3-4静定桁架受力分析解析
结构力学——静定桁架
静定桁架的稳定性分析方法
静定桁架的稳定性分析原理
静定桁架的稳定性分析方法: 能量法、力法、位移法等
静定桁架的定义和分类
静定桁架的稳定性提高静定桁架稳定性的措施
增加桁架的刚度:通过增加桁架的截面尺寸、材料强度等方法提高桁架的刚度,从而提高桁架的 稳定性。
静定桁架的杆 件受力可以分 为轴向力、剪 力和弯矩三种, 其中轴向力和 剪力是主要的
受力形式。
静定桁架的受 力特性还与桁 架的支座条件 有关,不同的 支座条件会影 响桁架的受力 分布和变形情
况。
03
静定桁架的组成与分类
静定桁架的基本组成
桁架:由杆件组成的结构,用于 承受荷载
荷载:施加在桁架上的力,包括 集中荷载和分布荷载
优化桁架制造工艺:通过优化桁架的制造工艺,提高桁架 的质量和生产效率
优化桁架安装工艺:通过优化桁架的安装工艺,提高桁架 的安装质量和效率
THNK YOU
汇报人:XX
静定桁架的应力计算方法: 截面法、图乘法、矩阵位移 法等
矩阵位移法:利用矩阵位移 法计算桁架的位移和内力,
适用于复杂桁架结构
静定桁架的变形计算
变形计算的基本原理:利用静定桁架的平衡条件求解 变形计算的方法:图乘法、解析法、有限元法等 变形计算的应用:预测桁架的变形情况,优化桁架设计 变形计算的注意事项:考虑桁架的材质、截面尺寸、载荷等因素的影响
静定桁架的内力分布规律
桁架的内力主要由轴力和剪力组成
轴力沿桁架的轴线方向分布,剪力沿桁架的横截面方向分布
桁架的内力分布与桁架的杆件布置、荷载分布等因素有关
通过静定桁架的内力分析,可以确定桁架各杆件的内力大小和方向,为桁架的设计和优 化提供依据
内力分析中的注意事项
桁架受力分析
3.4 静定平面桁架教学要求掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法——结点法、截面法、联合法3.4.1 桁架的特点和组成3.4.1.1 静定平面桁架桁架结构是指若干直杆在两端铰接组成的静定结构。
这种结构形式在桥梁和房屋建筑中应用较为广泛,如南京长江大桥、钢木屋架等。
实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。
但根据对桁架的实际工作情况和对桁架进行结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。
因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定:(1)桁架的结点都是光滑的铰结点。
(2)各杆的轴线都是直线并通过铰的中心。
(3)荷载和支座反力都作用在铰结点上。
通常把符合上述假定条件的桁架称为理想桁架。
3.4.1.2 桁架的受力特点桁架的杆件只在两端受力。
因此,桁架中的所有杆件均为二力杆。
在杆的截面上只有轴力。
3.4.1.3 桁架的分类(1)简单桁架:由基础或一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。
(图3-14a)(2)联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。
(图3-14b)(3)复杂桁架:不属于前两类的桁架。
(图3-14c)3.4.2 桁架内力计算的方法桁架结构的内力计算方法主要为:结点法、截面法、联合法结点法――适用于计算简单桁架。
截面法――适用于计算联合桁架、简单桁架中少数杆件的计算。
联合法――在解决一些复杂的桁架时,单独应用结点法或截面法往往不能够求解结构的内力,这时需要将这两种方法进行联合应用,从而进行解题。
解题的关键是从几何构造分析着手,利用结点单杆、截面单杆的特点,使问题可解。
-静定桁架受力分析
RH = 20 kN
RA = 20 kN
取节点A为研究对象画受力图.
5kN
SAC
A SAB
sin = 0.6
cos = 0.8
20 kN
Yi = 0 Xi = 0
20 - 5 + 0.6 SAC = 0 (-25)×0.8+SAB = 0
SAC = - 25 kN SAB = 20 kN
取节点B为研究对象画受力图.
20 kN B
Xi = 0 SBA SBA - 20 = 0
SBA = 20 kN
10kN
取节点C为研究对象画受力图.
C
SCD
Xi = 0 0.8×[SCD+SCE -(-25)]= 0 Yi = 0
(1)
-25kN
SCE
0.6×[SCD-SCE -(-25)]-10 = 0 (2)
联立(1)(2)两式得: SCD = - 22 kN
在桁架中三根杆件的结点上,如有两根杆在一条直线上, 另一根在独立方向上的杆称为“单杆”。
3. 结点法计算时,通常假定未知轴力为拉力。若 所的结果为负,则为压力。
解题要点:力的投影三角形与杆长的投影三角形相似
N Nx Ny l lx ly
例:
P
PHP
3a P/ 2 D P F
JP L P/2
XA A
对于简单桁架,若与组成顺序相反依 次截取结点,可保证求解过程中一个方程 中只含一个未知数.
结点单杆:利用结点的一个平衡方程可求出内力的杆件
单杆
单杆
零杆:在桁架中,轴力为零的杆件。 (1)两根杆的结点
(a)若结点上无荷载,则二杆全为零。 (b)若荷载沿其中一杆的方向,则该杆轴
第三章 静定结构的受力分析
斜直线
FS=0处
有突变
突变值为P
如变号
无变化
M图
斜直线
抛物线
有尖角
↓
↑
有极值
尖角指向同P
有极值
有突变
M=0
利用上述关系可迅速正确地绘制梁的内力图(简易法)8
Structural mechanics
静定结构的受力分析
简易法绘制内力图的一般步骤:
(1)求支反力。
2)分段:凡外力不连续处均应作为分段点,如集中力
15
Structural mechanics
基本部分:
静定结构的受力分析
不依赖其它部分的存在而能独立地维持其几何不变性的部 分。 如:AB、CD部分。
(a)
基本部分
(b) A
B
层叠图:
基本部分
C
附属部分:
必须依靠基本部分 才能维持其几何不变 D 性的部分。如BC部分 。
为了表示梁各部分之间的支撑关系,把基本部分画在下层, 而把附属部分画在上层, (b)图所示,称为层叠图。
3
Structural mechanics
静定结构的受力分析
§3—1 梁的内力计算的回顾
单跨静定梁应用很广,是组成各种结构的基构件之一,其受 力分析是各种结构受力分析的基础。这里做简略的回顾和必
要的补充。
1. 单跨静定梁的反力
常见的单跨静定梁有:
简支梁
外伸梁
悬臂梁
↷
→↑
↙ ↑
→↙ ↑↑
→↑ ↙
反力只有三个,由静力学平衡方程求出。 4
16
Structural mechanics
(2)受力分析方面:
静定结构的受力分析
结构力学第6章静定桁架的内力计算
3d
C
3d
H FP
B
(a)
解:
求整个桁架内力的一般步骤是, 先求出支座反力,见图(b)
D I E G A FP FP I K H a B C
FP FP II II
(b)
利用截面I—I截开两简单桁架的连接 处,取截面任一侧为隔离体,见图(c)
D F NDC F NGE G A FP FP K F NKH
解:
图(a),桁架中的零杆如图(a) 右虚线所示。然后可分别由结点D、 C计算余
D C
D C
(a)
图 (b) ,桁架中的零杆如图 (b) 右虚线所示。然后求支座反力, 再依次取结点计算余下各杆轴力。 次序可为: A、D、C或 B、C、D, 或分别A、B再D或再C。
C F P
2 F P
C F P
FNa
FNa
2 FP 2
(a)
§6.4 组合结构的内力分析
既有梁式杆又有桁架杆的结构称作
组合结构。见图6-4-1所示。
图6-4-1
组合结构内力计算的一般途径是: 先计算桁架杆,再计算梁式杆。
例6-4-1
计算图(a)所示组合结构,求出二力 杆中的轴力,并作梁式杆的弯矩图。
q = 1 0 k N m
FN FX FY L LX LY
(简称:力与杆长比例式)
规定: 桁架杆轴力以受拉为正。
§6.2 桁架内力计算的结点法
1、结点法:
每次取一个结点为隔离体,利用结 点平衡条件,求解杆轴力的方法。
例6-2-1
用结点法计算图(a)所示静定桁架。
C K F= A x0 E D 4 b
F= A y2 F P
第3章静定结构的受力分析
M0
1 2 ql 8
弯矩图的叠加指纵坐标的叠加, 不是图形的简单拼合。
任意直段杆的弯矩图:以(a)中的AB端为例,其隔离体如图(b)。
与图(c)中的简支梁相比, 显然二者的弯矩图相同。
因此:作任意直杆段弯矩图
就归结为作相应简支 梁的弯矩图。 AB段的弯矩图如图(d)。
M0 1 2 ql 8
§3-5 静定平面桁架
武汉长江大桥
1
桁架的特点和组成 由杆件组成的格构体系, 荷载作用在结点上, 各杆内力主要为轴力。
钢筋混凝土组合屋架
优点:重量轻,受力合理,能承受较大荷载,可作成较大 跨度。
武汉长江大桥采用的桁架形式
第3 章
静定结构的内力分析
§3-1 杆件内力计算 §3-2 静定梁 §3-3 静定刚架 §3-4 三铰拱 §3-5 静定桁架 §3-6 静定结构的内力分析和受力特点
第3章 静定结构的内力分析
本章讨论静定结构。 内容:静定结构的内力分析。 静定结构分析的要点: 1、如何选择“好的”隔离体; 2、怎样建立比较简单而又恰当的平衡方程, 计算最为简捷。
FQB FQA q y dx xA xB M B M A FQ dx xA
xB
积分关系的几何意义: B端的剪力=A端的剪力-该段荷载qy图的面积
B端的弯矩=A端的弯矩+此段剪力图的面积
5. 分段叠加法作弯矩图
图(a)结构荷载有两部分: 跨间荷载q和端部力偶MA、MB 端部力偶单独作用时,弯 矩图为直线,如图(b): 跨间荷载q单独作用时,弯 矩图如图(c): 总弯矩图为图(b)基础上叠加图 (c),如图(d):
FQ >0 F <0 增函数 降函数 Q 自左向右折角 斜直线 曲线
结构力学I-第三章 静定结构的受力分析(桁架、组合结构)
Y 0 FNEC sin FNED sin FNEA sin 10 kN 0
联立解出
FNEC FNED 10 5 33.5 思考:能否更快呢? FNEC 22.36 kN, FNED 11.18 kN
00:44
静定平面桁架
• 桁架的内力计算
由力矩平衡方程 ∑ ME = 0,可求CD杆内力。
FA×d - FNCD×h = 0
FNCD = FAd / h = M0E / h
F1 F2 F3 F4 F5
M0E FA
6d
M FB
若M0E > 0,则FNCD >0 (下弦杆受拉 )
M0E是什么?
00:44
I
II
静定平面桁架
I
II
• 桁架的内力计算
简支梁
悬臂梁
伸臂梁
刚架:受弯构件,由若干直杆联结而成的结构,其中全部或部份 结点为刚结点;
A
D
B
C
简支刚架
悬臂刚架
三铰刚架
00:44
回顾
• 结构内力图
M–AB (表0) 示结构上各截面内力值的图形:弯矩图、M剪BA (0)
力图、A端轴力图;
A
B
FNA横B 坐标 -- 截面位置;
内力图 - 弯矩
A
FA
FB
– 截面法
• 例1:试求图示桁架中杆EF、ED,CD,DG的内力。
解: ⑶ 求上弦杆EF内力,力矩法;
取 ED 和 CD 杆 的 交 点 D 为 矩 心 , 先 求 EF 杆 的 水 平 分 力
FxEF,由力矩平衡方程∑MD = 0,
FA×2d - F1×d + FxEF×H = 0
桁架结构的受力特点
桁架结构的受力特点桁架结构是一种由杆件和节点组成的结构体系,其受力特点主要包括以下几个方面:桁架结构的主要受力形式是轴力和剪力。
在桁架结构中,杆件主要承受拉力或压力,即轴力;而在节点处则会产生剪力。
这种受力形式使得桁架结构具有较好的受力性能,能够有效地承受水平和垂直方向的荷载。
桁架结构的受力是通过节点传递的。
节点是桁架结构中连接杆件的部分,所有的受力都会通过节点传递到其他杆件上。
这种传递方式使得整个结构在受力均匀分布的同时,也能够有效地减小结构的变形,提高结构的稳定性。
桁架结构的受力是相对集中的。
由于桁架结构中的杆件都是直线排列的,受力主要集中在杆件的两端和节点上。
这种受力特点使得桁架结构具有较高的刚度和承载能力,适用于大跨度的建筑和桥梁结构。
桁架结构的受力是相对静定的。
在桁架结构中,杆件的数量和节点的位置都是确定的,结构的受力状态也可以通过静力平衡来计算和分析。
这种相对静定的受力状态使得桁架结构在设计和施工过程中更加可控,能够确保结构的安全性和稳定性。
桁架结构的受力是相互协调的。
在桁架结构中,各个杆件和节点之间的受力是相互协调的,通过合理的设计和构造可以使得结构整体受力均衡,达到最佳的受力状态。
这种相互协调的受力特点使得桁架结构在实际工程中得到广泛应用,成为大跨度结构的常见形式。
桁架结构具有轴力和剪力为主要受力形式、受力通过节点传递、受力相对集中、受力相对静定以及受力相互协调等特点。
这些受力特点使得桁架结构具有较好的受力性能和稳定性,适用于各种大跨度建筑和桥梁工程中。
在设计和施工过程中,需要充分考虑这些受力特点,确保结构的安全可靠。
静定桁架结构内力分析典型例题(附详细解题过程)
静定桁架结构的内力分析——典型例题【例1】求如图1(a)所示桁架中所有杆件的轴力。
图1【解】(1)取截面Ⅰ-Ⅰ以右部分作研究,由有:,解得:从而有:(2)再依次由结点8、4、3、7、6、5、1的平衡条件,求得其它杆轴力,如图1(b)所示。
【例2】求如图2所示桁架中杆件a 、b 的轴力。
图2【解】经几何组成分析,此结构为三铰桁架。
(1)求支座反力取铰7右边部分为隔离体分析,由有:10M =∑89230x F d F d F d ⨯-⨯-⨯=892x F F=892)3N F F d ==拉力70M =∑22x y F F =由整体平衡条件有:从而有: , 再分别由整体平衡条件、有:, (2)作截面Ⅰ-Ⅰ,取左边作为隔离体研究,由得:(3)作截面Ⅱ-Ⅱ,取右边作为隔离体研究,由有:,解得: 从而得:。
【例3】求如图3所示桁架中杆件a 、b 的轴力。
图3【解】经几何组成分析,此结构为主从结构,截面Ⅰ-Ⅰ左边为附属部分,右边为基本部分。
杆件58、78为零杆。
(1)作截面Ⅰ-Ⅰ,取左边作为隔离体研究,由得:10M =∑2224x y F d F d F d ⨯+⨯=⨯()223x F F =←()223y F F =↑0x F =∑0y F =∑()123x F F =→()113y F F =↑0y F =∑()13Na F F =-压力80M =∑222xb x y F d F d F d ⨯+⨯=⨯23xb F F =-()Nb F =压力0y F =∑()1V F F =↑由整体平衡条件得 ,由有 (2)作截面Ⅱ-Ⅱ,取右边作为隔离体研究研究 由有:,从而得: 由有:,从而得:【例4】求如图5-7所示桁架中杆件a 、b 的轴力。
图4【解】(1)取截面Ⅰ-Ⅰ以上部分为隔离体分析,由有:,从而得:(2)取截面Ⅱ-Ⅱ以左部分为隔离体,由有:,从而得:【例5】求如图5(a)所示桁架中杆件a 、b 的轴力。
第三章静定结构受力分析
内力的概念和表示在平面杆件的任意截面上,将内力一般分为三个分量:轴力F N 、剪力F Q 和弯矩MM A轴力----截面上应力沿杆轴切线方向的合力。
轴力以拉力为正。
剪力----截面上应力沿杆轴法线方向的合力。
剪力以绕微段隔离体顺时针转者为正。
内力的概念和表示弯矩----截面上应力对截面形心的力矩。
在水平杆件中,当弯矩使杆件下部受拉时,弯矩为正。
作图时,轴力图和剪力图要注明正负号,弯矩图规定画在杆件受拉的一侧,不用注明正负号。
内力的计算方法梁的内力的计算方法主要采用截面法。
截面法可用“截开、代替、平衡”六个字来描述:1.截开----在所求内力的截面处截开,任取一部分作为隔离体;隔离体与其周围的约束要全部截断。
2.代替----用截面内力代替该截面的应力之和;用相应的约束力代替截断约束。
3.平衡----利用隔离体的平衡条件,确定该截面的内力。
内力的计算方法利用截面法可得出以下结论:1.轴力等于截面一边的所有外力沿杆轴切线方向的投影代数和;2.剪力等于截面一边所有外力沿杆轴法线方向的投影代数和;3.弯矩等于截面一边所有外力对截面形心力矩的代数和。
以上结论是解决静定结构内力的关键和规律,应熟练掌握和应用。
分段叠加法画弯矩图1.叠加原理:几个力对杆件的作用效果,等于每一个力单独作用效果的总和。
= +=+2.分段叠加原理:上述叠加法同样可用于绘制结构中任意直杆段的弯矩图。
例例:下图为一简支梁,AB段的弯矩可以用叠加法进行计算。
(1)(2)(3)(4)静定多跨连续梁的实例现实生活中,一些梁是由几根短梁用榫接相连而成,在力学中可以将榫接简化成铰约束,这样由几个单跨梁组成几何不变体系,称作为静定多跨连续梁。
下图为简化的静定多跨连续梁。
静定多跨梁的受力特点结构特点:图中AB依靠自身就能保持其几何不变性的部分称为基本部分,如图中AB;而必须依靠基本部分才能维持其几何不变性的部分称为附属部分,如图中CD。
受力特点:作用在基本部分的力不影响附属部分,作用在附属部分的力反过来影响基本部分。
静定桁架和组合结构的受力分析
2021/4/9
22
5.2 静定平面桁架
3. 求解一个结点同时包含两个位置斜杆内力的简便方法
FP FP
1.5FP 3-FP
C1 2
D
FP E
1m B 1m
A 3FP F G H 2m 2m 2m 2m
1.5FP
1.5FP
FP C
Fy1 FN1 D
Fx1
3FP A
F
FNAC
1.5FP
由 MG 0,得
首先,可由桁架的整体平衡条件,求出支反力,标注于图中。然 后,即可截取各结点解算杆件内力。
2021/4/9
12
5.2 静定平面桁架
F6=120kN 6
-45 F7H=120kN
7
F7V=45kN
60 4 60
60
+ 75
45
0
30
40 -
50
-120 5 -20
15kN
4m
4m
3
20
15
+ 25
15
一个力推算其它两个力,而不需要使用三角函数进行计算。
2021/4/9
11
5.2 静定平面桁架
5.2.1 结点法
用图示桁架为例,来说明结点法的应用。
F6=120kN 6
F7H=120kN 7
F7V=45kN
4
3
3m
5
2
1
15kN
15kN
15kN
4m
4m
4m
FN13
Fy13
Fx13 FN12
1 15kN
b)
3) 复杂桁架——不是按上述两种方式组成的其它桁架。
c)
3-4平面桁架
D
FDC
FDB
列平衡方程
Fx 0,
FDB FDC 0
FAy
A
FAx
F
E FE
FB
a
a
a
a
C
D
B
FC
Fy 0,
FDE 0
解得
FDB 3 kN , FDE 0
FBE
FB
9.取节点B,受力分析如图。 列平衡方程
FBD
FAy
A
FAx
B
F
E FE
FB
a
a
a
a
C
D
B
FC
Fx 0,
FBD FBE cos 45 0
FAF 2 2 kN, FAC 4 kN
F
FFE
FFA
FFC
6.取节点F,受力分析如图。 列平衡方程
Fx 0,
FFE FFA cos 45 0
FAy
A
FAx
Fy 0,
F
E FE
FB
FFC FFA cos 45 0
a
a
a
a
C
D
B 解得
FC
FFE 2 kN, FFC 2 kN
FCF
C
FCA
FCE FCD
FC
7.取节点C,受力分析如图。 列平衡方程
Fx 0,
FCA FCD FCE cos 45 0
FAy
A
FAx
F
E FE
FB
a
a
a
a
C
D
B
FC
Fy 0,
FC FCF FCE cos 45 0
解得
FCE 2 2 kN , FCD 2 kN
第5章静定平面桁架.
截面单杆: 用截面切开后,通过一个方程可求出内力的杆.
截面上被切断的未知轴力的 杆件只有三个,三杆均为单杆.
截面上被切断的未知轴力的 杆件除一个外交于一点,该杆 为单杆.
截面上被切断的未知轴力的 杆件除一个均平行, 该杆为单 杆.
相
交
情
FP FP FP FP FP
况
FP
a 为 截 面 单 杆
FP FP
平行情况
b为截面单杆
0 -33
-33
34.8 -8
19
19
0 -33
-33
34.8
-8 -5.4
19
37.5
19
-8 kN
YDE CD 0.75 X DE CE 0.5
0 -33
-33
34.8 19
-8 -5.4 37.5
-33
-33
-8 -5.4
34.8
19
标后求
,
在 杆 件 旁 。
应 把 轴 力
出 所 有 轴 力
④梯形桁架
b.按几何组成分类: 简单桁架—在基础或一个铰结三角形上依次
加二元体构成的 联合桁架—由简单桁架按基本组成规则构成 复杂桁架—非上述两种方式组成的静定桁架
简单桁架
简单桁架
联合桁架 复杂桁架
二、桁架的内力分析 1.结点法(主要用于求解简单桁架的内力)
选取隔离体时,每个隔离体只包含一个结点 的方法。
结点法是考虑的桁架中结点的平衡,此时隔 离体上的力是平面汇交力系,只有两个独立的 平衡方程可以利用,故一般应先截取只包含两 个未知轴力杆件的结点。
分析时的注意事项: 1、尽量建立独立方程:
2、避免使用三角函数
桁架受力分析
3.4 静定平面桁架教学要求掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法——结点法、截面法、联合法3.4.1 桁架的特点和组成3.4.1.1 静定平面桁架桁架结构是指若干直杆在两端铰接组成的静定结构。
这种结构形式在桥梁和房屋建筑中应用较为广泛,如南京长江大桥、钢木屋架等。
实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。
但根据对桁架的实际工作情况和对桁架进行结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。
因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定:(1)桁架的结点都是光滑的铰结点。
(2)各杆的轴线都是直线并通过铰的中心。
(3)荷载和支座反力都作用在铰结点上。
通常把符合上述假定条件的桁架称为理想桁架。
3.4.1.2 桁架的受力特点桁架的杆件只在两端受力。
因此,桁架中的所有杆件均为二力杆。
在杆的截面上只有轴力。
3.4.1.3 桁架的分类(1)简单桁架:由基础或一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。
(图3-14a)(2)联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。
(图3-14b)(3)复杂桁架:不属于前两类的桁架。
(图3-14c )3.4.2桁架内力计算的方法桁架结构的内力计算方法主要为:结点法、截面法、联合法结点法一一适用于计算简单桁架。
截面法一一适用于计算联合桁架、简单桁架中少数杆件的计算。
联合法——在解决一些复杂的桁架时,单独应用结点法或截面法往往不能够求解结构的内力,这时需要将这两种方法进行联合应用,从而进行解题。
解题的关键是从几何构造分析着手,利用结点单杆、截面单杆的特点,使问题可解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
160kN· m
40kN
B D
40kN B C D 4m
20kN/m
2m
D
60
QBD
X 0 N BD 0
B
2m
2m
60
Y 0 QBD 20kN
D
MD 0 M BD 160kN m
80 20
A 2m
2m
160
40
M图
N BA
D
B
160
160
M BA
20kN/m
QBA
B 4m
-25kN
Yi = 0 0.6×[SCD-SCE -(-25)]-10 = 0
(2)
联立(1)(2)两式得:
SCD = - 22 kN
SCE = - 3 kN
10kN
根据对称性得: SDG = - 22 kN SGE = - 3 kN SGH = - 25 kN 取节点D为研究对象画受力图. Yi = 0 0.8[-(-22) - (-22)]-10 - SDE = 0 SDE = 25.2 kN
集中力作用截 面剪力无定义
集中力偶作用点 弯矩无定义
5、在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩等于零, 有集中力偶作用,截面弯矩等于集中力偶的值。
6、刚结点上各杆端弯矩及集中力偶应满足结点的力矩平衡。两杆相交刚
结点无集中力偶作用时,两杆端弯矩等值,同侧受拉。
练习: 试计算图(a)所示简支刚架的支座反力,并绘制M、Q和N图。 [解 ] (1)支座反力
mA(Fi) = 0
-10×(4+8+12)-5×16+16RH = 0
RH = 20 kN sin = 0.6
Yi = 0 Xi = 0
RA = 20 kN cos = 0.8
5kN
SAC
取节点A为研究对象画受力图. 20 - 5 + 0.6 SAC = 0 (-25)×0.8+SAB = 0
2P / 2
练习:
已知: 荷载与尺寸如图;
求: 每根杆所受力. 解: 取整体,画受力图.
Fx 0
FAx 0
FAy 20kN
M B 0 8FAy 5 8 10 6 10 4 10 2 0
得
Fy 0
得 求各杆内力
FAy FBy 40 0
H A 80kN, VA 20kN, VB 60kN 。
(2)求杆端力并画杆单元弯矩图。
X 0
Y 0
MB 0
QBA 20 4 80 0
N BA 20 0
M BA 20 4 2 80 4 0
40 kN D B
N BA
QBA 0
1.5P 2d
练习:截面法与节点法联合应用 已知: P 1, P 2, P 3 ,尺寸如图. 求:1,2,3杆所受力. 解: 求支座约束力
F
F
y
M
A
0
FAy
y
0 F By
从1,2,3杆处截取左边ቤተ መጻሕፍቲ ባይዱ分
0
C
F2
M 0 F1 F 0 F3
x
若再求4,5杆受力
F
x
0, N AD 2 / 2 N AC 0, N AC 5P / 2
3.取结点C NCD 0, NCE NCA 5P / 2 4.取结点D
F 0, N F 0, N
DF
DE
其它杆件轴力求 法类似. 求出所有轴力后, N DA P 2 / 2 2 2 P 应把轴力标在杆件旁.
4 d d 3
A
VA 1.5P
1
2 P
6d
P
VB 1.5P
k
(3) Nd Ne
M
Ye
k 5 P
0
Nd 0.25P
4
Xe
4‘
Nd P2d 2d 1.5P 2d 0
Nd
4
M
0
10 3 X e 10P 3 4
B
2d
X e 2.25P
Ne
二、截面法
P2 F
P
1 2
G
I
E A
a/3 2a / 3 N
2
N1
3
C
YB 解: 1.求支座反力 YA 7 P / 5(),YB 3P / 5() 2.作Ⅰ-Ⅰ截面,取右部作隔离体 A O F 0, N 3 2 P / 5
YA
D H 2 5 a
J
B
D
N HD
P
YB
N3
取节点D
F F
x
0 F5 0 F4
y
内力图形状特征
1.无何载区段 2.均布荷载区段 3.集中力作用处
4.集中力偶作用处
Q图
平行轴线
↓↓↓↓↓↓
发生突变
+
-
+
P -
无变化
M图
斜直线
二次抛物线
凸向即q指向
出现尖点
尖点指向即P的指向
发生突变
m
两直线平行
注备
Q=0区段M图 平行于轴线
Q=0处,M 达到极值
40
20 60
40
A M图 (kN· m)
80
A
20
80
Q图(kN)
B
160
160
D
40
B 0
20
N BD
40
A
N BA
M 图 (kN· m)
20 60
20
80
Q图(kN)
N图(kN)
N BA 20kN
M BA 160kN m
QBA
C
4m
VB 60
M BA
20 kN/m
160 kN· m B B 20 kN/m
160
B 4m
20 kN/m
4m
40
H A 80
VA 20
A 2m (a)
80
A
20
A
A (d) M图
2m
(b)
(c)
40kN
N BD
M BD
B 2m
FBy 20kN
Fy 0 FAD Fx 0 FAC
取节点A
取节点C
Fx 0 FCF Fy 0 FCD 0
取节点D
Fy 0 FDF , FDE Fx 0
取节点E
Fy 0 FEG Fx 0 FEF
C
X3
D
M D 0, N1 9P / 5
y
2
M O 0,Y3 3a P 2a YA a 0,Y3 P / 5 13 N3 P 10
3.作2-2截面,取左部作隔离体
YA 2a
2a / 3
Y3
13a / 3
a
练习、求图示平面桁架结构中指定杆件的内力。 1’ 2’ 3’ 4’ e c d a
P/2
D
P F
P J
P L K
P/2
B
YB
A
YA
C
E
G 6 a
I
1.求支座反力
X A 0 YA 3P YB 3P
P
P H
3 a
P/2
D
P F
P J
P L
K
P/2 N AD NCA A N
P/2
B
AC
NCD
C
NCE
YA
XA A
C
E
YA
G 6 a
I
P D
N DF N DE
YB
1.求支座反力 X A 0 YA 3P YB 3P N DA N DC 2.取结点A F y 0, N AD 2 / 2 3P P / 2 0, N AD 5 2P / 2
N2
P sin
N1
N2
N3
(a)N1
N3
( b)
N2 N3
N1 N 2 N 3 P
N1
N2
N3
(c)
N1 N 2 N 3 0
判定图示桁架中的零杆.
A I H G
F
E B C D
P
P
解:AB和BC是零杆. CI是零杆. EG是零杆.
EH是零杆.
上节课内容复习
结点平面汇交力系中,除某一杆件外,其它所有待求内力的杆件均共 线时,则此杆件称为该结点的结点单杆。
A
1
b 2 3 4 5 P P P 6d
4 d d 3
B
VA 1.5P
VB 1.5P
(1)
N a Nb
1’ 2’
Na
1 2
4 d 3
Y 0 M 0
2
Na P VA 0.5P
4 N b d 1.5P 2d 0 3
1.5P
Nb
P
Nb 2.25P
1‘
简支桁架中杆件的名称
上弦杆 腹杆
下弦杆
结间:桁架下弦杆相邻结点间的区间。 结间长度:桁架下弦杆相邻结点间的水平距离。
2.桁架的分类
按几何组成分类:
简单桁架—在基础或一个铰结三角形上依次加二元体构成的 联合桁架—由简单桁架按基本组成规则构成 复杂桁架—非上述两种方式组成的静定桁架
简单桁架
联合桁架
简单桁架
0 0