二元一次方程组应用专题(提升)

合集下载

中考数学总复习《二元一次方程组》专项提升练习(附答案)

中考数学总复习《二元一次方程组》专项提升练习(附答案)

中考数学总复习《二元一次方程组》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________知识点复习一、二元一次方程组定义1:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。

定义2:把两个方程合在一起,就组成了方程组。

定义3:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。

定义4:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

定义5:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

二、解二元一次方程组的方法(1)代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这种方法叫做代入消元法,简称代入法。

(2)加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

这种方法叫做加减消元法,简称加减法。

三、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。

认真读题,分析题中各个量之间的关系。

第2步:设未知数。

根据题意及各个量的关系设未知数。

第3步:列方程(组)。

根据题中各个量的关系列出方程(组)。

第4步:解方程(组)。

根据方程(组)的类型采用相应的解法。

第5步:答。

专题练习一、单选题1.已知关于x ,y 的二元一次方程组3221ax y x y +=⎧⎨-=⎩无解,则a 的值是( ) A .2 B .6 C .2- D .6-2.已知23a b -=,1a b +=则36a b -的值为( )A .6B .4C .3D .23.某班有x 人,分y 组活动,若每组7人,则余下3人;每组8人,则有一组差5人,根据题意下列方程组正确的是( )A .7385y x y x =+⎧⎨=+⎩B .7385y x x y =+⎧⎨=-⎩C .7385y x y x =-⎧⎨=+⎩D .7385x y x y =-⎧⎨=+⎩ 4.文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元.已知第1天和第2天的记录无误,第3天和第4天有一天的记录有误,则记录有误的一天收入( )A .多记1元B .多记2元C .少记1元D .少记2元5.两位同学在解方程组273ax by cx y +=⎧⎨+=⎩时,甲同学正确地解出11x y =-⎧⎨=-⎩,乙同学因把c 抄错了解得32x y =-⎧⎨=-⎩,则a 、b 、c 正确的值应为( )A .315a b c =-=-=-,,B .115a b c ==-=-,,C .2410a b c ==-=-,,D .315a b c ===-,,6.小华准备购买单价分别为4元和5元的两种瓶装饮料,且每种瓶装饮料的购买数量不为0.若小华将50元恰好用完,则购买方案共有( )A .2种B .3种C .4种D .5种7.在一个停车场,停了小轿车和摩托车一共32辆,这些车一共有108个轮子,则该停车场小轿车和摩托车的辆数分别为( )A .21,11B .22,10C .23,9D .24,8 8.已知关于x ,y 的方程2|18|(26)(2)0n m m x n y +--++=是二元一次方程,则m n +的值(若29m =,则3m =±)是( )A .5-B .3-C .1D .3二、填空题9.当方程组2520x ay x y +=⎧⎨-=⎩解是正整数时,整数a 值为 . 10.如果35x y =⎧⎨=-⎩是方程22mx y +=-的一组解,那么m 的值为 . 11.若关于x y ,的方程组1235x y c x y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组()()()()12113151x y c x y c ⎧-++=⎪⎨-++=⎪⎩的解为 .12.A,B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B出发逆水行驶5小时才能到达A,则船在静水中的航行速度是千米/时.13.若关于x的不等式组20,21xx m-<⎧⎨-≥-⎩恰有三个整数解,关于x的方程组26,3x yx y m+=⎧⎨-=⎩的解是正数,则m的取值范围是.三、解答题14.解方程组:(1)25 328 y xx y=-⎧⎨-=⎩(2)434 2312x yx y⎧+=⎪⎨⎪-=⎩15.已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求222a ab b-+的值.16.用加减法解方程组344328x y x y -=⎧⎨-=⎩①②其解题过程如下: 第一步:-①②,得4248y y --=-,解得23y =. 第二步:把23y =,代入①,得8343x -=,解得209x =. 第三步:所以这个方程组的解为20923x y ⎧=⎪⎪⎨⎪=⎪⎩上述解题过程是否正确?若不正确,则从第几步开始出现错误?请写出正确的解题过程.17.印江河是印江的母亲河,为了确保河道畅通,现需要对一段长为180米的河道进行清淤处理,清淤任务由A 、B 两个工程队先后接力完成,A 工程队每天完成12米,B 工程队每天完成8米,共用时20天. 根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩ 乙:128x y x y ⎧+=⎪⎨+=⎪⎩(1)根据甲同学所列的方程组,请你指出未知数x 、y 表示的意义.x 表示______,y 表示______;请你补全乙同学所列的方程组______(2)求A 、B 两工程队分别完成河道清淤多少米?(写出完整的解答过程)18.“一盔一带”安全守护行动在我县开展以来,市场上头盔出现了热销,某商场购进了一批头盔.已知购进6个A型头盔和4个B型头盔需要440元,购进4个A型头盔和6个B型头盔需要510元.(1)购进1个A型头盔和1个B型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,那么最多可购买B型头盔多少个?(3)在(2)的条件下,若该商场分别以售价为58元/个、98元/个的售价销售完A、B两类型号的头盔共200个,能否实现利润不少于6190元的目标?若能,直接写出相应的采购方案;若不能,请说明理由.参考答案:1.D2.A3.C4.C5.C6.A7.B8.B9.1或3-10.83/22311.65 xy⎧=⎨=⎩12.1813.21m-<≤-14.(1)21 xy=⎧⎨=-⎩(2)1083 xy=⎧⎪⎨=⎪⎩15.116.不正确,从第一步开始出现错误;正确的解题过程见解析,原方程组的解为:42 xy=⎧⎨=⎩17.(1)x表示A工程队工作的天数,y表示B工程队工作的天数,18020 128x yx y+=⎧⎪⎨+=⎪⎩(2)A工程队完成河道清淤60米,B工程队完成河道清淤120米18.(1)购进1个A型头盔30元,1个B型头盔65元;(2)最多可购买B型头盔120个;(3)三种购买方案。

二元一次方程组能力提升讲义

二元一次方程组能力提升讲义

二元一次方程组能力提升讲义 知识提要1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种:当212121c c b b a a ==时,方程组有无数多解。

(∵两个方程等效) 当212121c c b b a a ≠=时,方程组无解。

(∵两个方程是矛盾的) 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得)2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。

3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。

(见例2、3) 例题例1.选择一组a,c 值使方程组⎩⎨⎧=+=+c y ax y x 2751.有无数多解,2.无解,3.有唯一的解例2.a 取什么值时,方程组⎩⎨⎧=+=+3135y x ay x 的解是正数?例3.m 取何整数值时,方程组⎩⎨⎧=+=+1442y x my x 的解x 和y 都是整数?二元一次方程组的特殊解法1.二元一次方程组的常规解法,是代入消元法和加减消元法。

这两种方法都是从“消元”这个基本思想出发,先把“二元”转化为“一元”把解二元一次方程组的问题归结为解一元一次方程,在“消元”法中,包含了“未知”转化到“已知”的重要数学化归思想。

2、灵活消元 (1)整体代入法1. 解方程组y x x y +=+-=⎧⎨⎪⎩⎪1423231(2)先消常数法2. 解方程组433132152x y x y +=<>-=<>⎧⎨⎩(3)设参代入法3. 解方程组x y x y -=<>=<>⎧⎨⎩321432::(4)换元法4. 解方程组()()x y x yx y x y +--=+=-⎧⎨⎪⎩⎪23634(5)简化系数法5. 解方程组43313442x y x y -=<>-=<>⎧⎨⎩随堂练习1. 不解方程组,判定下列方程组解的情况: ①⎩⎨⎧=-=-96332y x y x ②⎩⎨⎧=-=-32432y x y x ③⎩⎨⎧=-=+153153y x y x2. a 取哪些正整数值,方程组⎩⎨⎧=--=+a y x ay x 24352的解x 和y 都是正整数?3. 要使方程组⎩⎨⎧=-=+12y x kky x 的解都是整数, k 应取哪些整数值?用加减消元法解二元一次方程组同步练习【主干知识】1.方程组231534m n m n +=⎧⎨+=⎩中,n 的系数的特别是_______,所以我们只要将两式________,•就可以消去未知数,化成一个一元一次方程,达到消元的目的.2.方程组532534m n m n -+=⎧⎨+=⎩中,m 的系数的特别是________,所以我们只要将两式________,就可以消去未知数m ,化成一个一元一次方程,进而求得方程组的解.3.•用加减法解二元一次方程组时,••两个方程中同一个未知数的系数必须________•或_______,•即它们的绝对值______.•当未知数的系数的符号相同时,•用_______;当未知数的系数的符号相反时,用_______.•当方程组里两个方程的同一个未知数的系数成整数倍时,可以利用________性质,将方程经过简单变形,•使这个未知数的系数的绝对值________,再用加减法消元,进一步求得方程组的解.4.方程组421721x y x y +=⎧⎨-=⎩里两个方程只要两边________,就可以消去未知数________.5.方程组3133131x y x y +=⎧⎨-=-⎩的两个方程只要两边_______,就可以消去未知数_______.6.用加减法解二元一次方程组21349x y x y -=⎧⎨+=⎩时,你能让两个方程中x 的系数相等吗?•你的办法是_________.7.用加减法解方程组326231x y x y +=⎧⎨+=⎩时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是( )966961896186412(1)(2)(3)(4)462462462693x y x y x y x y x y x y x y x y +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨+=-=+=+=⎩⎩⎩⎩ A .(1)(2) B .(2)(3) C .(3)(4) D .(4)(1)8.用加减法解二元一次方程组2931 x yx y+=⎧⎨-=-⎩.【点击思维】1.用加减法解二元一次方程组的关键是使方程组里两个方程中同一个未知数系数的绝对值_______,然后把方程两边分别相______或____,实现化二元为______,从而解出它的解.3.判断正误:(1)已知方程组238329x yx y+=⎧⎨+=⎩则x、y的值都是负值()(2)方程组373272282383xxx yx x yy-⎧=⎪-=⎧⎪⎨⎨+-=⎩⎪=⎪⎩与有相同的解()(3)方程组606030%60%10%60220x y x yx y x y+=+=⎧⎧⎨⎨+=⨯+=⎩⎩与解相同()4.解下列方程组:(1)35132718x yx y-=⎧⎨+=⎩2(2)34x yy zz x+=⎧⎪+=⎨⎪+=⎩【基础能力训练】1.对于方程组2353433x yx y-=⎧⎨+=⎩而言,你能设法让两个方程中x的系数相等吗?你的方法是_______;若让两个方程中y的系数互为相反数,你的方法是________.2.用加减消元法解方程组358752x yx y-=⎧⎨+=⎩将两个方程相加,得()A.3x=8 B.7x=2 C.10x=8 D.10x=103.用加减消元法解方程组231354y xx y+=⎧⎨-=-⎩,①-②得()A.2y=1 B.5y=4 C.7y=5 D.-3y=-34.用加减消元法解方程组23537x yx y-=⎧⎨=+⎩正确的方法是()A.①+②得2x=5 B.①+②得3x=12C.①+②得3x+7=5 D.先将②变为x-3y=7③,再①-③得x=-25.已知方程组5112mx n xmy n y+==⎧⎧⎨⎨-==⎩⎩的解是,则m=_______,n=_______.6.在方程组341236x yx y+=⎧⎨-=⎩中,若要消x项,则①式乘以_______得______③;•②式可乘以______得________④;然后再③④两式_______即可.7.在341236x yx y+=⎧⎨-=⎩中,①×③得________③;②×4得_____④,这种变形主要是消________.8.•用加减法解0.70.31725x yx y+=⎧⎨-+=⎩时,•将方程①两边乘以________,•再把得到的方程与②相________,可以比较简便地消去未知数________.9.方程组356234x yx y-=⎧⎨-=⎩,②×3-①×2得()A.-3y=2 B.4y+1=0 C.y=0 D.7y=-810.已知23x yx y-=⎧⎨+=⎩,则xy的值是()A.2 B.1 C.-1 D.211.方程组1325y xx y+=⎧⎨+=⎩的解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨=-===-⎩⎩⎩⎩12.已知2441x x y y =-=⎧⎧⎨⎨==⎩⎩和都是方程y=ax+b 的解,则a 和b 的值是( ) A .1111 (2)2225311a a a a B C Db b b b ⎧⎧⎧⎧==-==-⎪⎪⎪⎪⎨⎨⎨⎨⎪⎪⎪⎪===-=-⎩⎩⎩⎩13.用合适的方法解下列方程组:(1)4022356515(2)(3)322242133y xx y x y x y x y x y =-+=+=⎧⎧⎧⎨⎨⎨+=-=-=-⎩⎩⎩152343(1)4(4)(4)(5)(6)3532115(1)3(5)7525x x yx y x y x y y x y x +-⎧+=-=-=⎧⎧⎪⎨⎨⎨-=-=+⎩⎩⎪=+⎩349323(4)4(5)12105353217x z x y x yy x x y z -=-⎧+--⎪===-⎨⎪++=⎩15.如果二元一次方程组1532234ax by xax by y-==⎧⎧⎨⎨+==⎩⎩的解是,则a-b=______.【综合创新训练】16.在方程y=kx+b中,当x=2时,y=2;当x=-4时,y=-16,求当x=1时,y=_______.17.已知a、b都是有理数,观察下表中的运算,在空格处填上数.18.若方程组43(1)3x yax a y+=⎧⎨+-=⎩的解与x与y相等,则a的值等于()A.4 B.10 C.11 D.1219.已知方程组22331x y kx y k+=⎧⎨+=-⎩的解x和y的和等于6,k=_______.20.甲、乙两位同学一起解方程组2,32ax bycx y+=⎧⎨-=-⎩,甲正确地解得11xy=⎧⎨=-⎩,乙仅因抄错了题中的c,解得26xy=⎧⎨=-⎩,求原方程组中a、b、c的值.21.已知232x y ax y a+=⎧⎨-=⎩,求xy的值.。

二元一次方程组与一次函数提高题(含详细解答)

二元一次方程组与一次函数提高题(含详细解答)

二元一次方程组与一次函数一.选择题(共16小题)1.(2014•太原二模)下面四条直线,其中直线上每个点的坐标都是二元一次方程2x﹣y=2的解的是()A.B.C.D.2.(2013•历下区二模)已知直线y=﹣x+4与y=x+2的图象如图,则方程组的解为()A.B.C.D.3.(2012•贵阳)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P ,则方程组的解是()A.B.C.D.4.(2011•百色)两条直线y=k1x+b1和y=k2x+b2相交于点A(﹣2,3),则方程组的解是()A.B.C.D.5.(2005•济南)如图,是在同一坐标系内作出的一次函数l1、l2的图象,设l1:y=k1x+b1,l2:y=k2x+b2,则方程组的解是()A.B.C.D.6.若两条直线的交点为(2,3),则这两条直线对应的函数解析式可能是()A.B.C.D.7.(2006•太原)小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l1、l2,如图所示,他解的这个方程组是()A.B.C.D.8.(2013•荆州)体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()进球数0 1 2 3 4 5人数 1 5 x y 3 2A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+9.(2010•聊城)如图,过点Q(0,3.5)的一次函数的图象与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是()A.3x﹣2y+3.5=0 B.3x﹣2y﹣3.5=0 C.3x﹣2y+7=0 D.3x+2y﹣7=010.如果一次函数y=3x+6与y=2x﹣4的图象交点坐标为(a,b),则是方程组()的解.A.B.C.D.11.在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点.设k为整数,当直线y=x﹣2与y=kx+k的交点为整点时,k的值可以取()A.4个B.5个C.6个D.7个12.若方程组的解为,则一次函数y=与y=交点坐标()A.(b,a)B.(a,a)C.(a,b)D.(b,b)13.已知,如图,方程组的解是()A.B.C.D.14.(2013•台湾)图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图(②)所示.求被移动石头的重量为多少克?()A.5B.10 C.15 D.2015.(2013•建邺区一模)为迎接2013年“亚青会”,学校组织了一次游戏:每位选手朝特制的靶子上各投三以飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是()A.31分B.33分C.36分D.38分16.(2009•烟台)利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm二.填空题(共10小题)17.(2014•丹徒区二模)已知直线y=x﹣1与y=﹣x+5的交点坐标是(4,1),则方程组的解是_________.18.(2012•南宁)如图,已知函数y=x﹣2和y=﹣2x+1的图象交于点P,根据图象可得方程组的解是_________.19.(2012•威海)如图,直线l1,l2交于点A,观察图象,点A的坐标可以看作方程组_________的解.20.(2012•仪征市一模)已知函数y=x+a与y=﹣2x+b的交点坐标为(﹣2,1),则方程组的解为_________.21.(2011•苍南县一模)如图,已知一次函数y=ax+b和正比例函数y=kx的图象交于点P,则根据图象可得二元一次方程组的解是_________.22.(2010•高淳县二模)一次函数y=kx+b的图象上一部分点的坐标见下表:x …﹣1 0 1 2 3 …y …﹣7 ﹣4 ﹣1 2 5 …正比例函数的关系式为y=x,则方程组的解为x=_________,y=_________.23.已知函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则二元一次方程组的解是_________.24.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由._________.25.已知是方程组的解,那么由这两个方程得到的一次函数y=_________和y=_________的图象的交点坐标是_________.26.若m、n为全体实数,那么任意给定m、n,两个一次函数y1=mx+n和y2=nx+m(m≠n)的图象的交点组成的图象方程是_________.三.解答题(共4小题)27.(2009•台州)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.28.(2008•台州)在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①_________;②_________;③_________;④_________;(2)如果点C的坐标为(1,3),那么不等式kx+b≥k1x+b1的解集是_________.29.在直角坐标系中,直线l1经过(2,3)和(﹣1,﹣3),直线l2经过原点O,且与直线l1交于点P(﹣2,a).(1)求a的值;(2)(﹣2,a)可看成怎样的二元一次方程组的解?(3)设直线l1与y轴交于点A,你能求出△APO的面积吗?30.如图所示的是函数y1=kx+b与y2=mx+n的图象,(1)方程的解是_________;(2)y1中变量y1随x的增大而_________;(3)在平面直角坐标系中,将点P(3,4)向下平移1个单位,恰好在正比例函数的图象上,求这个正比例函数的关系式.二元一次方程组与一次函数参考答案与试题解析一.选择题(共16小题)1.(2014•太原二模)下面四条直线,其中直线上每个点的坐标都是二元一次方程2x﹣y=2的解的是()A.B.C.D.考点:一次函数与二元一次方程(组).分析:根据两点确定一条直线,当x=0,求出y的值,再利用y=0,求出x的值,即可得出一次函数图象与坐标轴交点,即可得出图象.解答:解:∵2x﹣y=2,∴y=2x﹣2,∴当x=0,y=﹣2;当y=0,x=1,∴一次函数y=2x﹣2,与y轴交于点(0,﹣2),与x轴交于点(1,0),即可得出选项B符合要求,故选:B.点评:此题主要考查了一次函数与二元一次方程的关系,将方程转化为函数关系进而得出与坐标轴交点坐标是解题关键.2.(2013•历下区二模)已知直线y=﹣x+4与y=x+2的图象如图,则方程组的解为()A.B.C.D.考点:一次函数与二元一次方程(组).分析:二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.解答:解:根据题意知,二元一次方程组的解就是直线y=﹣x+4与y=x+2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:.故选B.点评:本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.3.(2012•贵阳)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A.B.C.D.考点:一次函数与二元一次方程(组).专题:推理填空题.分析:根据图象求出交点P的坐标,根据点P的坐标即可得出答案.解答:解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(﹣2,3),∴方程组的解是,故选A.点评:本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.4.(2011•百色)两条直线y=k1x+b1和y=k2x+b2相交于点A(﹣2,3),则方程组的解是()A.B.C.D.考点:一次函数与二元一次方程(组).专题:计算题.分析:由题意,两条直线y=k i x+b1和y=k2x+b2相交于点A(﹣2,3),所以x=﹣2、y=3就是方程组的解.解答:解:∵两条直线y=k i x+b1和y=k2x+b2相交于点A(﹣2,3),∴x=﹣2、y=3就是方程组的解.∴方程组的解为:.点评:本题主要考查了二元一次方程(组)和一次函数的综合问题,两直线的交点就是两直线解析式所组成方程组的解,认真体会一次函数与一元一次方程之间的内在联系.5.(2005•济南)如图,是在同一坐标系内作出的一次函数l1、l2的图象,设l1:y=k1x+b1,l2:y=k2x+b2,则方程组的解是()A.B.C.D.考点:一次函数与二元一次方程(组).专题:数形结合.分析:本题需用待定系数法求出两个直线的函数解析式,然后联立两个函数的解析式组成方程组,所求得的解即为方程组的解.解答:解:由图可知:两个一次函数的图形分别经过:(1,2),(4,1),(﹣1,0),(0,﹣3);因此两条直线的解析式为y=﹣x+,y=﹣3x﹣3;联立两个函数的解析式:,解得:.故选B.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.6.若两条直线的交点为(2,3),则这两条直线对应的函数解析式可能是()A.B.C.D.考点:一次函数与二元一次方程(组).分析:将交点坐标代入四个选项中,若同时满足两个函数关系式,即可得到答案.解答:解:将交点(2,3)代入,使得两个函数关系式成立,故选D.点评:本题考查了一元一次方程与一次函数的知识,解题的关键是了解两个函数的交点坐标就是两个函数关系式组成的二元一次方程组的解.7.(2006•太原)小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l1、l2,如图所示,他解的这个方程组是()A.B.C.D.考点:一次函数与二元一次方程(组).专题:压轴题;数形结合.分析:两个一次函数的交点为两个一次函数解析式所组方程组的解.因此本题需根据图中直线所经过的点的坐标,用待定系数法求出两个一次函数的解析式.然后联立两个函数的解析式,即可得出所求的方程组.解答:解:由图可知:直线l1过(2,﹣2),(0,2),因此直线l1的函数解析式为:y=﹣2x+2;直线l2过(﹣2,0),(2,﹣2),因此直线l2的函数解析式为:y=﹣x﹣1;因此所求的二元一次方程组为;故选D点评:本题主要考查二元一次方程组与一次函数的关系.函数图象交点坐标为两函数解析式组成的方程组的解.8.(2013•荆州)体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()进球数0 1 2 3 4 5人数 1 5 x y 3 2A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+考点:一次函数与二元一次方程(组).分析:根据一共20个人,进球49个列出关于x、y的方程即可得到答案.解答:解:根据进球总数为49个得:2x+3y=49﹣5﹣3×4﹣2×5=22,整理得:y=﹣x+,∵20人一组进行足球比赛,∴1+5+x+y+3+2=20,整理得:y=﹣x+9.故选:C.点评:本题考查了一次函数与二元一次方程组的知识,解题的关键是根据题目列出方程并整理成函数的形式.9.(2010•聊城)如图,过点Q(0,3.5)的一次函数的图象与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是()A.3x﹣2y+3.5=0 B.3x﹣2y﹣3.5=0 C.3x﹣2y+7=0 D.3x+2y﹣7=0考点:一次函数与二元一次方程(组).专题:数形结合.分析:如果设这个一次函数的解析式为y=kx+b,那么根据这条直线经过点P(1,2)和点Q(0,3.5),用待定系数法即可得出此一次函数的解析式.解答:解:设这个一次函数的解析式为y=kx+b.∵这条直线经过点P(1,2)和点Q(0,3.5),∴,解得.故这个一次函数的解析式为y=﹣1.5x+3.5,即:3x+2y﹣7=0.故选D.点评:本题主要考查了一次函数与方程组的关系及用待定系数法求一次函数的解析式.两个一次函数图象的交点坐标就是对应的二元一次方程组的解,反之,二元一次方程组的解就是对应的两个一次函数图象的交点坐标.10.如果一次函数y=3x+6与y=2x﹣4的图象交点坐标为(a,b),则是方程组()的解.A.B.C.D.考点:一次函数与二元一次方程(组).分析:由于函数图象交点坐标为两函数解析式组成的方程组的解.因此是联立两直线函数解析式所组方程组的解.由此可判断出正确的选项.解答:解:一次函数y=3x+6与y=2x﹣4的图象交点坐标为(a,b),则是方程组,即的解.故选C.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.11.在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点.设k为整数,当直线y=x﹣2与y=kx+k的交点为整点时,k的值可以取()A.4个B.5个C.6个D.7个考点:一次函数与二元一次方程(组).专题:计算题.分析:让这两条直线的解析式组成方程组,求得整数解即可.解答:解:①当k=0时,y=kx+k=0,即为x轴,则直线y=x﹣2和x轴的交点为(2.0)满足题意,∴k=0②当k≠0时,,∴x﹣2=kx+k,∴(k﹣1)x=﹣(k+2),∵k,x都是整数,k≠1,k≠0,∴x==﹣1﹣是整数,∴k﹣1=±1或±3,∴k=2或k=4或k=﹣2;综上,k=0或k=2或k=4或k=﹣2.故k共有四种取值.故选A.点评:本题考查了一次函数与二元一次方程组,属于基础题,解决本题的难点是根据分数的形式得到相应的整数解.12.若方程组的解为,则一次函数y=与y=交点坐标()A.(b,a)B.(a,a)C.(a,b)D.(b,b)考点:一次函数与二元一次方程(组).专题:计算题.分析:由于函数图象交点坐标为两函数解析式组成的方程组的解,因此联立两函数解析式所得方程组的解,就是两个函数图象的交点坐标.解答:解:将方程组的两个方程变形后可得:y=,y=;因此两个函数图象的交点坐标就是方程组的解.故选C.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.13.已知,如图,方程组的解是()A.B.C.D.考点:一次函数与二元一次方程(组).分析:根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点.解答:解:根据函数y=kx+b和y=mx+n的图象知,一次函数y=kx+b与y=mx+n的交点(﹣1,1)就是该方程组的解.故选C.点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.(2013•台湾)图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图(②)所示.求被移动石头的重量为多少克?()A.5B.10 C.15 D.20考点:三元一次方程组的应用.分析:设左天平的一袋石头重x克,右天平的一袋石头重y克,被移动的石头重z千克,根据题意及图象可以得出方程x=y+20及x﹣z=y+z+10,由两个方程构成方程组求出其解即可.解答:解:设左天平的一袋石头重x克,右天平的一袋石头重y克,被移动的石头重z克,由题意,得:,解得:z=5.故选:A.点评:本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时理解图象天平反映的意义找到等量关系是关键.15.(2013•建邺区一模)为迎接2013年“亚青会”,学校组织了一次游戏:每位选手朝特制的靶子上各投三以飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是()A.31分B.33分C.36分D.38分考点:三元一次方程组的应用.分析:先设飞镖投到最小的圆中得x分,投到中间的圆中得y分,投到最外面的圆中得z分,再根据小明、小君、小红的成绩分别是29分、43分和33分,列出方程组,求出x,y,z的值,再根据小华所投的飞镖,列出式子,求出结果即可.解答:解:设飞镖投到最小的圆中得x分,投到中间的圆中得y分,投到最外面的圆中得z分,根据题意得:,解得:.则小华的成绩是18+11+7=36(分).故选C.点评:此题考查了三元一次方程组的应用,解题的关键是根据图形设出相应的未知数,再根据各自的得分列出相应的方程.16.(2009•烟台)利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm考点:三元一次方程组的应用.专题:应用题.分析:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,建立关于h,x,y的方程组求解.解答:解:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,由第一个图形可知桌子的高度为:h﹣y+x=80,由第二个图形可知桌子的高度为:h﹣x+y=70,两个方程相加得:(h﹣y+x)+(h﹣x+y)=150,解得:h=75cm.故选C.点评:本题是一道能力题,考查方程思想、整体思想的应用及观察图形的能力.二.填空题(共10小题)17.(2014•丹徒区二模)已知直线y=x﹣1与y=﹣x+5的交点坐标是(4,1),则方程组的解是.考点:一次函数与二元一次方程(组).分析:根据一次函数与二元一次方程组的关系,方程组的解为两直线的交点坐标.解答:解:∵直线y=x﹣1与y=﹣x+5的交点坐标是(4,1),∴方程组的解为.故答案为:.点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.18.(2012•南宁)如图,已知函数y=x﹣2和y=﹣2x+1的图象交于点P,根据图象可得方程组的解是.考点:一次函数与二元一次方程(组).专题:压轴题;推理填空题.分析:先由图象得出两函数的交点坐标,根据交点坐标即可得出方程组的解.解答:解:∵由图象可知:函数y=x﹣2和y=﹣2x+1的图象的交点P的坐标是(1,﹣1),又∵由y=x﹣2,移项后得出x﹣y=2,由y=﹣2x+1,移项后得出2x+y=1,∴方程组的解是,故答案为:.点评:本题考查了一次函数与二元一次方程组的应用,主要考查学生的观察图形的能力和理解能力,题目具有一定的代表性,是一道比较好但又比较容易出错的题目.19.(2012•威海)如图,直线l1,l2交于点A,观察图象,点A的坐标可以看作方程组的解.考点:一次函数与二元一次方程(组).专题:计算题.分析:设直线l1的解析式是y=kx﹣1,设直线l2的解析式是y=kx+2,把A(1,1)代入求出k的值,即可得出方程组.解答:解:设直线l1的解析式是y=k1x﹣1,设直线l2的解析式是y=k2x+2,∵把A(1,1)代入l1得:k1=2,∴直线l1的解析式是y=2x﹣1∵把A(1,1)代入l2得:k2=﹣1,∴直线l2的解析式是y=﹣x+2,∵A是两直线的交点,∴点A的坐标可以看作方程组的解,点评:本题考查了一元一次函数与二元一次方程组的应用,主要考查学生的理解能力和计算能力.20.(2012•仪征市一模)已知函数y=x+a与y=﹣2x+b的交点坐标为(﹣2,1),则方程组的解为.考点:一次函数与二元一次方程(组).分析:根据函数图象交点坐标为两函数解析式组成的方程组的解可直接写出答案.解答:解:方程组可变为:,∵函数y=x+a与y=﹣2x+b的交点坐标为(﹣2,1),∴方程组的解为:,故答案为:.点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.21.(2011•苍南县一模)如图,已知一次函数y=ax+b和正比例函数y=kx的图象交于点P,则根据图象可得二元一次方程组的解是.考点:一次函数与二元一次方程(组).分析:根据一次函数y=ax+b和正比例y=kx的图象可知,点P就是一次函数y=ax+b和正比例y=kx的交点,即二元一次方程组的解.解答:解:根据题意可知,二元一次方程组的解就是一次函数y=ax+b和正比例y=kx的图象的交点P的坐标,由一次函数y=ax+b和正比例y=kx的图象,得二元一次方程组的解是.点评:此题很简单,解答此题的关键是熟知方程组的解与一次函数y=ax+b和正比例y=kx的图象交点P之间的联系,考查了学生对题意的理解能力.22.(2010•高淳县二模)一次函数y=kx+b的图象上一部分点的坐标见下表:x …﹣1 0 1 2 3 …y …﹣7 ﹣4 ﹣1 2 5 …正比例函数的关系式为y=x,则方程组的解为x=2,y=2.考点:一次函数与二元一次方程(组).专题:计算题;图表型.分析:根据函数图象上的坐标,可以求出k和b的值,然后把k、b的值代入方程组即可求得x、y的值.解答:解:点(﹣1,﹣7),(0,﹣4)是函数图象上的点,∴,把b=﹣4代入方程,可得:k=3,∴,把(2)代入(1)得:x=2,∴y=2.点评:本题考查了根据函数图象与坐标求k、b的值,以及解二元一次方程组.23.已知函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则二元一次方程组的解是.考点:一次函数与二元一次方程(组).分析:函数图象的交点坐标即是方程组的解,有几个交点,就有几组解.解答:解:∵函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),∴点P(﹣4,﹣2),满足二元一次方程组;∴方程组的解是.故答案为.点评:本题不用解答,关键是理解两个函数图象的交点即是两个函数组成方程组的解.24.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.经过.考点:一次函数与二元一次方程(组).专题:压轴题.分析:(1)将P(1,b)代入y=x+1即可求出b的值;(2)交点P的坐标即为方程组的解;(3)将P点坐标代入y=nx+m,若等式成立,则点P在函数图象上,否则不在函数图象上.解答:解:(1)将P(1,b)代入y=x+1,得b=1+1=2;(2)由于P点坐标为(1,2),所以.(3)将P(1,2)代入解析式y=mx+n得,m+n=2;将x=1代入y=nx+m得y=m+n,由于m+n=2,所以y=2,故P(1,2)也在y=nx+m上.点评:此题综合性较强,考查了经过某点的函数应适合这个点的横纵坐标、函数图象交点坐标为相应函数解析式组成的方程组的解等知识,难度适中,是一道好题.25.已知是方程组的解,那么由这两个方程得到的一次函数y=x﹣和y=﹣2x+8的图象的交点坐标是(2,4).考点:一次函数与二元一次方程(组).分析:根据方程组的解为组成方程组的两个方程的函数图象的交点解答.解答:解:由7x﹣3y=2得,y=x﹣,由2x+y=8得,y=﹣2x+8,所以,由这两个方程得到的一次函数y=x﹣和y=﹣2x+8的图象的交点坐标是(2,4).故答案为:x﹣;﹣2x+8;(2,4).点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.26.若m、n为全体实数,那么任意给定m、n,两个一次函数y1=mx+n和y2=nx+m(m≠n)的图象的交点组成的图象方程是x=1.考点:一次函数与二元一次方程(组).分析:根据两个一次函数的图象的交点求法,得到y1=y2,求出交点,即可得出两函数图象的交点组成的图象方程.解答:解:∵当两个一次函数y1=mx+n和y2=nx+m(m≠n)的图象的有交点时,∴y1=y2,∴mx+n=nx+m,mx﹣nx=m﹣n,(m﹣n)x=m﹣n,∵m≠n,∴x=1,故答案为:x=1.点评:此题主要考查了一次函数与二元一次方程组,利用方程组的解就是两个一次函数相应的交点坐标得到y1=y2,进而求出x是解决问题的关键.三.解答题(共4小题)27.(2009•台州)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.考点:一次函数与二元一次方程(组).专题:压轴题;数形结合.分析:(1)将交点P的坐标代入直线l1的解析式中便可求出b的值;(2)由于函数图象交点坐标为两函数解析式组成的方程组的解.因此把函数交点的横坐标当作x的值,纵坐标当作y的值,就是所求方程组的解;(3)将P点的坐标代入直线l3的解析式中,即可判断出P点是否在直线l3的图象上.解答:解:(1)∵(1,b)在直线y=x+1上,∴当x=1时,b=1+1=2;(2)方程组的解是;(3)直线y=nx+m也经过点P.理由如下:∵当x=1时,y=nx+m=m+n=2,∴(1,2)满足函数y=nx+m的解析式,则直线经过点P.点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上点,就一定满足函数解析式.28.(2008•台州)在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①kx+b=0;②;③kx+b>0;④kx+b<0.;(2)如果点C的坐标为(1,3),那么不等式kx+b≥k1x+b1的解集是x≤1.考点:一次函数与二元一次方程(组);一次函数与一元一次方程;一次函数与一元一次不等式.专题:综合题.分析:(1)①由于点B是函数y=kx+b与x轴的交点,因此B点的横坐标即为方程kx+b=0的解;②因为C点是两个函数图象的交点,因此C点坐标必为两函数解析式联立所得方程组的解;③函数y=kx+b中,当y>0时,kx+b>0,因此x的取值范围是不等式kx+b>0的解集;同理可求得④的结论.(2)由图可知:在C点左侧时,直线y=kx+b的函数值要大于直线y=k1x+b1的函数值.解答:解:(1)根据观察:①kx+b=0;②;③kx+b>0;④kx+b<0.(2)如果C点的坐标为(1,3),那么当x≤1时,不等式kx+b≥k1x+b1才成立.点评:此题主要考查了一次函数与一元一次方程及一元一次不等式,二元一次方程,二元一次方程组之间的内在联系是解答本题的关键.29.在直角坐标系中,直线l1经过(2,3)和(﹣1,﹣3),直线l2经过原点O,且与直线l1交于点P(﹣2,a).(1)求a的值;(2)(﹣2,a)可看成怎样的二元一次方程组的解?(3)设直线l1与y轴交于点A,你能求出△APO的面积吗?考点:一次函数与二元一次方程(组).专题:计算题;待定系数法.分析:(1)首先利用待定系数法求得直线的解析式,然后直接把P点坐标代入可求出a的值;(2)利用待定系数法确定L2得解析式,由于P(﹣2,a)是L1与L2的交点,所以点(﹣2,﹣5)可以看作是解二元一次方程组所得;(3)先确定A点坐标,然后根据三角形面积公式计算.。

2020-2021学年苏科版数学七年级下《二元一次方程组》实际应用培优提升(二)含答案

2020-2021学年苏科版数学七年级下《二元一次方程组》实际应用培优提升(二)含答案

苏科版数学七年级下《二元一次方程组》实际应用培优专练习(二)1.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.2.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.3.某厂工人小王某月工作的部分信息如下:信息一:工作时间为每天上午8:00~12:00,下午14:00~16:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系如表:生产甲种产品件数(件)生产乙种产品件数(件)所用总时间(分钟)10 10 35030 20 850信息三:按件计酬,每生产1件甲种产品可得1.5元,每生产1件乙种产品可得2.8元.根据以上信息,回答下列问题:(1)小王每生产1件甲种产品、1件乙种产品分别需要多少分钟?(2)小王该月最多能得多少元?此时分别生产甲、乙两种产品多少件?4.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35 (1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.5.某商场出售A、B两种型号的自行车,已知购买1辆A型号自行车比1辆B型号自行车少20元,购买2辆A型号自行车与3辆B型号自行车共需560元,求A、B两种型号自行车的购买价各是多少元?6.深圳市某小区为了以崭新的面貌迎接“创文”工作,决定请甲、乙两个装饰公司对小区外墙进行装饰维护.若由甲、乙两个公司合作,需8天完成,小区需支付费用12.8万元;若由甲公司单独做4天后,剩下的由乙公司来做,还需10天才能完成,小区需支付费用12.4万元.问:甲、乙两个装饰公司平均每天收取的费用分别是多少万元?7.某电器商场销售进价分别为120元、190元的A、B两种型号的电风扇,如下表所示是近二周的销售情况(进价、售价均保持不变,利润=销售收入﹣进货成本):销售时段销售数量销售收入A种型号B种型号第一周 5 6 2310第二周8 9 3540 (1)求A、B两种型号的电风扇的销售单价;(2)若商场再购进这两种型号的电风扇共120台,并且全部销售完,该商场能否实现这两批电风扇的总利润为8240元的目标?若能,请给出相应的采购方案:若不能,请说明理由.8.某大学组织“大手拉小手,义卖献爱心”活动,该校美术社团计划购买黑、白两种颜色的文化衫进行手绘创作后出售,并将所获利润全部捐给山区困难孩子.已知美术社团从批发市场花4800元购买了黑、白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表所示:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)美术社团购进黑、白文化衫各多少件?(要求列方程组解答)(2)这批文化衫手绘创作后全部售出,求美术社团这次义卖活动所获利润.9.今年新型冠状病毒肺炎(COVID﹣19,简称为新冠肺炎)疫情在全球蔓延,我们国家坚决打赢这场无硝烟的人民战争,我市各单位为同学们的返校复学采取了一系列前所未有的举措.复课返校后,为了拉大学生锻炼的间距,某学校决定增购适合独立训练的两种体育器材:跳绳和毽子,原来购进5根跳绳和6个毽子共需196元;购进2根跳绳和5个毽子共需120元.(1)求跳绳和毽子的售价原来分别是多少元?(2)学校计划购买跳绳和毽子两种器材共400个,由于受疫情影响,商场决定对这两种器材打折销售,其中跳绳以八折出售,毽子以七五折出售,学校要求跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于310根,请你求出学校花钱最少的购买方案.10.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?11.杭州某公司准备安装完成5700辆如图所示款共享单车投入市场.由于抽调不出足够熟练工人,公司准备招聘一批新工人.生产开始后发现:1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)若公司原有熟练工a人,现招聘n名新工人(a>n),使得最后能刚好一个月(30天)完成安装任务,已知工人们安装的共享单车中不能正常投入运营的占5%,求n的值.12.五一节前,某商店拟用1000元的总价购进A、B两种品牌的电风扇进行销售,为更好的销售,每种品牌电风扇都至少购进1台.已知购进3台A种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元.(1)求A、B两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?13.某集团购买了150吨物资打算运往某地支援,现有甲、乙、丙三种车型供选择,每辆汽车的运载能力和运费如表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)1000 1200 1500(1)若全部物资都用甲、乙两种车型来运送,需运费24000元,问分别需甲、乙两种车型各多少辆?(2)若该集团决定用甲、乙、丙三种汽车共18辆同时参与运送,请你写出可能的运送方案,并帮助该集团找出运费最省的方案(甲、乙、丙三种车辆均要参与运送).14.滨江区各学校积极参加“给贫困山区献爱心”活动,教育局筹集了120吨的衣物书籍等物品运往山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)200 250 300(1)全部物资可用甲型车8辆,乙型车5量,丙型车辆来运送.(2)若全部物资都用甲、乙两种车型来运送,需运费4100元,问分别需甲、乙两种车型各几辆?(3)为了节省运费,教育局打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?参考答案1.解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得:,答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,m<n,依题意,得:25m+10n=200,∴m=8﹣n.∵m,n均为正整数,∴n为5的倍数,∴或或,∵m<n,∴不合题意舍去,∴共2种购买方案,方案一:购进A型车4辆,B型车10辆;方案二:购进A型车2辆,B型车15辆.2.解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意,得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.3.解:(1)设小王每生产1件甲种产品需要x分钟,每生产1件乙种产品需要y分钟,依题意,得:,解得:.答:小王每生产1件甲种产品需要15分钟,每生产1件乙种产品需要20分钟.(2)设小王该月生产m件甲种产品,该月获得的报酬为w元,则小王该月生产件乙种产品,依题意,得:w=1.5m+2.8×=﹣0.6m+1260.∵﹣0.6<0,∴当m=60时,w取得最大值,最大值为1224,此时=405.答:小王该月最多能得1224元,此时生产甲种产品60件,乙种产品405件.4.解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.5.解:设A型号自行车的购买价为x元,B型号自行车的购买价为y元,依题意,得:,解得:.答:A型号自行车的购买价为100元,B型号自行车的购买价为120元.6.解:设甲装饰公司平均每天收取的费用为x万元,乙装饰公司平均每天收取的费用为y 万元,依题意,得:,解得:.答:甲装饰公司平均每天收取的费用为0.6万元,乙装饰公司平均每天收取的费用为1万元.7.解:(1)设A种型号的电风扇的销售单价为x元/台,B种型号的电风扇的销售单价为y 元/台,依题意,得:,解得:.答:A种型号的电风扇的销售单价为150元/台,B种型号的电风扇的销售单价为260元/台.(2)设再购进A种型号的电风扇m台,则购进B种型号的电风扇(120﹣m)台,依题意,得:2310+3540+150m+260(120﹣m)﹣120(5+8+m)﹣190[6+9+(120﹣m)]=8240,解得:m=40,∴120﹣m=80.答:再购进A种型号的电风扇40台,B种型号的电风扇80台,就能实现这两批电风扇的总利润为8240元的目标.8.解:(1)设美术社团购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:美术社团购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:美术社团这次义卖活动共获得3800元利润.9.解:(1)设跳绳原来的售价为x元,毽子原来的售价为y元,依题意得:,解得:.答:跳绳原来的售价为20元,毽子原来的售价为16元.(2)设学校购进m根跳绳,则购进(400﹣m)个毽子,依题意得:,解得:300≤m≤310.设学校购进跳绳和毽子一共花了w元,则w=20×0.8m+16×0.75(400﹣m)=4m+4800,∵4>0,∴w随m的增大而增大,∴当m=300时,w取最小值,此时400﹣m=100.∴学校花钱最少的购买方案为:购进跳绳300根,毽子100个.10.解:设A型号客车用了x辆,B型号客车用了y辆,依题意,得:,解得:.答:A型号客车用了6辆,B型号客车用了2辆.11.解:(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y辆共享单车,根据题意得:,解得:.答:每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车.(2)根据题意得:30×(8n+12a)×(1﹣5%)=5700,整理得:n=25﹣a,∵n,a均为正整数,且n<a,∴,,.∴n的值为1或4或7.12.解:(1)设A、B两种品牌电风扇每台的进价分别是x元、y元,,解得,答:A、B两种品牌电风扇每台的进价分别是100元、150元;(2)设购进A种品牌的电风扇a台,购进B种品牌的电风扇b台,利润为w元,w=(180﹣100)a+(250﹣150)b=80a+100b,∵某商店拟用1000元的总价购进A、B两种品牌的电风扇进行销售,为更好的销售,每种品牌电风扇都至少购进1台,∴100a+150b=1000且a≥1,b≥1,∴2a+3b=20(a≥1,b≥1),∴或或,∴当a=1,b=6时,w=80×1+100×6=680,当a=4,b=4时,w=80×4+100×4=720,当a=7,b=2时,w=80×7+100×2=760,由上可得,当a=7,b=2时,w取得最大值,答:为能在销售完这两种电风扇后获得最大的利润,该商店应采用购进A种品牌的电风扇7台,购进B种品牌的电风2台.13.解:(1)设需甲种车型x辆,乙种车型y辆,由题意得:,解得:,答:需甲种车型6辆,需乙种车型15辆;(2)设需甲车型x辆,乙车型y辆,丙车型z辆,由题意得:,消去z得:5x+2y=30,x=6﹣y,∵甲、乙、丙三种车型都参与运送,∴x、y、z是正整数,且不大于18,得y=5,10,解得:,,∴有两种运送方案:①甲车型4辆,乙车型5辆,丙车型9辆;②甲车型2辆,乙车型10辆,丙车型6辆;∴应该是甲车型4辆,乙车型5辆,丙车型6辆;或甲车型2辆,乙车型10辆,丙车型3辆;两种方案的运费分别是:①1000×4+1200×5+1500×9=23500(元),②1000×2+1200×10+1500×6=23000(元),∵23000<23500,∴甲车型2辆,乙车型10辆,丙车型6辆,运费最省.14.解:(1)根据题意得:(120﹣5×8﹣5×8)÷10=4(辆),答:丙型车需4辆来运送.故答案为:4.(2)设需要甲x辆,乙y辆,根据题意得:,解得:,答:分别需甲、乙两种车型为8辆和10辆.(3)设甲车有a辆,乙车有b辆,则丙车有(14﹣a﹣b)辆,由题意得5a+8b+10(14﹣a﹣b)=120,即a=4﹣b,∵a、b、14﹣a﹣b均为正整数,∴b只能等于5,从而a=2,14﹣a﹣b=7,∴甲车2辆,乙车5辆,丙车7辆,则需运费200×2+250×5+300×7=3750(元),答:甲车2辆,乙车5辆,丙车7辆,需运费3750元.。

专题2.2 二元一次方程组(提高篇)专项练习-2020-2021学年七年级数学下(浙教版)

专题2.2 二元一次方程组(提高篇)专项练习-2020-2021学年七年级数学下(浙教版)

专题2.2 二元一次方程组(提高篇)专项练习一、单选题1.方程(m-2 016)x|m|-2 015+(n+4)y|n|-3=2 018是关于x、y的二元一次方程,则() A.m=±2 016;n=±4B.m=2 016,n=4C.m=-2 016,n=-4D.m=-2 016,n=42.若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k的取值为().A.3B.-3C.-4D.43.一片牧场上的草长得一样快,已知60头牛24天可将草吃完,而30头牛60天可将草吃完.那么,若在120天里将草吃完,则需要几头牛()A.16B.18C.20D.224.若关于x,y的方程组10,20x aybx y a++=⎧⎨-+=⎩没有实数解,则()A.ab=-2B.ab=-2且a≠1C.ab≠-2D.ab=-2且a≠25.如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程正确的是( )A.2753x yy x+=⎧⎨=⎩B.2753x yx y+=⎧⎨=⎩C.2753x yy x+=⎧⎨=⎩D.2753x yx y+=⎧⎨=⎩6.三元一次方程组156x yy zz x+=⎧⎪+=⎨⎪+=⎩的解是A.15xyz=⎧⎪=⎨⎪=⎩B.124xyz=⎧⎪=⎨⎪=⎩C.14xyz=⎧⎪=⎨⎪=⎩D.41xyz=⎧⎪=⎨⎪=⎩7.关于x、y的方程组51x ayy x+=⎧⎨-=⎩有正整数解,则正整数为( ).A.2、5B.1、2C.1、5D.1、2、58.根据图中提供的信息,可知每个杯子的价格是()A.51元B.35元C.8元D.7.5元9.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团15人准备同时租用这三种客房共5间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种10.已知实数a、m满足a>m,若方程组325x y ax y a-=+⎧⎨+=⎩的解x、y满足x>y时,有a>-3,则m的取值范围是()A.m>-3B.m≥-3C.m≤-3D.m<-3二、填空题11.一个大正方形和四个全等的小正方形按图①、①两种方式摆放,则图①的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).12.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为___.13.对于实数a,b,定义运算“①”:a①b=a bab a b≥⎪⎩,<,例如4①3,因为4>3.所以.若x,y满足方程组48229x yx y-=⎧⎨+=⎩,则x①y=_____________.14.若关于x、y的二元一次方程组316215x myx ny+=⎧⎨+=⎩的解是73xy=⎧⎨=⎩,则关于x、y的二元一次方程组3()()162()()15x y m x yx y n x y++-=⎧⎨++-=⎩的解是__.15.若(2x﹣3y+5)2+|x+y﹣2|=0,则x=_____,y=_____.16.某人步行5小时,先沿平坦道路走,然后上山,再沿来的路线返回,若在平坦道路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,那么这5小时共走了路程____________千米.17.如图所示的各图表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n >1)盆花,每个图案花盆的总数为s.按此规律推断,以s,n为未知数的二元一次方程为______.18.当x=1,-1,2时,y=ax2+bx+c的值分别为1,3,3,则当x=-2时,y的值为____.19.如果二元一次方程组3{9x y ax y a+=-=的解是二元一次方程2x-3y+12=0的一个解,那么a的值是_________.20.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(241)=_________,F(635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.三、解答题21.解方程(1)2931x yy x+=⎧⎨-=⎩(代入法)(2)4143314312x yx y+=⎧⎪--⎨-=⎪⎩22.解三元一次方程组2314 2?7 3211 x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩23.若二元一次方程组37231x yx y-=⎧⎨+=⎩的解也适合于二元一次方程y=kx+9,求(k+1)2的值.24.甲、乙两人共同解方程组51542ax yx by+=⎧⎨-=-⎩①②.解题时由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩;乙看错了方程①中的b,得到方程组的54xy=⎧⎨=⎩,试计算a2017+(110-b)2018的值.25.阅读探索知识累计解方程组()()()()12262126a b a b ⎧-++=⎪⎨-++=⎪⎩解:设a ﹣1=x ,b+2=y ,原方程组可变为2626x y x y +=⎧⎨+=⎩解方程组得:22x y =⎧⎨=⎩即1222a b -=⎧⎨+=⎩所以30a b =⎧⎨=⎩此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:122435212535a b a b ⎧⎛⎫⎛⎫-++= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪-++= ⎪ ⎪⎪⎝⎭⎝⎭⎩ (2)能力运用已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩,直接写出关于m 、n 的方程组()()()()11112253325332a m b n c a m b n c ⎧++-=⎪⎨++-=⎪⎩的解为_____________.26.阅读下列材料:《张丘建算经》是一部数学问题集,其内容、范围与《九章算术》相仿.其中提出并解决了一个在数学史上非常著名的不定方程问题,通常称为“百鸡问题”:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.凡百钱买鸡百只,问鸡翁、母、雏各几何.”译文:每一只公鸡值五文钱,每一只母鸡值三文钱,每三只小鸡值一文钱.现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只? 结合你学过的知识,解决下列问题: (1)若设母鸡有x 只,公鸡有y 只,① 小鸡有__________只,买小鸡一共花费__________文钱;(用含x ,y 的式子表示) ①根据题意,列出一个含有x ,y 的方程:__________________;(2)若对“百鸡问题”增加一个条件:母鸡数量是公鸡数量的4倍多2只,求此时公鸡、母鸡、小鸡各有多少只?(3)除了问题(2)中的解之外,请你再直接写出两组..符合“百鸡问题”的解.27.在平面直角坐标系中,点O是坐标原点,点A的坐标是(-a,a),点B的坐标是(c,b),满足3+28{24a b ca b c-=--=-.(1)若x=2是3x-a<0的一个解,试判断点A在第几象限,并说明理由;(2)若①AOB的面积是4,求点B的坐标;(3)若两个动点E( e ,2e + 1) 、F( f ,-2f +3) ,请你探索是否存在以两个动点E、F为端点的线段EF①AB,且EF=AB.若存在,求出E、F两点的坐标;若不存在,请说明理由.参考答案1.D 【解析】【分析】根据二元一次方程的定义可得m -2016≠0,n+4≠0,|m|-2015=1,|n|-3=1,解不等式及方程即可得.【详解】①()()20153201642018m n m xn y---++=是关于x 、y 的二元一次方程,①m -2016≠0,n+4≠0,|m|-2015=1,|n|-3=1, 解得:m=-2016,n=4, 故选D .【点拨】本题考查了二元一次方程定义的应用,明确含有未知数的项的系数不能为0,次数为1是解题的关键.2.D 【分析】先利用方程3x -y=7和2x+3y=1组成方程组,求出x 、y ,再代入y=kx -9求出k 值. 解:由题意,得:37,23 1.x y x y -=⎧⎨+=⎩解得:2,1.x y =⎧⎨=-⎩将21x y =⎧⎨=-⎩代入y=kx -9中,得:-1=2k -9,解得:k=4. 故选D.【点拨】本题考查二元一次方程组和三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单. 3.C 【解析】【分析】设草一天增加量是a ,每头牛每天吃的草的量是b ,原有草的量是c .根据60头牛24天可将草吃完,而30头牛60天可将草吃完,列方程组,用其中一个未知数表示另一个未知数即可求解. 【详解】设草一天增加量是a ,每头牛每天吃的草的量是b ,原有草的量是c .根据题意,得602424306060b c a b c a ⨯⎧⎨⨯⎩=+,=+,解得10,1200.a b c b =⎧⎨=⎩则若在120天里将草吃完,则需要牛的头数是120120c ab+=20.故选C.【点拨】考查了二元一次方程组的应用,解题关键是能够把题目中的未知量用一个字母表示.注:牛在吃草的同时,草也在长. 4.A 【解析】 【分析】把①变形,用y 表示出x 的值,再代入①得到关于y 的方程,令y 的系数等于0即可求出ab 的值. 【详解】1020x ay bx y a =①=②++⎧⎨-+⎩, 由①得,x=-1-ay ,代入①得,b (-1-ay )-2y+a=0, 即(-ab -2)y=b -a ,因为此方程组没有实数根,所以-ab -2=0,ab=-2. 故选:A . 【点拨】考查的是解二元一次方程组,解答此类问题时要熟知解二元一次方程组的代入消元法和加减消元法. 5.B 【解析】 【分析】根据图示可得:矩形的宽可以表示为x +2y ,宽又是75厘米,故x +2y =75,矩的长可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】解:根据图示可得,2753x yx y+=⎧⎨=⎩故选B.【点拨】本题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.6.A【详解】观察方程组的特点,可以让三个方程相加,得到x+y+z=6.然后将该方程与方程组中的各方程分别相减,可求得15xyz=⎧⎪=⎨⎪=⎩.故选A.7.B【分析】先解含a的二元一次方程组,再根据x,y为正整数求出a的取值.【详解】解x、y的方程组51x ayy x+=⎧⎨-=⎩得61161xaya⎧=-⎪⎪+⎨⎪=⎪+⎩①x,y,a为正整数①a+1=3或2,解得a=2或1,故选B【点拨】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法进行求解.8.C【解析】试题分析:要求一个杯子的价格,就要先设出一个未知数,然后根据题中的等量关系列方程求解.题中的等量关系是:一杯+壶=43元;二杯二壶+一杯=94.解:设一杯为x,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故选C.9.C【解析】解:设二人间x间,三人间y间,四人间(5﹣x﹣y)间.根据题意得:2x+3y+4(5﹣x﹣y)=15,整理得:2x+y=5.当y=1时,x=2,5﹣x﹣y=5﹣2﹣1=2;当y=3时,x=1,5﹣x﹣y=5﹣1﹣3=1;当y=5时,x=0,5﹣x﹣y=5﹣0﹣5=0.因为同时租用这三种客房共5间,则x>0,y>0,所以有二种租房方案:①租二人间2间、三人间1间、四人间2间;①租二人间1间,三人间3间,四人间1间.故选C.点拨:本题是二元一次方程的应用,此题难度较大,解题的关键是理解题意,根据题意列方程,然后根据x,y是整数求解,注意分类讨论思想的应用,另外本题也可以列三元一次方程组.10.C【解析】解:325x y ax y a-=+⎧⎨+=⎩①②,①+①得,3x=6a+3,得到:x=2a+1①,把①代入①得,2a+1-y=a+3,解得y=a﹣2,所以,方程组的解是212x ay a=+⎧⎨=-⎩,①x>y,①2a+1>a﹣2,解得a>﹣3.①a>-3,a>m,①m≤-3,故选C.点拨:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.11.ab【详解】设大正方形的边长为x1,小正方形的边长为x2,由图①和①列出方程组得,12122{2x x a x x b+=-= 解得,122{4a bx a b x +=-= ①的大正方形中未被小正方形覆盖部分的面积=(2a b +)2-4×(4a b -)2=ab . 故答案为ab.12.1【分析】首先根据方程组的解的定义正确求出方程组的解,然后计算出x -y 或直接让两个方程相减求解.【详解】方法一:解方程组2524x y x y +=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩, ①x -y=1;方法二:两个方程相减,得.x -y=1,故答案为1.【点拨】本题考查了解二元一次方程组,熟练掌握解二元一次方程组的基本方法是解题的关键,同时注意此题中的整体思想.13.60【解析】分析:根据二元一次方程组的解法以及新定义运算法则即可求出答案.详解:由题意可知:48229x y x y -=⎧⎨+=⎩, 解得:512x y =⎧⎨=⎩.①x <y ,①原式=5×12=60.故答案为60.点拨:本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.14.52x y =⎧⎨=⎩【解析】分析:令x +y =a ,x -y =b ,根据已知,比较后得出a ,b 的值,从而得出结论..详解:令x +y =a ,x -y =b ,则关于x 、y 的二元一次方程组316215x y m x y x y n x y ++-=⎧⎨++-=⎩()()()()变为:316215a mb a nb +=⎧⎨+=⎩.①二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,①73a b =⎧⎨=⎩,①73x y x y +=⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 点拨:本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法,本题要注意整体思想的运用.15.15 95【解析】分析:本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x 、y 的值.详解:①(2x −3y +5)2+|x +y −2|=0,①235020x y x y -+=⎧⎨+-=⎩, 解得19,.55x y ==故答案为19,.55点拨:考查非负数的性质,掌握两个非负数相加,和为0,这两个非负数的值都为0是解题的关键.16.20【解析】【分析】设平路有x 千米,上坡路有y 千米,根据平路用时+上坡用时+下坡用时+平路用时=5,即可得解.注意求得x+y 的值即为总路程.【详解】设平路有x 千米,上坡路有y 千米,根据题意,得: 4x +3y +6y +4x =5,即2x +2y =5,则x +y =10(千米), 这5小时共走的路程=2×10=20(千米).故答案是:20.【点拨】考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.注意可以通过间接方式得解.17.s=3(n -1)【分析】根据图片可知:第一图:有花盆3个,每条边有花盆2个,那么s=3×2-3;第二图:有花盆6个,每条边有花盆3个,那么s=3×3-3;第三图:有花盆9个,每条边有花盆4个,那么s=3×4-3;…由此可知以s ,n 为未知数的二元一次方程为s=3n -3.【详解】根据图案组成的是三角形的形状,则其周长等于边长的3倍,但由于每个顶点重复了一次.所以s=3n -3=3(n ﹣1).故答案为3(n ﹣1)【点拨】本题要注意给出的图片中所包含的规律,然后根据规律列出方程.18.7【解析】【分析】根据函数图象上的点的坐标,利用待定系数法即可求出二次函数的解析式,将x=-2代入函数解析式中即可求出y值.【详解】由已知,得1,3,342,a b ca b ca b c=++⎧⎪=-+⎨⎪=++⎩解得1,1,1,abc=⎧⎪=-⎨⎪=⎩①y=x2-x+1.当x=-2时,y=(-2)2-(-2)+1=7.故答案是:7.【点拨】考查了待定系数法求函数解析式以及二次函数图象上点的坐标特征,解题的关键是利用待定系数法求出二次函数的解析式.本题属于基础题,难度不大,解决该题型题目时,利用待定系数法求出函数解析式是关键.19.4 7 -【解析】解:39x y ax y a+=⎧⎨-=⎩①②,①+①得:x=6a,把x=6a代入①得:y=-3a.把x=6a,y=-3a代入2x-3y+12=0得:12a+9a+12=0,解得:47x=-.故答案为:47-.20.7 14 5 4【解析】分析:(1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=()()F sF t中,找出最大值即可.详解::(1)F(241)=(421+142+214)÷111=7;F(635)=(365+536+653)÷111=14.(2)①s,t都是“相异数”,s=100x+32,t=150+y,①F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.①F(t)+F(s)=18,①x+5+y+6=x+y+11=18,①x+y=7.①1≤x≤9,1≤y≤9,且x,y都是正整数,①16xy=⎧⎨=⎩或25xy=⎧⎨=⎩或34xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩或61xy=⎧⎨=⎩.①s是“相异数”,①x≠2,x≠3.①y≠1,y≠5.①16xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩,①()()612F sF t⎧=⎪⎨=⎪⎩或()()99F sF t⎧=⎪⎨=⎪⎩或()()108F sF t⎧=⎪⎨=⎪⎩,①k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,①k的最大值为54.点拨: 本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F (241)、F(635)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.21.(1)14xy=⎧⎨=⎩(2)3114xy=⎧⎪⎨=⎪⎩【解析】试题分析:(1)、将①-①×2求出x的值,然后代入①求出y的值,从而得出方程组的解;(2)、首先将①进行化简,然后利用加减消元法求出x的值,代入x的值求出y的值,从而得出方程组的解.试题解析:(1)、29? 31?x y y x ①②+=⎧⎨-=⎩, ①×2可得:2y -6x=2 ①, ①-①可得:7x=7, 解得:x=1, 将x=1代入①可得:1+2y=9,解得:y=4①原方程组的解为:14x y =⎧⎨=⎩. (2)、414? 331 4312x y x y +=⎧⎪⎨---=⎪⎩①②,将①化简可得:3x -4y=-2 ①, ①+①可得:4x=12,解得:x=3,将x=3代入①可得:3+4y=14,解得:y=114,①原方程组的解为:3114x y =⎧⎪⎨=⎪⎩. 22.123x y z =⎧⎪=⎨⎪=⎩【解析】分析:根据解三元一次方程组的方法解方程即可,详解:231427?3211x y z x y z x y z ①②③++=⎧⎪++=⎨⎪++=⎩①-①×2得:30,x z -+=①-①×2得:58,x z --=-联立方程3058,x z x z -+=⎧⎨--=-⎩解得:13,x z =⎧⎨=⎩把13x z =⎧⎨=⎩代入①得,12914,y ++= 解得:2,y =原方程组的解为:123 xyz=⎧⎪=⎨⎪=⎩点拨:考查三元一次方程组的加法,牢记加减消元法是解题的关键.23.16.【解析】【分析】先利用加减消元法解得x,y的值,然后代入方程即可求得k的值,再代入所求式子求解即可.【详解】解:37? 231x yx y①②-=⎧⎨+=⎩,①×3+①,得11x=22,解得x=2.将x=2代入①,得6-y=7,解得y=-1,①方程组37231x yx y-=⎧⎨+=⎩的解为21xy=⎧⎨=-⎩,将21xy=⎧⎨=-⎩代入y=kx+9,得k=-5,则当k=-5时,(k+1)2=16.【点拨】本题主要考查解二元一次方程组,解此题的关键在于正确求得二元一次方程组的解. 24.0【解析】分析: 把甲的结果代入①求出b的值,把乙的结果代入①求出a的值,代入原式计算即可得到结果.详解:根据题意,将31x y =-⎧⎨=-⎩代入①,将54x y =⎧⎨=⎩代入①得: 12252015b a -+=-⎧⎨+=⎩ 解得:110a b =-⎧⎨=⎩, 则原式=(-1)2017+(110-×10)2018=-1+1=0. 点拨: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.25.(1)95a b =⎧⎨=-⎩ (2)23m n =-⎧⎨=⎩ 【分析】(1)利用换元法把13a - ,+25b 分别看成一个整体把原方程组进行变形求出,继而在求出a 和b(2)利用换元法把5(m+3),3(n -2)分别看成一个整体把原方程组变形,可得一个新的含有m 、n 的二元一次方程组,然后求解即可得所求【详解】解: (1)拓展提高 设3a −1=x ,5b +2=y , 方程组变形得:24{25x y x y +=+= ,解得:21x y =⎧⎨=⎩ ,即123{215a b -=+= , 解得:9{5a b ==- ;(2)能力运用设53){3(2)m x n y+=-=( , 可得53)5{3(2)3m n +=-=( , 解得:2{3m n =-= , 故答案为2{3m n =-= 【点拨】二元一次方程组解法的拓展是本题的考点,熟练掌握基础知识进行换元是解题的关键. 26.解:(1)①100x y --, 1(100)3x y --;①74100x y +=;(2)母鸡有18只,公鸡有4只,小鸡有78只.(3)以下三组答案,写出其中任意两组即可:①公鸡有12只,母鸡有4只,小鸡有84只;①公鸡有8只,母鸡有11只,小鸡有81只;①公鸡有0只,母鸡有25只,小鸡有75只.【解析】试题分析:(1)设母鸡有x 只,公鸡有y 只,根据一百文钱买一百只鸡,表示出小鸡的数量和价钱,然后列出方程;(2)设母鸡有x 只,公鸡有y 只,根据根据一百文钱买一百只鸡,母鸡数量是公鸡数量的4倍多2只,列方程求解即可;(3)解不定方程即可.试题解析:解:(1)①100x y --, 11003x y --();①74100x y +=;(2)设母鸡有x 只,公鸡有y 只,根据题意,得: 7410042x y x y +=⎧⎨=+⎩,,解得184x y =⎧⎨=⎩,,10078x y --=(只), 答:母鸡有18只,公鸡有4只,小鸡有78只.(3)以下三组答案,写出其中任意两组即可:①公鸡有12只,母鸡有4只,小鸡有84只;①公鸡有8只,母鸡有11只,小鸡有81只;①公鸡有0只,母鸡有25只,小鸡有75只.27.(1)点A 在第二象限 (2)()()2,26,2B -或(3)35,2,,222E F ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭【解析】试题解析:(1)根据题意,求出a 的取值范围,从而确定点A 的位置;(2)先解方程组,得{4b ac a ==-,再利用三角形的面积求出a 的值即可解决问题;(3)根据线段EF 平行于线段AB 且等于线段AB ,得出4f e -=,2123e f +=-+求解即可.(1)点A 在第二象限理由:把x =2代入3x -a<0得a>6①-a<0,a>0①点A 在第二象限(2)由方程组解得{4b ac a ==-()4,B a a ∴-①A(-a ,a ),S △OAB =4①AB =41442a ∴⋅= 2a ∴=±()()2,26,2B ∴-或(3)①EF ①AB ,且EF =AB4{2123f e e f -=∴+=-+ 解得: 32{52e f =-= 35,2,,222E F ⎛⎫⎛⎫∴--- ⎪ ⎪⎝⎭⎝⎭【点拨】本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式.21。

解二元一次方程组专项提升训练 (解析版)

解二元一次方程组专项提升训练 (解析版)

解二元一次方程组专项提升训练一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021秋•东源县校级期末)用代入法解方程组{y =2x −3①x −2y =6②时,将①代入②得( ) A .x ﹣4x +3=6 B .x ﹣4x +6=6 C .x ﹣2x +3=6D .x ﹣4x ﹣3=6 【分析】根据代入消元法,把②中的y 换成2x ﹣3即可.【解答】解:①代入②得,x ﹣2(2x ﹣3)=6,即x ﹣4x +6=6.故选:B .2.(2022秋•迎泽区校级月考)已知{2x +3y =53x +2y =10,那么x ﹣y 的值是( ) A .﹣5 B .5 C .﹣3 D .3【分析】根据题意将两方程相减,进而即可整体得出x ﹣y 的值.【解答】解:{2x +3y①3x +2y =10②, ②﹣①得:x ﹣y =5.故选:B .3.(2021秋•绥德县期末)用代入消元法解方程组{8x +5y =11①x =−2y②时,将②代入①正确的是( ) A .16y +5y =11 B .16y ﹣5y =11 C .﹣16y +5y =11D .﹣16y ﹣5y =11 【分析】把②代入①得到结果,即可作出判断.【解答】解:用代入消元法解方程组{8x +5y =11①x =−2y②时, 将②代入①正确的是8×(﹣2y )+5y =11,即﹣16y +5y =11.故选:C .4.(2022春•新乐市校级月考)利用加减法解方程组{5x +3y =10,①2x −2y =1,②时,利用①×a +②×b 消去y ,则a ,b 的值可能分别是( )A .2,3B .2,5C .﹣2,3D .﹣2,﹣5【分析】利用加减消元法判断即可.【解答】解:利用加减法解方程组{5x +3y =10,①2x −2y =1,②时, 利用①×2+②×3消去y ,得:10x +6x =20+3,则a 、b 的值可能是a =2,b =3,故选:A .5.(2022秋•新乡期末)已知二元一次方程组{x +2y =3x −y =5,则2x +y 的值为( ) A .﹣2 B .0 C .6 D .8【分析】把两个方程相加,则可直接求得2x +y 的值.【解答】解:{x +2y =3①x −y =5②, ①+②得:2x +y =8.故选:D .6.(2022秋•桥西区期中)关于x 、y 的二元一次方程组{6x −5y =36x +y =−15,用加减消元法消去x 后得到的结果为( ) A .6y =﹣12 B .﹣4y =﹣12 C .6y =﹣18 D .6y =18【分析】利用加减消元法进行求解即可.【解答】解:{6x −5y =3①6x +y =−15②, ②﹣①得:6y =﹣18,故选:C .7.(2021秋•藤县期末)在等式y =kx +b 中,当x =1时,y =3;当x =﹣1时,y =9.则k •b 的值为( )A .18B .﹣18C .﹣20D .20【分析】由题意先得到二元一次方程组,再解方程组求出b 、k ,最后代入得结论.【解答】解:由题意,得{k +b =3①−k +b =9②, ①+②,得2b =12,∴b =6;①﹣②,得2k =﹣6,∴k =﹣3.∴k •b =﹣3•6=﹣18.故选:B .8.(2022春•寻乌县期末)已知|x +5y +9|+(x ﹣2y ﹣5)2=0,则(x +y )2的值为( )A .1B .2C .3D .9 【分析】根据绝对值的非负性、偶次方的非负性求得x +5y +9=0,x ﹣2y ﹣5=0,进而求得x 与y ,再代入求值.【解答】解:∵|x +5y +9|≥0,(x ﹣2y ﹣5)2≥0,∴当|x +5y +9|+(x ﹣2y ﹣5)2=0,则|x +5y +9|=0,(x ﹣2y ﹣5)2=0.∴x +5y +9=0,x ﹣2y ﹣5=0.∴x =1,y =﹣2.∴(x +y )2=(1﹣2)2=1.故选:A .9.(2021秋•竞秀区期末)已知关于x ,y 的方程组{x +2y =5−2a x −y =4a −1,下列结论: ①当a =1时,方程组的解也是x +y =2a ﹣1的解;②无论a 取何值,x ,y 不可能互为相反数;③x ,y 都为自然数的解有4对;④若2x +y =8,则a =3,其中不正确的有( )A .1个B .2个C .3个D .4个【分析】①根据消元法解二元一次方程组,然后将解代入方程x +y =2a ﹣1即可求解;②根据消元法解二元一次方程组,用含有字母的式子表示x 、y ,再根据互为相反数的两个数相加为0即可求解; ③根据试值法求二元一次方程x +y =3的自然数解即可得结论;④根据整体代入的方法即可求解.【解答】解:①将a =1代入原方程组,得{x +2y =3x −y =3解得{x =3y =0 将x =3,y =0,a =1代入方程x +y =2a ﹣1的左右两边,左边=3,右边=1,当a =1时,方程组的解不是是x +y =2a ﹣1的解;②解原方程组,得{x =2a +1y =2−2a∴x +y =3,无论a 取何值,x ,y 的值不可能是互为相反数;③∵x +y =2a +1+2﹣2a =3∴x 、y 为自然数的解有{x =0y =3,{x =1y =2,{x =2y =1,{x =3y =0. ④∵2x +y =8,∴2(2a +1)+2﹣2a =8,解得a =2.综上所述:②③正确,故选:B .10.(2022春•武城县期末)若方程组{2x +3y =1m −x +(m +1)y =4的解中x 与y 互为相反数,则m 的值为( ) A .1 B .2 C .3 D .4【分析】先解二元一次方程组求出x 、y 的值,再把x 、y 的值代入方程m ﹣x +(m +1)y =4,最后求出m 的值.【解答】解:∵方程组{2x +3y =1m −x +(m +1)y =4的解中x 与y 互为相反数, ∴{2x +3y =1①x +y =0②. 解这个方程组,得{x =−1y =1. 把{x =−1y =1代入方程m ﹣x +(m +1)y =4, 得m +1+(m +1)×1=4.解这个方程,得m =1.故选:A .二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2022春•禹州市期末)若关于x ,y 的方程组{ax +y =2x −by =3的解是{x =2y =−1,则2a ﹣b 的值是 2 . 【分析】先把方程的解代入方程组,整理后代入2a ﹣b 得结论.【解答】解:把{x =2y =−1代入方程组{ax +y =2x −by =3,得{2a −1=22−(−1)b =3. 整理,得{2a =3①b =1②, ∴①﹣②,得2a ﹣b =3﹣1=2.故答案为:2.12.(2022春•普陀区校级月考)写出一个解是{x =3y =6的二元一次方程组 {x +y =9x −y =−3. 【分析】利用二元一次方程组解的意义解答即可.【解答】解:∵{x =3y =6, ∴x +y =9,x ﹣y =﹣3.∴解为{x =3y =6的二元一次方程组为:{x +y =9x −y =−3(答案不唯一). 故答案为:{x +y =9x −y =−3. 13.(2021秋•天府新区期末)若关于x ,y 的二元一次方程组{x +y =3k x −y =k的解也是二元一次方程x +2y =1的解,则k 的值为 14 .【分析】首先把方程组解出,用k 表示x 、y ,再把x 、y 的值代入二元一次方程求出k .【解答】解:{x +y =3k①x −y =k②, ①+②得2x =4k ,解得x =2k ,把x =2k ,代入②得y =k ,把x =2k ,y =k ,代入x +2y =1,得2k +2k =1,解得k =14,故答案为:14. 14.(2022春•武江区校级期末)已知关于x ,y 的方程组{x +2y =10ax +by =1与方程组{bx +ay =62x −y =5有相同的解,则a = ﹣2 ,b = 3 .【分析】依据题意重新组成方程组求得x ,y 的值,再将x ,y 值代入得到关于a ,b 的方程组,解方程组即可得出结论.【解答】解:∵关于x ,y 的方程组{x +2y =10ax +by =1与方程组{bx +ay =62x −y =5有相同的解, ∴{x +2y =102x −y =5, 解得:{x =4y =3. ∴{4a +3b =14b +3a =6,解得:{a =−2b =3. 故答案为:﹣2;3.15.(2022春•邗江区期末)小亮解方程组{2x +y =●2x −y =12的解为{x =5y =●,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回●这个数,●= 8 .【分析】把x =5代入方程组求出y 的值,即可确定出所求.【解答】解:设●表示的数为a ,把x =5代入方程组得:{10+y =a 10−y =12, 解得:y =﹣2,则a 这个数为10﹣2=8.故答案为:8.16.(2022春•昌平区期中)已知{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =3y =4,则方程组{3a 1(x −1)+4b 1(y +3)=c 13a 2(x −1)+4b 2(y +3)=c 2的解是 {x =2y =−2. 【分析】根据二元一次方程组的解,即可解答.【解答】解:将{x =3y =4代入{a 1x +b 1y =c 1a 2x +b 2y =c 2得:{3a 1+4b 1=c 13a 2+4b 2=c 2, 将{3a 1+4b 1=c 13a 2+4b 2=c 2代入方程组{3a 1(x −1)+4b 1(y +3)=c 13a 2(x −1)+4b 2(y +3)=c 2得: {x −1=1y +3=1解得:{x =2y =−2, 故答案为:{x =2y =−2. 三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•杜尔伯特县期中)解方程组.(1){2x +y =3x +2y =−6; (2){x +5y =43x −6y =5; (3){2x +5y =53x −5y =10; (4){3x +2y =52x +5y =7. 【分析】(1)(2)(3)(4)利用加减消元法或代入消元法解二元一次方程组即可.【解答】解:(1)①×2﹣②,得3x =12,解得x =4,把x =4代入①,得8+y =3,解得y =﹣5,∴方程组的解为{x =4y =−5; (2)①×3﹣②,得21y =7,解得y =13,把y =13代入①,得x +5×13=4,解得x =73,∴方程组的解为{x =73y =13; (3){2x +5y =5①3x −5y =10②, ①+②,得5x =15,解得x =3,把x =3代入①,得6+5y =5,解得y =−15,∴方程组的解为{x =3y =−15; (4){3x +2y =5①2x +5y =7②, ①+2﹣②×3,得﹣11y =﹣11,解得y =1,把y =1代入①,得3x +2=5,∴x =1,∴方程组的解为{x =1y =1. 18.(2022秋•浑南区校级月考)解方程组:(1){x +y =25x −3(x +y)=4; (2){x+13−y+24=0x−34−y−33=112; (3){2x+y 2=5x−3y 415%x +25%y =40×20%;(4){0.2x +0.5y =0.20.4x +0.1y =0.4; (5)3x+2y 4=2x+y+25=−x+5y 3.【分析】(1)先将原方程组进行化简整理,再利用加减消元法进行计算即可解答;(2)先将原方程组进行化简整理,再利用加减消元法进行计算即可解答;(3)先将原方程组进行化简整理,再利用加减消元法进行计算即可解答;(4)先将原方程组进行化简整理,再利用加减消元法进行计算即可解答;(5)由题意得:{3x+2y 4=2x+y+252x+y+25=−x+5y 3,再进行化简整理,然后利用加减消元法进行计算即可解答. 【解答】解:(1)将原方程组化简整理得:{x +y =2①2x −3y =4②, ①×2得:2x +2y =4③,③﹣②得:5y =0,解得:y =0,把y =0代入①中,x +0=2,解得:x =2,∴原方程组的解为:{x =2y =0; (2)将原方程组化简整理得:{4x −3y =2①3x −4y =−2②, ①×3得:12x ﹣9y =6③,②×4得:12x ﹣16y =﹣8④,③﹣④得:7y =14,解得:y =2,把y =2代入①得:4x ﹣6=2,解得:x =2,∴原方程组的解为:{x =2y =2; (3)将原方程组化简整理得:{x −5y =0①3x +5y =160②, ①+②得:4x =160,解得:x =40,把x =40代入①中,40﹣5y =0,解得:y =8,∴原方程组的解为:{x =40y =8; (4)将原方程组化简整理得:{2x +5y =2①4x +y =4②, ①×2得:4x +10y =4③,③﹣②得:9y =0,解得:y =0,把y =0代入①中,2x +0=2,解得:x =1,∴原方程组的解为:{x =1y =0; (5)由题意得:{3x+2y 4=2x+y+252x+y+25=−x+5y 3, 化简整理得:{7x +6y =8①11x +28y =−6②, ①×14得:98x +84y =112③,②×3得:33x +84y =﹣18④,③﹣④得:65x =130,解得:x =2,把x =2代入①中,14+6y =8,解得:y =﹣1,∴原方程组的解为:{x =2y =−1. 19.(2022•阳谷县三模)已知方程组{2x +15y −3=03x −2y +20=0的解也是关于x 、y 的方程ax +y =4的一个解,求a 的值. 【分析】先解方程组求得x ,y 值,再将x ,y 值代入方程ax +y =4,解方程可求解a 值.【解答】解:解方程组{2x +15y −3=03x −2y +20=0的解为{x =−6y =1, ∵方程组{2x +15y −3=03x −2y +20=0的解也是关于x 、y 的方程ax +y =4的一个解, ∴﹣6a +1=4,解得a =−12.20.(2022春•大安市期末)在解方程组{ax +5y =104x −by =−4时,由于粗心,甲看错了方程组中的a ,得到的解为{x =−3y =−1,乙看错了方程组中的b ,得到的解为{x =5y =4. (1)求正确的a ,b 的值;(2)求原方程组的解.【分析】(1)把甲的结果代入第二个方程求出b 的值,把乙的结果代入第一个方程求出a 的值即可;(2)将a 与b 的值代入方程组,求出解即可.【解答】解:(1)由题意得:{−12+b =−45a +20=10, 解得:{a =−2b =8; (2)把{a =−2b =8代入方程组得:{−2x +5y =10x −2y =−1, 解得:{x =15y =8. 21.(2022春•东平县期中)已知方程组{2x +y =−2ax −by =−8和方程组{bx +ay =−63x −y =12的解相同,求2(a +b )2014的值. 【分析】根据方程组的解相同,可得新方程组,根据解方程组,可得方程组的解,根据方程组的解满足方程,把解代入,可得关于a 、b 的方程组,根据解方程组,可得a 、b 的值,根据乘方,可得幂.【解答】解;方程组{2x +y =−2ax −by =−8和方程组{bx +ay =−63x −y =12的解相同, 可得{2x +y =−2①3x −y =12②{ax −by =−8③bx +ay =−6(4), 解第一个方程组得{x =2y =−6, 把{x =2y =−6代入第二个方程组得{2a +6b =−82b −6a =−6, 解得{a =12b =−322(a +b )2014=2(12−32)2014 =2.22.(2021春•天心区校级月考)关于x ,y 的二元一次方程组ax +by =c (a ,b ,c 是常数),b =a +1,c =b +1.(1)当{x =3y =1时,求c 的值; (2)若a 是正整数,求证:仅当a =1时,该方程有正整数解.【分析】(1)将x ,y 值代入方程,得到关于a ,b ,c 的方程求解.(2)先表示方程的解,再确定a .【解答】解:(1){x =3y =1代入方程得:3a +b =c , ∵b =a +1,c =b +1,∴b =c ﹣1,a =c ﹣2,∴3c ﹣6+c ﹣1=c .∴c =73.(2)证明:由题意,得ax +(a +1)y =a +2,整理得,a (x +y ﹣1)=2﹣y ①,∵x 、y 均为正整数,∴x +y ﹣1是正整数,∵a 是正整数,∴2﹣y 是正整数,∴y =1,把y =1代入①得,ax =1,∴a =1,此时,a =1,b =2,c =3,方程的正整数解是{x =1y =1. ∴仅当a =1时,该方程有正整数解.23.(2022春•兴化市月考)对于有理数x ,y ,定义新运算:x &y =ax +by ,x ⊗y =ax ﹣by ,其中a ,b 是常数.已知1&1=1,3⊗2=8.(1)求a ,b 的值;(2)若关于x ,y 的方程组{x&y =4−m x ⊗y =5m的解也满足方程x +y =5,求m 的值; (3)若关于x ,y 的方程组{a 1x&b 1y =c 1a 2x ⊗b 2y =c 2的解为{x =4y =5,求关于x ,y 的方程组{3a 1(x +y)&4b 1(x −y)=5c 13a 2(x +y)⊗4b 2(x −y)=5c 2的解.【分析】(1)根据定义新运算得出关于a 、b 的二元一次方程组,再解方程组即可;(2)根据题意得出关于x 、y 的二元一次方程组,求出方程组的解,再代入方程x +y =3求解即可;(3)根据定义新运算得出相关方程组,根据方程组的解的定义,利用整体代入的方法解答即可.【解答】解:(1)由题意得{a +b =13a −2b =8,解得{a =2b =−1; (2)依题意得{2x −y =4−m 2x +5=5m,解得{x =m +1y =3m −2, ∵x +y =5,∴m +1+3m ﹣2=5,解得m =32;(3)由题意得{2a 1+b 1y =c 12a 2+b 2y =c 2的解为{x =4y =5,, 由方程组{3a 1(x +y)&4b 1(x −y)=5c 13a 2(x +y)⊗4b 2(x −y)=5c 2得{6a 1(x +y)−4b 1(x −y)=5c 16a 2(x +y)+4b 2(x −y)=5c 2,整理,得{2a 1⋅35(x +y)−b 2⋅45(x −y)=c 12a 2⋅35(x +y)+b 2⋅45(x −y)=c 2, 即{35(x +y)=445(x −y)=5, 解得{x =15524y =524.。

二元一次方程组的应用12大类型大题专练-2022-2023学年七年级数学下学期复习备考高分秘籍人教版

二元一次方程组的应用12大类型大题专练-2022-2023学年七年级数学下学期复习备考高分秘籍人教版

2022-2023学年七年级数学下学期复习备考高分秘籍【人教版】专题2.10二元一次方程组的应用12大类型大题专练(培优强化48道)类型一、和差倍分问题,从乙库运出存粮的40%,那么乙库所余粮食是甲库1.若甲、乙两库共存粮95吨,现从甲库运出存粮的23的2倍,问甲、乙两库原来各有多少吨粮食?2.近年来,妇女权益得到有力保障,参加养老保险(即城镇职工养老保险和城乡居民养老保险)的妇女人数越来越多,2022年某地区参加养老保险的妇女共有165万人,比2010年增加120万人,其中参加城镇职工养老保险和城乡居民养老保险的人数分别是2010年的1.5倍和8倍,分别求2022年参加城镇职工养老保险和城乡居民养老保险的妇女人数.3.学校为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶.购买2个大垃圾桶和4个小垃圾桶共需600元;购买6个大垃圾桶和8个小垃圾桶共需1560元.求大、小两种垃圾桶的单价.4.疫情防控常态化后,核酸检测进入校园.某校一次核酸检测时,发现操场上恰有100个同学排成甲、乙两队,且甲队人数是乙队的2倍多7人,求甲、乙两队的学生数.类型二、分配问题5.小明在某商店购买商品A,共三次,只有其中一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A,B的数量和费用如表所示:购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物651140第二次购物371110第三次购物981062(1)在这三次购物中,第次购物打了折扣;(2)求出商品A、B的标价;6.张氏包装厂承接了一批纸盒加工任务,用如图①所示的长方形和正方形纸板作侧面和底面,做成如图②所示的竖式与横式两种上面无盖的长方体纸盒(加工时接缝材料不计).(1)做1个竖式纸盒和2个横式纸盒,需正方形纸板___________张(直接填空),需长方形纸板___________张(直接填空).(2)若该厂购进正方形纸板162张,长方形纸板338张,问竖式纸盒、横式纸盒各加工多少个,恰好能将购进的纸板全部用完?(要求列二元一次方程组解决此问题)7.某工厂车间采用智能数字机床生产纸杯和杯盖,已知一台机床每小时平均可以生产纸杯600个或者生产杯盖800个,车间共有14台机床,应怎样分配机床,才能使每小时生产的杯身和杯盖正好配套?8.某蔬菜基地第一次向甲地运输124吨蔬菜,恰好装满5辆大货车和2辆小货车;第二次向甲地运输180吨蔬菜,恰好装满6辆大货车和5辆小货车.(1)装满2辆大货车和3辆小货车能运输多少吨蔬菜?(2)第三次安排大、小货车共12辆向甲地运输208吨蔬菜,若要使得每辆车都装满,则大货车和小货车分别需要多少辆?类型三、行程问题9.某人从吉林驱车赶往长春共用2小时,吉林至长春全程为120km,全程分为公路和市区道路两部分,在公路上行驶的平均速度为80km/h,在市区道路上行驶的平均速度为40km/h.根据题意,甲、乙两名同学分别列出的方程组一部分如下:甲:{x+y=120x80+y40=□乙:{80x+40y==(1)请你在方框中补全甲、乙两名同学所列的方程组;(2)求这个人在公路上驱车行驶的时间.10.已知A,B两地相距120千米,甲、乙两车分别从A,B两地同时出发,相向而行,其终点分别为B,A 两地.两车均先以a千米每小时的速度行驶,再以b千米每小时的速度行驶,且甲车以两种速度行驶的路程相等,乙车以两种速度行驶的时间相等.(1)若b=32a,且甲车行驶的总时间为54小时,求a和b的值;(2)若b−a=30,且乙车行驶的总时间为85小时.①求a和b的值;②求两车相遇时,离A地多少千米.11.A、B两地相距4千米,甲从A地出发步行到B地,乙从B地出发骑自行车到A地,两人同时出发,30分钟后两人相遇,又经过10分钟,甲剩余路程为乙剩余路程的3倍.(1)求甲、乙每小时各行多少千米?(2)在他们出发后多长时间两人相距1千米?12.小红家离学校1400米.其中有一段为上坡路,另一段为下坡路.她跑步去学校共用10分钟,已知小红在上坡路上的平均速度是4.8千米/时,而她在下坡路上的平均速度是12千米/时,小红上坡、下坡各用多少时间?类型四、工程问题13.玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元,玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)设甲公司的每周工作效率为m,乙公司每周的工作效率为n,则可列出方程为.(2)如果从节约时间的角度考虑应选哪家公司?(3)如果从节的开支的角度考虑呢?请说明理由.14.甲、乙、丙三人完成一项工程,其中甲的工作效率是乙和丙工作效率之和的13,乙的工作效率是甲和丙工作效率之和的14、已知甲、乙合作完成这项工作需要8天,则甲、丙合作完成这项工作需要多少天?15.某建筑公司有A、B两个工程队,先后接力完成河边道路整治任务,A工程队每天整治15米,B工程队每天整治10米,共用时25天.(1)若这段河边道路长为300米,根据题意甲、乙两个同学分别列出了尚不完整的方程组如下:甲:{x+y=15x+=乙:{x+y=x15+y10=根据甲、乙两名同学所列的方程组,请你在下列选项中选出未知数x,y表示的意义,A.A的工作天数B.B的工作天数C.A的工作量D.B的工作量E.A的工作效率F.B的工作效率甲:x表示______,y表示______;乙:x表示______,y表示______;(2)在(1)的条件下,求A、B两工程队分别整治河道多少米?(3)若A工程队工作一天的费用是0.6万元,B工程队工作一天的费用是0.8万元,要使总费用不超过18万元,A工程队至少工作多少天?16.目前,近几年来,新能源汽车在中国已然成为汽车工业发展的主流趋势,某汽车制造厂开发了一款新式电动汽车,计划一年生产安装288辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:2名熟练工和1名新工人每月可安装10辆电动汽车;3名熟练工和2名新工人每月可安装16辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂抽调n(0<n<5)名熟练工,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?类型五、销售问题17.列方程组解应用题:为了丰富学生的课外体育活动,八年级2班需要购买排球和跳绳,根据下列对话,求出肖雨所购买的排球和跳绳的单价.18.儿童节来临之际,重庆沁园食品有限公司推出了“纯享七星伴月糕点”礼盒,由一个香草冰淇淋口味的明月月饼和七款明星小饼干组成,明月月饼口味不可选择,但明星小饼干的口味可以自由搭配.(1)现有A、B两种礼盒的“纯享七星伴月糕点”,五月份礼盒上市,经经销商初步定价,买6个A礼盒的钱刚好可以购买5个B礼盒;购买3个A礼盒的花费比购买2个B礼盒多210元.求A、B两种礼盒的售价.(2)在第一问的基础上,六月份,该经销商将两种礼盒的月饼进行促销:A礼盒每盒售价打九折销售,B礼盒,B礼盒全部售卖完,但卖出去的B礼盒的每盒售价直接降价m元,结果六月份售卖结束,A礼盒还剩余了116数量为A礼盒总数量的15,经销商决定将剩余的A礼盒赠送给自己的员工作为福利;已知每盒A礼盒成本价为32250元,每盒B礼盒的成本价为300元,六月份销售结束,该经销商的利润为20%,求m的值.19.五一节前,某商店拟用1000元的总价购进A、B两种品牌的电风扇进行销售,为更好的销售,每种品牌电风扇都至少购进1台.已知购进3台A种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元.(1)求A、B两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?20.某商场从厂家购进了A、B两种品牌篮球,第一批购买了这两种品牌篮球各40个,共花费了7200元.全部销售完后,商家打算再购进一批这两种品牌的篮球,最终第二批购进50个A品牌篮球和30个B品牌篮球共花费了7400元.两次购进A、B两种篮球进价保持不变.(1)求A、B两种品牌篮球进价各为多少元一个;(2)第二批次篮球在销售过程中,A品牌篮球每个原售价为140元,售出40个后出现滞销,商场决定打折出售剩余的A品牌篮球;B品牌篮球每个按进价加价30%销售,很快全部售出.已知第二批次两种品牌篮球全部售出后共获利2440元,求A品牌篮球打几折出售?类型六、方案问题21.面对当前疫情形势,某工厂迅速反应,研发出两种新型口罩和消毒液.已知1平方米甲型布料可以制成20个A型口罩和10个B型口罩.1平方米乙型布料可以制成10个A型口罩和20个B型口罩,现需要制作1500个A型口罩和1800个B型口罩.为了支援某灾区,现有消毒液19吨.计划同时租用甲型车a辆,乙型车b辆,一次运完,甲型车一次满载2吨,乙型车一次满载3吨,且恰好每辆车都载满消毒液.根据以上信息,解答下列问题:(1)恰好需要甲,乙布料各多少平方米?(2)在运送消毒液时,请你设计所有可能的租车方案.22.某商场计划拨款9万元购进50台电视机.已知厂家生产三种不同型号的电视机,出厂价分别为:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,问有多少种不同的进货方案?并写出这些方案.(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在第(1)小题的几个方案中,为使销售时获得利润最多,你选择哪种方案?并说明理由.23.请根据图中提供的信息,回答下列问题.(1)KN95型口罩与普通医用口罩的单价分别是多少元?(2)甲、乙两家药店同时出售同样的KN95型口罩与普通医用口罩.5月,两家药店开展促销活动.甲药店规定:这两种口罩都打九折.乙药店规定:买一个KN95型口罩赠送一个普通医用口罩.若某家庭想要买20个KN95型口罩和50个普通医用口罩,请问选择哪家药店购买更合算,并说明理由.24.元旦期间,七(1)班明明等同学随家长一同到某景区游玩,该景区门票价格规定如图:(1)明明他们一共12人,分别按成人和学生购票,共需550元,求他们一共去了几个成人,几个学生?(2)购完票后,明明发现,如果购团体票更省钱,正在此时,七(2)班涛涛等8名同学和他们的12名家长共20人也来购票,请你为七(2)班设计出最省钱的购票方案,并求出此时的购票费用.类型七、年龄问题25.根据小头爸爸与大头儿子的对话,求出大头儿子现在的年龄.小头爸爸:儿子,现在我的年龄比你大23岁.大头儿子:5年后,您的年龄比我的年龄的2倍还多8岁.26.今年(2022年)4月20日,是云大附中建校95周年暨云大附中恢复办学40周年校庆日,我校初一年级数学兴趣小组的小明同学发现这样一个有趣的巧合;小明的爸爸和爷爷都是云附的老校友,且爸爸和妹妹的年龄差恰好与爷爷和小明的年龄差的和为95,而爸爸的年龄恰好比爷爷的年龄小40.已知小明今年13岁,妹妹今年4岁.(1)求今年小明的爸爸和爷爷的年龄分别是多少岁?(要求用二元一次方程组解答)(2)假如小明的爸爸和爷爷都是15岁初中华业的,请问小明的爸爸和爷爷分别是哪一年毕业的云附学子?27.已知甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,求甲、乙现在的年龄的差.28.10年前,小明妈妈的年龄是小明的6倍;10年后,小明妈妈的年龄将是小明的2倍.小明和他妈妈现在的年龄分别是多少?类型八、数字问题29.我们知道:如果mx+n=0,其中m,n为有理数,x为无理数,那么m=0且n=0.(1)如果(a−3)√2+b+2=0,其中a,b为有理数,那么a=_______,b=________.(2)若x,y均为有理数,并且满足x2+2y+√2y=17−4√2,求x−2y的值.30.小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数,小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”那么,你能回答以下问题吗?(1)他们取出的两张卡片上的数字分别是几?(2)第一次,他们拼出的两位数是多少?(3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!31.有一个三位数,现将最左边的数字移到最右边,得到的数比原来的数小45,又已知百位数字的9倍比由十位数字和个位数字组成的两位数小3,求原来的三位数.32.有一个两位数,个位上的数比十位上的数的3倍多2,若把个位数与十位数对调,所得新的两位数比原来的两位数的3倍少2,求原来的两位数.类型九、几何问题33.如图,用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的面积是多少平方厘米?34.小明在拼图时发现8个一样大小的长方形恰好可以拼成一个大的长方形如图(1),小红看见了说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为1mm 的小正方形.请问每个小长方形的面积是多少?35.在长为10m,宽为8m的长方形空地中,沿平行于长方形各边的方向分割出三个全等的小长方形花圃,其示意图如图所示.则小长方形花圃的长和宽分别是多少?36.某居民小区为了改善小区环境,建设和谐家园,准备将一块周长为76米的长方形空地,设计成全等的9块小长方形,如图所示,小长方形的长和宽各是多少米?类型十、图表信息问题37.疫情期间,某人要将一批抗疫物资从海口运往东方,准备租用汽车运输公司的甲乙两种货车、已知过去两次租用这两种货车(均装满货物)的情况如表:甲种货车(辆)乙种资车(辆)总量(吨)第一次4531第二次3630问甲、乙两种货车每辆分别能装货多少吨?38.某山区有23名中、小学生因贫困失学需要资助,已知资助一名中学生的学习费用为a元,资助一名小学生的学习费用为b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好资助贫困中学生和小学生人数的部分情况如下表:年级捐款数额(元)资助贫困中学生人数(名)资助贫困小学生人数(名)初一年400024级初二年420033级初三年7400级(1)求a、b的值;(2)初三年级学生的捐款恰好解决了其余贫困中小学生的学习费用,求初三年级学生的捐款可资助的贫困中、小学生人数分别为多少.39.在下面3×3的方阵图中每行、每列及对角线上的3个数(或代数式)的和都相等.(1)如图1,则m=________,n=________(2)如图2,则a=________(用含b的代数式表示)(3)如图3,则a=________,b=________40.某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,购买4千克的甲食材比购买5千克的乙食材多花60元.营养品信息表营养成分每千克含铁42毫克配料表原料每千克含铁甲食材50毫克乙食材10毫克(1)甲、乙两种食材每千克的进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完,那么该公司每日购进甲、乙两种食材各多少千克?类型十一、古代数学问题41.《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问兽、禽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?42.我国古代数学名著《九章算术》是人类科学史上应用数学的“算经之首”,上面记载有这样一个问题:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?请你解答这个问题.43.《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,…”问:1个大桶和1个小桶分别盛酒多少斛?44.我国古代数学著作《九章算术》中记载有这样一个问题:“今有甲、乙二人,持钱不知其数.甲得乙半而钱五十,乙得甲大半而钱亦五十.问甲、乙持钱各几何?”题目大意是:今有甲、乙二人,各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的2,那么乙也共有钱50,问甲、乙二3人各带了多少钱?(1)求甲、乙两人各带的钱数;(2)若小明、小颖去文具店购买作业本,两人带的钱数(单位:元)恰好等于甲、乙两人各带的钱数,已知作业本的单价为2.5元/本.由于开学之际,文具店搞促销活动,凡消费50元可以打八折,那么他们合起来购买可以比单独购买多多少本作业本?类型十二、开放性问题45.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a 阶派生点”(其中a为常数,且a≠0).例如:点P(1,4)的“2阶派生点”为点Q(2×1+4,1+2×4),即点Q (6,9).(1)若点P的坐标为(﹣1,5),则它的“3阶派生点”的坐标为;(2)若点P的“5阶派生点”的坐标为(﹣9,3),求点P的坐标;(3)若点P(c+1,2c﹣1)先向左平移2个单位长度,再向上平移1个单位长度后得到了点P1.点P1的“﹣4阶派生点”P2位于坐标轴上,求点P2的坐标.46.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m根小木棍摆出了p个小正方形,请你用等式表示m,p之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s排,共t个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示s,t之间的关系,并写出所有s,t可能的取值.47.青山化工厂与A、B两地有公路、铁路相连这家工厂从A地购买一批每吨1000元的原料经铁路120km 和公路10km运回工厂,制成每吨8000元的产品经铁路110km和公路20km销售到B地,已知铁路的运价为1.2元/(吨·千米),公路的运价为1.5元/(吨·千米),且这两次运输共支出铁路运124800元,公路运费19500元.(1)设原料重x吨,产品重y吨,根据题中数量关系填写下表(表格内填化简的结果).原料x吨产品y吨合计(元)铁路运费公路运费根据上表列方程组求原料和产品的重量.(2)这批产品的销售款比原料费与运输费的和多多少元?48.某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)。

浙教版2022-2023学年七下数学第二章 二元一次方程组 能力提升测试卷(解析版)

浙教版2022-2023学年七下数学第二章 二元一次方程组 能力提升测试卷(解析版)

浙教版2022-2023学年七下数学第二章 二元一次方程组 能力提升测试卷(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列属于二元一次方程组的是( ) A .{x +y =11x +1y =3B .{x +y =5y +z =7C .{x =13x −2y =6D .{x −y =xy x −y =1 【答案】C【解析】A 、是分式方程组,故A 不符合题意;B 、是三元一次方程组,故B 不符合题意;C 、是二元一次方程组,故C 符合题意;D 、是二元二次方程组,故D 不符合题意;故答案为:C.2.用加减消元法解二元一次方程组{x −y =7①2x −3y =2②时,下列能消元的是( ) A .①×2+② B .①×3+②C .①×2-②D .①×(-3)-②【答案】C【解析】对于二元一次方程组{x −y =7①2x −3y =2②, ①×2+②,得4x −5y =16,故A 选项不能消元,不合题意; ①×3+②,得5x −6y =23,故B 选项不能消元,不合题意; ①×2-②,得y =12,故C 选项能消元,符合题意; ①×(-3)-②,得−5x +6y =−23,故D 选项不能消元,不合题意;故答案为:C .3.已知实数x ,y ,z 满足{x +y +z =74x +y −2z =2,则代数式3(x ﹣z)+1的值是( ) A .﹣2 B .﹣4 C .﹣5 D .﹣6【答案】B【解析】方程组{x +y +z =7①4x +y −2z =2②, ②﹣①得:3x ﹣3z =﹣5,整理得:3(x ﹣z)=﹣5,把3(x ﹣z)=﹣5代入代数式3(x ﹣z)+1得:﹣5+1=﹣4,即代数式3(x ﹣z)+1的值是﹣4,故答案为:B .4.已知 {x =2y =1 是方程组 {ax +by =5bx +ay =−2的解,则a+b 的值是( ) A .-1 B .1 C .2 D .3【答案】B【解析】把 {x =2y =1 代入方程组 {ax +by =5bx +ay =−2, 得 {2a +b =5①2b +a =−2②, ①+②得 3a +3b =3 ,∴a +b =1 ,故答案为:B.5.如图,直线 a//b ,∠1 的度数比 ∠2 的度数大 50° ,若设 ∠1=x°,∠2=y° ,则可得到的方程组为( )A .{x =y −50x +y =180B .{x =y +50x +y =180C .{x =y −50x +y =90D .{x =y +50x +y =90【答案】B【解析】∵a//b ,∠1=x°,∠2=y° ,∴x°+y°=180° ,即 x +y =180 ,∵∠1 的度数比 ∠2 的度数大 50° ,∴x°=y°+50° ,即 x =y +50 , 则可列方程组为 {x =y +50x +y =180, 故答案为:B.6.某班分组活动,若每组 6 人,则余下 5 人:若每组 7 人,则少 4 人.设总人数为 x ,组数为 y ,则可列方程组( ) A .{6x +5=y 7x −4=y B .{6y =x +57y −4=x C .{6y =x −57y +4=x D .{6y =x −57y =x +4【答案】D【解析】每组6人得到的关系式为6y=x-5;每组7人得到的关系式为7y=x+4.可列方程组为:{6y =x −57y =x +4; 故答案为:D.7.如图,将长方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大18°.设∠BAE 和∠BAD 的度数分别为x ,y ,那么x ,y 所适合的一个方程组是( )A .{y −x =18y +x =90B .{y −x =18y +2x =90C .{y −x =18y =2xD .{x −y =18y +2x =90【答案】B【解析】设∠BAE 和∠BAD 的度数分别为x°和y°,依题意可列方程组: {y −x =18y +2x =90故答案为:B .8.已知 {4x −5y +2z =0x +4y −3z =0(xyz≠0),则x :y :z 的值为( ) A .1:2:3 B .3:2:1 C .2:1:3D .不能确定【答案】A【解析】{4x −5y +2z =0①x +4y −3z =0②, ①-②×4得-5y-16y+2z+12z=0, 解得y= 23 z , 把y= 23 z 代入②得x+ 83 z-3z=0,解得x= 13 z , 所以x :y :z= 13 z : 23 z :z=1:2:3. 故答案为:A .9.关于x ,y 的方程组 {2ax +3y =18−x +5by =17 (其中a ,b 是常数)的解为 {x =3y =4 ,则方程组 {2a(x +y)+3(x −y)=18(x +y)−5b(x −y)=−17 的解为( ) A .{x =3y =4 B .{x =7y =−1 C .{x =3.5y =−0.5 D .{x =3.5y =0.5【答案】C【解析】由题意知: {x +y =3①x −y =4② ,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 {x =3.5y =−0.5. 故答案为:C .10.将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图所示.则桌子的高度 ℎ= ( )A .70B .55C .40D .30【答案】A【解析】设长方形的长为xcm ,宽为ycm ,则有 {80+y =ℎ+x ℎ+y =60+x ①②, ①−② ,得80−ℎ=ℎ−60 ,解得, ℎ=70 ,故答案为:A .二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.已知{x =2y =3是二元一次方程2x −ky =−5的一个解,那么k 的值是. 【答案】3【解析】由题意知,将{x =2y =3代入2x −ky =−5得,2×2−3k =−5,解得k =3,故答案为:3 .12.已知x ,y 满足方程组{x +2y =−22x +y =3,则x −y 的值为 . 【答案】5【解析】{x +2y =−2①2x +y =3②, 由②-①,得:x −y =5,∴x −y =5.故答案为:513.已知m 为整数,方程组 {4x −3y =66x +my =26有正整数解,则m= . 【答案】-4或4【解析】∵{4x −3y =66x +my =26 , 解得, {x =3m+392m+9y =342m+9 , ∵方程组有正整数解,m 为整数,∴m = -4或4,故答案为:-4或4.14.七年级(二)班选出部分同学参加夏令营,分成红、蓝两队,红队戴红帽子,蓝队戴蓝帽子.一个红队队员说,我看见的是红队人数与蓝队人数相等;一个蓝队队员说,我看见的是红队人数是蓝队人数的2倍.则这个班参加夏令营的总人数是 人.【答案】7【解析】设红队队员有x 人,蓝队队员有y 人根据题意可得 {x −1=y x =2(y −1) 解得: {x =4y =3∴这个班参加夏令营的总人数是4+3=7(人)故答案为:7.15.某学校的劳动实践基地有一块长为20m 、宽为16m 的长方形空地,学校准备在这块空地上沿平行于长方形各边的方向割出三个完全相同小长方形菜地分别种上辣椒、茄子、土豆,其示意图如图所示,则每个小长方形菜地的面积是 m 2.【答案】32【解析】∵三个小长方形完全相同,设长为x ,宽为y ,根据题意:{2x +y =202y +x =16, 解方程组得:x =8,y =4,∴小长方形的面积为S =8×4=32m 2.故答案为:32.16.若关于x ,y 的方程组 {3x −ay =162x +by =15 的解是 {x =7y =1 ,则方程组 {3(x −2y)−ay =162(x −2y)+by =15的解是 .【答案】{x =9y =1【解析】∵{x =7y =1 是方程组 {3x −ay =162x +by =15 的解 ∴{21−a =1614+b =15 ∴a=5,b=1将a=5,b=1代入 {3(x −2y)−ay =162(x −2y)+by =15得 {3x −11y =16①2x −3y =15②①×2,得6x-22y=32③ ②×3,得6x-9y=45④ ④-③,得13y=13解得y=1将y=1代入①,得3x=27解得x=9∴方程组的解为 {x =9y =1故答案为: {x =9y =1三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.解方程组: (1){3x −y =135x +2y =7 (2){x 3+1=y 2(x +1)−y =6【答案】(1)解:{3x −y =13①5x +2y =7②, ①×2+②,得11x=33, ∴x=3,把x=3代入①,得y=-4,∴{x =3y =−4;(2)解:变形,得{x −3y =−3①2x −y =4②, ①×2-②,得-5y=-10, ∴y=2,把y=2代入①,得x=3,∴{x =3y =2.18.在关于x ,y 的二元一次方程组 {3x +5y =m +22x +3y =m中, (1)求出消去m 后得到的关于x ,y 的二元一次方程.(2)若x 与y 的和等于2,求出m 的值.【答案】(1)解:{3x +5y =m +2,①2x +3y =m ,②, 由①-②得:x-2y=2;(2)解:∵x+y=2,∴{x −2y =2x +y =2, 整理,解得:{x =2y =0,将{x =2y =0代入二元一次方程2x+3y=m 中, 解得:m=4.19.已知关于x ,y 的方程组{x −y =11−m①x +y =7−3m②(1)当3x +y =14−6m 时,求m 的值;(2)若x 为非负数,y 为负数,求m 的取值范围.【答案】(1)解:②×2+①得:3x +y =25−7m ,当3x +y =14−6m 时,即25−7m =14−6m ,解得:m =11.(2)解:{x −y =11−m①x +y =7−3m②, ①+②得:2x =18−4m ,即x =9−2m ,把x =9−2m 代入①得,y =−2−m ,∴原方程组的解为:{x =9−2m y =−2−m ,由x 为非负数,y 为负数,可得:{x =9−2m ≥0y =−2−m <0,即x =9−2m ≥0,解得m ≤92, 即y =−2−m <0,解得m >−2,∴−2<m ≤92. 20.我们定义:若整式M 与N 满足M +N =k (k 为整数)则称M 与N 为关于的平衡整式.例如,若2x +3y =4,我们称2x 与3y 为关于4的平衡整式.(1)若2a −5与4a +9为关于1的平衡整式,求a 的值;(2)若2x −9与y 为关于2的平衡整式,3x 与4y +1为关于5的平衡整式,求x +y 的值.【答案】(1)解:由题意得:2a −5+4a +9=1,解得:a =−12; (2)解:由题意得:{2x −9+y =2①3x +4y +1=5②, ① +②得:5x +5y =15,∴x +y =3.【解析】【分析】(1)根据题意求出 2a −5+4a +9=1, 再求解即可;(2)先求出 {2x −9+y =2①3x +4y +1=5②, 再利用加减消元法计算求解即可。

中考数学总复习《二元一次方程组》专项提升训练(带有答案)

中考数学总复习《二元一次方程组》专项提升训练(带有答案)

中考数学总复习《二元一次方程组》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程中,是二元一次方程的是( )A.3x +2y =4B.12xy =5C.12x 2﹣14y =3 D.8x ﹣2x =1 2.下列方程组中是二元一次方程组的是( )A. B. C. D.3.下面说法正确的是( )A.二元一次方程的解是唯一的B.二元一次方程有无数个解.C.二元一次方程中有一个未知数.D.二元一次方程中的二元是指未知数的项的次数为二次.4.二元一次方程x -2y=1有无数个解,下列4组值中不是该方程解的是( )A. B. C. D.5.二元一次方程组⎩⎨⎧x +y =5,2x -y =4的解为( ) A.⎩⎨⎧x =1y =4 B.⎩⎨⎧x =2y =3 C.⎩⎨⎧x =3y =2 D.⎩⎨⎧x =4y =16.20名同学在植树节这天共种了84棵树苗,其中男生每人种5棵,女生每人种3棵.设男生有x 人,女生有y 人.根据题意,列方程组正确的是( )A. B. C. D.7.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”设鸡有x 只,兔有y 只,则根据题意,下列方程组中正确的是( )A. B. C.D.8.为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机,已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元,则购买一块电子白板和一台投影机分别需要( )A.4000元,8000元B.8000元,4000元C.14000元,8000元D.10000元,12000元9.若方程组的解满足x-y=1,则a的取值是( )A.-1B.-2C.2D.a不能确定10.对于数对(a,b)、(c,d),定义:当且仅当a=c且b=d时,(a,b)=(c,d);并定义其运算如下:(a,b)※(c,d)=(ac﹣bd,ad+bc),如(1,2)※(3,4)=(1×3﹣2×4,1×4+2×3)=(﹣5,10).若(x,y)※(1,﹣1)=(1,3),则x y的值是( )A.﹣1B.0C.1D.2二、填空题11.写出2x﹣3y=0的一组整数解.12.在二元一次方程x+4y=13中,当x=5时,y= .13.已知是关于x,y的方程mx﹣ny=15的一个解,则7﹣(m﹣2n)=.14.如果方程组的解x与y相等,则k= .15.已知一个两位数,它的十位上的数字与个位上的数字的和为12,若对调个位与十位上的数字,得到的新数比原数小18.设原数的个位数字为x,十位数字为y,可列方程组为.16.某公司向银行申请了甲、乙两种贷款,共计68万元,每年需付出8.42万元利息。

初二-第12讲-二元一次方程组的应用(提高)-教案

初二-第12讲-二元一次方程组的应用(提高)-教案

学科教师辅导讲义学员编号:年级:八年级(上) 课时数:3学员姓名:辅导科目:数学学科教师:授课主题第12讲-二元一次方程组的应用授课类型T同步课堂P实战演练S归纳总结教学目标①学会列二元一次方程组解应用题;②掌握常见的几种实际问题的解法;③掌握二元一次方程组与一次函数的关系。

授课日期及时段T(Textbook-Based)——同步课堂一、知识梳理1、二元一次方程与一次函数(1)二元一次方程与一次函数的关系;(2)用二元一次方程组确定一次函数的表达式。

2、列二元一次方程组解决实际问题的一般步骤:(1)明确题意和题目中的数量关系,用字母表示题目中的两个未知数;(2)找出表示应用题全部含义的两个等量关系;(3)根据找出的两个等量关系列出所需要的代数式,从而列出方程组;(4)解方程组;体系搭建(5)检验所得的解是不是方程组的解,并检验其是否符合题意,不符合的要舍去;(6)写出答案,包括单位名称。

3、常见的列方程解决实际问题的类型题:(1)鸡兔同笼问题;(2)增收节支问题;(3)数字与行程问题。

考点一:二元一次方程与一次函数例1、如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A. B.C. D.【解析】根据函数图可知,函数y=ax+b和y=kx的图象交于点P的坐标是(﹣3,1),故的解是,故选C.例2、已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是.【解析】直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),即x=﹣5,y=﹣8满足两个解析式,则是即方程组的解.因此方程组的解是.例3、小明同学在解方程组的过程中,错把b看成了6,其余的解题过程没有出错,解得此方程组的解为,又已知直线y=kx+b过点(3,1),则b的正确值应该是多少?【解析】依题意得:2=﹣k+6,解得:k=4;又∵1=3×4+b,∴b=﹣11.例4、在直角坐标系中,直线l1经过点(1,﹣3)和(3,1),直线l2经过(1,0),且与直线l1交于点A (2,a).(1)求a的值;(2)A(2,a)可看成怎样的二元一次方程组的解?(3)设直线l1与y轴交于点B,直线l2与y轴交于点C,求△ABC的面积.【解析】(1)设直线l1的解析式为y=kx+b,把(1,﹣3)和(3,1)代入,得,解得:,则直线l1的解析式为:y=2x﹣5,把A(2,a)代入y=2x﹣5,得:a=2×2﹣5=﹣1;(2)设l2的解析式为y=mx+n,把A(2,﹣1)、(1,0)代入,得,解得,所以L2的解析式为y=﹣x+1,所以点A(2,a)可以看作是二元一次方程组的解;(3)把x=0代入y=2x﹣5,得y=﹣5,把x=0代入y=﹣x+1,得y=1,∴点B的坐标为(0,﹣5),点C的坐标为(0,1),∴BC=1﹣(﹣5)=6.又∵A点坐标为(2,﹣1),∴S△ABC=×6×2=6.考点二:应用二元一次方程组--鸡兔同笼例1、我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B. C. D.【解析】设有x匹大马,y匹小马,根据题意得,故选C例2、《孙子算经》是中国重要的古代数学著作.书中叙述了算筹记数的纵横相间制度和筹算乘除法则,举例说明筹算分数算法和筹算开平方法.同时,书中还记载了有趣的“鸡兔同笼”问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这句话的意思是:“有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?”设有鸡x只,兔y只,可列方程组为.【解答】解;由题意可得,,故答案为:.例3、根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?【解答】(1)解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得.(2)解:设有x只鸡,y个笼,根据题意得.考点三:应用二元一次方程组—增收节支例1、四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有()A.4种B.11种C.6种D.9种【解析】设6人帐篷用了x个,4人帐篷用了y个,根据题意得:6x+4y=60,即y==,当x=0时,y=15;当x=2时,y=12;当x=4时,y=9;当x=6,y=6;当x=8时,y=3;当x=10时,y=0;则不同的搭建方案有6种.故选:C.例2、一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 5 道题.【解析】设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.例3、某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的.问该兴趣小组男生、女生各有多少人?【解析】设该兴趣小组男生有x人,女生有y人,依题意得:,解得:.答:该兴趣小组男生有12人,女生有21人.考点四:应用二元一次方程组—数字与行程问题例1、一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是()A.86 B.68 C.97 D.73【解析】设这个两位数的十位数字为x,个位数字为y.则,解得.故选D.例2、A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,那么这艘船在静水中的速度和水流速度分别为17 千米/时, 3 千米/时.【解析】设这艘船在静水中的速度和水流速度分别为x千米/小时,y千米/小时,依题意得,∴,答:这艘船在静水中的速度和水流速度分别为17千米/小时,3千米/小时.例3、某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按另外的标准收费,甲说:“我乘出租车走了5千米,付了10元”;乙说:“我乘出租车走了8千米,付了16元”.(1)请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?(2)假如你的身上只有20元,那么你乘出租车不能超过多少千米?【解析】(1)设这种出租车的起步价是x元,超过3千米后,每千米的车费是y元,依题意得:,解这个方程组得.答:这种出租车的起步价是6元,超过3千米后,每千米的车费是2元;(2)设乘出租车不超过z千米,则6+2(z﹣3)≤20,解得z≤10.答:乘出租车不超过10千米.P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B. C. D.【解析】函数y=ax+b和y=kx的图象交于点P(﹣3,1),即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选C.2、为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.【解析】该班男生有x人,女生有y人.根据题意得:,故选:D.3、为紧急安置60名地震中的灾民,需要同时搭建可容纳6人和4人的两种帐篷,正好安置完所有人且不多余,则搭建方案共有()A.3种B.4种C.5种D.6种【解析】设6人的帐篷有x顶,4人的帐篷有y顶,依题意,有:6x+4y=60,整理得y=15﹣1.5x,因为x、y均为非负整数,所以15﹣1.5x≥0,解得0≤x≤10,从0到10的偶数共有5个,所以x的取值共有5种可能,由于需同时搭建两种帐篷,x不能为0(舍去),即共有4种搭建方案.故选:B.4、新学期开始,为让同学们更好地互相帮助,王老师把班级里60名学生分成若干小组,每小组只能是6人或8人,则有()种方案.A.4 B.3 C.2 D.1【解析】设6人一组的有x个,8人一组的有y个,根据题意可得:6x+8y=60,y=,当x=1,则y=(不合题意);当x=2,则y=6;当x=3,则y=(不合题意);当x=4,则y=(不合题意);当x=5,则y=(不合题意);当x=6,则y=3;当x=7,则y=(不合题意);当x=8,则y=(不合题意);当x=9,则y=(不合题意);当x=10,则y=0.故有3种分组方案.故选:B.5、一个两位数的数字之和为11,若把十位数字与个位数字对调,所得的两位数比原来大63,则原来两位数为()A.92 B.38 C.47 D.29【解析】设这个两位数十位为x,个位为y,由题意得,,解得:,则这个两位数为:29.故选:D.6、直线y=kx+3与y=﹣x+3的图象如图所示,则方程组的解为.【解析】根据题意知,二元一次方程组的解就是直线y=kx+3与y=﹣x+3的交点坐标,又∵交点坐标为(0,3),∴原方程组的解是:.故答案为.7、已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为(1,0).【解析】∵方程组的解为,∴一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为(1,0).8、《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x人,小和尚y 人,可列方程组为.【解析】设大和尚有x人,则小和尚有y人,根据题意得,故答案为:.9、某地中学生校园足球联赛,共赛17轮(即每对均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次校园足球联赛中,光明足球队得16分,且踢平场数是所负场数的k倍(k 为正整数),则k的所有可能值之和为 3 .【解析】设所负场数为x场,胜 17﹣x﹣kx场,平 kx场,可得:3(17﹣x﹣kx)+kx=16,解得:x=,所以k的所有可能值为:1或2,所以k的所有可能值之和为1+2=3,故答案为:3.10、一个两位数的各位数字之和为8,十位数字与个位数字互换后,所得新数比原数小18,则原来的两位数是53 .【解析】设原两位数的个位数字为x,十位数字为y.则,解得,∴10y+x=53,故答案为:53.11、如图,直线l 1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.【解析】(1)把P(1,b)代入y=x+1得b=1+1=2;(2)由(1)得P(1,2),所以方程组的解为;(3)直线l3:y=nx+m经过点P.理由如下:因为y=mx+n经过点P(1,2),所以m+n=2,所以直线y=nx+m也经过P点.12、两人骑自行车在400米环形跑道上用不变的速度行驶,当他们按相反的方向行驶时,每20秒名相遇一次;若按同一方向行驶,那么每100秒钟相遇一次,问两个的速度各是多少?【解析】设两个人中较快者的速度为x米/秒、较慢者的速度为y米/秒,根据题意,得,解这个方程组,得;答:两个人的速度分别为12米/秒、8米/秒.➢课后反击1、如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得关于x,y的二元一次方程组的解是()A. B.C. D.【解析】函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),即x=﹣4,y=﹣2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选:B.2、一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A. B.C. D.【解析】由题意可得,,故选A.3、一个商人将99颗弹子放进两个盒子,每个大盒子装12个,每个小盒子装5个,恰好装完.盒子总个数大于9,问大小盒子各几个?()A.大的2个,小的15个 B.大的7个,小的3个C.大的2个,小的15个或大的7个,小的3个 D.无数种【解析】设大盒子x个,小盒子y个,12x+5y=99,x+y>10,因为,用99减去12的x倍,所得的数个位是0或5即可,可得x=2,y=15,共17个,x=7,y=3,共10个,故大的2个,小的15个或大的7个,小的3个.故选:C.4、为推进课改,王老师把班级里40名学生分成若干组,每小组只能是5人或6人,则有几种分组方案()A.4 B.3 C.2 D.1【解析】设5人一组的有x个,6人一组的有y个,根据题意可得:5x+6y=40,当x=1,则y=(不合题意);当x=2,则y=5;当x=3,则y=(不合题意);当x=4,则y=(不合题意);当x=5,则y=(不合题意);当x=6,则y=(不合题意);当x=7,则y=(不合题意);当x=8,则y=0;故有2种分组方案.故选:C.5、一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为()A.46 B.64 C.57 D.75【解析】设个位上的数字是x,十位上的数字是y,依题意得:,解得.则这个两位数是75.故选:D.6、如图,函数y=﹣x﹣和y=2x+3的图象交于点P,则根据图象可得,二元一次方程组的解是.【解析】观察函数图象可知:交点P的坐标为(﹣1,1),∴二元一次方程组的解是.故答案为:.7、如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图中信息可得二元一次方程组的解是.【解析】如图所示:根据图中信息可得二元一次方程组的解是:.故答案为:.8、《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.【解析】根据题意得:;故答案为:.9、清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈.若每小组7人,则余下3人;若每小组8人,则少5人,由此可知该班共有59 名同学.【解析】设一共分为x个小组,该班共有y名同学,根据题意得,解得.故答案为59.10、一个两位数,它的个位数字是十位数字的2倍,且十位数字与个位数字和的4倍,等于这个两位数,这个两位数是12,24,36,48 .【解析】设个位数字为x,十位数字为y,由题意得:,当x=2时,y=1,当x=4时,y=2,当x=6时,y=3,当x=8时,y=4,故答案为:12,24,36,48.11、一艘轮船顺流航行,每小时行20千米;逆流航行每小时行16千米.则轮船在静水中的速度为18 千米/时,水流速度为 2 千米/时.【解析】设船在静水速度为x千米/时,水流速度为y千米/时.根据题意得:,解得:即:轮船在静水中的速度为18千米/时,水流速度为2千米/时.12、张强和李毅二人分别从相距20千米的A、B两地出发,相向而行,如果张强比李毅早出发30分钟,那么在李毅出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还相距11千米.求张强、李毅每小时各走多少千米.【解析】设张强每小时走x千米,李毅每小时走y千米,由题意得,,解得:.答:张强每小时走4千米,李毅每小时走5千米.13、如图,已知直线l1:y=3x+1与y轴交于点A,且和直线l2:y=mx+n交于点P(﹣2,a),根据以上信息解答下列问题:(1)求a的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)若直线l1,l2表示的两个一次函数都大于0,此时恰好x>3,求直线l2的函数解析式.【解析】(1)∵(﹣2,a)在直线y=3x+1上,∴当x=﹣2时,a=﹣5.(2)解为.(3)∵直线l1,l2表示的两个一次函数都大于0,此时恰好x>3∴直线l2过点(3,0),(7分)又∵直线l2过点P(﹣2,﹣5)∴,解得.∴直线l2的函数解析式为y=x﹣3.直击中考1、【2016•朝阳区】如图,在平面直角坐标系xOy中,如果一个点的坐标可以用来表示关于x、y的二元一次方程组的解,那么这个点是()A.M B.N C.E D.F【解析】两直线都过定点E,所以点E表示关于x、y的二元一次方程组的解,故选C2、【2016•连云港】某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?【解析】(1)设该店有客房x间,房客y人;根据题意得:,解得:.答:该店有客房8间,房客63人;(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱;若一次性定客房18间,则需付费20×18×0.8=288钱<320钱;答:诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.S(Summary-Embedded)——归纳总结重点回顾1、列方程解应用题的一般步骤:(1)分析题意,找出等量关系;(2)设未知数,列方程组;(3)解方程组;(4)检验;(5)答。

二元一次方程组提高应用题

二元一次方程组提高应用题

二元一次方程组应用题(1)1.小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).2.兄弟二人养了一群羊,当每只羊的价钱(以元为单位)的数值恰等于这群羊的只数时,将这群羊全部卖出,兄弟二人平分卖羊得来的钱:哥哥先取10元,弟弟再取10元;这样依次反复进行,最后,哥哥先取10元,弟弟再取不足10元,这时哥哥将自己的一顶草帽给了弟弟,兄弟二人所得的钱数相等.问这顶草帽值多少钱?3.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时,当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻按原路向B地返行,甲、乙二人在第一次相遇后3小时36分又再次相遇,则A、B两地的距离是多少?4.某水库共有6个相同的泄洪闸,在无上游洪水注入的情况下,打开一个水闸泄洪使水库水位以a米/时匀速下降.某汛期上游的洪水在未开泄洪闸的情况下使水库水位以b米/时匀速上升,当水库水位超警戒线^米时开始泄洪.(1)如果打开n个水闸泄洪x小时,写出表示此时相对于警戒线的水面高度的代数式;(2)经考察测算,如果只打开一个泄洪闸,则需30个小时水位才能降至警戒线;如果同时打开两个泄洪闸,则需10个小时水位才能降至警戒线.问该水库能否在3个小时内使水位降至警戒线?5.我市旅游业计划开发的项目主要是景点和通往景点的公路,随着杭州湾大桥的开通,我市加快旅游业开发,把景点和公路的开发总投资增加至10.5千万元,其中开发景点的投资增加了20%,开发公路的投资增加了10%.已知原计划景点投资比公路投资多3千万元.求我市实际投资景点和公路各多少千万元?6.甲仓库和乙仓库分别存放着某种机器20台和6台.现在准备调运给A厂10台,B厂16台,已知从甲库调运一台机器到A厂的运费为400元,到B厂的运费为800元;从乙库调运一台机器到A厂的运费为300元,到B厂的运费为500元,如果总运费用了16000元.求:从甲库调给A厂,乙库调给B 厂各为多少台机器?7.张老师给同学们出了一个题:我有两个小表弟都在上小学,他们两个岁数的和乘以他们岁数的差等于63,请大家算一算这两个孩子的年龄.8.2010年4月14日青海省玉树发生了7.1级大地震,驻军某部(位于距玉树县城结古镇91公里处的上拉秀镇)接到上级命令,须火速前往结古镇救援.已知该部有120名官兵,且步行的速度为每小时10公里,现仅有一辆时速为80公里的卡车,可乘坐40人,请你设计一个乘车兼步行方案,使该部120人能在最短时间内赶往重灾区结古镇救援.其中中途换车(上、下车)的时间均忽略不计,最快多少时间可以赶到?(可用分数表示)9.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?10.广州市某中学新建了一栋教学大楼,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,每分钟可以通过280名学生;当同时开启一道正门和一道侧门时,每分钟可以通过200名学生.(1)求平均每分钟一道正门和一道侧门分别可以通过多少名学生?(2)紧急情况时因学生拥挤,出门的效率会降低20%,现规定在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学楼共有32间教室,每间教室最多有45名学生,问:建造的这4道门是否符合规定?请说明理由.11.某中学在近日组织师生共900人举行以“感受春天,亲近自然,收获快乐”为主题的春游活动,为此学校决定到野生动物园游览.为确保师生活动安全(如校车等安全),学校、旅行社和相关部分充分协商决定,本次春游费用为:教师每位120元,学生每位100元.该学校共花费91200元,请问在这次春游活动中,教师和学生各有多少人?12.车间里有90名工人,每人每天能生产螺母24个或螺栓15个,若一个螺栓配两个螺母,那么应分配多少人生产螺栓,多少人生产螺母才能使螺栓和螺母正好配套?13.2010年南非世界杯的半决赛门票价格是一等席600美元,二等席400美元,三等席250美元.某公司组织体育比赛获奖的36名职员到南非观看2010年世界杯的半决赛.除去其他费用,计划购买两种门票,恰好用完10050美元,你能设计出几种方案供该公司选择?请说明理由.14.甲、乙、丙三人共解出100道数学题,每人都解出其中的60道题,将其中只有1人解出的题叫做难题,3人都解出的题叫做容易题,试问:难题多还是容易题多?(多的比少的)多几道题?15.某人乘汽车,他看到第一块里程碑上写着一个两位数(表示千米);经过1小时,他看到第二块里程碑写的两位数恰好是第一块里程碑上的数字互换了;又经过1小时,他看到第三块里程碑上写着一个三位数,这个三位数恰好是第一块里程碑上的两位数中间加上一个0,问汽车的速度是多少?16.某果品商店进行组合销售,甲种搭配:2千克A水果,4千克B水果;乙种搭配:3千克A水果.8千克B水果,1千克C水果;丙种搭配:2千克A水果,6千克B水果,l千克C水果.已知A水果每千克2元,B水果每千克1.2元,C水果每千克10元.某天该商店销售这三种搭配水果共441.2元.其中A水果的销售额为116元,问C水果的销售额为多少元?17.兴隆货车配货站有长途货车若干辆,计划要装运A、B、C三种不同型号的商品.已知每辆长途货车的容积为38m3,每件A种型号商品的体积为3m3,每件B种型号商品的体积为4m3,每件C种型号商品的体积为6m3.(1)每辆货车安排装运A、B、C三种型号商品,使货车刚好装满,则有几种装运方案?(2)如果装运每件A种型号商品运费50元,装运每件B种型号商品运费60元,装运每件C种型号商品运费65元,货主应选择哪种方案装运比较省钱?。

二元一次方程组解应用题提高练习

二元一次方程组解应用题提高练习

二元一次方程组解应用题提高练习1已知仙鹤和乌龟是动物中的长寿星,一天鹤父、鹤女与龟祖、龟孙在聊天,它们发现鹤父的年龄是鹤女的2倍,龟祖的年龄是龟孙的5倍,它们四位的年龄和的300倍恰好是900岁。

十年后,鹤父和鹤女之和的5倍,加上龟祖、龟孙的年龄也是900岁,试求它们分别是多少岁?2、华联商场购进甲、乙两种商品后,甲商品加价50%,乙商品加价40%作为标价,后适逢元旦商场搞促销活动,甲商品打八折销售,乙商品打八五折销售。

某顾客购买甲、乙商品各一件,共付款538元,已知商场共盈利88元,求甲、乙两种商品的进价。

3、某商场欲购甲、乙两种商品共50件,甲种商品每件进价为35元,利润率为20%;乙种商品进价为20元,利润率为15%,共获利278元,问甲、乙两种商品各购进多少件?4、某储户存入银行甲、乙两种利息的存款,共计2万元,甲种存款的年利率是3%,乙种存款的年利率是1.5%,不计利息税,该储户一年共得利息525元,求甲、乙两种存款各是多少万元?5、两个两位数的和是85,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数。

已知前一个四位数比后一个四位数大1287。

求这两个两位数。

6、一个三位数和一个两位数的差为225,在三位数的左边写这个两位数,得到一个五位数,在三位数的右边写上这个两位数,也得到一个五位数。

已知前面的五位数比后面的五位数大225,求这个三位数和两位数。

7、一艘船航行于甲、乙两地之间,顺水需3 h ,逆水要比顺水多走h ,若水流速度为km/h ,求船在静水中的速122度和甲、乙两地间的路程?8在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?9随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展,某地区2003年和2004年小学入学儿童人数之比为8:7,且2003 年入学人数的2倍比2004年入学人数的3倍少1 500 人, 某人估计2005 年入学儿童人数将超过2300人,请你通过计算,判断他的估计是否符合当前的变化趋势.10某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?.11某人沿公路匀速前进,每隔4min就遇到迎面开来的一辆公共汽车,每隔6min就有一辆公共汽车从背后超过他.假定汽车速度不变,而且迎面开来相邻两车的距离和从背后开来相邻两车的距离都是1200m,求某人前进的速度和公共汽车的速度,汽车每隔几分钟开出一辆?某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元.为了减少环境污染,市场推出一种叫“CNG” 改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的二十分之三,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的五分之二.问:(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性全部出租车改装,多少天后就可以从节省的燃料费中收回成本?12.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收购这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能赔不是进行.受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研究了三种加工方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地进行精加工,来不及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行粗加工,其余蔬菜进行精加工,并恰好在15天完成.你认为哪种方案获利最多?为什么?13某同学在A、B两购物中心发现他看中的运动服的单价相同,球鞋的单价也相同,运动服和球鞋的单价之和为452元,且运动服的单价比球鞋的单价的4倍少8元.(1)求该同学看中的运动服和球鞋的单价各是多少元?(2)某一天,该同学上街,恰好赶上商家促销,A所有的商品打八折销售,B全场每购物满100元返购物券30元销售(不足100元不返券,购物券全场通用,只限于购物),他只带了400元钱.如果他只在一家购物中心购买这两种物品,你能说明他可以选择哪一家购买更省钱吗?还有哪些购买方式?哪种方式更划算?。

2.4二元一次方程的应用-2020-2021学年浙教版七年级数学下册同步提升训练

2.4二元一次方程的应用-2020-2021学年浙教版七年级数学下册同步提升训练

2020-2021年度浙教版七年级数学下册《2.4二元一次方程的应用》同步提升训练(附答案)1.甲、乙两人练习跑步,如果让乙先跑10米,甲跑5秒就追上乙;如果让乙先跑2秒,那么甲跑4秒就追上乙,若设甲、乙每秒分别跑x米,y米,下列方程组正确的是()A.5105442x yx y+=⎧⎨-=⎩B.5510424x yx y=+⎧⎨-=⎩C.55104()2x yx y y-=⎧⎨-=⎩D.5()104(2)2x yx y x-=⎧⎨-=⎩2.已知关于x,y的方程组43112x yax by+=⎧⎨+=-⎩和3516x ybx ay-=⎧⎨-=⎩的解相同,则(a+b)2021的值为()A.0 B.﹣1 C.1 D.20213.在长方形ABCD中,放入6个形状大小完全相同的小长方形,所标尺寸如图所示,则小长方形的宽AE的长度为()cm .A.1 B.1.6 C.2 D.2.54.某商场新购进一种服装,每套售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%,则调价前上衣的单价是()A.200元B.480元C.600元D.800元5.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐步成为人们喜爱的交通工具.某汽车公司计划正好用190万元购买A,B两种型号的新能源汽车(两种型号的汽车均购买),其中A型汽车进价为20万元/辆,B型汽车进价为30万元/辆,则A,B型号两种汽车一共最多购买()A.9辆B.8辆C.7辆D.6辆6.若下列三个二元一次方程:3x+y=5,x-3y=5,y=ax-9,有公共解,那么a的值应是().A.-4 B.4 C.3 D.-37.有一个两位数和一个一位数若在这个一位数后面多写一个0,则它与这个两位数的和是139;若用这个两位数除以这个一位数,则商7余3,则这个两位数为()A.59 B.69 C.79 D.898.若关于,x y的二元一次方程组ax by mcx dy n+=⎧⎨+=⎩与()()()()123345a xb y mc xd y n⎧+++=+⎪⎨+++=+⎪⎩有相同的解,则这个解是()A.12xy=⎧⎨=⎩B.12xy=-⎧⎨=⎩C.12xy=⎧⎨=-⎩D.12xy=-⎧⎨=-⎩9.《九章算术》是中国传统数学最重要的著作.其中,方程术是《九章算术》最高的数学成就.第八卷记载:“今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问:牛羊各值金几何?”设每头牛值金x两,每头羊值金y两,可列方程组为_____.10.打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花__元.11.已知关于x,y的二元一次方程组32129x y kx y+=+⎧⎨-=⎩的解互为相反数,则k的值是______.12.一水池有一个进水管和三个完全相同的出水管,现水池中有一定量的水,打开进水管(注水速度一致),若只打开一个出水管,则1小时正好能把水池中的水放完;若打开两个出水管,则20分钟正好能把水池中的水放完;问若打开三个出水管,则需要__________分钟恰好能把水池中的水放完.13.方程组23113543.1a ba b-=⎧⎨+=⎩解为9.72.8ab=⎧⎨=⎩,则方程组()()()()(223111325143.1x yx y⎧+--=⎪⎨++-=⎪⎩解为_____.14.如图,用8块相同长方形地砖拼成一块宽为60厘米大的长方形地面,则大长方形的面积为_____.15.重阳佳节来临之际,某糕点店对桂圆味,核桃味,绿豆味重阳糕(分别记为A、B、C)进行混装,推出了甲、乙两种盒装重阳糕,盒装重阳糕的成本是盒中所有A、B、C的成本与盒装成本之和,每盒甲装有6个A,2个B,2个C,每盒乙装有2个A,4个B,4个C,每盒甲中所有A、B、C的之和是1个A成本的15倍,每盒乙的盒装包装成本是每盒甲的盒装包装成本的43倍.每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%.当该店销售这两种盒装重阳糕的总销售额为31000元,总利润率为24%时,销售甲种盒装重阳糕的总利润是_______元.16.已知关于x ,y 的方程组4375x y m x y m +=⎧⎨-=-⎩的解满足等式2x +y =8,则m 的值是__. 17.某车间有660名工人,生产某种由一个螺栓和两个螺母构成的配套产品,每人每天平均生产螺栓14个或螺母20个,应安排______________人生产螺母,才能使生产出的螺栓和螺母刚好配套.18.实数m 取何值,方程260x my mx -+-=总有一个固定的解,请直接写出这个解______.19.某文具店有5元一支和4元一支的钢笔,王老师带48元去买钢笔,钱正好全部用完,共有_______种购买方案.20.我国明代《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么竿子长为______尺,索长为____尺.21.小雅和小智约好周末一起登缙云山,两人同时从山脚出发,沿同一路线上山.小雅以每分钟45米的速度匀速上山,途中不休息;小智以每分钟120米的速度骑自行车匀速上山,每骑车5分钟休息1分钟.10分钟后小智自行车出现故障,立即以每分钟50米的速度推着自行车到山脚出发点维修.15分钟后小智修好了自行车,立即以出发时的速度骑车追赶小雅,仍然骑车5分钟休息1分钟,最后小雅还是比小智早到山顶45秒,则山脚到山顶的距离为___________米.22.若关于x ,y 的方程组24,1mx ny x y +=⎧⎨+=⎩与()3,13x y nx m y -=⎧⎨+-=⎩有相同的解. (1)求这个相同的解;(2)求m 、n 的值.23.为了应对新冠肺炎疫情,做好防控工作,我市某校开学前拟为教职工购买口罩,计划购买普通口罩和N95口罩共4200个,已知每个普通口罩的价格为0.5元,每个N95口罩的价格为5元.(1)若购买这两类口罩的总金额为3000元,求两种口罩各购买了多少个?(2)为弘扬“好心茂名”精神,某企业决定给采购口罩的学校实行以下优惠:普通口罩每购满100个减10元,每个N95口罩打7折.若按(1)中的购买数量,实行优惠后学校需要支付多少钱?24.已知:用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有36吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题: (1)1辆A 型车和1辆B 型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.25.某制衣厂现有22名制作服装的工人,每天都制作某种品牌的村衫和裤子.每人每天可制作这种衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子配套,一件衬衫配两条裤子,则应各安排多少人分别制作衬衫和裤子?(此问题用列方程组方法求解).(2)已知制作件衬衫可获得利润35元,制作一条裤子可获得利润15元,在(1)的条件下,求该厂每天制作衬衫和裤子所获得的利润共是多少元?26.如图,O 为直线MN 上的一点,AOB ∠为直角,OC 平分MOB ∠.若OD 平分CON ∠,且21DON AOM ∠-∠=︒,求BON ∠的度数.27.杭州某公司准备安装完成5700辆如图所示款共享单车投入市场,由于抽调不出足够熟练工人,公司准备招聘一批新工人,生产开始后发现:1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)公司安排10名工人完成480辆自行车的安装,已知新工人和熟练工人在相同的时间内各完成240辆,问这10名工人中熟练工有几人?(列方程解决问题)),使得最后能刚好一个月(30天)(3)若公司原有熟练工a人,现招聘n名新工人(a n完成安装任务,已知工人们安装的共享单车中不能正常投入运营的占5%,求n的值.28.政府为应对新冠疫情,促进经济发展,对商家打折销售进行了补贴,不打折时,6个A 商品,5个B商品,总费用为114元,3个A商品,7个B商品,总费用为111元,打折后,小明购买了9个A商品和8个B商品共用了141.6元.(1)求出商品A,B每个的标价;(2)若商品A,B的折扣相同,商店打几折出售这两商品?小明在此次购物中得到了多少优惠?参考答案1.C2.A3.C4.D5.A6.B7.A8.B9.5210 258x yx y+=⎧⎨+=⎩.10.400 11.2 12.1213.7.73.8 xy=⎧⎨=⎩.14.5400cm2 15.2500 16.-6 17.38518.63 xy=⎧⎨=⎩19.3 20.15 20 21.3373.222.(1)21x y =⎧⎨=-⎩;(2)m =6,n =4 23.(1)普通口罩购买4000只,N95口罩购买200只;(2)2300元24.(1)1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨,4吨;(2)故共有三种租车方案,分别为:①A 型车4辆,B 型车6辆;②A 型车8辆,B 型车3辆;③A 型车12辆,B 型车0辆.25.(1)应安排10人制作衬衫,安排12人制作裤子;(2)1950元26.152BON ∠=︒.27.(1)每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车;(2)4人;(3)1或4或728.(1)商品A 的标价为9元,商品B 的标价为12元;(2)八折;35.4元。

二元一次方程组的应用与提高

二元一次方程组的应用与提高
求原方程组的解.
㈡ ㈢
如何判断二元一次方程组(1、整个方程组里含有的未知数是不是两个,2.、ቤተ መጻሕፍቲ ባይዱ未知数的项的次数是不是 1 如何检验方程组的解 如何解二元一次方程组(代入消元法、加减消元法) 例:已知二元一次方程5x-2y=10 ①将其变形为用含 x 的代数式表示 y 的形式。 ②将其变形为用含 y 的代数式表示 x 的形式。
㈠、定义:⑴含有两个未知数,且含有未知数的项的次数为 1 的整式方程叫二元一次方程。
⑵有两个一次方程组成,并且含有两个未知数的方程组叫做二元一次方程组。 例 1 :下列方程中是二元一次方程的是( ) A.3x-y2=0 B.
2 1 + =1 x y
C.
2
x 5 - y=6 3 2
D.4xy=3
例 3 :下列方程组中,是二元一次方程的是( m ) ①
小结:代入消元法的步骤 1、选择一个未知数系数较简单的方程变形为用一个未知数表示另一个未知数的形式。 2、将其代入到另一个方程中消去一个未知数并求出另一个未知数的值。 3、将求出的未知数的值代入方程中求出另一个未知数的值。 4、写出方程组的解。 加减消元法的步骤 1、将其中的一个未知数系数化成相同(或互为相反数) ; 2、通过相加(或相减)消去这个未知数,得到一个一元一次方程; 3、解这个一元一次方程,得到这个未知数的值; 4、将得到的未知数的值代入原方程组中的任一方程,求得另一个未知数的值; 5、写出方程组的解。

二元一次方程组在实际生活中的应用。 审:分析题中已知什么,求什么,明确各数量之间的关系。 设:设未知数。 找:能够表示应用题全部意义的两个相等关系。 列:根据两个相等关,列出需要的代数式,列出两个方程,组成方程组。 解:解所列方程组,求的未知数。 答:检验所求未知数的值是否符合题意,写出答案。 的值是否符合题意,写出答案。

七年级数学下册 专题提升二 以二元一次方程组为背景的应用性问题校本作业 (新版)浙教版

七年级数学下册 专题提升二 以二元一次方程组为背景的应用性问题校本作业 (新版)浙教版

专题提升二以二元一次方程组为背景的应用性问题1.(常德中考)某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A. 9天 B.11天 C. 13天 D. 22天2.某人只带了2元和5元两种货币,他要买一件27元的商品,而商店不给找钱,则此人的付款方式有种.3.某班同学去社会实践基地参加实践活动,一部分同学抬土,另一部分同学挑土.已知共有竹筐58只,扁担37根,要使每一位同学都能同时参加抬土或挑土,应怎样分配抬土和挑土人数?4.学生问老师:“您今年多大?”老师风趣地说:“我像你这么大时,你才2岁;你到我这么大时,我已经38岁了.”老师今年多大了?5.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高 cm,放入一个大球水面升高 cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?6. 在正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数S (次/分)与这个人年龄n (岁)满足关系式:S =an +b ,其中a 、b 均为常数.(1)根据下图中提供的信息,求a 、b 的值;(2)若一位63岁的人在跑步,医生在途中给他测得10秒心跳为26次,问:他是否有危险?为什么?7. 某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元. 为了减少环境污染,市场推出一种叫“CNG ”的改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费用占剩下未改装车辆每天燃料费用的203,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费用占剩下未改装车辆每天燃料费用的52. (1)公司共改装了多少辆出租车?改装后,每辆出租车平均每天的燃料费用比改装前每天的燃料费用下降了百分之几?(2)若公司一次性将全部出租车改装,则多少天后就可以从节省的燃料费用中收回成本?8.甲、乙两班学生到集市上购买苹果,苹果的价格如下表:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次性购买苹果70千克.(1)乙班比甲班少付多少元?(2)甲班第一次、第二次分别购买苹果多少千克?9.已知,用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B 型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.参考答案专题提升二 以二元一次方程组为背景的应用性问题1. B2. 33. 设分配x 人抬土,y 人挑土,由题意可得2x +2y =58,2x +y =37,解得x =32,y =21.答:应分配32人去抬土,21人去挑土.4. 设学生今年x 岁,老师今年y 岁,由题意,得x -(y -x )=2,y +(y -x )=38,解得x =14,y =26.答:老师今年26岁.5. (1)2 3 (2)设应放入x 个大球,y 个小球,即3x+2y=50-26,x+y=10,解得x=4,y=6.答:应放入4个大球,6个小球. 6. (1)a =-32,b =174.(2)当n =63时,S =-32×63+174=132(次/分). 即63岁的人在运动时所能承受的最高心跳次数为132次/分. 而26×1060=156(次/分)>132(次/分). 所以,他有危险.7. (1)设第一次改装x 辆出租车,改装后每辆出租车每天消耗的天然气费用为y 元, 则xy =(100-x )×80×203,2xy =(100-2x )×80×52,解得x =20,y =48. ∴共改装了40辆车,燃料费用下降了804880 ×100%=40%. (2)设a 天后收回成本,则100×48a +4000×100=100×80a ,解得a =125.∴125天后就可以收回成本.8. (1)189-2×70=49元 答:乙班比甲班少付49元.(2)设甲班第一次买苹果x 千克,第二次买苹果y 千克.①0<x<y ≤30,此时x+y<70,不符合题意;②0<x≤30<y≤50时,根据题意得 x+y=70,3x+2.5y=189,解得x=28,y=42;③0<x≤30,y>50时,根据题意得x+y=70,3x+2y=189,解得x=49,y=21;此时x>y,不合题意;④30<x<y≤50时,2.5×70=175元<189元,不符合题意;⑤30<x≤50<y时,此时x+y>70,不符合题意.综上所述,甲班第一次购买了28千克,第二次购买了42千克.9. (1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:2x+y=10,x+2y=11,解方程组,得:x=3,y=4,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=3431b,∵a、b都是正整数,∴a=9,b=1或a=5,b=4或a=1,b=7.答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,∴方案一需租金:9×100+1×120=1020(元),方案二需租金:5×100+4×120=980(元),方案三需租金:1×100+7×120=940(元).∵1020>980>940,∴最省钱的租车方案是方案三:A型车1辆,B型车7辆,最少租车费为940元.。

北师大版初中数学八年级上册知识讲解 巩固练习 二元一次方程组的应用(提高)

北师大版初中数学八年级上册知识讲解 巩固练习 二元一次方程组的应用(提高)

应用二元一次方程组(提高)知识讲解【学习目标】1.以含有多个未知数的实际问题为背景,经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数问题的数学模型;2.熟练掌握用方程组解决鸡兔同笼,增收节支,里程碑上的数等实际问题.【要点梳理】要点一、常见的一些等量关系1.和差倍分问题:增长量=原有量×增长率较大量=较小量+多余量,总量=倍数×倍量.2.增收节支问题:(1)增长(递减)率公式:原来的量×(1+增长率)=后来的量;原来的量×(1-递减率)=后来的量;(2)利润公式:利润=总收入-总支出;利润=售价-成本(或进价)=成本×利润率;标价=成本(或进价)×(1+利润率)(3)银行利率公式:利息=本金×利率×期数.本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数) . 年利率=月利率×12.月利率=年利率×.要点诠释:增收节支问题常常借助列表分析问题中所蕴涵的数量关系,这种方法清晰明了,能够充分突出解题过程.3.行程问题:速度×时间=路程.顺水速度=静水速度+水流速度.逆水速度=静水速度-水流速度.4.数字问题:已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a.要点二、实际问题与二元一次方程组1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤:设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.【典型例题】类型一、鸡兔同笼问题1. (2019•济宁一模)某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?【思路点拨】(1)设每名熟练工每月可以安装x辆电动车,新工人每月分别安装y辆电动汽车,根据安装8辆电动汽车和安装14辆电动汽车两个等量关系列出方程组,然后求解即可;(2)设调熟练工m人,根据一年的安装任务列出方程整理用m表示出n,然后根据人数m 是整数讨论求解即可.【答案与解析】解:(1)设每名熟练工每月可以安装x辆电动车,新工人每月分别安装y辆电动汽车,根据题意得,解得.答:每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车;(2)设调熟练工m人,由题意得,12(4m+2n)=240,整理得,n=10﹣2m,∵0<n<10,∴当m=1,2,3,4时,n=8,6,4,2,即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.【总结升华】本题考查了二元一次方程的应用,解二元一次方程组,(1)理清题目数量关系列出方程组是解题的关键,(2)用一个未知数表示出另一个未知数,是解题的关键,难点在于考虑人数是整数.举一反三:【变式】《九章算术》方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?”【答案】解:设每只雀、燕的重量各为x 两,y 两,由题意得:561645x y x y y x +=⎧⎨+=+⎩解方程组得:32192419x y ⎧=⎪⎪⎨⎪=⎪⎩答:每只雀、燕的重量各为3219两和2419两. 类型二、增收节支问题 2. 某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68 个,扁担40 根,问这个班的男女生各有多少人?【答案与解析】解:设女生x 人,男生y 人,由题意得:3440232(4)682x y x y +⎧+-=⎪⎪⎨+⎪+-=⎪⎩ 解得:2132x y =⎧⎨=⎩答:这个班的男生有32人,女生有21人. 【总结升华】两人抬土需要一根扁担,一只筐;一人挑土需要一根扁担,两只筐.题中的等量关系是:参加劳动的同学一共用去箩筐68个和40根扁担,从而列出方程组,解出即可. 举一反三:【变式】为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?【答案】解:(1)设政策出台前一个月销售的手动型汽车为x辆,自动型汽车为y辆,由题意可得:960(130%)(125%)1228 x yx y+=⎧⎨+++=⎩解之得:560400 xy=⎧⎨=⎩.答:政策出台前一个月销售的手动型汽车为560辆,自动型汽车为400辆.(2)[560×(1+30%)×8+400×(1+25%)×9]×5%=516.2(万元)答:政策出台后的第一个月,政府对这1228台汽车用户共补贴了516.2万元.3.(2018•黄冈)已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?【思路点拨】设A服装成本为x元,B服装成本y元,由题意得等量关系:①成本共500元;②共获利130元,根据等量关系列出方程组,再解即可.【答案与解析】解:设A服装成本为x元,B服装成本y元,由题意得:,解得:,答:A服装成本为300元,B服装成本200元.【总结升华】主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.类型三、里程碑上的数(数字问题)4.小明的爸爸骑摩托车带着小明在公路上匀速行驶,小明第一次注意到路边里程碑上的数时,发现它是一个两位数且它的两个数字之和为9,刚好过一个小时,他发现路边里程碑上的数恰好是第一次看到的个位和十位数字颠倒后得到的,又过3小时,他发现里程碑上的数字比第一次看到的两位数中间多个0,你知道小明爸爸骑摩托车的速度是多少吗?【思路点拨】通过理解题意可知本题存在两个等量关系,即第一次注意到路边里程碑上的数的十位数字+个位数字=9;由于是匀速行驶,可以根据3小时所行使的路程相等来列第二个等量关系.【答案与解析】解:小明第一次注意到路边里程碑上的两位数的十位数字为x ,个位数字为y ,根据题意,得[]9(100)(10)3(10)(10)x y x y y x y x x y +=⎧⎪⎨+-+=+-+⎪⎩ 解得27x y =⎧⎨=⎩,即小明第一次注意到路边里程碑上的数字为27,1小时后小明看到的程碑上的数字为72,72﹣27=45(千米/小时),答:小明爸爸骑摩托车的速度是45千米/小时.举一反三:【变式】一个三位数是一个两位数的5倍.如果把这个三位数放在两位数的左边,得到一个五位数;如果把这个三位数放在两位数的右边,得到另一个五位数,且后面的五位数比前面的五位数大18648,问:两位数、三位数各是多少?【答案】解:设两位数是x ,三位数是y,根据题意得:,解得:.答:两位数、三位数各是37、185.类型四、行程问题5. 某人要在规定的时间内由甲地赶往乙地,如果他以每小时50千米的速度行驶,就会迟到24分钟,如果他以每小时70千米的速度行驶,则可提前24分钟到达乙地,求甲乙两地间的距离. 24【答案与解析】 解:设规定的时间为x 小时,甲乙两地间的距离为y 千米. 则由题意可得:解得:答:甲乙两地间的距离为140千米.【总结升华】比较复杂的行程问题可以通过画“线条”图帮助分析,求解时应分清相遇、追及、相向、同向等关键词.举一反三:【变式】(2018•娄底)假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”245060247060x y x y ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩125140x y ⎧=⎪⎨⎪=⎩小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费多少元?【答案】解:(1)设出租车的起步价是x元,超过1.5千米后每千米收费y元.依题意得,,解得.答:出租车的起步价是元,超过1.5千米后每千米收费2元;(2)+(5.5﹣1.5)×2=12.5(元).答:小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费12.5元.应用二元一次方程组(提高)巩固练习【巩固练习】一、选择题1.(2019•来宾)一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A.B.C.D.2.(2018•宜州市)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为().A .19B .18C .16D .153.某中心学校现有学生515人,计划一年后女生在校人数增加135,男生在校人数增加190,这样在校学生人数将增加2103,那么该校现有女生和男生人数分别是( ). A .245和270 B .260和255 C .25.9和256 D .240和2754.某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土,已知全班共用箩筐59个,扁担36根,若设抬土的学生x 人,挑土的学生y 人,则有 ( ).A .2592362y x x y ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎪+=⎪⎩ B .2592362x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ C .2592236x y x y ⎧+=⎪⎨⎪+=⎩ D .259236x y x y +=⎧⎨+=⎩ 5.甲、乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的201倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,求这两个数.如果甲数为x ,乙数为y ,则得方程组是( )A. ⎩⎨⎧=+++=+x 201x y 1001188y x 100y x 100 B. ⎩⎨⎧++=+=+1188y x 100x y 100x 201y x 100 C. ⎩⎨⎧=+-+=+y 201x y 1001188y x 100y x 100 D. ⎩⎨⎧-+=+=+1188y x 100x y 100y 201y x 1006. 一辆汽车在公路上匀速行驶,司机在路边看到一个里程碑上是一个两位数,行驶一小时后,他看到的里程碑上的数,恰好是第一个里程碑上数颠倒顺序的两位数,再过一小时,他看到的里程碑上的数,又恰好是第一次看到的两位数中间添上一个零的三位数,那么他第一次看到的两位数是( )二、填空题7.(2019•盐城)李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需 分钟.8.小张以两种形式储蓄了500元,第一种储蓄的年利率为3.7%,第二种储蓄的年利率为2.25%,一年后得到利息和为15.6元,那么小张以这两种形式储蓄的钱数分别是 元和 元.9.(2018•江西模拟)如图,三个全等的小矩形沿“横一竖一横“排列在一个大的边长分别为12.34,23.45的矩形中,则图中一个小矩形的周长等于 .10.甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就能追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,两人每秒钟各跑的米数是 米/秒和 米/秒.11.一个两位数的两个数位上的数字之和为7,若将这两个数字都加上2,则得到的数是原数的2倍少3,则这个两位数是 .12. 已知甲、乙两人从相距18千米的两地同时出发,相向而行,1.8小时后相遇.如果甲比乙先走32小时,那么在乙出发后23小时两人相遇.设甲、乙两人速度分别为每小时x 千米和y 千米,则x=________,y=________.三、解答题13.(2018•徐州)某超市为促销,决定对A ,B 两种商品进行打折出售.打折前,买6件A 商品和3件B 商品需要54元,买3件A 商品和4件B 商品需要32元;打折后,买50件A 商品和40件B 商品仅需364元,这比打折前少花多少钱?14.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出大楼共有4道门,其中2道正门大小相同,2道侧门大小也相同,安全检查中,对4道门进行了测试:当同时开启1道正门和2道侧门时,2分钟内可通过560名学生;当同时开启1道正门和1道侧门时,4分钟内可通过800名学生,求平均每分钟1道正门和1道侧门各可通过多少名学生?15. 一个三位数是一个两位数的5倍.如果把这个三位数放在两位数的左边,得到一个五位数;如果把这个三位数放在两位数的右边,得到另一个五位数,且后面的五位数比前面的五位数大18648,问:两位数、三位数各是多少?【答案与解析】一、选择题1. 【答案】A;2. 【答案】C;【解析】设一个笑脸气球为x元,一个爱心气球为y元,根据图形找出等量关系:3个笑脸+一个爱心=14元,3个爱心+1个笑脸=18元,据此列方程组求出x和y的值,继而可求得第三束气球的价格.3. 【答案】A;4. 【答案】B;【解析】注意了解生活常识:抬土即两个人需要一根扁担和一个箩筐;挑土即一个人需要一根扁担和两个箩筐.5.【答案】D;【解析】把甲数放在乙数的左边,得到的四位数是100x+y;把乙数放在甲数的左边,得到的四位数是100y+x.根据把甲数放在乙数的左边,组成的四位数是乙数的201倍可得方程100x+y=201y;根据把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,可得方程100y+x=100x+y-1188.6. 【答案】C;【解析】解:设第一次他看到的两位数的个位数为x,十位数为y,汽车行驶速度为v,根据题意得:,解得:x=6y,∵xy为1﹣9内的自然数,∴x=6,y=1;即两位数为16.另法:设个位为x,十位为y,根据题意得:(10y+x)﹣(10x+y)=(100x+y)﹣(10y+x),x+y=7,解得:x=1,y=6,即两位数为16.二、填空题7. 【答案】40;【解析】解:设李师傅加工1个甲种零件需要x分钟,加工1个乙种零件需要y分钟,依题意得:,由①+②,得7x+14y=140,所以x+2y=20,则2x+4y=40,所以李师傅加工2个甲种零件和4个乙种零件共需40分钟.8. 【答案】300,200;【解析】可以设第一种储蓄的钱数为x元,第二种为y元,根据本金×利率=利息及两种储蓄共500元,可以列出两个方程,求方程组的解即可.9.【答案】23.86;【解析】由图形可看出:小矩形的2个长+一个宽=12.34,小矩形的2个宽+一个长=23.45,设出长和宽,列出方程组即可得答案.10.【答案】6, 4;【解析】设甲每秒跑x 米,乙每秒跑y 米,则5510442x y x y y-=⎧⎨-=⎩解此方程组即可. 11.【答案】2512.【答案】4.5;5.5 【解析】本题属于相遇问题,等量关系:一、甲1.8小时行驶的路程+乙1.8小 时行驶的路程=18千米;二、甲(32+23)小时行驶的路程+乙23小时行驶的路程=18千米,可列方程组为⎪⎩⎪⎨⎧=++=+1823)2332(188.18.1y x y x ,解此方程组即可. 三、解答题13.【解析】解:设打折前A 商品的单价为x 元,B 商品的单价为y 元,根据题意得:,解得:,则打折前需要50×8+40×2=480(元),打折后比打折前少花480﹣364=116(元).答:打折后比打折前少花116元.14.【解析】解:设平均每分钟1道正门可通过x 名学生,1道侧门可通过y 名学生.由题意,得2(2)5604()800x y x y +=⎧⎨+=⎩, 解得12080x y =⎧⎨=⎩.答:平均每分钟1道正门可通过120名学生,l 道侧门可通过80名学生.15.【解析】解:设两位数是x ,三位数是y . 根据题意,得51000(100)1864y x x y y x =⎧⎨+-+=⎩解得:37185x y =⎧⎨=⎩ 答:两位数、三位数各是37、185.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年班级:七年级 学科:数学 学案 编号:1 时间: 2013年 月4日 姓名____________
七 年班 数学 学科学案
编写人:
课题 二元一次方程组解应用题专题 课型 展示课
学习目标 审题能力的训练,了解基本的应用题型
重点难点
计算题巩固 想拿高分吗?对于计算题可要胸有成竹哦!!!
(1)⎪⎩⎪⎨⎧=--+=-++2)(5)(4632y x y x y x y x (2)⎪⎩
⎪⎨⎧-=++=-+=++21143045z y x z y x z y x
应用专题 只列方程不解方程(除特殊说明外)
1、东莞市东华中学七年级学生外出进行社会实践活动,如果每辆车坐45人,那么有15个学生没车坐;如果每辆车坐60人,那么可以空出一辆车。

问共有几辆车,几个学生?
2、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度。

3、福建欣欣电子有限公司向工商银行申请了甲、乙两种贷款,共计68万元,每年需付出利息8.42万元.甲种贷款每年的利率是12%,乙种贷款每年的利率是13%,求这两种贷款的数额各是多少?
4、一个三位数是一个两位数的5倍。

如果把这三位数放在两位数的左边,得到一个五位数;如果把这三位数放在两位数的右边,得到另一个五位数,而后面的五位数比前面的五位数大18648,问:原两位数、三位数各是多少?
5、某商场欲购进甲、乙两种商品共50件,甲种商品每件进价为35•元,•利润率是20%,乙种商品每件进价为20元,利润率是15%,共获利278元,则甲、•乙两种商品各购进多少件?
6、已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度。

7、在一次足球选拔赛中,有12支球队参加选拔,每一队都要与另外的球队比赛一次,记分规则为胜一场记3分,平一场记1分,负一场记0分。

比赛结束时,某球队所胜场数是所负的场数的2倍,共得20分,问这支球队胜、负各几场?(易错题)
8、小颖在拼图时发现8个一样大小的矩形,恰好可以拼成一个大的矩形,•如图(1)所示。

小彬看见了,说:“我来试一试”.结果小彬七拼八凑,拼成如图(2)那样的正方形.中间还留下一个洞,恰好是边长为2mm的小正方形。

你能帮他们解开其中的奥秘吗?
9、甲、乙两人都以不变的速度在环形路上跑步,如果同时同地出发,相向而行,每隔2min 相遇一次;如果同向而行,每隔6min相遇一次,已知甲比乙跑得快,甲乙二人每分钟各跑多少圈?
10、某厂共有119名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?(写出解题过程,可别小看这道题)
多维达标
1、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:
若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。

已知45座客车每
日租金每辆220元,60座客车每日租金为每辆300元。

(写出解题过程)
(1)初一年级人数是多少?原计划租用45座汽车多少辆?
(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?
2、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。

(写出解题过程)
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?
(2)检查中发现,紧急情况下时因学生拥挤,、出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由
3、有三把楼梯,分别是五步梯、七步梯、九步梯,每攀沿一步阶梯上升的高度是一致的。

每把楼梯的扶杆长(即梯长)、顶档宽、底档宽如图所示,并把横档与扶杆连合处称作联结点(如点A )。

(写出解题过程)
(1) 通过计算,补充填写下表:
楼梯种类 两扶杆总长(米) 横档总长(米) 联结点数(个)
五步梯 4 2.0 10
七步梯
九步梯
(2) 一把楼梯的成本由材料费和加工费组成,假定加工费以每个个联结点1元计算,而材
料费中扶杆的单价与横档的单价不相等(材料损耗及其它因素忽略不计)。

现已知一把五步梯、七步梯的成本分别是26元、36元,试求出一把九步梯的成本。

教师评价:
学生当天表现:□激情澎湃 表现出色 □听课认真 表现良好 □注意力分散 消化不佳
家长签名: 2m 30c 50c
A 2.5m 40c 60c 70c 3m 50c。

相关文档
最新文档