长方体和正方体有关概念与公式
长方形正方形长方体正方体的相关公式
长方形的周长=(长+宽)×2
长方形的面积=长×宽
正方形的周长=边长×4
正方形的面积=边长×边长
长方体的棱长总和=(长+宽+高)×
4
正方体棱长总和=棱长×12 棱长=总和÷12
长方体底面积=长×宽
长方体表面积=(长×宽+长×高+宽×高)×2
正方体表面积=棱长×棱长×6
长方体体积=长×宽×高
正方体体积=棱长×棱长×棱长
通风管面积是求四个面,粉刷房间无特殊说明时刷五面墙再减去门窗。
水池、游泳池面积是五个面。
无盖水桶是五个面。
长=周长÷2-宽
宽=周长÷2-长
长=面积÷宽 宽=面积÷长
边长=周长÷4 宽=总和÷4-长-高 长=总和÷4-宽-高
高=总和÷4-长-宽。
(完整版)长方体和正方体知识点汇总(最新整理)
第二讲 长方体和正方体一、长方体和正方体的认识【知识点1】棱面顶点要素立体图形数量特征数量特征数量特征长方体12互相平行的棱长度相等6相对的面完全相同8特殊长方体12垂直于正方形面的棱长度相等6两个面是正方形,其余四个面是完全相同的长方形8正方体12所有的棱长度都相等6所有面都是正方形且完全相同8同一个顶点引出的三条棱分别叫做长、宽、高一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形!练习:(1)判断并改正:1、长方体的六个面一定是长方形; ( )2、正方体的六个面面积一定相等; ( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。
( )7、长方体的三条棱分别叫做长、宽、高。
( )8、有两个面是正方形的长方体一定是正方体。
( )9、有三个面是正方形的长方体一定是正方体。
( )11、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
( )12、长方体和正方体最多可以看到3个面。
( ) 14、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。
( ) 15、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
( )16、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( )(2)填空:1、一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。
2、一个长方体的底面是一个正方形,则它的4个侧面是( )形。
3、正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
4、把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)长+宽+高=棱长和÷4长方体棱长和=下面周长×2+高×4长方体棱长和=右面周长×2+长×4长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的, 因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
长方体和正方体的总棱长、表面积和体积公式
长方体和正方体的总棱长、表面积和体积公式
长方体和正方体都有:12条棱、6个面、8个顶点
长方体的总棱长= (长+宽+高)× 4 (单位:长度单位)
正方体的总棱长= 棱长× 12 (单位:长度单位)
长方体的表面积 =(长×宽 + 长×高 + 宽×高)×2
(单位:平方单位)
长方体的体积 = 长×宽×高
V = abh (单位:立方单位)
正方体的表面积 = (棱长×棱长)×6(单位:平方单位)
正方体的体积 = 棱长×棱长×棱长
V= a3 (单位:立方单位)长方体(或正方体)的体积= 底面积×高
V=sh (单位:平方单位)
无盖的盒子的表面积=长×宽 +(长×高 + 宽×高)×2(只算一个底面)
例如:教室粉刷墙面,求总面积,应用以上公式计算。
测量不规则物体的体积用排水法:
水面上升的高度×容器底面积 = 物体的体积。
《长方体和正方体》_概念和公式归纳
《长方体和正方体》概念和公式归纳一、概念:1、长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
在一个长方体中,相对的面完全相同,相对的棱长度相等。
2、正方体是由6个完全相同的正方形围成的立体图形。
(正方体也叫立方体)。
正方体有12条棱,它们的长度都相等,所有的面都完全相同。
3、两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5、长方体或正方体6个面和总面积叫做它的表面积。
6、物体所占空间的大小叫做物体的体积。
计量体积要用体积单位,常用的体积单位有立方厘米、立方分米、立方米。
规定:棱长是1cm的正方体,体积是1cm³. 棱长是1dm的正方体,体积是1dm³.棱长是1m的正方体,体积是1m³.7、容器所能容纳物体的体积通常叫做它们的容积。
8、3a读作“a的立方”表示3个a相乘,(即a·a ·a)9、至少用(8 )个小正方体能拼成一个大正方体。
10、箱子、油桶、仓库等所能容物体的体积,通常叫做它们的容积。
计量容积,一般就用体积单位。
11、计量液体的体积,如水、油等,常用容积单位升和毫升,也可以写成L和ml 。
12高。
13、计量不规则物体的体积可以用排水法。
(水面上升的那部分水的体积就是不规则物体的体积。
)二、公式:长方体公式:棱长和=(长+宽+高)×4底面积(占地面积、、上面积)=长×宽左面、右面=宽×高前(后)面积=长×高表面积=(长×宽+长×高+宽×高)×2没盖的表面积=长×宽+(长×高+宽×高)×2或=(长×宽+长×高+宽×高)×2-长×宽体积(容积)=长×宽×高长=体积÷宽÷高 宽=体积÷长÷高 高=体积÷长÷宽 体积(容积)=底面积×高 = 横截面积×长底面积=体积÷高 高=体积÷底面积 横截面积=体积÷长 长=体积÷横截面积正方体公式:棱长和=棱长×12 棱长=棱长和÷12 表面积=棱长×棱长×6 (任意一个面积×6) 没盖的表面积=棱长×棱长×5体积(容积)=棱长×棱长×棱长=底面积×棱长 三、体积单位换算:进率: 1L =1000ml 1L=1dm ³ 1ml=1 cm ³ 1立方米=1000立方分米=1000000立方厘米 1立方分米=1000立方厘米=1升=1000毫升1立方厘米=1毫升长度单位: 毫米厘米分米 米 千米 面积单位:平方毫米 平方厘米 平方分米 平方米 公顷 平方千米 体积单位: 立方厘米 立方分米 立方米 容积单位: (毫升) (升)10 10 100 100 100 10000 100 1000 1000 1000 10 1000。
长方体和正方体的总棱长、表面积和体积公式
长方体和正方体的总棱长、表面积和体积公式
长方体和正方体都有:12条棱、6个面、8个顶点
长方体的总棱长= (长+宽+高)× 4 (单位:长度单位)
正方体的总棱长= 棱长× 12 (单位:长度单位)
长方体的表面积 =(长×宽 + 长×高 + 宽×高)×2
(单位:平方单位)
长方体的体积 = 长×宽×高
V = abh (单位:立方单位)
正方体的表面积 = (棱长×棱长)×6(单位:平方单位)
正方体的体积 = 棱长×棱长×棱长
V= a3 (单位:立方单位)长方体(或正方体)的体积= 底面积×高
V=sh (单位:平方单位)
无盖的盒子的表面积=长×宽 +(长×高 + 宽×高)×2(只算一个底面)
例如:教室粉刷墙面,求总面积,应用以上公式计算。
测量不规则物体的体积用排水法:
水面上升的高度×容器底面积 = 物体的体积如有侵权请联系告知删除,感谢你们的配合!。
长方体和正方体统一的体积计算公式
长方体和正方体统一的体积计算公式一、长方体体积计算公式推导。
1. 长方体的基本元素。
- 长方体有长、宽、高这三个维度。
设长方体的长为a,宽为b,高为h。
2. 体积的意义及计算方法。
- 体积是指物体所占空间的大小。
对于长方体来说,我们可以通过数小正方体的个数来计算它的体积。
- 我们把长方体看作是由若干个单位体积(棱长为1的小正方体)组成的。
沿着长的方向,可以摆放a个小正方体;沿着宽的方向,可以摆放b个小正方体;沿着高的方向,可以摆放h个小正方体。
- 那么长方体所含小正方体的总个数(也就是长方体的体积V)就等于长、宽、高的乘积,即V = a×b×h。
二、正方体体积计算公式推导。
1. 正方体的特点。
- 正方体是特殊的长方体,它的长、宽、高都相等,设正方体的棱长为a。
2. 正方体体积计算。
- 由于正方体的长、宽、高都为a,根据长方体体积公式V=a×b×h,此时b = a,h=a,所以正方体的体积V=a×a×a=a^3。
1. 统一公式的原理。
- 我们可以把长方体和正方体的体积公式统一起来。
对于长方体V = a×b×h,而正方体是特殊的长方体,当a=b = h时,正方体体积V=a^3。
- 如果我们把长方体底面的面积S = a×b(底面积就是长乘宽),那么长方体的体积V=S×h(体积等于底面积乘高)。
- 对于正方体,它的底面积S = a×a=a^2,体积V = S×a=a^2×a=a^3,也符合V = S×h这个公式(这里h=a)。
解决简单的正方体和长方体问题五年级数学技巧
解决简单的正方体和长方体问题五年级数学技巧在五年级的数学学习中,正方体和长方体问题是一个常见的考点。
通过掌握几个简单的技巧,我们可以轻松解决这类问题。
本文将介绍一些实用的数学技巧,帮助同学们在解决正方体和长方体问题时更加得心应手。
1. 理解正方体和长方体的概念在解决正方体和长方体问题之前,首先要确保对这两个几何体的概念有清晰的理解。
正方体是一个六个面都是正方形的立体,而长方体则是一个六个面都是矩形的立体。
了解这些基本定义可以帮助我们准确地理解问题并找到解决方案。
2. 计算正方体的体积当我们需要计算正方体的体积时,可以使用以下公式:体积 = 边长 x 边长 x 边长其中,边长指的是正方体每个边的长度。
通过明确使用该公式,我们可以准确地计算出正方体的体积。
例如,如果一个正方体的边长是5厘米,那么它的体积就是5 x 5 x 5 = 125立方厘米。
3. 计算长方体的体积计算长方体的体积时,我们可以使用以下公式:体积 = 长 x 宽 x 高在这个公式中,长指的是长方体的长,宽指的是长方体的宽,高则是长方体的高。
通过应用这个公式,我们可以轻松地计算出长方体的体积。
例如,如果一个长方体的长为10厘米,宽为5厘米,高为3厘米,那么它的体积就是10 x 5 x 3 = 150立方厘米。
4. 解决与正方体和长方体相关的图形问题除了计算体积,数学问题还可能涉及到正方体和长方体的表面积、边长等。
在解决这类问题时,我们可以使用一些技巧。
例如,计算正方体的表面积时,可以使用以下公式:表面积 = 6 x 边长 x 边长这里的边长指的是正方体的边长。
类似地,计算长方体的表面积时,可以使用以下公式:表面积 = 2 x (长 x 宽 + 长 x 高 + 宽 x 高)在使用这些公式时,要注意将单位进行统一,确保结果的准确性。
5. 应用技巧解决实际问题在解决实际问题时,我们可以应用前面所学的技巧。
例如,问题可能给出一个长方体的体积和其中两个边的长度,我们需要计算第三个边的长度。
正方体长方体知识点、易错题、小升初难题
正方体长方体知识点、易错题、小升初难题第三单元正方体和长方体知识点长方体.正方体概念.特征:长方体和正方体都是立体图形。
正方体是特殊的长方体。
相交于一个顶点的三条棱的长度分别叫做长方体的长.宽.高。
正方体都叫做棱。
长.宽.高都各有4条,分别平行并且相等,正方体的棱都相等。
)各部分特征:长方体:面:有6个面,都是长方形(特殊情况下最多有两个相对的面是正方形)。
相对的面完全相同。
棱:有12条棱。
相对的棱长度相等。
顶点:有8个顶点。
正方体:面:有6个面都是正方形,6个面完全相同。
棱:有12条棱。
12条棱的长度相等。
顶点:有8个顶点。
棱长总和公式:长方体的棱长总和=(长+宽+高)×4.L长4(a+b+h)正方体的棱长总和=棱长×12.L正12a表面积:长方体或正方体6个面和总面积叫做它的外表积。
基本公式:长方体的表面积=(长×宽+长×高+宽×高)×2.S 表长2(ab+ah+bh)正方体的表面积=棱长×棱长×6.S表正a×a×6公式延伸:①无底(或无盖):(少一个长×宽)长方体表面积=长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-ab。
S=2(ah+bh)+ab②无底又无盖:(一般烟囱)长方体表面积=(长×高+宽×高)×2.S=2(ah+bh)体积:物体所占空间的大小叫做物体的体积。
符号:V单位:常用:立方米m3立方分米dm3立方厘米cm3不常用:立方千米km3(描述天体星球)立方毫米mm3(XXX)基本公式:长方体的体积=长×宽×高V=abh正方体的体积=棱长×棱长×棱长V=a3公式延伸:长方体或正方体底面的面积叫做底面积。
底面积=长×宽V=sh(长.正方体的体积都=底面积×高)容积:箱子.油桶.仓库等所能包容物体的体积,通常叫做他们的容积。
长方体和正方体的总棱长、表面积和体积公式
长方体和正方体的总棱长、表面积和体积公式
长方体和正方体都有:12条棱、6个面、8个顶点
长方体的总棱长= (长+宽+高)× 4 (单位:长度单位)
正方体的总棱长= 棱长× 12 (单位:长度单位)
长方体的表面积 =(长×宽 + 长×高 + 宽×高)×2
(单位:平方单位)
长方体的体积 = 长×宽×高
V = abh (单位:立方单位)
正方体的表面积 = (棱长×棱长)×6(单位:平方单位)
正方体的体积 = 棱长×棱长×棱长
V= a3 (单位:立方单位)长方体(或正方体)的体积= 底面积×高
V=sh (单位:平方单位)
无盖的盒子的表面积=长×宽 +(长×高 + 宽×高)×2(只算一个底面)
例如:教室粉刷墙面,求总面积,应用以上公式计算。
测量不规则物体的体积用排水法:
广东陶粒,广东陶粒厂2Wr32Oud3Lam。
正方体和长方体表面积公式
正方体和长方体表面积公式
一、正方体表面积公式。
1. 公式。
- 正方体的表面积公式为S = 6a^2,其中S表示正方体的表面积,a表示正方体的棱长。
2. 推导过程。
- 正方体有6个面,且这6个面都是完全相同的正方形。
每个面的面积为a×a=a^2,那么正方体的表面积就是6个面的面积之和,所以S = 6a^2。
二、长方体表面积公式。
1. 公式。
- 长方体的表面积公式为S=(ab + ah+bh)×2,其中S表示长方体的表面积,a、
b、h分别表示长方体的长、宽、高。
2. 推导过程。
- 长方体有6个面,相对的面面积相等。
其中前面和后面的面积都为ah,左面和右面的面积都为bh,上面和下面的面积都为ab。
- 那么长方体的表面积S = ah+ah+bh+bh+ab+ab=(ab + ah+bh)×2。
长方体和正方体的表面积和体积公式的推导过程
长方体和正方体的表面积和体积公式的推导
过程
长方体和正方体都是立体图形,其表面积和体积公式的推导过程
如下:
首先考虑长方体,它有三个不同的边长:长(l)、宽(w)和高(h)。
长方体的表面积S可以通过计算每个面的面积再相加得到:S = 2lw + 2lh + 2wh
其中2lw、2lh和2wh分别代表长方体的底部和顶部、前面和后面、两侧面的面积。
这个公式也可以用来计算长方体侧面积,因为长方体
的侧面有四个。
长方体的体积V为:
V = lwh
上面的公式可以通过将长方体看作由l个正方形堆叠而成来理解。
每个正方形的边长是w和h,高是l,因此体积就是这些正方形的面积
相加得到的。
对于正方体,它的所有边长都相等,假设为a。
那么正方体的表面积S为:
S = 6a^2
这个公式是因为正方体有6个相等的正方形表面。
正方体的体积V 为:
V = a^3
这个公式可以通过将正方体看作由a个正方形堆叠而成来理解。
每个正方形的边长都是a,所以体积就是这些正方形的面积相加得到的。
除了表面积和体积,长方体和正方体还有其他一些特性,比如对
角线长度和内角度量。
这些特性也可以通过基本的几何原理来推导和
理解。
五年级下册数学第三单元长方体和正方体
第一节:长方体的基本概念和性质1. 长方体的定义长方体是一种立体几何图形,它具有六个面,所有的面都是矩形。
长方体有8个顶点和12条棱,所有的棱都是相等的,所有的面都是成对平行的。
2. 长方体的性质长方体的体积可以用公式V = lwh来计算,其中l代表长,w代表宽,h代表高。
长方体的表面积可以用公式S = 2lw + 2lh + 2wh来计算。
3. 长方体的应用长方体在我们的日常生活中有很多应用,比如盒子、书架、房屋等都是长方体的形状。
第二节:正方体的基本概念和性质1. 正方体的定义正方体是一种立体几何图形,它具有六个面,所有的面都是正方形。
正方体有8个顶点和12条棱,所有的棱和面都是相等的。
2. 正方体的性质正方体的体积可以用公式V = a^3来计算,其中a代表正方体的边长。
正方体的表面积可以用公式S = 6a^2来计算。
3. 正方体的应用正方体也在我们的生活中有着广泛的应用,比如骰子、立方体造型的建筑等都是正方体的形状。
第三节:长方体和正方体的比较和区别1. 长方体和正方体的比较长方体和正方体都是立体几何图形,但它们的形状有所不同。
长方体的面都是矩形,而正方体的面都是正方形。
长方体的边长和高度可以不相等,而正方体的边长是相等的。
2. 长方体和正方体的区别长方体和正方体的体积和表面积的计算公式也有所不同。
长方体的体积计算公式是V = lwh,而正方体的体积计算公式是V = a^3。
长方体的表面积计算公式是S = 2lw + 2lh + 2wh,而正方体的表面积计算公式是S = 6a^2。
第四节:长方体和正方体的实际问题1. 例题一:一块长方体的木板,长20cm,宽15cm,厚5cm。
求其表面积和体积。
解:根据长方体的表面积公式S = 2lw + 2lh + 2wh,将长、宽、高代入公式,得表面积为900平方厘米。
根据长方体的体积公式V = lwh,将长、宽、高代入公式,得体积为1500立方厘米。
长方体和正方体(提高)—小学数学讲义
容积和体积【知识点1】容积与体积基本概念1、体积是指所占空间的大小;容积是指所容纳物体的体积;一个物体的容积一般都比它的体积小。
注意:当容器壁厚度忽略不计时,体积=容积;否则体积<容积。
比如说,一个洗发液的瓶子里面所能装下的洗发液的体积就是它的容积。
(容器壁忽略不计)体积计算方法:长方体的体积=长×宽×高正方体的体积=棱长×棱长×棱长2、长方体和正方体的体积=底面积×高=右面面积×长=前面面积×宽1)体积相等的两个长方体或者一个长方体与一个正方体,表面积不一定相等,棱长和也不一定相等。
2)体积相等的两个正方体,表面积一定相等,棱长和也一定相等。
3)体积相等的情况下正方体的表面积比长方体的小;表面积相等的情况下正方体的体积比长方体的体积大。
【例题精讲】例1、一个长方体框架长8厘米,宽6厘米,高4厘米,做这个框架共要()厘米铁丝,是求长方体(),在表面贴上塑料板,共要()塑料板是求(),在里面能盛()升水是求(),这个盒子有()立方米是求().例2、有一块面积为36平方分米的铁皮,将其制作成可以容纳最多物体的形状,其棱长是多少?可以容纳多少立方分米的物体?【同步练习】1、一个正方体的棱长和是12分米,它的体积是()立方分米.2、一个长方体的体积是30立方厘米,长是5厘米,高是3厘米,宽是()厘米.3、表面积是54平方厘米的正方体,它的体积是()立方厘米.4、长方体的长是6厘米,宽是4厘米,高是2厘米,它的棱长总和是()厘米,六个面中最大的面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米.5、一个正方体棱长2厘米,体积是()立方厘米,如果这个正方体的棱长扩大2倍,它的体积是()立方厘米。
6、长方体的长为12厘米,高为8厘米,阴影部分的两个面的面积和是200平方厘米,这个长方体的体积是多少立方厘米?【知识点2】容积和体积的差异相同点不同点容积计算公式相同V=s.hV=a.b.h从容器内部测量容积指容器内部体积计量单位通常为L、ml体积从容器外部测量体积指容器外部体积,或所容纳物体的体积计量单位通常为m、dm、cm、mm【同步练习】1、一个长方体鱼缸从外面量长宽高分别为5分米、2.5分米、3分米,,从里面量长宽高分别为4.9分米、2.4分米、2.9分米,这个鱼缸的容积是(),体积是(),如果鱼缸中装满水,水的体积是()。
正方体和长方体的体积公式
正方体和长方体的体积公式
正方体和长方体是我们日常生活中经常接触到的几何体,它们的体积是我们在学习数学时必须掌握的基本知识。
下面我们将分别介绍正方体和长方体的体积公式。
正方体的体积公式为:V = a³,其中V表示正方体的体积,a表示正方体的边长。
正方体的六个面都是正方形,因此它的长、宽、高都相等。
正方体的体积公式非常简单,只需要将正方体的边长a代入公式中即可求出它的体积。
例如,一个边长为5厘米的正方体的体积为:V = 5³= 125立方厘米。
长方体的体积公式为:V = lwh,其中V表示长方体的体积,l、w、h分别表示长方体的长、宽、高。
长方体的六个面中有两个面是长方形,因此它的长、宽、高可以不相等。
长方体的体积公式需要将长、宽、高三个值都代入公式中才能求出它的体积。
例如,一个长为10厘米、宽为5厘米、高为3厘米的长方体的体积为:V = 10 × 5 × 3 = 150立方厘米。
正方体和长方体的体积公式是我们在学习数学时必须掌握的基本知识。
在实际生活中,我们可以通过这些公式计算出物体的体积,从
而更好地了解它们的大小和形状。
同时,这些公式也为我们提供了一种思考问题的方式,让我们更好地理解几何学的基本概念。
长方体和正方体知识点汇总
长方体和正方体知识点汇总一、长方体和正方体的认识1、长方体定义:长方体是由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
面:长方体有 6 个面,相对的面完全相同。
棱:长方体有 12 条棱,相对的棱长度相等。
按长度可分为三组,每一组有 4 条棱。
顶点:长方体有 8 个顶点。
2、正方体定义:正方体是用六个完全相同的正方形围成的立体图形。
面:正方体有 6 个面,每个面都是正方形,且 6 个面完全相同。
棱:正方体有 12 条棱,12 条棱的长度都相等。
顶点:正方体有 8 个顶点。
3、长方体和正方体的关系正方体是特殊的长方体,当长方体的长、宽、高都相等时,就变成了正方体。
二、长方体和正方体的表面积1、表面积的定义长方体或正方体 6 个面的总面积,叫做它的表面积。
2、长方体表面积的计算公式:长方体的表面积=(长×宽+长×高+宽×高)× 2例如:一个长方体的长为 5 厘米,宽为 4 厘米,高为 3 厘米,其表面积为:(5×4 + 5×3 + 4×3)× 2 = 94(平方厘米)3、正方体表面积的计算公式:正方体的表面积=棱长×棱长× 6例如:一个正方体的棱长为 6 厘米,其表面积为:6×6×6 = 216(平方厘米)三、长方体和正方体的体积1、体积的定义物体所占空间的大小叫做物体的体积。
2、体积单位常用的体积单位有立方厘米、立方分米、立方米。
1 立方厘米:棱长为 1 厘米的正方体,体积是 1 立方厘米。
1 立方分米:棱长为 1 分米的正方体,体积是 1 立方分米。
1 立方米:棱长为 1 米的正方体,体积是 1 立方米。
3、长方体体积的计算公式:长方体的体积=长×宽×高例如:一个长方体的长为 6 厘米,宽为 5 厘米,高为 4 厘米,其体积为:6×5×4 = 120(立方厘米)4、正方体体积的计算公式:正方体的体积=棱长×棱长×棱长例如:一个正方体的棱长为 5 厘米,其体积为:5×5×5 = 125(立方厘米)5、体积单位的换算1 立方米= 1000 立方分米1 立方分米= 1000 立方厘米四、长方体和正方体的容积1、容积的定义容器所能容纳物体的体积,叫做它的容积。
长方体和正方体(基础)—小学数学讲义
知识点概况正方体长方体1、基本概念:1)长方体和正方体都是立体图形;都有6个面,12条棱,8个顶点。
2)从一个顶点引出的3条棱的长度就是长方体的长、宽、高。
3)长方体的6个面都是长方形,特殊的情况有两个相对的面是正方形,相对的面完全相同;相对的棱长度相等(有4条长、4条宽、4条高)。
4)当长方体有两个相对的面是正方形时,其他的4个面是相等的长方形。
(在长方体中最多可以有4个相同的面)5)正方体的6个面都是相等的正方形,12条棱的长度都相等。
6)正方体是特殊的长方体。
7)长方体和正方体最多可以看到3个面。
8)长方体和正方体的表面积是指6个面的总面积;体积是指所占空间的大小;容积是指所容纳物体的体积.9)常用的体积单位有立方厘米、立方分米、立方米;容积单位一般都用体积单位,但计量液体的体积时用升和毫升。
10)1立方分米=1升;1立方厘米=1毫升。
2、基本计算公式:1)长方体的棱长总和=(长+宽+高)×42)正方体的棱长总和=棱长×12;正方体的棱长总和÷12=棱长3)长方体的表面积=(长×宽+长×高+宽×高)×24)正方体的表面积=棱长×棱长×65)长方体的体积=长×宽×高6)正方体的体积=棱长×棱长×棱长7)长方体和正方体的体积=底面积×高8)如果长方体有2个面是正方形时,长方体的表面积=正方形的面积×2+长方形的面积×49)如果将一个长方体展开,那么长方体的表面积=长×宽×2+(长+宽)×2×高(底面周长=(长+宽)×2)专题练习【考点解析】1.长方体,正方体的特点:1)长方体有()面,有()棱,有()点。
棱长有()长有()宽,有()高。
2)长方体的面的形状一般是长方形,有时两个相对的面是正方形。
正方体长方体的体积公式
正方体长方体的体积公式正方体长方体的体积公式正方体和长方体是我们在日常生活中经常遇见的几何图形,它们在建筑、制造、装饰等领域中都发挥着重要的作用。
正方体和长方体的体积计算是几何学中的基本问题之一,本文将详细介绍正方体长方体的体积公式并给出实例说明。
正方体的体积公式:正方体是一种六个面都相等且互成直角的立方体,它的体积公式为:V = a³其中,a表示正方体的边长,V表示正方体的体积。
正方体的体积是边长的三次方,也可以理解为在三维空间中由六个面所包围的立体空间的大小。
通过计算正方体的体积可以帮助我们明确建筑物、器具等的空间大小,从而更合理地规划设计和利用空间。
例如,一台电视机的外包装为一个立方体,长宽高分别为50cm,40cm,30cm,我们可以通过正方体的体积公式计算它的容积:V = a³ = 50cm × 40cm × 30cm = 60000cm³因此,这台电视机外包装的容积为60000cm³。
长方体的体积公式:长方体是一种六个面都为矩形的立方体,它的体积公式为:V = l × w × h其中,l、w、h分别表示长方体的长度、宽度、高度,V表示长方体的体积。
长方体的体积可以看做底面积与高的乘积,也可以理解为在三维空间中由六个面所包围的立体空间的大小。
与正方体不同的是,长方体的体积需要分别计算长度、宽度和高度,因此在计算长方体的体积时需要注意各个参数的单位是否一致。
例如,一根木棒的形状为长方体,长度为2m,宽度为10cm,厚度为20cm,我们可以通过长方体的体积公式计算它的容积:V = l × w × h = 2m × 0.1m × 0.2m = 0.04m³因此,这根木棒的容积为0.04m³。
应用举例:作为几何学中的基础知识,正方体和长方体的体积公式在我们的日常生活中有着广泛的应用。
正方体和长方体体积公式
正方体和长方体体积公式正方体和长方体都是我们日常生活中经常使用的几何图形,它们的体积公式是我们必须掌握的基本知识。
本文将详细介绍正方体和长方体的定义及其体积公式。
一、正方体正方体是指六个面都是正方形的立体图形。
正方体的长、宽、高相等,因此也称为立方体。
在三维空间中,正方体的八个顶点、十二条棱和六个面上的每个正方形都是对称的。
正方体的体积公式是:V = a³其中,a表示正方体的边长。
例如,一边长为3厘米的正方体的体积为:V = 3³ = 27厘米³二、长方体长方体是指六个面都是矩形的立体图形。
长方体的长、宽、高可以各不相同,但是对于任意一个长方体,总可以从其中选定三个互相垂直的面,使这三个面围成的空间与整个长方体相同。
长方体的体积公式是:V = lwh其中,l、w、h分别表示长方体的长、宽、高。
例如,一个长11厘米、宽6厘米、高4厘米的长方体的体积为:V = 11 × 6 × 4 = 264厘米³三、正方体和长方体的比较正方体和长方体的体积公式都是基于它们的边长或者三个互相垂直的边长计算的,但是由于正方体的长、宽、高相等,因此它的体积公式比长方体简单很多。
在计算体积时,如果我们已知边长,可以直接使用正方体的体积公式进行计算,而计算长方体的体积则需要多一步乘法运算。
另外,正方体和长方体的应用场景也有所不同。
正方体在建筑、工程、制造等领域中比较常见,例如规格相同的方砖、方钢管等都是正方体。
而长方体在家居、家电等领域应用更广泛,例如电视、沙发、桌子等形状多样的物品都有可能是长方体。
综上所述,正方体和长方体都是基本的几何图形,它们的体积公式是我们必须掌握的基本知识。
在实际应用中,我们需要根据具体情况选择合适的公式进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分长方体和正方体的认识
1、长方体是由六个长方形,特殊情况下(由两个相对面是正方形)围成的立体图形。
正方体是由六个完全相同的正方形围成的立体图形。
2、长方体和正方体都有6个面,12条棱,8个顶点。
长方体相对的2个面的面积相等,相对的4条棱的长度相等。
正方体的6个面完全相同,12条棱长度都相等。
正方体可以看成是长、宽、高都相等的长方体。
正方体是特殊的长方体。
3、长方体中最少有2个面完全相同,最多有4个面完全相同。
长方体最少有4条棱长度相等,最多有8条棱长度相等。
4、计算长方体或正方体的棱长总和就用长度单位:米、分米、厘米。
每相邻两个长度单位之间的进率是10。
长方体的棱长总和=长×4+宽×4+高×4
长方体的棱长总和 =(长+宽+高)×4
长+宽+高=棱长总和÷4 长方体的长=棱长总和÷4 -(宽+高)
长方体的宽=棱长总和÷4-(长+高) 长方体的高=棱长总和÷4 -(长+宽)5、正方体的棱长总和=棱长×12 正方体的棱长=棱长总和÷12
第二部分长方体和正方体的表面积
1、长方体和正方体6个面的总面积叫做它们的表面积。
计算表面积也用面积单位:平方米、平方分米、平方厘米。
每相邻两个面积单位之间的进率是100。
2、长方体上(下)面的面积=长×宽
长方体左(右)面的面积=宽×高长方体前(后)面的面积=长×高
长方体的表面积=长×宽×2+长×高×2+宽×高×2
长方体的表面积=(长×宽+长×高+宽×高) ×2
正方体的表面积=棱长×棱长×6
正方体一个面的面积=正方体的表面积÷6
第三部分长方体或正方体的体积和容积
1、物体所占空间的大小叫做物体的体积。
2、常用的体积单位有立方厘米、立方分米、立方米。
每相邻两个体积单位之间的进率是1000。
3、棱长1米的正方体,体积是1立方米。
用3根1米长的木条做成一个互成直角的架子,放在墙角,是1立方米。
棱长1分米的正方体,体积是1立方分米。
一个粉笔盒的体积接近1立方分米。
棱长1厘米的正方体,体积是1立方厘米。
一个手指尖的体积大约是1立方厘米。
4、长方体的体积=长×宽×高 V= abh
长方体的长= 长方体的体积÷宽÷高
长方体的宽=长方体的体积÷长÷高
长方体的高=长方体的体积÷长÷宽
正方体的体积= 棱长×棱长×棱长 V=a×a×a=a
5、长方体或正方体底面的面积叫做底面积。
长方体(或正方体的体积)=底面积×高 V=sh
6、一个正方体的棱长扩大a倍,棱长总和扩大a倍,表面积扩大a×a倍,体积扩大a× a× a倍。
7、计算不规则物体的体积可以用排水法。
水中物体的体积(不规则物体的体积)=容器的底面积×水面上升(或下降)的高度。
水面上升(或下降)的高度=水中物体的体积(不规则物体的体积)÷容器的底面积。
8、容器所能容纳物体的体积叫做它们的容积。
计量容积,一般就用体积单位。
计量液体的体积,常用容积单位升或毫升,也可以写成L或ml。
1ml=1cmlL=1dm 1L=1000ml
9、长方体和正方体的容积计算方法,跟体积的计算方法相同。
但是容积要从容器里面量出长、宽、高。
物体的容积一般都小于物体的体积。
只是,为了计算方便,我们把厚度忽略不计。