电冰箱保护电路

合集下载

实验六 电冰箱控制系统

实验六  电冰箱控制系统

实验六电冰箱控制系统一、实验目的熟悉电冰箱的控制系统,能进行简单维护维修。

二、实验原理(一)控制电路中常用的元器件电冰箱电气控制系统的主要作用,是根据使用要求,自动控制电冰箱的起动、运行和停止,调节制冷剂的流量,并对电冰箱及其电气设备实行自动保护,以防止发生事故。

电冰箱的控制电路是根据电冰箱的性能指标来确定。

但其电气控制系统还是大同小异的,一般由动力、起动和保护装置、温度控制装置、化霜控制装置、加热与防冻装置,以及箱内风扇、照明等部分组成。

常用压力式温度控制器见下图。

1. 温度控制器:温度控制器简称温控器,是电冰箱、房间空调器等制冷设备调温、控温的装置。

它的主要作用是:(1)通过调节温度控制器旋钮,可以改变所需要的控制温度。

(2)可根据电冰箱内或空调房间内的温度要求,对制冷压缩机进行开、停的自动控制,使电冰箱内或房间内的温度保持在控制范围内。

温度控制器的种类很多,常用的温感压力式温度控制器。

温感压力式温度控制器主要用于人工化霜的普通“直冷式”单、双门电冰箱,或用于全自动化霜的“间冷式”双门电冰箱对冷冻室的温度进行控制。

温度控制器主要由感温元件、毛细管、感压腔和一组微动开关等机构组成。

感温元件也叫温压转换部件,是一个密闭的腔体,由感温管感温剂和感压腔三部分组成。

感压腔内充入的感温剂一般是氯甲烷或是R12。

它的作用是将蒸发器表面的温度变化转换为压力变化,从而引起快跳触点的动作。

2. 起动继电器:(1)重锤式起动继电器:重锤式起动继电器的结构主要包括电流线圈、重力衔铁、弹簧、动触点、T形架、绝缘壳体等;(2) PTC起动继电器:PTC是正温度系数的热敏电源电阻英文的缩写。

PTC起动继电器的工作原理:电冰箱在室温下起动时,PTC元件的电阻很小(约20Ω),而在较短的时间(0.1~0.2s)内通过基本恒定的电流,呈导通状态,之后随着其元件本身的发热温度升高,其阻值迅速增大,此时,PTC处于“断开”状态。

3. 过载保护器:过电流和过热保护器称为过载保护器,是压缩机电动机的安全保护装置。

保护电路图全集

保护电路图全集

保护电路图全集一.低功耗定时开关电路图二.LM339组成的过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。

温度是影响电源设备可靠性的最重要因素。

根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

图4是仅用一个4比较器LM339及几个分立元器件构成的过压、欠压、过热保护电路。

取样电压可以直接从辅助控制电源整流滤波后取得,它反映输入电源电压的变化,比较器共用一个基准电压,N1.1为欠压比较器,N1.2为过压比较器,调整R1可以调节过、欠压的动作阈值。

N1.3为过热比较器,RT为负温度系数的热敏电阻,它与R7构成分压器,紧贴于功率开关器件IGBT的表面,温度升高时,RT阻值下降,适当选取R7的阻值,使N1.3在设定的温度阈值动作。

N1.4用于外部故障应急关机,当其正向端输入低电平时,比较器输出低电平封锁PWM驱动信号。

由于4个比较器的输出端是并联的,无论是过压、欠压、过热任何一种故障发生,比较器输出低电平,封锁驱动信号使电源停止工作,实现保护。

如将电路稍加变动,亦可使比较器输出高电平封锁驱动信号。

图4 过压、欠压、过热保护电路· [图文] 低功耗定时开关电路图· [图文] LM339组成的过压、欠压及过热保护电路· [图文] 采用继电器和限流电阻构成的软启动电路· [图文] 采用晶闸管和限流电阻组成的软启动电路· [组图] 防浪涌软启动电路· [图文] CW431CS过电压保护应用电路· [图文] 弧焊电源保护电路的设计· [图文] 电动车控制器短路保护时间的计算方法· 太阳能热水器与防雷电设计方案· ESD保护元件的对比分析及大电流性能鉴定· [图文] PolySwitch元件的保护特性解析· 如何正确选择中小型断路器· 变频器过电压产生的原因及解决方法· [图文] ESD保护时怎样维持USB信号完整性· [图文] 集成运算放大器输出过流保护电路原理· [图文] 集成运算放大器供电过压保护电路原理· [图文] 保险丝熔断自愈电路图原理· [图文] 停电自锁保护开关电路原理图· [图文] 压敏电阻原理及应用· [图文] 选用压敏电阻的方法· [图文] 整流电源的过压保护-压敏电阻及其应用· [图文] 用于三极管的过压保护-压敏电阻及其应用 · [图文] 彩电消磁电路的过压保护-压敏电阻及其应用 · [组图] 显像管放电保护-压敏电阻及其应用· [图文] 直流电机的稳速保护-压敏电阻及其应用· [图文] 固态继电器电路的过压保护-压敏电阻及其应用 · [图文] 电视机的防雷保护-压敏电阻及其应用· [图文] 电视机稳压保护器-压敏电阻及其应用· [图文] 由TL431组成的高精度的恒流源电路图· [图文] 带滞回区的电池放电保护电路· [图文] 红外线探测报警器制作原理· [图文] 过流保护电路原理· [图文] 直流电路的过流保护设计方法· [图文] 蒸汽熨斗自动保护电路原理图· [图文] 含指示灯的短路保护电路· [图文] 三相三线制电源缺相保护电路· [图文] 锂芯保护电路· [图文] T3(E3)保护电路及解决方案· [图文] VDSL保护电路及解决方案· [图文] HDSL保护电路及解决方案· [组图] USB2.0接口ESD防护电路· [图文] HDMI接口的ESD保护电路及解决方案· [图文] 太阳能热水器控制板浪涌解决方案· [组图] CAN总线防护电路及解决方案· [图文] 12V电源接口防雷方案· [图文] 以太网供电(POE)接口供电保护电路· [图文] 车载电源浪涌防护电路(12V电源保护电路)· [图文] V.35接口保护电路· [组图] E1(T1)保护电路及方案· [图文] 音频接口保护电路· [图文] RS232接口保护电路· [图文] RJ45接口防护电路· [组图] 视频接口保护放电管BS0060N-C/BS0050N-C· [图文] SLIC保护方案及电路· [图文] RS-485接口保护电路· [组图] 通信设备电路的保护· [图文] 电冰箱欠压或瞬间断电保护电路 (含工作原理)· [图文] 一种基于单片机的节能断电保护电路设计· [图文] 集成芯片的保护电路· [图文] 采用CW136构成的过压保护电路· [图文] 闩式短路保护电路· [图文] 升压斩波电路· [图文] 电压采集与电流采集电路· [图文] 关机保护电路· [图文] 有复位措施的关机保护电路· [图文] 取样保持电路Ⅱ· [图文] 取样保持电路Ⅰ· [图文] 简易安全电路· [图文] 扬声器保护装置Ⅱ· [图文] 听觉保护装置· [图文] 两台计算机之间通信用调制解调器,传真卡的保护装置 · [图文] 分时安全电路· [图文] 超压保护电路· [图文] 调制解调器保护装置· [图文] 扬声器保护装置Ⅰ· [组图] 电源使用的继电器保险丝· [图文] 过载指示器· [图文] 安全电路· [图文] 电子保险丝· [图文] 扬声器保护装置· 过流保护电路图· [图文] 基本锁存电路· [图文] NE602输出电路· [组图] NE602输入电路· [图文] 电容器磁滞补偿器· [图文] 倍频程均衡器· [图文] 利用结型场效应管(JFET)的斩波器电路 · [图文] 八进制模转换器· [图文] 实用微分器· [图文] 电容倍增器· [图文] 锁相环电路· [图文] 具有延迟作用的消颤电路· [组图] 模拟DE误操作电路(续)· [图文] 模拟DE误操作电路· [组图] 四输入最小 最大值选择电路· [图文] 卤灯保护器· [图文] 与门· [图文] 求方根电路· [图文] 双50W数字功放TDA8902J电路· [图文] 喇叭保护电路· [图文] LED显示前导零删除器· [图文] 精密正向电流源· [图文] 多脉冲输出时基电路· [图文] 无需散热的3A dc-dc变换器· [图文] PC口令保护电路· [图文] 交替式简化启动电路,输入电压感测电路 · [图文] 协同电路保护方案使通信设备免受损害 · [图文] 并联推挽源极跟随器电路图· [图文] 4并联推挽源极跟随器电路图· [图文] 源极跟随器高频特性下降的因素电路图 · [图文] 源极跟随器的负载电路图· [图文] 源极跟随器+晶体管恒流负载电路图 · [图文] 源极跟随器+恒流负载电路图· [图文] 推挽源极跟随器电路图· [图文] 使用P沟JFWT的源极跟随器· [图文] 实验性源极跟随器电路图· [图文] 改善转换失真的推挽射极跟随器电路图 · [图文] 采用JFET的推挽源极跟随器电路图· [图文] OP放大器+源极跟随器电路图· [图文] AD9850构成时钟发生器电路及其应用 · [图文] ad9850外围电路· [图文] 过零检测移相触发驱动电路· [图文] 鱼缸变色夜明珠电路图· [图文] 声控眨眼玩具电路图· [图文] 声控音乐娃娃电路图· [图文] 鸟鸣闪光画屏电路图· [图文] 延迟型音乐电子报尿器电路图· [图文] 视力保护测光器电路图· [图文] 模拟气功发生器电路图· [图文] 假性近视校正器电路图· [图文] 耳聋助听-收音两用机电路图· [图文] 耳聋助听-收音两用机电路图· [图文] 电子疼痛理疗器电路图· [图文] 电子疲劳消除器度电路图· [图文] 场效应治疗仪电路图· [图文] 场效应带和保温带电路图· [图文] 简易型电冰箱保护器电路图· [图文] 家用电器自动调压保护器电路图· [图文] 家用电器漏电保护插座电路图· [图文] 家用电器漏电、触电保护器电路图· [图文] 家用电器简易过压保护器电路图· [图文] 会自动电冰箱保护器电路图· [图文] 会自动电冰箱保护器电路图· [图文] 黑白电视机简易保护器电路图· [图文] 彩色电视机自动保护器电路图· [图文] 机载计算机电源系统框图· [图文] 机载计算机电源系统的过压保护电路· [图文] 火控计算机的掉电保护电路· [图文] 过热保护电路· [图文] 输入欠电压保护电路· [图文] 过电压保护电路(含输入、输出过电压保护电路) · 过电流保护原理· [图文] 软启动保护电路· [图文] 简单的极性保护电路· [图文] 温敏晶闸管电动机过热保护电路图· [图文] 温控晶闸管及其温度报警器电路图· [图文] 看门狗电路图· [图文] 卡片读取电路图· [图文] 具一防止电流影响光敏晶体管的电路图· [图文] 晶闸管与门电路电路图· [图文] 晶体管热敏保护电路图· [图文] 保险柜、冰箱开门时间过长音响报叫电路图 · [图文] 安全可靠的间歇式电加热控制电路图· [图文] 安全电烫斗架电路图· [图文] 鱼缸水温自动加热控制电路图· [图文] 迎送客电子模特电路图· [图文] 婴儿摇床自动晃动电路图· [图文] 遥控门铃电路图· [图文] 限时门锁报警器电路图· [图文] 水温告知器电路图· [图文] 双音电子门铃电路图2· [图文] 双音电子门铃电路图1· [图文] 手携式简易验币器电路图· [图文] 使用磁牌取水的自动供水电路图 · [图文] 时控密码电子门铃电路图· [图文] 声控照明电子挂钟电路图· [图文] 热水瓶触摸自动出水电路图· [图文] 燃气灶熄火声光报警电路图· [图文] 燃气炉全自动点火器电路图· [图文] 全自动交流稳压器电路图· [图文] 全自动家电保护器电路图· [图文] 男女声音电子迎客器电路图· [图文] 门铃、对讲、报警三功能电路图 · [图文] 旅馆用保安电子锁装置电路图· [图文] 可供调压、定时的多功能插座电路图 · [图文] 简易实用的地震报警电路图· [图文] 家用限时报知器电路图· [图文] 家用电器保护器电路图· [图文] 家用地震声光报讯器电路图· [图文] 家电自动开、停的定时电路图· [图文] 家电指触保护器电路图· [图文] 家电两用定时器电路图· [图文] 家电定时断点控制器电路图· [图文] 家电产品长定时电路图· [图文] 积算器跑表变换器电路图1· [图文] 挥手电停闹的电子钟电路图· [图文] 花盆缺水告知器电路图· [图文] 多功能数控锁电路图· [图文] 多功能家电插座电路图2· [图文] 多功能家电插座电路图1· [图文] 多功能家电保护器电路图· [图文] 多功能电源插座电路图· [图文] 叮咚音响电子门铃电路图· [图文] 电子语言模特招待电路图· [图文] 电子手杖电路图· [图文] 电饭煲自动控制器电路图· [图文] 电饭煲自动功率调节器电路图· [图文] 冲击振动报叫器电路图· [图文] 超声遥控语音门铃电路图· [图文] 超声波鱼缸加氧器电路图· [图文] 变色电子胸花电路图· [图文] 保险柜、冰箱开门时间过长音响报叫电路图 · [图文] 安全可靠的间歇式电加热控制电路图· [图文] 安全电烫斗架电路图· [图文] 自启动式过流保护控制电路图· [图文] 自动复位触点保安器电路图· [图文] 直流稳压电源保护装置电路图· [图文] 预警式漏电自动保安器电路图· [图文] 有稳压充电回路的蓄电池保护器电路图 · [图文] 相位脉冲式电动机断相保护器电路图· [图文] 市电停电声光报警电路图· [图文] 声光告警功能的限电电路图· [图文] 皮带机综合保护器电路图· [图文] 交流电欠压、过压灯光显示电路图· [图文] 交流电复电声光报讯器电路图2· [图文] 交流电复电声光报讯器电路图1· [图文] 简易漏电保安器电路图· [图文] 简单的电动机断相与过流保护装置电路图 · [图文] 监测电池欠压状态的指示电路图· [图文] 家有电器漏电检测报警插座电路图· [图文] 家用电子保安器电路图· [图文] 过压、欠压延时自动保护电路图· [图文] 高压验电器电路图· [图文] 高低压保护延时电路图· [图文] 多功能家电保护器电路图2· [图文] 多功能家电保护器电路图1· [图文] 断线光电隔离式保护电路图· [图文] 电压双限自动保护器电路图· [图文] 电压监视器电路图· [图文] 电器设备过载和缺相保护装置电路图· [图文] 电器产品漏电检测语音告警插座电路图 · [图文] 电机综合保护报警装置电路图· [图文] 电机的自动过流保护电路图· [图文] 电动机断相过载保护器电路图· [图文] 触点、过压保安器电路图· [图文] 不间断电源蓄电池电压监控器电路图· [图文] 保险丝过荷熔断声光报警保安插座电路图 · [图文] 过电流限制电路· [图文] 电话提醒装置电路图· [图文] 电唱机与扩音机的配接电路图· [图文] 典型的自给偏压电路图· [图文] 典型的OTL功率放大电路图· [图文] 单管交流电压放大电路图· [图文] 单管放大电路及其直流等效电路图· [图文] 测量三极管特性曲线的电路图· [图文] 变压器倒相式OTL电路图· [图文] 半导体三极管的三种基本放大电路的三种连接法电路图 · [图文] 半导体三极管的等效电路图· [图文] BTL电路工作原理图· [图文] 300mW收音机低频放大电路图· [图文] 20W OCL功率放大器电路图· [图文] 3W手提汉化筒电路原理图· [图文] 3W半导体扩音机电路图· [图文] 自激推挽逆变电路图· [图文] 自激式开关电源典型电路图· [图文] 自激单管逆变电路图· [图文] 自动调光台灯电路图· [图文] 指示灯电源指示电路图· [图文] 直流无触点开关电路图· [图文] 直流高压发生器电路原理图· [图文] 直流低压保险丝熔断指示电路图· [图文] 鱼缸恒温器电路图· [图文] 用TVP元件的过压保护电路图· [图文] 延长灯泡寿命的电路图· [图文] 压敏电阻延时器电路图· [图文] 压敏电阻显像管保护电路图· [图文] 压敏电阻-晶闸管过压保护电路图· [图文] 压敏电阻简易过压保护电路图· [图文] 稳压二极管稳压电路图· [图文] 稳压二极管式过压保护电路图3· [图文] 稳压二极管式过压保护电路图2· [图文] 稳压二极管式过压保护电路图1· [图文] 微型紫光验币器电路图· [图文] 推挽式开关电源典型电路图· [图文] 汤姆逊TFE5114彩色电视机开关电源电路图· [图文] 索尼KV-1882彩色电视机开关电源电路图· [图文] 速印机电机控制电路图· [图文] 双向二极管触发双向晶闸管调压电路图· [图文] 数字式谷物水分测量仪电源电路图· [图文] 输出可调的CD-DC变换电路图· [图文] 输出100V的稳压电源电路图· [图文] 市电指示器电路图· [图文] 市电过压、欠压保护电路图· [图文] 市电过压、过流保护电路图· [图文] 使用频闪信号灯电路图· [图文] 升压式开关电源典型电路图· [图文] 升压电路图· [图文] 三相桥式整流电路图· [图文] 三相桥式整流波形电路图· [图文] 三相桥式晶闸管整流电路图· [图文] 三极管驱动电路图· [图文] 三分频彩灯控制器电路图· [图文] 三端可调输出正稳压器典型应用电路图 · [图文] 三端可调输出负稳压器典型应用电路图 · [图文] 三端固定输出正稳压器典型应用电路图 · [图文] 三端固定输出负稳压器典型应用电路图 · [图文] 三倍压整流电路图· [图文] 日立NP82C彩色电视机开关电源电路图 · [图文] 日立CIP-236彩色电视机开关电源电路图 · [图文] 热敏元件式过压保护电路图· [图文] 氖灯电源指示电路图· [图文] 氖灯触发晶闸管调压电路图· [图文] 氖灯保险丝熔断指示电路图· [图文] 扩展输出电流电路图· [图文] 扩流电路图· [图文] 快速熔断保险丝的晶闸管过压保护电路图 · [图文] 孔雀KQ47-79彩色电视机开关电源电路图 · [图文] 聚合开关式过流保护电路图· [图文] 具有放大环节的稳压电路图· [图文] 晶闸管阶梯波逆变电路图· [图文] 晶闸管过流保护电路图· [图文] 晶闸管断路过压保护电路图· [图文] 晶闸管并联逆变电路图· [图文] 接近开关电路图· [图文] 交流无触点开关电路图· [图文] 降压式开关电源典型电路图· [图文] 简单串联稳压电路图· [图文] 家用电器漏电指示电路图· [图文] 家用电器调压器电路图· [图文] 集成电路漏电保护器电路图· [图文] 互补振荡触发电路图· [图文] 恒温箱温控器电路图· [图文] 恒流源电路图· [图文] 高输入电压稳压电路图· [图文] 负离子发生器电路图· [图文] 反转式开关电源典型电路图· [图文] 反转式DC-DC变换器典型电路图· [图文] 发光二极管电源指示电路图· [图文] 发光二极管保险丝熔断指示电路图 · [图文] 二倍压整流电路图· [图文] 多路输出的DC-DC变换电路图· [图文] 多倍压整流电路图· [图文] 电子镇流器电路图· [图文] 电子灭蚊拍电路图· [图文] 电子调光台灯电路图· [图文] 电源指示电路图· [图文] 电源噪声滤波器电路图· [图文] 电压控制移相的触发电路图· [图文] 电压低落报警器电路图· [图文] 电容降压直流供电电路图· [图文] 电池电压指示器电路图· [图文] 电表式电源指示电路图· [图文] 单相整流设备电路图· [图文] 音源输入电路和喇叭保护电路· [组图] 基于LM393的电机保护电路设计· [图文] 扩展输出电流电路图· [图文] 扩流电路图· [图文] 具有放大环节的稳压电路图· [图文] 降压式开关电源典型电路图· [图文] 简单串联稳压电路图· [图文] 恒流源电路图· [图文] 高输入电压稳压电路图· [图文] 负离子发生器电路图· [图文] 反转式开关电源典型电路图· [图文] 二倍压整流电路图· [图文] 多倍压整流电路图· [图文] 电子镇流器电路图· [图文] 电源噪声滤波器电路图· [图文] 电容降压直流供电电路图· [图文] 单相整流设备电路图· [图文] 单相全波整流电路图· [图文] 单相桥式整流电路图· [图文] 单端正激式开关电源典型电路图 · [图文] 单端反激式开关电源典型电路图 · [图文] 带电容滤波器的单相全波整流电路图· [图文] 带电容滤波器的单相半波整流电路图· [图文] 带电感滤波器的单相全波整流电路图· [图文] M型滤波电路图· [图文] MF-20型万用表交流电压测量电路图· [图文] L型滤波电路图· [图文] HG滤波电路图· [图文] 31cm黑白电视机电源电路图· [图文] 30W扩音机电源电路图· [图文] 0.5-10V输出电压可调电路图· [图文] 0-30V可调稳压电源电路图· [图文] 过电压保护汽车系统-Overvoltage Protection in Automotive Systems · [图文] 压敏电阻器的应用及选用· [图文] 带过载保护的电荷放大器电路· [图文] 用安全电压控制电焊机的节能线路· [图文] 简易漏电保安器· [图文] 简易超电压保护电路图· [图文] 自动调零数字电压表电路图· [图文] 抑零式电压表电路图· [图文] 数字电压表自动校准电路图· [图文] 扩展量程的音量表电路图· [图文] 宽带交流电压表电路图· [图文] 交流毫伏表电路图· [图文] 高输入阻抗毫伏表电路图· [图文] 低成本高灵敏度电压表电路图· [图文] 低成本高灵敏度电压表电路图· [图文] 场效应晶体管电压表电路图· [图文] 4位液晶显示数字电压表电路图· [图文] 3位数字电压表电路图· [图文] 3位精确有效值交流电压表电路图· [图文] 3位共阳极显示数字电压表电路图· [图文] 电压频率转换器电路图4· [图文] 电压频率转换器电路图3· [图文] 电压频率转换器电路图2· [图文] 电压频率转换器电路图1· [图文] 超精密电压频率转换器电路图· [图文] 10Hz-10kHz电压频率转换器电路图· [图文] 无稳压管精密mV电源电路图· [图文] 同相双极性电流源电路图· [图文] 双向电流源电路图2· [图文] 双向电流源电路图1· [图文] 可调基准低电压源电路图· [图文] 可编程电压源电路图· [图文] 精密双路基准电压源电路图· [图文] 精密基准微功耗10V基准电压源电路图 · [图文] 精密基准双极性输出基准电压源电路图 · [图文] 精密基准方波基准电压源电路图· [图文] 精密基准低噪声缓冲式基准电流源电路图 · [图文] 精密基准标准电池等效电路图· [图文] 精密基准0-20V基准电源电路图· [图文] 基准电压电路图2· [图文] 基准电压电路图1· [图文] 恒流源电路图· [图文] 高稳定基准电压源电路图· [图文] 反相双极性电源电路图· [图文] 低功耗稳压基准电源电路图· [图文] 0-20V基准电源电路图· [图文] ±10V基准电压源电路图· [图文] ±5V基准电压源电路图· [图文] ±3V基准电压源电路图· [图文] 使用光敏电阻的光电烟火报警器电路图 · [图文] 光电烟火探测器电路图· [图文] 9V电池供电的离子型烟火探测器电路图 · [图文] 施密特触发器电路图· [图文] 施密特触发器电路图1· [图文] 没有回差的施密特触发器电路图· [图文] 回差值可变的施密特触发器电路图· [图文] 失调量可调的采样与保持电路图· [图文] 结型场效应晶体管采样与保持电路图 · [图文] 高速采样与保持放大器电路图· [图文] 高速采样与保持电路图3· [图文] 高速采样与保持电路图2· [图文] 高速采样与保持电路图1· [图文] 高精度采样与保持电路图· [图文] 峰值的检测与保持电路图· [图文] 低漂移采样与保持电路图· [图文] 采样与保持电路图· [图文] ×1000采样与保持电路图· [图文] 交流电火线检测探头电路图· [图文] 电子组合锁电路图· [图文] 电源故障报警器电路图2· [图文] 电源故障报警器电路图1· [图文] 电源掉电检测器电路图· [图文] 电灯延迟开关电路图· [图文] 地线故障断路装置电路图· [图文] 地线测试器电路图· [图文] 单电源应急照明系统电路图· [图文] 直流电源的快速短路保护电路图· [图文] 逻辑电路电源的过压保护电路图· [图文] 快速动作的电源保护电路图· [图文] 具有自动复位的过压保护电路图· [图文] 简单的快速短路保护电路图· [图文] 电源保护电路电路图· [图文] 5V快速短路保护电路图· [图文] 真空管电压表射频探头用的稳压器电路图· [图文] 用于电池供电的计算器、收音机或盒式磁带录音机的电源电路图 · [图文] 遥控关断限流稳压器电路图· [图文] 双输出基准电源电路图· [图文] 输出可调的稳压器电路图2· [图文] 输出可调的稳压器电路图1· [图文] 具有可调的电流变化范围及输出电压的电源电路图· [图文] 简单分离电源电路图· [图文] 供MPU使用的多路输出开关式稳压器电路图· [图文] 高压稳压器电路图· [图文] 高精度高压稳压器电路图· [图文] 低压稳压器电路图· [图文] 12V-9V、7.5V或6V的变换器电路图· [图文] 10A稳压器电路图· [图文] 6.0A可变输出开关式稳压器电路图· [图文] 5A恒压恒流稳压器电路图· [图文] 0-30V稳压器电路图· [图文] 0-22V稳压器电路图· [图文] 0-10V3A可调稳压器电路图· [图文] 正压开关稳压器电路图· [图文] 正压浮动稳压器电路图· [图文] 增加齐纳管输出能力的电路图· [图文] 远距离自动检测的15V1A稳压器电路图· [图文] 稳压器电路图· [图文] 双极性电源电路图· [图文] 曲单-电源变成两组分离的稳压电源电路图· [图文] 汽车用稳压器电路图· [图文] 慢接通15V稳压器电路图· [图文] 旅行用电须刀适配器电路图· [图文] 开关降压稳压器电路图· [图文] 具有短路保护的低压稳压器电路图· [图文] 具有独立的超稳定基准的5.0V6.0A25kHz开关稳压器电路图· [图文] 工作在200kHz的开关稳压器电路图。

冰箱保护器阻值对照

冰箱保护器阻值对照

冰箱保护器阻值对照冰箱保护器是一种常见的电器保护装置,它可以监测冰箱的工作状态,一旦发现电流、电压、温度等异常情况,就会自动切断电源,保护冰箱不受损坏。

而冰箱保护器的阻值对照则是指冰箱保护器在正常工作时的阻值范围。

接下来我将为大家详细介绍冰箱保护器阻值对照的相关内容。

冰箱保护器是一种综合性的电子器件,主要由温控电路、电流电压检测电路、继电器和保护电路等组成。

其中,温控电路通过温度传感器监测冰箱内部的温度。

当温度超出设定的范围时,温控电路会发出信号,切断电源。

而电流电压检测电路则用于监测冰箱的电流和电压是否在正常范围内,一旦异常,也会发出信号切断电源。

继电器则是用来切断电源的开关装置,而保护电路则是用来保护冰箱和其他电器设备的电路,如果发现异常情况,会切断电源。

冰箱保护器阻值对照是在冰箱保护器工作时对其阻值进行监测和比对,以确保保护器的正常工作。

一般来说,冰箱保护器的阻值应该在一个合理的范围内,如果阻值过大或过小,都可能会导致保护器的工作异常。

冰箱保护器阻值对照的具体数值与冰箱保护器的型号、规格有关。

不同的冰箱保护器会有不同的阻值范围。

一般来说,冰箱保护器的阻值在几百欧姆到几千欧姆之间。

具体的阻值范围可以通过产品说明书或者咨询生产商来确认。

冰箱保护器阻值对照的目的是确保冰箱保护器在正常工作时,阻值处于合理的范围内,以保证其正常的保护功能。

如果冰箱保护器的阻值过大或过小,都可能会导致保护器工作异常,无法及时切断电源,从而使冰箱的电路或电器设备受损。

所以,在安装和使用冰箱保护器时,需要对其阻值进行定期的监测和比对。

具体的方法是使用万用表或者特定的测量仪器对冰箱保护器的阻值进行测量,并与其阻值对照范围进行比对。

如果阻值超出了正常范围,就需要检查冰箱保护器的工作状态,并及时进行维修或更换。

总之,冰箱保护器阻值对照是确保冰箱保护器正常工作的重要环节。

通过对冰箱保护器的阻值进行监测和比对,可以及时发现保护器的异常情况,并采取相应的措施进行修复,保护冰箱的正常使用。

电子课件-《小型制冷设备原理与维修(第三版)》-A02-3780 第三章 家用电冰箱的电控系统

电子课件-《小型制冷设备原理与维修(第三版)》-A02-3780 第三章 家用电冰箱的电控系统

变频冰箱电路原理示意图
1)温差复位型温控器。 2)定温复位型温控器控制压缩机开机时,箱温为固定值。
9 第三章 家用电冰箱的电控系统
2. 温控器的工作原理 (1)普通型压力式温控器
普通型压力式温控器的工作原理
10 第三章 家用电冰箱的电控系统
(2)半自动化霜型温度控制器
自动控温状态
半自动化霜状态
11 第三章 家用电冰箱的电控系统
双稳态电磁阀
17 第三章 家用电冰箱的电控系统
§3—2
家用电冰箱电控系统的控制电路分析
学目 习标
了解家用电冰箱典型电控电路的原理分析。
一、直冷式电冰箱典型控制电路
典型直冷式电冰箱的控制电路由温控器、启动继电器、热保护器、内部照明灯、门开关、温度 补偿开关等组成。
18 第三章 家用电冰箱的电控系统
化断器
化霜超热保护熔断器
15 第三章 家用电冰箱的电控系统
4. 化霜温控器
化霜温控器
16 第三章 家用电冰箱的电控系统
六、电磁阀
电冰箱多温区控制一般用电磁阀进行控制,有单稳态和双稳态两种。单稳态电磁阀体积,和耗电量较大,而双 稳态电磁阀体积较小,无电路板,切换驱动信号采用的是脉冲信号。
双金属碟形过载保护器结构
8 第三章 家用电冰箱的电控系统
四、温度控制器
1.电冰箱温控器的分类 (1)按工作原理类分 1)压力式温控器又称感温囊式温控器,其感温元件是感温管(毛细管)。 2)电子式温控器分为两种:利用热敏电阻作为感温元件的称热敏电阻式温控器,利用二极管的PN结作为感温 元件的称为半导体温控器。 (2)按温控器的感温方式分类 1)感应蒸发器表面温度,即感温管紧贴在蒸发器表面,控制蒸发器表面温度,也就间接地控制了箱温。定温 复位型温控器就是采用这种感温方式。 2)直接感应箱内空气温度,即感温管安装在箱内适当的空间位置。 (3)按温度控制方式分类

冰箱压缩机过载保护器原理

冰箱压缩机过载保护器原理

冰箱压缩机过载保护器原理压缩机过热保护及过载保护器的工作原理过载保护器的工作原理及分类空调用压缩机的过载保护器一般都是采用突跳式双金属保护器,由加热丝、双金属片和两个静触点组成电路,串联在压缩机电路里。

当电路中的电流过大时,加热丝热,烘烤碟形双金属片,当双金属片发热时就会反方向拱起,从而使触点断开;当压缩机外壳或电机温度过高时,即使工作电流正常,加热丝发热量很小,双金属片也会发生变形向上弯曲,脱离两个静触头,将电路切断。

这种保护器能自动复位,具有过电流、过温升的双重保护作用。

根据安装方式的不同,可分为外置式和内置式两种:(1)外置式保护器:安装在压缩机外壳的密封接线柱上,紧贴上盖,以感应压缩机外壳的温度。

由于从电机发热到外壳发热有一个传导和对流的过程,由外壳发热再到保护器动作还有一个过程,因此,此种保护方式的准确性和可靠性都相对较差,但由于其制造简单,同一个双金属片,通过调整螺杆高度,就可以制造出不同的保护器,且安装维修方便、成本低,故一般应用在小功率家用空调压缩机上。

(2)内置式保护器:分为绑扎式和插接式,绑扎式是将保护器同电机线圈绑扎在一起,直接感应线圈的温度变化,反应较快并且准确;插接式是将保护器插接到密封接线柱上,通过冷媒的热传导来感应电机的温度异常,在冷媒未发生泄露的情况下保护较准确,但冷媒一旦有泄露的情况,保护性能则较差。

总之,内置式保护器对电机温度感应较外置式更灵敏、更准确,可靠性更高,适用范围更广(一般的空调器压缩机都能适用)。

但由于安装在压缩机内部,要求尺寸小,能适应压缩机内部的高温,高压变化等恶劣环境,对其设计和制造等都提出了很高的要求,成本也比外置式要贵几倍。

注意事项:1)压缩机过载保护器配置方式不同对压缩机的保护作用是不同的,内置保护器较外置保护器灵敏度高,对压缩机的保护作用比较大。

2)在冷媒不足时,无论是内置保护器还是外置保护器对压缩机的保护作用都非常有限,因此空调系统中需增加针对冷媒不足的保护。

电冰箱保护器电路设计

电冰箱保护器电路设计

电冰箱保护器电路设计Ap0705122 吕礼锋一:设计原因及要求原因:电冰箱对电压的波动范围有一定的要求,但市电有时会不稳定,低于或者高于电冰箱的允许波动电压范围。

有时市电会突然断电又来电,这样易使电冰箱的压缩机损坏,因此接入电冰箱的保护电路是非常有必要的。

要求:用LM339和NE555设计一个电冰箱保护器。

(1)当市电过压(V802≥)或欠压(V801≤)时能自动切断冰箱交流供电电源(2)复电延时功能:从停电到来电时能延时3—5分钟再接通冰箱的交流电源。

二:电路设计1.电路原理本电路主要用LM339的两个比较器与电位器组成过电压、欠电压检测电路;VT1构成电子开关,当电压在180V~280V范围内时,指示灯D1会发亮,否则会熄灭。

NE555组成延时电路。

其工作原理:接通电源后,市电220v在变压器,整流桥,还有稳压器后,稳定在直流12V。

根据变压器的变压系数,调整电位器RP2与RP3,使市电电压保持在正常范围内,指示灯LED保持发亮。

因为C1两端初始电压为0V,555 时基电路的阈值端6 脚为高电平,555 时基电路复位,三极管VT2 截止,继电器K1的常闭触点保持吸合,电冰箱电源被切断。

然后电源向C1 充电,使2、6 两脚电位不断下降,约经过5min,可使电位降至12V电压的1/3,555 时基电路才置位,3 脚输出高电平,VT2 导通,继电器K1通电吸合,其常闭合触点K-1断开,电冰箱通电工作。

当交流电网意外断电时,C1 储存电荷通过R2、D5 迅速泄放,当电网恢复供电时,电路又要延迟5min 左右才向电冰箱供电,从而确保电冰箱压缩机不受损坏。

当市电电压升高到280V以上,上比较器输出低电平;市电电压下降到180V以下,下比较器输出低电平只要两者之一输出低电平,VT1截止,LED 熄灭。

此时6 脚为高电平,555 时基电路复复位,输出端3 脚为低电平,电冰箱电源被切断,从而使电冰箱在电压过高或过低的情况下自动停止工作,保证了电冰箱能安全工作于规定的电源范围内。

电冰箱制冷电气系统

电冰箱制冷电气系统
(1).电压过低 电源电压低于180V以下,因启动电流小于继电器的最小吸合电流,导 致触点无法吸合。
(2).启动绕组开路或部分短路 若测得电阻值为无穷大,则判为开路;若小小于正常值则判为绕组间短 路。
34
技能实训一:电冰箱电控系统检测与维修
(3).启动支路其它故障 重锤触点接触不良或脱落;启动电容开路、短路或容量不
电冰箱制冷电气系统
目录
1 知识链接一:电冰箱温度控制器基本知识 2 知识链接二:单相交流异步电动机相关知识 3 技能实训一:电冰箱电控系统检测与维修 4 知识拓展一:冰箱智能温控电气控制模块 5 技能实训二:海尔冰箱(冷柜)所用电磁阀检测与维修 6 知识拓展二:电冰箱电加热器及除霜装置
2
知识链接一:电冰箱温度控制器基本知识
通过主控板向电磁线圈发出一个正脉冲驱动电流,在电磁线圈上 生成一个瞬时磁场。使阀芯位置保持在接头A一端,阀芯内的密封垫A 密封阀口A,从而切断出口管A所连接的管路。此时,进口管与出口管B 保持正脉冲常通。
当主控板向电磁线圈发出一个负脉冲驱动电流,在电磁线圈上生成 一个反向的瞬时磁场,使阀芯位置保持在接头B一端,阀芯内的密封垫 B密封阀口B,从而切断出口管B所连接的管路。此时,进口管与出口管 A保持正脉冲常通。 特点:双稳态电磁阀比单稳态电磁阀具有节能优点,由于双稳态电磁阀 采用脉冲驱动电路,电磁阀的能耗接近于零。
19
知识链接一:电冰箱温度控制器基本知识
• AD590 的工作原理
• 1、 Vo的值为Io乘上10K,以室温25℃而言,输出值为
10K×298μA=2.98V
• 2、 测量Vo时,不可分出任何电流,否则测量值会不准。
20
知识链接一:电冰箱温度控制器基本知识

电冰箱电气控制系统部件结构及工作原理

电冰箱电气控制系统部件结构及工作原理
11
重锤式启动继电器的检测:
使用万用表分别检测启动继电器绕组的阻值和接点间的阻值,一般绕组阻 值较小,而接点间的阻值在断路的情况(触点为常开状态)下应为无穷
大 12
PTC启动继电器的检测:
使用万用表检测PTC启动继电器,在常温下其阻值在15~40Ω之间 13
碟形热保护器的检测:
碟形热保护继电器的阻值在正常情况下为1Ω左右,如果阻值过大,甚至 达到无穷大,就说明热保护继电器内部断路,继电器已经损坏,不能使
电冰箱温控器的代换演练
温控器的代换:
温控器调节 钮
正常/冬季 切换开关
温度传感器
温控器的安装位置
温控器的代换:
卸下卸温下取度温下传控温感器控器保器保护及护盖其盖的保的固护固定装定螺置螺钉钉
温控器的代换:
温控器 传动齿轮
照明灯泡
温度传感器
感温管
温控器的结构
温控器的代换:
固定螺钉
固定螺钉
拔轻下取轻温卸下将控下温温器固度控的定传器连螺感取接钉器下引线
其优点是直接感受受电电机机绕内组部的温温度度的变一化种,灵继敏电度器高,;其缺灵点敏是度不较便高于更换
9
碟形热保护继电器:
碟形热保护器 的安装位置
它安装在压缩机外部且紧贴在机壳上,与电机串联,固定在接线盒内。碟 形热保护器常见的故障有双金属片不能复位、线圈烧坏、接点黏连 10
典型电冰箱启动控制器检修实例
2.化霜完毕后,蒸发器温度升高,感温 器内的感温剂受热膨胀,感温管内压力 增大,在压力的作用下触点导通,化霜 状态结束
半自动化霜温控器的实物外形:
几种其他类型的温控器:
定温复位型温控 器: 它的停机温 度与调温旋钮的 位置有关,开机 温度固定不变, 一般为为 5℃±l.5℃。

冰箱电气系统设计和维修

冰箱电气系统设计和维修
冰箱电气控制系统
陈星
• 产品控制类型分类简介 • 经典冰箱控制系统构成 • 冰箱控制电路板经典功能单元电路
结束
冰箱控制系统分类
压缩式制冷方式(家用电冰箱)
•按冰箱制冷系统区别(控制系统构成及控制措施不同): ——直冷冰箱 ——无霜冰箱(风冷及风直冷冰箱) •按控制手段区别: ——机械温控 ——电子温控(电子电路进行控制,没有软件) ——电脑温控(单片机程序控制,软硬件控制)
显示电路板
1
7
1
7
1+ -
主控制板 1
JST XHP-7
JST VHR-10N
N 电源
L
压缩机 电磁阀 照明灯
双循环直冷 电脑温控 电气布局示意图
• 单片机程序控制 • 热敏电阻感温 • 双稳态电磁阀
• 多循环冰箱系统
双循环风直冷、电脑温控冰箱
干簧管+磁铁 (冷冻室门开关) 风扇电机控制 冷冻室加热除霜 (F蒸发器感温头 及加热器控制)
冰箱控制电路板经典功能单元——
控制电路原理图例
科龙BCD-199WAK风直冷电冰箱旳控制电路原理图
过压保护 冰箱控制电路板经典功能单元——
• 当电源电压过高,峰值 超出560V时压敏电阻 阻值突降接近短路,保 险管F1熔断,电路板 断电使板上旳主要元器 件不被损坏
• 过压保护电路动作后, 从显示及功能上体现出 冰箱整个控制系统断电, 停止工作。经过观察保 险管就能够得到判断
2.56
温度 (℃

5
电阻值 (kΩ)
5.06
25
2
37 1.21
电压 (V)
2.25 1.22 0.82
冰箱控制电路板经典功能单元——继电器负载驱动电路

东芝冰箱电路

东芝冰箱电路

(4)除霜电路除霜采用半自动方式即手动开始、自动结束,依靠绕在冷冻室蒸发器 上的电加热器得电加热进行除霜,当发现冷冻室霜层厚度达10mm左右时,手动 按下除霜开关,Q802第11脚为低电平。同时冷冻室除霜传感器与R810对6. 8V电 压分压后加至Q802第8脚,由于冷冻室内温度很低,除霜传感器阻值很大,所以 第8脚电压很低,低于第9脚4. 4V.第9脚4. 4 V电压由电阻R808、R809分压取得, 为除霜电路中基准电压。第14脚输出为高电平至Q801第8脚,Q801第11脚输出高 电平,经电阻8814、8811至三极管。Q812的b, e极电压大于0. 7V, Q812导通,继 电器RY02吸合,常开接ቤተ መጻሕፍቲ ባይዱRY02闭合接通除霜电加热器,得电发热进行除霜,冰 箱内霜层逐渐融化,温度逐渐升高。冷冻室除霜传感器阻值逐渐减小,Q802第8 脚电压升高与箱内温度达到8. 5 0C时,第8脚电压高于第9脚4. 4V基准电压,第14 脚输出低电平,而Q801第11脚由于除霜开关已断开变为高电平。Q801第11脚输 出低电平0V, Q812截止,继电器RY02失电,常开接点RY02断开切断除霜电路, 除霜自动停止,同时常闭接点RY02闭合接通流槽、管道电加热器。二极管D803 作用是当除霜后期冰箱内温度逐渐升高时,Q841第3脚有可能会输出高电平去启 动压缩机时,该启动信号经二极管D803,三极管Q812旁路到地,避免压缩机在除 霜期间启动运转,若除霜期间需中止除霜时,可按下停止,Q801第11脚输出低电 平,三极管Q812截止,使除霜提前结束。
(3)温度控制电路 冷藏室温度传感器(蒸发传感器)是一个具有负温度系数的热 敏电阻,其阻值随温度的升高而减小。传感器与电阻R806组成分压电路对6.8V电压 进行分压后送至 Q802第 4、7脚。电阻 R801、R802组成分压电路对 6.8V电压进行 分压后送至 Q802第5脚作为基准电压,正常为4V。当冰箱内温度慢慢上升,蒸发 传感器阻值减少时,Q802第4脚电压也在升高。当第4脚电压大于第5脚4V基准电压 时,其第2脚输出低电平送至Q801第1脚。此时Q802第7脚电压也大于其第6脚(正 常时最大为2.2V), 其第1脚输出高电平送至 Q801第 8脚。Q801第 8脚输出高电 平经电阻 R805、R813至三极管 Q811的 b极,当b极电压升高到0.7V时,Q811导 通。继电器RY01得电吸合,常开接点RY01接通压缩机启动制冷。随着冰箱内温度 缓慢下降,蒸发传感器阻值增大,Q802第4脚电压降低。当第4脚电压小于第6脚的 4V基准电压但高于2.2V时,Q802第2、1脚均为高电平Q801第1、8脚也为高电平, 压缩机仍维持继续制冷。当第4脚电压小于第5脚4V基准电压且低于2.2V时,Q802 第1脚输出低电平,而第2脚仍为高电平,Q801第3脚则输出低电平,Q811的 b极电 压降低而使其截止。继电器 RY01失电,常开接点RY01断开,压缩机停止运转结束 制冷。电阻R121、R22、R23和电位器组成温度调节电路接至Q802第8脚,改变电 位器即改变了电冰箱工作设定温度。当电冰箱温度设定好后,Q802第8脚电压为另 一组基准电压,最大为2.2V。它与Q802第7脚信号电压相比较。当电冰箱温度高于 设定温度时,Q802第7脚电压高于第6脚,其第1脚输出高电平送至Q801第6脚, Q801第3脚输出的高电平经电阻R805、8815、二极管D801至三极管Q811的b极, Q811饱和导通,继电器RY01得电吸合,RY01闭合,压缩机启动制冷。

冰箱启动器及保护器的工作原理说明

冰箱启动器及保护器的工作原理说明

重锤式启动器启动时,实际相当于重锤所带的触点上跳动作接合一下然后又断开了,所以银触点上不许有油汲和污汲,否则不能一次启动成功和造成不断重复启动。另外由于重锤式启动器是直立的安装,其缝隙容易进入灰尘和杂物,当出现重锤式启动器是反复启动必须立即关机,否则也最容易烧坏压缩机。
启动器重锤安装时必须是直立的,(凡安重锤启动器的压缩机,电机上的三个接线端子都是正立的等腰三角形,接线的端子都没有倒立的。也就是上边一个端子,下面两个端子,公成三角形,而下面两个端子就是用来插在重锤启动器上的接口。
十、电冰箱压缩机共有几种启动器;压缩机上的端子为什么有正立三角形和倒立三角形?
一般只有两种启动器;任何电冰箱上的压缩机用的只能是其中一种。1、PTC启动器;2、重锤式启动器。
PTC启动器实质一只特殊的热敏电阻,(正温度特性的热敏电阻;即受热后阻值变大)平常阻值为18----30左右欧姆,通过启动电流后阻体受热其阻值迅速变至极大,并以高温使其维持高阻值(相当于断开),PTC形状大小类似一个大的药片,封装在一个小壳体内,损坏时内部片体已经烧碎,(拆开可见),更换即可,市场价(3—4元)。PTC启动器结构简单,廉价,缺点是PTC启动器工作时PTC本体总是热的,一旦电源电压高时经常发生PTC元件被击碎,进而出现启动—喀哒---停止---反复现象,是最容易将压缩机烧毁的危险故障。
电冰箱故障现象维修二(学一手)2008-7-1 来源: 合肥零度电器有限公司 >>进入该公司展台 (学一手)电冰箱故障现象维修之二
七、为什么电冰箱的门周围会发热;(除露管装置)
电冰箱在开机时,你用手去扶摸箱体门封的周围会发现都是很热的,原来这是厂家有意思设计的缘故,由于电冰箱内部很冷,又当外部气温高时门口就会出现“汗珠”结露现象,所以设计人员都把压缩机出口的气体管路顺便先围绕门口一周,利用管路的热量顺便驱赶掉结露形成的水珠(这一段管路简称为‘门封管’,也叫门封除露管)。

冰箱电控板电路原理分析

冰箱电控板电路原理分析

AC INPUT
EMI
STRUCTURE
AC
DC
AC
DC
OUTPUT
整流滤波
开关变压器
整流滤波
DC 輸出
PWM
开关管
稳定度(反馈)控制 及保护控制
5.2、开关电源电路
开关电源主要线路作用及组成: 1)D5,R6,C6组成RCD吸收电路主要是吸收及嵌位变压器的漏感及反激电压, 防止变压器饱和,以及反激电压过高超过电源芯片内部MOS的耐压值从而导致烧机 2)R11 C12组成RC滤波电路,主要滤除反冲电压,防止其超过整流二极管DC的 反向耐压。 3)VR2稳压二极管是防止线路异常导致输出电压过高损坏器件。属于过压保护作用 4)R20,R21,U3,U2B等组成反馈电路,通过分压电阻,光耦传输等传入电源芯片 内,调节占空比的宽度,以此到达13V输出稳定的作用
• 冰箱电控板电路原理分析
PBA功能简述
1、典型电路原理图
2、实物电路分布图
强电驱动负载
3、电路主要模块及其作用
NO.
各功能模块电路
1
EMI电路
2
压敏防雷击电路
3
开关电源电路
4
DC TO DC电路
5
蜂鸣器驱动电路
6
MCU外围电路
7
通讯电路
8
风门驱动电路
9
风机驱动电路
10
LED驱动电路
11
传感器检测电路
注:输入电压须小于稳压器所能承受的最大输入电压﹐但要作原理简介 BUZ1、BUZ2两端口均接单片机的I/O口或单片机的蜂鸣器驱动口。BUZ1端口为“高频
口”(相对BUZ2而言),其脉冲电压频率一般为几KHz,具体频率依蜂鸣器需发出的音乐 声来调整;BUZ2端口为“低频口”,其电压周期相对较长一些,一般为数十ms至数百ms。 工作时,两端口输出电压脉冲驱动三极管Q2和Q3,当BUZ2端口出现高电平时,三极管Q3 导通, +12V电压经Q4三极管给蜂鸣器提供工作电压,同时为电容E7充电; BUZ2端口电平 变低时,Q3和Q4三极管均截止,+12V电压被隔离,此时已充满电的电容E7放电,为蜂鸣器 工作提供能量。蜂鸣器的工作状态直接由三极管Q2决定,当BUZ1端口出现高电平时,三极 管Q2导通,蜂鸣器工作,BUZ1端口电平变低时,Q2三极管截止,蜂鸣器停止工作。蜂鸣器 的通电频率与内部的谐振频率(固定)相互作用就产生我们所需的音乐声。

如何快速解决家庭冰箱断电后的问题

如何快速解决家庭冰箱断电后的问题

如何快速解决家庭冰箱断电后的问题家庭冰箱是我们日常生活中不可或缺的电器之一,但是有时候由于一些原因,比如停电或者电源故障,冰箱会出现断电的情况。

当我们面临这种情况时,我们需要迅速采取措施来解决问题,以避免食物变质和浪费。

本文将探讨如何快速解决家庭冰箱断电后的问题。

首先,当我们发现冰箱停电时,我们应该立即检查电源是否正常。

我们可以通过检查其他电器是否工作来确认电源是否正常。

如果其他电器也没有电,那么很可能是停电了。

这时候我们需要联系电力公司查询停电原因,并耐心等待电力公司的解决。

如果电源正常,我们需要检查冰箱的插头是否松动或者插头是否损坏。

有时候插头可能会因为长时间使用而松动,或者插头本身出现问题导致断电。

此时,我们可以尝试重新插拔插头,确保插头牢固连接。

如果插头损坏,我们需要更换一个新的插头。

如果以上两种情况都不是问题所在,那么我们需要检查冰箱的保险丝是否烧坏。

保险丝是冰箱电路的保护装置,当电流过大时会自动断开电路,以保护冰箱和家庭电路的安全。

如果保险丝烧坏了,我们需要将其更换为同样规格的新保险丝。

在更换保险丝之前,我们需要确保冰箱已经断电,并且按照说明书上的步骤进行操作。

如果以上方法都无法解决问题,那么我们需要考虑其他可能的原因,比如冰箱的电路板故障或者电机损坏。

这时候我们需要联系专业的维修人员进行修理。

在等待维修人员到来之前,我们可以将冰箱里的食物转移到其他地方存放,以避免食物变质。

除了以上解决方法之外,我们还可以采取一些预防措施,以减少家庭冰箱断电的可能性。

首先,我们应该定期检查冰箱的电源线和插头是否正常,如果发现有问题及时修理或更换。

其次,我们可以购买一个带有稳压功能的电源插座,以保证冰箱在电压不稳定的情况下仍能正常工作。

此外,我们还可以定期清洁冰箱的散热器,以保持良好的散热效果,避免电机过热而断电。

总之,家庭冰箱断电是一个常见但又令人头疼的问题。

通过及时检查电源、插头和保险丝,我们可以快速解决大部分问题。

第三章电冰箱结构原理与维修(精)

第三章电冰箱结构原理与维修(精)

第三章 电冰箱结构 原理与维修 3.5 电冰箱电控系统 二.电冰箱电气器件原理
1、冰箱专用启动继电器(P43):
① 重锤式电流启动继电器 ② PTC启动继电器
• ① 重锤式电流启动继电器
注意,使用时重锤式启动继电器一定要直立安装。
PTC启动继电器
• 具有结构简单、工作可靠、无触点、寿命长等优点,由于 元件的热惯性,压缩机每次启动后。必须间隔2~3min后 才能再次启动。
6.2.1 电冰箱微电脑控制系统主要功能
1. 制冷温度控制功能 通过温度传感器和微电脑控制实现冰箱各个间室温度的自动控制,使冰箱内的温度达到用户 设定温度范围。 2. 电源过压保护功能 当市电电源电压过高时,通过保险管熔断措施保护控制板及其他电器件不致于损坏。 3. 压缩机3分钟延时启动保护功能 压缩机每次停机,制冷系统管道内压力需要一段时间平衡,如果在停机后马上启动则开机负 载 很大容易损坏压缩机。单片机系统在每次上电时检测如果停机时间不足3分钟则自动延时3分钟启 动保护压缩机。 4. 系统保护及断电记忆功能 为防止用户在插接电源过程中出现的暂时性接触不良,在单片机上电3秒钟后才允许开压缩 机。系统因强干扰等原因造成死机时,能自动复位且保持复位前的显示和按复位前的模式运行。 系统停电后再来电,自动按停电前的模式及设定运行。 5. 低温环境下的自动温度补偿功能 由于单循环制冷系统的冰箱冷藏冷冻室同时制冷,机械温控冰箱在低温环境下会造成冷藏室温 度过低不工作,进而导致冷冻室温度过高。自动温度补偿功能通过对冷藏室补偿加热器的自动控 制实现在各种环境温度条件下的冷藏室冷冻室温度控制。
第三章 电冰箱结构 原理与维修 3.5 电冰箱电控系统
一.电冰箱机械温控电路原理
第三章 电冰箱结构 原理与维修 3.5 电冰箱电控系统 一.电冰箱机械温控电路原理

电冰箱的控制系统

电冰箱的控制系统

第四章电冰箱的机械控制系统电冰箱以电为能源,靠电动机来驱动压缩机,一般还要配上启动继电器才能工作。

为了避免由于种种原因引起的超负荷现象造成电机烧毁,都装有过载保护器。

此外,为了控制箱内温度,还要用机械式温度控制器,有时它还兼有控制化霜功能。

电冰箱的控制系统依据系统中所采用温控器的不同分为“机械温控系统”和“电子温控系统”。

本章主要介绍机械温控原理及机械式温度控制器。

第一节常见机械温控系统一.机械温控系统组成常见机械式冰箱温控系统:图4-1 冰箱电气原理图表4-1 机械式电冰箱温控系统部件二.机械式温控器1.温控器的类型与作用温度控制器(简称温控器),是一种能自动控制器具的温度,使其保持在两个特定值之间,并且可以由使用者设定的装置。

广泛应用于各种家用电器中,以下为列表:表4-2 常用温控器类型本教材中温控器均为冰箱用温控器的技术参数、要求等,主要介绍温感压力式温度控制器,以下简称“温控器”。

温控器属于温度控制系统中的一个主要的部件,其主要作用是控制压缩机压缩机开、停时间,以保持电冰箱内的温度在确定的范围内。

常见的温度控制器有温感压力式、热敏电阻式和风门温度调节器等。

2.温感压力式温度控制器由感温组件、温度设定主体组件、执行开闭的微动开关或自动风门等三部分组成。

是通过密闭的内充感温工质的温包和毛细管,把被控温度的变化转变为密闭空间压力或容积的变化,以达到温度设定值时,通过弹性元件和快速瞬动机构,自动开闭触点或风门,以达到自动控制温度。

表4-3 温感压力式温度控制器分类及用途常用术语:接通点(ON)温控器触点闭路时的温度;断开点(OFF)温控器触点开路时的温度;调节范围温控器的调节机构给定的最大和最小接通点或断开点之间的温差;差动值(DIFF)调节机构整定于某一温度位置时的接通点和断开点之间的温度差;感温部件把控制对象的温度变换为充入工质(气体或液体)压力的部分;毛细管把感温部分的压力变化传递到波纹管或膜盒的细管。

单片机电冰箱控制系统硬件设计

单片机电冰箱控制系统硬件设计

单片机电冰箱控制系统硬件设计首先是电源系统,电冰箱需要稳定的电源来运行。

一般情况下,电冰箱使用交流电作为主要电源。

因此,我们需要一个适配器将交流电转换为直流电,并提供适当的电流和电压供电。

此外,还需要考虑过压、过流和短路等保护电路,以保证电冰箱的安全运行。

其次是温度传感器,用于检测电冰箱内部的温度。

温度传感器可以选择热电偶、热电阻或半导体传感器等。

在硬件设计中,需要将温度传感器与单片机进行连接,并编写相应的程序来读取传感器的数据。

通过监测温度传感器的数据,可以实时调节电冰箱的制冷功率,以保持恒定的温度。

接下来是湿度传感器,用于检测电冰箱内部的湿度。

湿度传感器可以选择电容式、电阻式或电解式等。

在硬件设计中,也需要将湿度传感器与单片机进行连接,并编写相应的程序来读取传感器的数据。

通过监测湿度传感器的数据,可以实时调节电冰箱的湿度,以保持适宜的湿度环境。

继电器是用来控制电冰箱的制冷系统和通风系统的主要部件。

继电器可以将单片机的控制信号转换为高功率的电源控制信号。

在硬件设计中,需要将继电器与单片机进行连接,并编写相应的程序来控制继电器的通断状态。

通过控制继电器的状态,可以实现电冰箱的制冷和通风功能。

最后是通信模块,用于实现电冰箱与其他设备或远程服务器之间的通信。

通信模块可以选择无线模块或有线模块,如蓝牙、Wi-Fi、以太网等。

在硬件设计中,需要将通信模块与单片机进行连接,并编写相应的程序来实现数据的传输和接收。

通过通信模块,可以实现电冰箱的远程控制和监控。

总结起来,单片机电冰箱控制系统的硬件设计需要考虑电源系统、温度传感器、湿度传感器、继电器和通信模块等方面。

通过合理设计这些硬件组件的连接和编写相应的程序,可以实现电冰箱的温度、湿度和功率等功能的控制。

4_电冰箱电气控制系统与工作原理

4_电冰箱电气控制系统与工作原理
⒉ PTC启动器具有无运动部件、无噪声、无电弧、寿命长、价格低、对 电压波动适应性强等特点 ,它的启动特性取决于其自身的温度变化。
因此再次启动需要间隔5min以上。
(二)、碟形过流、过温保护器的实际外形图
⒈ 保护电路功能:如 果压缩机有故障造成运 行电流过大,保护器打 冷战断开,切断压缩机 的电源。另外,保护器 的碟形片紧贴在压缩机 的外壳上,如果压缩机 外壳温度过高,也会使 保护器打冷战断开,以 保护压缩机。
⒉ 带有黄色的一面要紧靠在压缩机的外壳上,以检测 压缩机外壳的温度。当温度过高时会切断压缩机电路。
(三)、温控器的实际外形图
温控器主要由感温元 件和开关触点两部分组成, 感温元件有压力式和热敏 电阻两种,因此温控器分 为压力式和电子温控式两 种。常用为压力式,用户 通过温度调节旋钮实现电 冰箱的温度调节。温控器 的接点接在压缩机保护电 路中,感温管中充有氟利 昂气体,感温管装在箱壁 上,将温度变化传递到温 控器中产生相应的压力来 控制节点的闭合与断开, 从而实现压缩机的启停。
•延 时 电路与 比较器 输出端 用 IC2 光电耦 合器隔 离,可 提高电 路的可 靠性。
五、冰箱电子温控器电路图
五、冰箱电子温控器电路图
•温度显 示表头 选用 μP513 5A 型 (表头部 分见图 中虚线 框内)。
五、冰箱电子温控器电路图
•由 于 本 电 路 传 感器VD2的负端 即A点电位设计 成1V为0℃,而 表 头 为 0V 显 示 “00.0”,因此 电路中加入3kΩ 电阻和电位器 RP3,并将表头 集 成 电 路 7170 的 30 脚 接 地 线 (图中打×处)断 开,使表头的 Vin 端 的 电 位 提 高1V。
二、间冷式电冰箱的控制电路
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、摘要当今社会,电子产品越来越多,已经成为我们生活中不可分割的一部分。

现在科学家对电子产品的研究不仅仅是推起出新,对于以前的产品,科学家也是加以改良,让其在原来功能的基础上又新的功能,更加环保,节能,智能,电冰箱就是其中的一种。

作为80年代“三大件”之一的电冰箱在新的时代更加受到大家的喜爱,家家都有电冰箱,所以怎么更加节能,怎么样保护冰箱让其寿命更长成为一个发展的方向。

本次设计主在对电冰箱过压,欠压保护以及延时保护方面,对这方面的电路进行设计研究。

这种电路的优点是,能够让冰箱在其标准电压之内工作,保护冰箱,并有断电延时,让其更加平稳运行,一定程度上可以延长电冰箱的使用年限。

二、设计目的1.掌握电压比较电路的设计方法;2.掌握延时电路的设计方法;3.增强自己焊接电路的能力;4.增强分析电路,改正电路的能力;5.增强团队合作意识。

三、设计任务和性能指标3.1设计任务设计一个电冰箱过压、欠压、延时供电电路,可以通过电位模拟器调节过压和欠压,并使用发光二极管指示过压、欠压报警状态,使用发光二极管摸你只是冰箱通电工作状态。

冰箱上电时有延时通电要求,保护后恢复供电也要延时送电,延时时间是10秒左右。

3.2 性能指标1.电压高于9V时,过压指示灯(绿灯)亮,表示电冰箱过压,不工作。

2.电压低于3V时,欠压指示灯(红灯)亮,表示电冰箱欠压,不工作。

3.电压在3V-9V时,正常指示灯(黄灯)亮,表示电冰箱正常工作。

4.电压在正常值临近点处有延时,即冰箱正常工作时有延时保护装置,时间大概是10秒。

四、设计方案4.1 系统设计方案本系统主要有以下几个模块组成:过压判断模块、欠压判断模块、与模块、延时模块。

各个模块的具体功能如下:过压判断模块:用集成芯片LM339比较器,比较输入电压和上限值9V,如果大于9V ,输出低电平,绿灯亮。

欠压判断模块:用集成芯片LM339比较器,比较输入电压和下限值3V,如果小于3V ,输出低电平,红灯亮。

与模块:用两个二极管并联,让其前两个模块都输出高电平的的时候,输出高电平,当有一个输出低电平时,也是输出低电平,冰箱不工作。

延时模块:利用三极管,电容,电阻,二极管,555定时器构成,当输入为高电平时,延时10秒,输出高电平,使冰箱工作,黄灯亮。

设计系统框图(图4.1)4.2 核心器件简介本实验用的核心器件是:LM339,LM555定时器,1N40074.2.1 LM339简介LM339电压比较器芯片内部装有四个独立的电压比较器,是很常见的集成电路。

利用lm339可以方便的组成各种电压比较器电路和振荡器电路。

LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。

LM339类似于增益不可调的运算放大器。

每个比较器有两个输入端和一个输出端。

两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。

用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。

当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。

当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。

两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。

LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。

选不同阻值的上拉电阻会影响输出端高电位的值。

因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。

另外,各比较器的输出端允许连接在一起使用。

LM339引脚图(图4.2.1)4.2.2 1N4007简介1N4007是一种常用的整流二极管,常用于桥式整流电路。

基本参数:1.较强的正向浪涌承受能力:30A2.最大正向平均整流电流:1.0A3.极限参数为VRM≥50V4.最高反向耐压:1000V4.低的反向漏电流:5uA(最大值)5.正向压降:1.0V6.最大反向峰值电流:30uA7.典型热阻:65℃/W8.典型结电容:15pF9.工作温度:-50℃~+150℃1N4007(图4.2.2)4.2.3 LM555简介555定时器是一种多用途的数字——模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器。

由于使用灵活、方便,所以555定时器在波形的产生与交换、测量与控制、家用电器、电子玩具等许多领域中都得到了广泛应用。

自从Signetics公司于1972年推出这种产品以后,国际上个主要的电子器件公司也都相继的生产了各自的555定时器产品。

尽管产品型号繁多,但是所有双极型产品型号最后的3位数码都是555,所有CMOS产品型号最后的4位数码都是7555.而且,它们的功能和外部引脚排列完全相同。

原理:555 定时器的功能主要由两个比较器决定。

两个比较器的输出电压控制 RS 触发器和放电管的状态。

在电源与地之间加上电压,当 5 脚悬空时,则电压比较器 C1 的同相输入端的电压为 2VCC /3,C2 的反相输入端的电压为VCC 若触发输入端 TR 的电压小于VCC /3,则比较器 C2 的输出为 0,可使 RS 触发器置 1,使输出端 OUT=1。

如果阈值输入端 TH 的电压大于 2VCC/3,同时 TR 端的电压大于VCC /3,则 C1 的输出为 0,C2 的输出为 1,可将 RS 触发器置 0,使输出为 0 电平。

LM555引脚图(图4.2.3)引脚功能如下:1脚:外接电源负端VSS或接地,一般情况下接地。

8脚:外接电源VCC,双极型时基电路VCC的范围是4.5 ~ 16V,CMOS型时基电路VCC的范围为3 ~ 18V。

一般用5V。

3脚:输出端Vo2脚:低触发端6脚:TH高触发端4脚:是直接清零端。

当此端接低电平,则时基电路不工作,此时不论TR、TH 处于何电平,时基电路输出为“0”,该端不用时应接高电平。

5脚:VC为控制电压端。

若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01μF电容接地,以防引入干扰。

4.3 电路设计4.3.1 过压电路过压电路图(图4.3.1)4.3.2 欠压电路欠压电路图(图4.3.2)R9和R10将12V电压分割,比较器5脚的电压为12-[3.9/(3.9+12)]×12≈9V,4脚的电平和9V比较。

V->9V, 2脚输出低电平,灯亮;V-<9V, 2脚输出高电平,灯不亮。

R7和R8将12V电压分割,比较器6脚的电压为12-[12/(3.9+12)]×12≈3V,7脚的电平和3V比较。

V+>3V, 1脚输出高电平,灯不亮;V+<3V, 1脚输出低电平,灯亮。

Ui4.3.3 与电路与电路图(图4.3.3)4.3.4 延时电路延时供电电路图(图4.3.4)ABCA B C 低 低 低 低 高 低 高 低 低 高高 高CC 脚 为高电平时,Q1导通,R3短路,C1两端电压为0,555定时器的6和2号管脚为高电平,启动清零的功能,导通截至。

然后C1开始充电,6、2端的电压从12V 下降,经过10S 左右,下降到4V (1/3×12)时,2脚起作用,即清零段1、高出发端0、低触发端0,输出为1,导通截至,输出置1,电冰箱工作,黄灯亮。

4.3.5 总电路:设计电路图(图4.3.5)五、参数计算1. LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K )。

选不同阻值的上拉电阻会影响输出端高电位的值。

因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。

另外,各比较器的输出端允许连接在一起使用。

本设计选取的上拉电阻是10K Ω。

2.Q1导通时,U be =0.7V ,U B =12-0.7=11.3V ,U C =11.3+0.7=12V 。

3. 延时时间由C1和R3决定,≈1.1×C1×R3=10s,其中C1=220μF,R3=101.1×220×10−6≈41.32KΩ我们取47kΩ的电阻。

4. 5脚为控制电压端。

若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时,我们串入10nF 电容接地,以防引入干扰。

六、设计心得经过两周的努力,电冰箱的欠压,过压,延时电路终于设计完成了。

由于电路图老师已经给出,总体还算顺利,按照电路图,排布原件,焊线,电路焊接顺利,但是刚开始测试的时候不能像要求的那样亮灯,但是后来发现是器件坏了,中途换了器件后,成功运行,让自己有一点成就感。

这次课程设计不仅让我了解了做电冰箱保护电路系统的各项工作流程,让我在这个过程中学到了很多过去不知道的东西以及课本上不能讲述的东西。

课本上的东西是有限的,而且都是理论,和真正的实践真的不一样。

这次设计,感觉实践占的比重更大点,B C E理论上的东西还是少。

大学马上就度过1/2了,真正动手的东西还是太少。

实践很重要,它是提高自己的有效平台。

自己有以下几点心得:1.电路知识很大部分有遗忘,需要平时多翻翻课本,巩固最基本的电路知识。

2.自己的态度需要更加端正。

做一件事需要有坚持不懈,持之以恒的品质,意志。

刚开始没有真正抽出时间做这件事,最后赶着做完,这是需要改正的。

3.学习能力不足。

因为涉及到LM113和LM555两个不太熟悉的器件,需要看他们的原理,引脚图,内部元件分布,其间理解能力慢,耗费时间多。

但是经过自己的研究,对这种器件有了更加深入的了解。

4.整体意识不足。

焊接电路时不能做到把握全局,经过几番更改,才把器件放到应该的位置,然后焊接。

以后需要改正。

七、设计结果延时时间:10S 正常欠压过压附录:实物图:正面图反面图。

相关文档
最新文档