怎样画一条线段等于已知线段? a
画一条线段AB = 线段 a。
方法一: 先用刻度尺量出线段a的长度,再画一条
等于这个长度的线段AB。
方法二: 尺规作图:

线段长短的比较详细版课件

线段长短的比较详细版课件

线段长短的比较详细版课件一、教学内容本节课我们将学习人教版小学数学四年级上册第七单元《线与角》中的第一课《线段长短的比较》。

详细内容涉及:1. 理解线段的定义;2. 学会使用直尺、三角板等工具比较线段的长度;3. 掌握线段长短的比较方法。

二、教学目标1. 让学生理解线段的概念,能准确描述线段的特点;2. 培养学生使用工具比较线段长短的能力,提高动手操作能力;3. 使学生掌握线段长短的比较方法,并能应用于实际问题。

三、教学难点与重点教学难点:线段长短的比较方法。

教学重点:线段的概念、使用工具比较线段长短。

四、教具与学具准备教具:直尺、三角板、教学课件。

学具:直尺、三角板、练习本。

五、教学过程1. 实践情景引入展示生活中常见的线段,如尺子、绳子、铅笔等,引导学生观察并提问:“你们知道这些物体的长度是怎么比较的吗?”2. 新课导入(1)讲解线段的概念,引导学生理解线段的特点;(2)介绍直尺、三角板等工具的使用方法;(3)演示如何使用工具比较线段的长度。

3. 例题讲解(1)给出两个线段,引导学生使用工具进行比较;(2)讲解比较方法,强调比较时要保持工具的稳定;(3)让学生尝试自己解决问题,教师巡回指导。

4. 随堂练习(1)出示练习题,让学生独立完成;(2)针对学生的错误,进行讲解和指导;5. 课堂小结六、板书设计1. 线段定义2. 线段特点3. 比较方法4. 注意事项七、作业设计1. 作业题目:(1)比较下面两个线段的长度:线段①:AB,线段②:CD。

线段①:3cm,线段②:4cm。

2. 答案:(1)线段①:AB,线段②:CD。

答案:线段①比线段②短。

(2)线段①:3cm,线段②:4cm。

答案:线段②比线段①长。

八、课后反思及拓展延伸1. 反思:本节课学生对线段的概念和比较方法掌握情况较好,但仍有个别学生在使用工具时操作不熟练,需要在课后加强练习。

2. 拓展延伸:(1)引导学生思考:除了直尺、三角板,还有哪些工具可以用来比较线段的长度?(2)让学生尝试解决更复杂的线段比较问题,如:比较两个线段的长度,其中一个线段弯曲。

6.3 线段的长短比较 教学课件 (共28张PPT)

6.3 线段的长短比较 教学课件 (共28张PPT)

讲授新课
作一条线段等于已知线段 已知:线段 a,作一条线段 AB,使 AB=a. 第一步:用直尺画射线 AF; 第二步:用圆规在射线 AF 上截取 AB = a. 所以线段 AB 为所求线段.
a Aa B F
在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.
讲授新课
尺规作图的要点: 1.直尺只能用来画线,不能量距; 2.尺规作图要求作出图形,说明结果,并保留作图痕迹.
生活中我们常常会比较两个物体的长短。如图两支铅笔 谁长?
我们可以把两支铅笔看成两条线段,这样我们就把实际 问题转化为了几何问题.
讲授新课
思考:怎样比较两条线段的长短??
Aa B
(1)度量法 用刻度尺量出它们的 长度,再进行比较.
Cb
D
(2) 叠合法 将其中一条线段“移动”, 使其一端点与另一线段的 一端点重合,两线段的另 一端点均在同一射线上.
(2)连接两点的线段叫两点间的距离;
(3)两点之间所有连线中,线段最短;
(4)射个
C.3个
D.4个
当堂检测
2.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银
杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是(

A.两点之间线段最短 C.垂线段最短
解:作图步骤如下:
aa b
(1)作射线 AM;
A B1 B2
BM
(2)在 AM 上顺次截取 AB1=a,B1B2=a,
B2B=b,则线段 AB=2a+b.
讲授新课 知识点三 有关线段的基本事实
探究
我要去书店 怎么走呀?
商场
礼堂
书店
讲授新课
根据生活经验,容易发现: 两点之间的所有连线中,线段最短

线段的大小比较

线段的大小比较

题型一:线段的长度计算
1.逐段计算
例:如图所示,P是线段AB上一点,M,N分别是线段AB,AP的 中点,若AB=16,BP=6,求线段MN的长.
解:AP=AB﹣BP=16﹣6=10, ∵M是AB的中点, ∴AM=BM= AB=8, ∵N是AP的中点, ∴AN= AP= (AB﹣BP)=5, ∴NM=AM﹣AN=8﹣5=3. 答:线段MN的长为3.
题型二:线段的性质
例:如图,A,B,C,D为4个居民小区,现要在4个居民小区之间 建一个购物中心,试问应把购物中心建在何处,才能使4个居民 小区到购物中心的距离之和最小?画出购物中心的位置,并说明 理由.
解:连结AC和BD,AC和BD相交于点M,则点M即是购物中心的位置. ∴MA+MC+MB+MD=AC+BD 理由是两点之间线段最短.
1.1已知线段AB=4.8cm,点C是线段AB的中点,点D是线段CB的 中点,点E在线段AB上,且CE= AC,画图并计算DE的长.
解:(1)当点E在线段AC上时,如图1所示. ∵AB=4.8cm,点C是线段AB的中点, ∴AC=BC= AB=2.4cm. ∵点D是线段CB的中点, ∴CD= BC=1.2cm. 又∵CE= AC, ∴CE=0.8cm, ∴DE=CD+CE=1.2+0.8=2(cm).
线段的大小比较
复习课
一、线段的大小比较方法
1.目测法 2.度量法(用刻度尺测量长度) --“数”的比较
3.叠合法(一端重合,另一端落在同侧) ——“形”的比较
二、尺规作图(无刻度的直尺和圆规)
1.作一条线段等于已知线段 2.作线段的和与差
顺截(顺次截取)画和
逆截(反向截取)画差
三、线段的分点

6.2.2线段的比较与运算 课件(共14张PPT)初中数学人教版(2024)七年级上册

6.2.2线段的比较与运算 课件(共14张PPT)初中数学人教版(2024)七年级上册

(或AB=2AM=2MB)
反之也成立:因为AM=MB=
1 2
AB
(或AB=2AM=2MB)
所以M是线段AB的中点.
典例精讲
线段的运算
考点2-2
【例2】若AB=6cm,点C是线段AB的中点,点D是线段CB的中点,
求:线段AD的长是多少?
解:因为C是线段AB的中点.
A
所以AC=CB=
1 2
AB=
1 2
A.3 B.2 C.3或5 D.2或6
b
∴线段AB为所求.
A
B
CF
针对训练
线段的运算
考点3-1
1.如图1,点B,C在线段AD上则AB+BC=_A_C_,AD-CD=_A_C_,BC=_A_C_-_A_B_
=_B_D_-_C_D_. A
B
C
D
2.如图1,AB=CD,则图中另外两条相等的线段为_A_C_=_B_D__.
3.点A,B,C在同一条数轴上,其中点A,B表示的数分别是-3,1,若
方法总结:无图时求线段的长,应注意分类讨论,一般分以下 两种情况:点在某一线段上;点在该线段的延长线.
课堂小结
线段的比较与运算
中点
线段的和差
思想方法
方程思想 分类思想
知识梳理
针对训练
线段的比较与运算
查漏补缺
1.已知线段AB=6cm,延长AB到C,使BC=2AB,若D为AB的中点,则线段
DC的长为_1_5_c_m__.
BC=5,则AC=_1_1_或__1__.
目录
01
知识要点
02
线段的运算 线段的中点
精讲精练
新知探究
线段的运算---中点

43比较线段的长短

43比较线段的长短

学校
(3)700米
如图,从小明家到学校共有三条路,小 明为了尽快到学校,应选择第___(_2_)__条路, 用数学知识解释为__两__点__之__间__,线__段__最__短_____.
例 已知:线段AB=4,延长AB至 点C,使AC=11,点D是AB 的中点,点E是AC的中点.求D E的长.
谢谢
线段的比较: 第一种方法是:度量法,
即用一把刻度尺量出两条线段的 长度,再进行比较。
3.1cm
4.1cm
0
1
2
3
4
5
6
7
8
第二种方法:叠合法
注意:起点对齐,看终点。
A
B
(1)如果点B在线段CD上,
C
D 记作AB<CD
A
B (2)如果点B在线段CD
C
D 的延长线上, 记作
AB>CD
A
B (3)如果点B与点D重
C
D 合, 记作AB=CD
比较线段长短的两种方法:
1、度量法——从“数值”的角度比较
2、叠合法——从“形”的角度比 较
课本练习:
观察下列三组图形,分别比较线段a、
b的长短。再用刻度尺量一下,看看你 的观察结果是否正确。
a
(1)
b
(3)
b
a
(2)
a
b
线段的中点
中点的概念 : 若点C把线段AB分成相等的两条线段AC和
三条路线可走,其中 哪条路线最短?
2、人们修建公路遇到大山阻碍时, 为什么时常打通一条穿越大山的 直的隧道?
线段AB的长度叫做A、
A
B两点间的距离!! B
上面问题中反映了线段的一条基本事实:

北师大版(2024新版)七年级数学上册第四章课件:4.1 课时2 比较线段的长短

北师大版(2024新版)七年级数学上册第四章课件:4.1 课时2 比较线段的长短
我们把两点之间线段的长度,叫做这两点之间的距离.
探究新知
比较下图哪棵树高?哪支铅笔长?窗框相邻的两条边 哪条边长?你是怎么比较的?
直接观察
直接观察难以判断
探究新知
可以将铅笔的一端重合,再进行比较; 窗框无法移动,可以测量这两条边的长度进行比较; 也可以用一根绳子作为中介去比较.
探究新知
思考:怎样比较两条线段的长短呢?
截取A'B' =AB.
B'
C'
线段A'B'就是所求作的线段.
典型例题
例1 比较折线AB和线段A'B'的长短,你有什么方法?需要 什么工具?
分析:用圆规将折线段的每一小段卡住,将其依次移到 线段A'B'上. 答:可以利用圆规进行比较,折线AB比较长.
探究新知
思考:在一张纸上画一条线段,折叠纸片,使线段的端点 重合,折痕与线段的交点处于线段的什么位置?
A
MB
探究新知
A
MB
如图,点M 把线段AB分成相等的两条线段AM 与BM,
点M 叫做线段AB 的中点.
这时AM =BM=12AB或AB=2AM =2BM.
注意: 线段的中点只有一个,且一定在该线段上.
典型例题
例2 在直线 l 上顺次取A,B,C三点,使得AB=4 cm,
BC=3 cm,如果点O是线段AC的中点,那么线段OB的
课堂练习
2. 如图所示,直线MN表示一条铁路,铁路两旁各有一点A 和B,表示两个工厂.要在铁路上建一货站,使它到两厂距 离之和最短,这个货站应建在何处?
分析:在M上任选一点P,它到A,B 的距离即线段PA与PB的长,结合两 点之间线段最短可求.

人教版七年级数学上册6.2.2线段的比较与运算课件

人教版七年级数学上册6.2.2线段的比较与运算课件

2
2
∴CD=OC-OD= 1 (OA-OB)=1 AB1=
2
22
×4=2.
C.AC-BC=AC+BD
D.AD-AC=BD-BC
解析 AC-BC=AB,而AC+BD≠AB,故C选项错误.故选C.
6.(2024甘肃武威第十六中期末)如图,点C,D在线段AB上,若 AD=CB,则 ( B )
A.AC=CD
B.AC=DB
C.AD=2DB
D.CD=CB
解析 ∵AD=CB,∴AD-CD=CB-CD, ∴AC=DB,故B正确,故选B.
14.(教材变式·P166T3)(2023河北秦皇岛海港期末,21,★★☆) 已知A、B、C三点在同一直线上,AB=8,BC=6,则AC的长为
2或14 . 解析 分两种情况: 当点C在线段AB的延长线上时,AC=AB+BC=14; 当点C在线段AB上时,AC=AB-BC=2. 故答案为2或14.
15.(2024河南淮滨期末,19,★★☆)如图,已知点C为AB上一 点,AC=30 cm,BC= 2 AC,D,E分别为AC,AB的中点,求DE的长.
备用图
解析 (1)因为P是BC的中点,所以CP= 1 BC,
2
因为BC=AB-AC=12-3=9(cm), 所以CP= 1 ×9=4.5(cm),
2
所以CP的长是4.5 cm. (2)①当D在线段AC上时,如图:
因为BD=CD+BC,所以CD+BD=2CD+BC=11 cm, 所以CD= 1 ×(11-9)=1 cm.
7.如图所示.
(1)AC=BC+ AB ;
(2)CD=AD- AC ;
(3)CD= BD

2024七年级数学上册第6章基本的几何图形6.3线段的比较与运算课件青岛版

2024七年级数学上册第6章基本的几何图形6.3线段的比较与运算课件青岛版

知3-练
解题秘方:先由点M,N分别是AC,BC 的中点求出CM, CN的长度,再由MN=CM+CN求出线段MN的长度. 解:因为M,N分别是AC,BC的中点,AC=12,BC=8, 所以CM=12AC=6,CN=12BC=4 . 所以MN=CM+CN =6+4=10.
知3-练
4-1.[期末·日照东港区]已知线段AB=10 cm,C是直线AB 上一点,BC=4 cm,若M是AB的中点,N是BC的中 点,则线段MN的长度是_7__c_m_或__3__c_m_.
知1-讲
(2)叠合法:比较两条线段AB,CD的长短时,可把它们移 到同一条直线上,使点A和点C重合,点B和点D落在点 A(C)的同侧. 若点B和点D重合,则AB=CD;若点D落 在点A,B之间,则AB >CD;若点D落在线段AB的延长 线上,则AB< CD.
拓展:
知1-讲
(1)“ 线段”是一个几何图形,而“线段的长度”是一个
知2-练
(2)画一条线段,使它等于a-c. 解题秘方:先画一条射线EF,再用圆规截取EH=a, HG=c(点G在线段EH上),则线段EG即为所求. 解:如图6.3-8,线段EG即为所求.
知2-练
3-1. 如图,已知线段a,b,c(a>b)(要求:保留作图痕迹). (1)作一条线段,使它等于a-b+c;
解:如图(答案不唯一), 线段AC 即为所求.
(2)作一条线段,使它等于2a-b. 解:如图(答案不唯一), 线段EG即为所求.
知2-练
知识点 3 线段的中点和线段的倍分
知3-讲
1. 线段的中点 如果线段上一点将线段分成相等的两条线段,那么这个 点叫作线段的中点. 如图6.3-9 ①,如果M是线段 AB的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5厘米 ቤተ መጻሕፍቲ ባይዱ厘米
C
B
图1-35
‹# ›
观察图1-36中的三幅图,分别估计线段ab哪再用圆 规量一量条长,看看你的眼力如何。
a a b (1) b (2) (3)
‹# ›
练习
课本第20页,练习1,2,3
作业:
A组1,2,3,4. B组1,2
‹# ›
义务教育课程标准实验教科书数学· 七年级· 上册(泰山版)
1.4
线段的比较和度量
① ②
王庄

图1—28
李庄
王庄到李庄有三条路,那条路最近? 从图中可以看出第②条路最近,因为这条路是直路。 也就是说:
两点之间的所有连线中,线段最短。 两点之间连线的长度,叫做这两点的距离。用刻度 尺可以测量线段的长度。
A
B
‹# ›
如图1-33,要把一根条形木料锯成相等的两段, 应从何锯断?
A
图1-33
M
图1-34
B
如图1-34,如果点M把线段AB分成相等的两条线 段AM与BM, 那么点M叫做线段AB的中点。 这时AM=BM=1/2AB AB = 2AM=2BM
‹# ›
可以用刻度尺画出 一条线段的中点。
如图1-35,已知线段AB,画出它的 例2 中点C。 解: (1)用刻度尺量得AB=5厘米, 1 1 计算得 2 AB= 2 ×5=2.5(厘米) (2)在线段AB上截取AC=2.5厘米。 所以,点C就是所要画的线段AB的中点。 A
1.形状
2.数量
15cm
15cm
‹# ›
实验与探究
(2)如图1-31,已知线段AB, 怎样画出一条线段等于线段AB? 画一画。 1.形状 2.数量
15cm
A C D C
B D
p
‹# ›
例1
比较图1-32中,线段AB, BC, 和 CA的长短。
析: 可以用刻度尺测量长度,从数量上比较。 解: 用刻度尺量得线段AB=2.6厘米,线段BC=2.4 厘米,线段CA=2.2厘米。 所以 CA < BC < AB. C
‹# ›
实验与探究
在图1-29中,用刻度尺量得线段AB的长度为3厘米, 因而A, B两点间的距离为3厘米。
两点之间连线的长度,叫做这 两点的距离。用刻度尺可以测量线 段的长度。
A
3厘米 图1-29
B
‹# ›
实验与探究
(1)如图,你会比较两只铅笔的长短吗?你会比较两条 线段的长短吗?怎样比较?与同学交流。
相关文档
最新文档