规律探究专题训练

合集下载

七上专题训练(规律探究)

七上专题训练(规律探究)

专项训练——探究规律1. 按每组数字的规律填空:(1)2,5,8, 。

(2)103,81,59, ,15。

(3)11,17,23,( 29 ),35。

A.25 B.27 C.29 D.31(4)123,456,789,( )。

A.1122 B.101112 C.11112 D.100112(5)2,1,1/2,( )。

A.0 B.1/4 C.1/8 D.-1(6)2,8,32,128,( )。

A.256 B.342 C.512 D.1024(7)2,-4,8,-16,( )。

A.32 B.64 C.-32 D.-64(8)2,4,16, 。

(9) 1,2,5,26, 。

(10)65,35,17,( ),1 A.15 B.13 C.9 D.3(11)1,4,16,49,121,( ) A.256 B.225 C.196 D.169(12)2,3,10,15,26,( ) A.29 B.32 C.35 D.372. 观察下列各数:4、10、16、22、28……。

按此规律写出的第100个数是 ; 第n 个数是 .3.“观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2014个球止,共有实心球 个。

” 4. 将一些形状相同的小五角星如下图所示的规律摆放,据此规律,第10个图形有 个五角星.第1个图形 第2个图形 第3个图形 第4个图形5. 有一组数: 269,177,105,53,21,请观察它们的构成规律,用你发现的规律写出第n (n 为正整数)个数为________________.6. 用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星________个.…。

(完整)七年级数学专题规律探究题

(完整)七年级数学专题规律探究题

七年级数学专题-----规律探究题题型一:数字变化类问题1 •观察下列按顺序排列的等式:引二1-*,2誌-書,巧€ 一+,4冷一+ 试猜想第n个等式(n为正整数):a n= ______________________ .2. 下表中的数字是按一定规律填写的,表中a的值应是____ .1 2 3 5 8 13 a-2 3 5 8 13 21 34 …3. ___ 观察下面的单项式:a,- 2a2, 4a3,- 8a4, ••根据你发现的规律,第8个式子是.4. 有一组等式:1222 3232,22326272,32 42 122132,4252202212……请观察它们的构成规律,用你发现的规律写出第8个等式为__________5. 把奇数列成下表,13113213L59152333111725h-itn! ■ b ■2737—39——根据表中数的排列规律,则上起第8行,左起第6列的数是5.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”。

而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据。

已知二进十进位制0123456• • •请将二进制数10101010(二)写成十进制数为_______ .6 •观察下列各数,它们是按定规律排列的,则第n个数是15 3116?眈'7.观察一列单项式:1x, 3x2, 5x2, 7x, 9x2, 11x2,…,则第2013个单项式是8•有这样一组数据a i, a2, a3, •• a,满足以下规律:且I三・❻尸—-—3 勒二 ~-—j …,且—-------- (n多且n为正整数),贝U宠。

1312 1 _ J1 _a2n1 - a n_ L的值为________ (结果用数字表示).9. 观察下列各式的计算过程:5X 5=0X 1 X 100+25,15X 15=1X 2X 100+25,25X 25=2X 3X 100+25,35X 35=3X 4X 100+25,请猜测,第n个算式(n为正整数)应表示为_____________________________ 10. 如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是A. M=mnB. M=n(m+1)C. M=mn+1D. M=m(n+1)11. 观察下列等式:31=3, 32=9, 33=27, 34=81, 35=243, 36=729, 37=2187… 解答下列问题:3+32+33+3仃+32013的末位数字是()A. 0B. 1C. 3D. 712. ____________________________________________ 如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2013个格子中的整数是_______________________________ .13. 将连续正整数按以下规律排列,则位于第 7行第7列的数x 是85篦一如邕二苑董三列策囚列篝三到邕七扪・・・第一行 136 10 1521 n 重二行 2 5 9 14 20 27 :第三行 413 15--- ■策四行712 1$25■・■11 17 2415 23 ■ ■•2215•电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个 方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数 字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标,此WORD 中为方便大家识别与印刷,我还是把图乙中的0都标出来吧,以示与未掀开者的 区别),如图甲中的“ 3”表示它的周围八个方块中仅有 3个埋有雷.图乙第一行 从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有 ___________________________ .(请填入方块上的字母)16. 如图,在△ ABC 中,/ A=m°,/ ABC 和/ACD 的平分线交于点 A,得/ A;/ ABC 和/ACD 的平分线交于点 A ,得/ A;…/A2012BC 和/A 2012CD 的平分线交于 点 A ?013,贝 A 2013= ______ 度。

七年级数学下册 专题训练:平面直角坐标系中点的规律探究(精选30题)(解析版)

七年级数学下册 专题训练:平面直角坐标系中点的规律探究(精选30题)(解析版)

七年级下册数学《第七章平面直角坐标系》专题:平面直角坐标系中点的规律探究一、选择题(共10题)1.(2022秋•定远县期中)如图,在平面直角坐标系中,点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…依此规律跳动下去,点A第2022次跳动至点A2022的坐标是()A.(505,1009)B.(﹣506,1010)C.(﹣506,1011)D.(506,1011)【分析】设第n次跳动至点A n,根据部分点A n坐标的变化找出变化规律“A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”,依此规律结合2022=505×4+2即可得出点A2022的坐标.【解答】解:设第n次跳动至点A n,观察,发现:A(﹣1,0),A1(﹣1,1),A2(1,1),A3(1,2),A4(﹣2,2),A5(﹣2,3),A6(2,3),A7(2,4),A8(﹣3,4),A9(﹣3,5),…,∴A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2022=505×4+2,∴A2022(506,1011).故选:D.【点评】本题考查了规律型中点的坐标,根据部分点A n坐标的变化找出变化规律是解题的关键.2.(2022秋•古田县期中)在平面直角坐标系中,设一质点M自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…如此继续运动下去.设P n(x n,y n),n=1,2,3…,则x1+x2+…+x2017的值为()A.2016B.2017C.﹣2016D.2015【分析】根据给定的平移规律,可得x1=1,x2=﹣1,x3=﹣1,x4=3,进一步可得x1+x2+x3+x4=1+(﹣1)+(﹣1)+3=2,同理可得x5+x6+x7+x8=3+(﹣3)+(﹣3)+5=2,再根据2017÷4=504...1,进一步计算即可.【解答】解:根据题意,可得x1=1,x2=﹣1,x3=﹣1,x4=3,∴x1+x2+x3+x4=1+(﹣1)+(﹣1)+3=2,同理可得x5+x6+x7+x8=3+(﹣3)+(﹣3)+5=2,∵2017÷4=504...1,∴x2017=2×504+1=1009,∴x1+x2+…+x2017=504×2+1009=2017,故选:B.【点评】本题考查了坐标与平移,找出点坐标之间的规律是解题的关键.3.(2022秋•李沧区期末)如图,在平面直角坐标系中,A1(1,﹣2),A2(2,0),A3(3,2),A4(4,0),…根据这个规律,点A2023的坐标是()A.(2022,0)B.(2023,0)C.(2023,2)D.(2023,﹣2)【分析】由图形得出点的横坐标依次是1、2、3、4、…、n,纵坐标依次是﹣2、0、2、0、﹣2、0、2、…,四个一循环,继而求得答案.【解答】解:观察图形可知,点的横坐标依次是1、2、3、4、…、n,纵坐标依次是﹣2、0、2、0、﹣2、0、2、…,四个一循环,2023÷4=505……3,所以点A2023坐标是(2023,2).故选:C.【点评】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解题的关键是根据图形得出规律.4.(2021春•浉河区期末)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次向右跳动5个单位至点A4(3,2),…,以此规律跳动下去,点A第2021次跳动至点A2021的坐标是()A.(﹣1009,1009)B.(﹣1010,1010)C.(﹣1011,1011)D.(﹣1012,1012)【分析】根据点的坐标、坐标的平移寻找规律即可求解.【解答】解:因为A1(﹣1,1),A2(2,1),A3(﹣2,2),A4(3,2),A5(﹣3,3),A6(4,3),A7(﹣4,4),A8(5,4),…A2n﹣1(﹣n,n),A2n(n+1,n)(n为正整数),所以2n﹣1=2021,n=1011,所以A2020(﹣1011,1011),故选:C.【点评】本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.5.(2021秋•九江期末)如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙都从点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2022次相遇点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,0)D.(﹣1,﹣1)【分析】根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律.【解答】解:由已知,矩形周长为12,∵甲、乙速度分别为1单位/秒,2单位/秒,则两个物体每次相遇时间间隔为121+2=4秒,则两个物体相遇点依次为(﹣1,1)、(﹣1,﹣1)、(2,0),∵2022=3×673…3,∴第2022次两个物体相遇位置为(2,0),故选:A.【点评】本题为平面直角坐标系内的动点坐标规律探究题,解答关键是找到两个物体相遇的位置的变化规律.6.(2022春•启东市期中)如图,在平面直角坐标系xOy中,点A坐标是(1,1).若记点A坐标为(a1,a2),则一个点从点A出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8)…,每个点的横纵坐标都是整数,按此规律一直运动下去,则a2020+a2021+a2022的值为()A.2021B.2022C.1011D.1012【分析】观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2021=1011,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,进而可得结果.【解答】解:由直角坐标系可知A(1,1),B(2,﹣1),C(3,2),D(4,﹣2),……,即a1=1,a2=1,a3=2,a4=﹣1,a5=3,a6=2,a7=4,a8=﹣2,……,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2021=1011,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,∴a2021=﹣505,2023÷4=505……3,∴a2022=506,故a2020+a2021+a2022=1012,故选:D.【点评】本题主要考查了规律型:点的坐标,探索数字与字母规律是解题关键.7.(2022•浉河区校级开学)如图,在平面直角坐标系中,A1(2,0),B1(0,1),A1B1的中点为C1;A2(0,3),B2(﹣2,0),A2B2的中点为C2;A3(﹣4,0),B3(0,﹣3),A3B3的中点为C3;A4(0,﹣5),B4(4,0),A4B4的中点为C4;…;按此做法进行下去,则点C2022的坐标为()A.(﹣1012,−20232)B.(﹣1011,20232)C.(﹣1011,−20232)D.(﹣1012,−20212)【分析】根据题意得点∁n的位置按4次一周期的规律循环出现,可求得点C2022在第二象限,从而可求得该题结果.【解答】解:由题意可得,点∁n的位置按4次一周期的规律循环出现,∵2022÷4=505……2,∴点C2022在第二象限,∵位于第二象限内的点C2的坐标为(﹣1,32),点C6的坐标为(﹣3,72),点C10的坐标为(﹣5,112),……∴点∁n的坐标为(−2,r12),∴当n=2022时,−2=−20222=−1011,r12=2022+12=20232,∴点C2022的坐标为(﹣1011,20232),故选:B.【点评】此题考查了点的坐标方面规律性问题的解决能力,关键是能根据题意确定出该点的出现规律.8.(2022春•冷水滩区校级期中)如图,已知A1(1,2)A2(2,2)A3(3,0)A4(4,﹣2)A5(5,﹣2)A6(6,0)……,按这样的规律,则点A2021的坐标为()A.(2021,2)B.(2020,2)C.(2021,﹣2)D.2020,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【解答】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2021÷6=336…5,∴点A2021的位于第337个循环组的第5个,∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A2021的坐标为(2021,﹣2).故选:C.【点评】本题考查了平面直角坐标系中的点的规律问题,发现题中的规律并正确计算出点A2021所处的循环组是解题的关键.9.(2022春•宣化区期末)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2022秒时,点P的坐标是()A.(2021,0)B.(2021,﹣1)C.(2022,1)D.(2022,0)【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:12×2×1=,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒2个单位长度,∴点P1秒走12个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2022÷4=505余2,∴P的坐标是(2022,0),故选:D.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,﹣1)…根据这个规律探索可得,第100个点的坐标()A.(14,0)B.(14,﹣1)C.(14,1)D.(14,2)【分析】观察图形可知,横坐标相等的点的个数与横坐标相同,根据求和公式求出第100个点的横坐标以及在这一横坐标中的所有点中的序数,再根据横坐标是奇数时从上向下排列,横坐标是偶数时从下向上排列,然后解答即可.【解答】解:由图可知,横坐标是1的点共有1个,横坐标是2的点共有2个,横坐标是3的点共有3个,横坐标是4的点共有4个,…,横坐标是n的点共有n个,1+2+3+…+n=or1)2,当n=13时,13×(13+1)2=91,当n=14时,14×(14+1)2=105,所以,第100个点的横坐标是14,∵100﹣91=9,∴第100个点是横坐标为14的点中的第9个点,∵第142=7个点的纵坐标是0,∴第9个点的纵坐标是2,∴第100个点的坐标是(14,2).故选:D.【点评】本题是对点的变化规律的考查,观察得到横坐标相等的点的个数与横坐标相同是解题的关键,还要注意横坐标为奇数和偶数时的排列顺序不同.二、填空题(共10题)11.(2022春•东洲区期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2022次运动后,动点P的坐标是.A.(2022,0)B.(﹣2022,0)C.(﹣2022,1)D.(﹣2022,2)【分析】观察图形可知:每4次运动为一个循环,并且每一个循环向左运动4个单位,用2022÷4可判断出第2022次运动时,点P在第几个循环第几次运动中,进一步即可计算出坐标.【解答】解:动点P的运动规律可以看作每运动四次为一个循环,每个循环向左运动4个单位,∵2022÷4=505……2,∴第2022次运动时,点P在第506次循环的第2次运动上,∴横坐标为﹣(505×4+2)=﹣2022,纵坐标为0,∴此时P(﹣2022,0).故答案为:(﹣2022,0).【点评】本题考查规律型:点坐标,解答时注意探究点的运动规律,又要注意动点的坐标的象限符号.12.(2022秋•肃州区校级期末)如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…则点A2022的坐标是.【分析】根据题意可以发现规律:A4n(﹣n,n),A4n+1(n+1,n),A4n+2(n+1,﹣n ﹣1),A4n+3(﹣n﹣1,﹣n﹣1),根据规律求解即可.【解答】解:根据题意可以发现规律:A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),A6(2,﹣2),A7(﹣2,﹣2),A8(﹣2,2),…,∴A4n(﹣n,n),A4n+1(n+1,n),A4n+2(n+1,﹣n﹣1),A4n+3(﹣n﹣1,﹣n﹣1),∵2022=4×505+2,∴点A2022的坐标为(506,﹣506),故答案为:(506,﹣506).【点评】本题主要考查规律性:点的坐标,读懂题意,找出点的坐标规律是解答此题的关键.13.(2021秋•同安区期末)如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1)…,按照这样的规律下去,点A2021的坐标为.【分析】观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),…,A2n﹣1(3n﹣1,n﹣1),由2021是奇数,且2021=2n﹣1,则可求A2n﹣1(3032,1010).【解答】解:观察图形可得,A1(2,0),A3(5,1),A5(8,2),…,A2n﹣1(3n﹣1,n﹣1),A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),∵2021是奇数,且2021=2n﹣1,∴n=1011,(3032,1010),∴A2n﹣1故答案为(3032,1010).【点评】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.14.(2022•嘉峪关一模)如图,平面直角坐标系xOy内,动点P按图中箭头所示方向依次运动,第1次从点(0,1)运动到点(1,0),第二次运动到点(2,﹣2),第3次运动到点(3,0),……按这样的运动规律,动点P第2022次运动到的点的坐标是.【分析】根据图形分析点P的运动规律:第n次运动到的点的横坐标为n,纵坐标每四次为一个循环,即可得到答案.【解答】解:∵第1次运动到点(1,0),第二次运动到点(2,﹣2),第3次运动到点(3,0),…,∴第n次运动到的点的横坐标为n,纵坐标每四次一个循环,从第一次运动到的纵坐标开始,分别为0、﹣2、0、1、…,∵2022÷4=505⋯2,∴动点P第2022次运动到的点的坐标是(2022,﹣2),故答案为:(2022,﹣2).【点评】此题考查了图形坐标的规律,正确理解图形运动坐标变化规律,得到点P的坐标是解题的关键.15.(2022秋•涡阳县校级月考)如图,一动点在第一象限内及x轴,y轴上运动,第一分钟,它从原点运动到(1,0),第二分钟,从(1,0)运动到(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向来回运动,每分钟运动1个单位长度.第30分钟,动点所在的位置的坐标是.【分析】根据移动次数与点的坐标的所呈现的规律进行计算即可.【解答】解:根据移动的方向,距离所呈现的规律可得,当移动到点(1,0)时,对应的移动次数为1次,当移动到点(2,0)时,对应的移动次数为4+2×2=8次,当移动到点(3,0)时,对应的移动次数为8+1=9次,当移动到点(4,0)时,对应的移动次数为9+3×2+1+4×2=24次,当移动到点(5,0)时,对应的移动次数为24+1=25次,所以移动30次,所对应的点的坐标为(5,5),故答案为:(5,5).【点评】本题考查点的坐标,发现移动次数与点的坐标所呈现的规律是正确解答的关键.16.(2022•绥化三模)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,点P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2),…,根据这个规律,点P2022的坐标为.【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限,被4除余3的点在第一象限的角平分线上,点P2022的在第三象限,且横纵坐标的绝对值=2022÷4的商,纵坐标是2022÷4的商+1,再根据第三项象限内点的符号得出答案即可.【解答】解:∵2022÷4=505…2,∴点P2022在第二象限,∵P6(﹣1,2),P10(﹣2,3),P14(﹣3,4),…,6÷4=1…2,10÷4=2…2,14÷2=3..2,…,∴P2022(﹣505,506).故答案为:(﹣505,506).【点评】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.17.(2022秋•杏花岭区校级期中)在平面直角坐标系xOy中,对于点P(x,y),我们把点P1(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,⋯,A n,若点A1的坐标为(3,1),则点A2022的坐标为.【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2022除以4,根据商和余数的情况确定点A2022的坐标即可.【解答】解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2022÷4=505余2,∴点A2022的坐标与A2的坐标相同,为(0,4);故答案为:(0,4).【点评】此题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.18.(2022春•长安区校级期中)如图1,弹性小球从点P(0,3)出发,沿图中所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到长方形的边时,记为点P1,第2次碰到长方形的边时,记为点P2,…,第n次碰到长方形的边时,记为点P n,则点P3的坐标是;点P2022的坐标是.【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2022除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:如图,根据图形知点P3的坐标是(8,3),根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(0,3),∵2022÷6=337,当点P第2021次碰到矩形的边时为第337个循环组的第6次反弹,点P的坐标为(0,3),故答案为:(8,3),(0,3).【点评】本题考查了矩形的性质、点的坐标的规律;作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.19.(2022春•五华区校级期中)如图,在直角坐标系中,长方形OABC的长为2,宽为1,将长方形OABC沿x轴翻转1次,点A落在A1处,翻转2次,点A落在A2处,翻转3次,点A落在A3处(点A3与点A2重合),翻转4次,点A落在A4处,以此类推…,若翻转2022次,点A落在A2022处,则A2022的坐标为.【分析】探究规律,利用规律解决问题即可.【解答】解:由题意A1(3,2),A2(A3)(5,0),A4(6,1),•••,发现4次一个循环,∵2022÷4=505.....2,∴A2022的纵坐标与A2相同,横坐标=505×6+5=3035,∴A2022(3035,0),故答案为:(3035,0).【点评】本题考查坐标与图形的变化﹣对称,规律型问题,解题的关键是学会探究规律的方法,属于中考填空题中的压轴题.20.(2022春•江岸区校级月考)如图,在平面直角坐标系中,有若干个横坐标,纵坐标均为整数的点.其顺序按图中“→”方向依次排列:(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→…根据这个规律,第87个点的坐标为,第2022个点的坐标为.【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点的横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束.例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,......,右下角的点的横坐标为9时,共有92=81个,9是奇数,以横坐标为9,纵坐标为0的点结束,故第87个点的坐标为(10,5),右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),∴第2020个点的坐标为(45,3)故答案为:(10,5),(45,3).【点评】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.三、解答题(共10题)21.(2022秋•无为市月考)在平面直角坐标系中,一个动点A从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次只移动1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:A4,A6,A12,A14.(2)按此规律移动,n为正整数,则点A4n的坐标为,点A4n+2的坐标为.(3)动点A从点A2022到点A2023的移动方向是.(填“向上”、“向右”或“向下”)【分析】(1)根据点的坐标变化即可填写各点的坐标;(2)根据(1)发现规律即可写出点A4n的坐标(n为正整数);(3)根据(2)发现的规律,每四个点一个循环,进而可得蜗牛从点A2020到点A2021的移动方向.【解答】解:(1)根据点的坐标变化可知:各点的坐标为:A4(2,0),A6(3,1),A12(6,0),A14(7,1);故答案为:(2,0),(3,1),(6,0),(7,1);(2)根据(1)发现:点A4n的坐标(n为正整数)为(2n,0);点A4n+2的坐标为(2n+1,1);故答案为:(2n,0),(2n+1,1);(3)因为每四个点一个循环,所以2023÷4=505…3.所以从点A2022到点A2023的移动方向是向下.故答案为:向下.【点评】本题考查了规律型﹣点的坐标,解决本题的关键是根据点的坐标变化发现规律,总结规律,运用规律.22.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…(1)填写下列各点的坐标:P9(、),P12(、),P15(、)(2)写出点P3n的坐标(n是正整数);(3)点P60的坐标是(、);(4)指出动点从点P210到点P211的移动方向.【分析】由题意可以知道,动点运动的速度是每次运动一个单位长度,(0,1)→(1,1)→(1,0)→(1,﹣1)……通过观察找到有规律的特殊点,如P3、P6、P9、P12,发现其中规律是脚标是3的倍数的点,依次排列在x轴上,且相距1个单位,明确这个规律即可解决以上所有问题.【解答】解:(1)由动点运动方向与长度可得P3(1,0),P6(2,0),可以发现脚标是3的倍数的点,依次排列在x轴上,且相距1个单位,即动点运动三次与横轴相交,故答案为P9(3,0),P12(4、0),P15(5、0).(2)由(1)可归纳总结点P3n的坐标为P3n(n,0),(n是正整数);(3)根据(2),∵60=3×20,∴点P60的横坐标是20故点P60的坐标是(20、0)故答案为(20、0).(4)∵210=3×70,符合(2)中的规律∴点P210在x轴上,又由图象规律可以发现当动点在x轴上时,偶数点向上运动,奇数点向下运动,而点P210是在x轴上的偶数点所以动点从点P210到点P211的移动方向应该是向上.【点评】本题是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定动点移动的数字与方向上的规律,然后再进一步按规律解决要求的点的位置.23.(2021秋•长丰县期末)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2、4、6、8、…,顶点依次用A1、A2、A3、A4、…表示.(1)请直接写出A5、A6、A7、A8的坐标;(2)根据规律,求出A2022的坐标.【分析】(1)看图观察即可直接写出答案;(2)根据正方形的性质找出部分A n点的坐标,根据坐标的变化找出变化规律“A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,﹣n﹣1)(n 为自然数)”,依此即可得出结论.【解答】解:(1)A5(﹣2,﹣2),A6(﹣2,2),A7(2,2),A8(2,﹣2);(2)观察发现:A1(﹣1,﹣1),A2(﹣1,1),A3(1,1),A4(1,﹣1),A5(﹣2,﹣2),A6(﹣2,2),A7(2,2),A8(2,﹣2),A9(﹣3,﹣3),…,∴A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,﹣n﹣1)(n为自然数),∵2022=505×4+2,∴A2022(﹣506,506).【点评】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,﹣n﹣1)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标的变化找出变化规律是关键.24.一个质点在第一象限及x轴、y轴移动,在第一秒时,它从原点移动到(0,1),然后按着下列左图中箭头所示方向移动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动1个单位.(1)该质点移动到(1,1)的时间为秒,移动到(2,2)的时间为秒,移动到(3,3)的时间为秒,…,移动到(n,n)的时间为秒.(2)该质点移动到(7,4)的时间为秒.【分析】(1)根据图形可得出质点移动到(1,1),(2,2),(3,3)的时间,根据规律可得出质点移动(n,n)的时间;(2)现有(1)的结论得出(7,7)的时间,再加上3即可得出移动到(7,4)的时间.【解答】解:(1)由图可知移动到(1,1)的时间为2秒,移动到(2,2)的时间为6秒,移动到(3,3)的时间为12秒,根据变化规律可得移动到(n,n)的时间为n(n+1),故答案为:2,6,12,n(n+1);(2)由(1)可得移动到(7,7)的时间为7×8=56,56+3=59,∴移动到(7,4)的时间为59秒,故答案为59.【点评】本题主要考查点的坐标的变化规律,关键是要能找到质点移动到(n,n)的时间的规律.25.(2022•马鞍山一模)如图,某小区绿化区的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中.已知小正方形的边长为1,A1的坐标为(2,2),A2的坐标为(5,2).(1)A3的坐标为,A n的坐标为用含n的代数式表示;(2)若护栏长为2020,则需要小正方形个,大正方形个.【分析】(1)根据已知条件与图形可知,大正方形的对角线长为2,由此可得规律:A1,A 2,A 3,…,A n 各点的纵坐标均为2,横坐标依次大3,由此便可得结果;(2)先求出一个小正方形与一个大正方形所构成的护栏长度,再计算2020米包含多少这样的长度,进而便可求出结果.【解答】解:(1)∵A 1的坐标为(2,2)、A 2的坐标为(5,2),∴A 1,A 2,A 3,…,A n 各点的纵坐标均为2,∵小正方形的边长为1,∴A 1,A 2,A 3,…,A n 各点的横坐标依次大3,∴A 3(5+3,2),A n (2+3+3+⋅⋅⋅+3︸(K1)个3,2),即A 3(8,2),A n (3n ﹣1,2),故答案为(8,2);(3n ﹣1,2);(2)∵2020÷3=673…1,∴需要小正方形674个,大正方形673个.【点评】本题是点的坐标的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.26.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变成△OA 2B 2,第三次将△OA 2B 2变成△OA 3B 3,已知A (1,5),A 1(2,5),A 2(4,5),A 3(8,5);B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后三角形有何变化,找出规律.按此规律将△OA 3B 3变成△OA 4B 4,则A 4的坐标是,B 4的坐标是.(2)若按第(1)题中找到的规律将△OAB 进行n 次变换,得到△OA n B n ,比较每次变换中三角形顶点的坐标有何变化,找出规律,推测A n 的坐标是,B n 的坐标是.【分析】(1)对于A 1,A 2,A n 坐标找规律可将其写成竖列,比较从而发现A n 的横坐标为2n ,而纵坐标都是5,同理B 1,B 2,B n 也一样找规律.(2)根据第一问得出的A 4的坐标和B 4的坐标,再此基础上总结规律即可知A n 的坐标是(2n ,5),B n 的坐标是(2n +1,0).【解答】解:(1)因为A(1,5),A1(2,5),A2(4,5),A3(8,5)…纵坐标不变为5,同时横坐标都和2有关,为2n,那么A4(16,5);因为B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,同时横坐标都和2有关为2n+1,那么B的坐标为B4(32,0);故答案为:(16,5),(32,0);(2)由上题第一问规律可知A n的纵坐标总为5,横坐标为2n,B n的纵坐标总为0,横坐标为2n+1,∴A n的坐标是(2n,5),B n的坐标是(2n+1,0).故答案为:(2n,5),(2n+1,0).【点评】本题考查了学生观察图形及总结规律的能力,涉及的知识点为:平行于x轴的直线上所有点纵坐标相等,x轴上所有点的纵坐标为0.27.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…A n,图形与y轴正半轴的交点依次记作B1(0,2),B2(0,6),…B n,图形与x轴负半轴的交点依次记作C1(﹣3,0),C2(﹣7,0),…∁n,图形与y轴负半轴的交点依次记作D1(0,﹣4),D2(0,﹣8),…D n,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:(1)请分别写出下列点的坐标:A3,B3,C3,D3;(2)请分别写出下列点的坐标:A n,B n,∁n,D n;(3)请求出四边形A5B5C5D5的面积.【分析】(1)根据点的坐标规律解答即可;(2)根据点的坐标规律解答即可;(3)根据四边形A5B5C5D5的面积=△5B5+△5B5+△5B5+△5B5计算即可.【解答】解:(1)A3(9,0),B3(0,10),C3(﹣11,0),D3(0,﹣12).(2)A n(4n﹣3,0),B n(0,4n﹣2),∁n(﹣4n+1,0),D n(0,﹣4n).(3)∵A5(17,0),B5(0,18),C5(﹣19,0),D5(0,﹣20).∴四边形A5B5C5D5的面积=△5B5+△5B5+△5B5+△5B5=12×17×18+12×18×19+12×19×20+12×20×17=684.故答案为:A3(9,0),B3(0,10),C3(﹣11,0),D3(0,﹣12).A n(4n﹣3,0),B n(0,4n﹣2),∁n(﹣4n+1,0),D n(0,﹣4n).【点评】此题考查点的坐标,关键是根据图形得出点的坐标的规律进行分析.28.(2021春•自贡期末)综合与实践问题背景:(1)已知A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出这几个点,并分别找到线段AB和CD中点P1、P2,然后写出它们的坐标,则P1,P2.探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为.拓展应用:(3)利用上述规律解决下列问题:已知三点E(﹣1,2),F(3,1),G(1,4),第四个点H(x,y)与点E、点F、点G中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H的坐标.【分析】(1)根据坐标的确定方法直接描点,:分别读出各点的纵横坐标,即可得到各中点的坐标;(2)根据(1)中的坐标与中点坐标找到规律;(3)利用(2)中的规律进行分类讨论即可答题.【解答】解:(1)如图:A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出它们如下:线段AB和CD中点P1、P2的坐标分别为(2,2)、(﹣1,﹣2)故答案为:(2,2)、(﹣1,﹣2).(2)若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为(1+22,1+22).故答案为:(1+22,1+22).(3)∵E(﹣1,2),F(3,1),G(1,4),∴EF、FG、EG的中点分别为:(1,32)、(2,52)、(0,3)∴①HG过EF中点(1,32)时,r12=1,r42=32解得:x=1,y=﹣1,故H(1,﹣1);②EH过FG中点(2,52)时,−1+2=2,2+2=52解得:x=5,y=3,故H(5,3);③FH过EG的中点(0,3)时,3+2=0,1+2=3解得:x=﹣3,y=5,故H(﹣3,5).∴点H的坐标为:(1,﹣1),(5,3),(﹣3,5).【点评】本题考查了坐标与图形性质.通过此题,要熟记平面直角坐标系中线段中点的横坐标为对应线段的两个端点的横坐标的平均数,中点的纵坐标为对应线段的两个端点的纵坐标的平均数.29.(2022•包河区二模)如图,在平面直角坐标系中,点A1的坐标为(1,0)、点A2的坐标为(2,0)、点A3的坐标为(3,0)、…,过点A1、A2、A3、…分别作x轴垂线,交直线y=x于点B1、B2、B3、…,△OA1B1覆盖的整点(横、纵坐标均为整数的点)的个数记为P1,面积的值记为S1;△OA2B2覆盖的整点的个数记为P2,面积的值记为S2;△OA3B3覆盖的整点的个数记为P3,面积的值记为S3;…(1)由题意可知:P1=3、S1=12;P2=6、S2=2;P3=10、S3=92;则P4=、S4=;(2)P7﹣S7=;。

2023学年浙江七年级数学上学期专题训练专题02 运算思维之规律探究(解析版)

2023学年浙江七年级数学上学期专题训练专题02 运算思维之规律探究(解析版)

专题02运算思维之规律探究专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知一列数1a ,2a ,3a ,…,具有如下规律:211n n n a a a ++=+,2n n a a =(n 是正整数).若11a =,则37a 的值为( )A .1B .5C .7D .11【答案】D【分析】 根据题干公式寻找规律,从而逐步推出结果.【详解】解:由a 2n +1=a n +a n +1,a 2n =a n (n 是正整数)可得:a 37=a 18+a 19=2a 9+a 10=2(a 4+a 5)+a 5=2a 4+3a 5=2a 2+3(a 2+a 3)=5a 2+3a 3=8a 1+3a 2=11a 1=11. 故选:D .【点睛】本题考查数字变化规律,解题关键是根据题中规律拆项.2.把一根起点为0的数轴弯折成如图所示的样子,虚线最下面第1个数字是0,往上第2个数字是6,第3个数字是21,…,则第5个数字是( )A .78B .80C .82D .89【答案】A【分析】 观察根据排列的规律得到第1个数字为0,第2个数字为0加6个数即为6,第3个数字为从6开始加15个数得到21,第4个数字为从21开始加24个数即45,…,由此得到后面加的数比前一个加的数多9,由此得到第5个数字为0+6+(6+9×1)+(6+9×2)+(6+9×3).【详解】解:∵第一个数字为0,第二个数字为0+6=6,第三个数字为0+6+15=21,第四个数字为0+6+15+24=45,第五个数字为0+6+15+24+33=78,故选:A .【点睛】此题主要考查了数字变化规律,发现数在变化过程中各边上点的数字的排列规律是解题关键.3.有一列数:123,,,,n a a a a …,若112a =-,从第2个数起,每一个数都等于“1与它前面的那个数的差的倒数”,那么2021a 的值为( )A .2-B .12-C .23D .3【答案】C【分析】根据每一个数都等于1与它前面那个数的差的倒数多列举几个数字,找出规律即可.【详解】解:a 1=12-,13122⎛⎫--= ⎪⎝⎭, a 2=23,21133-=, a 3=3,132-=-,a 4=12-, …,从上面的规律可以看出每三个数一循环,2021÷3=673......2,∵a 2021=a 2=23, 故选:C .【点睛】本题主要考查数字的变化规律,总结归纳数字的变化规律是解题的关键.4.定义一种对正整数n 的“F ”运算:∵当n 为奇数时,结果为35n +;∵当n 为偶数时,结果为2k n ;(其中k 是使2k n 为奇数的正整数),并且运算可以重复进行,例如,取26n =.则:26134411F F F −−−→−−−→−−−→①②③第一次第二次第三次若49n =,则第2020次“F 运算”的结果是( )A .152B .19C .62D .31【答案】D【分析】计算出n =49时第1、2、3、4、5、6、7次运算的结果,找出规律再进行解答即可求解.【详解】解:本题提供的“F 运算”,需要对正整数n 分情况(奇数、偶数)循环计算,由于n =49为奇数应先进行F ∵运算,即3×49+5=152(偶数),需再进行F ∵运算,即152÷23=19(奇数),再进行F ∵运算,得到3×19+5=62(偶数),再进行F ∵运算,即62÷21=31(奇数),再进行F ∵运算,得到3×31+5=98(偶数),再进行F ∵运算,即98÷21=49(奇数),再进行F ∵运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,2020÷6=336…4,则第2020次“F 运算”的结果是31.故选:D .【点睛】本题考查了有理数的混合运算,既渗透了转化思想、分类思想,又蕴涵了次数、结果规律探索问题,检测学生阅读理解、抄写、应用能力.5.观察图形并判断照此规律从左到右第四个图形是() A.B.C.D.【答案】D【详解】观察图形可知:单独涂黑的角顺时针旋转,只有D符合.故选:D.6.如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A.28B.29C.30D.31【答案】C【详解】分析:根据题目中的图形变化规律,可以求得第个图形中玫瑰花的数量,然后令玫瑰花的数量为120,即可求得相应的n的值,从而可以解答本题.详解:由图可得,第n个图形有玫瑰花:4n,令4n=120,得n=30,故选C.点睛:本题考查图形的变化类,解答本题的关键是明确题意,找出题目中图形的变化规律.7.如图,用火柴棍分别搭一排三角形组成的图形和一排正方形组成的图形,三角形、正方形的每一边用一根火柴棒.如果搭这两个图案一共用了2030根火柴棒,且正方形的个数比三角形的个数的少4个,则搭成的三角形的个数是()A.429B.409C.408D.404【答案】C【分析】根据搭建三角形和正方形一共用了2030根火柴,且三角形的个数比正方形的个数多4个,即可得搭建三角形的个数.【详解】解:∵搭建三角形和正方形一共用了2030根火柴,且三角形的个数比正方形的个数多4个,观察图形的变化可知:搭建n个三角形需要(2n+1)根火柴棍,n个正方形需要(3n+1)根火柴棍,所以2n+1+3(n-4)+1=2030,解得n=408.故选:C.【点睛】本题考查了规律型-图形的变化类,解决本题的关键是根据图形的变化寻找规律.8.将图∵所示的正六边形进行分割得到图∵,再将图∵中最小的某一个正六边形按同样的方式进行分割得到图∵,再将图∵中最小的某一个正六边形按同样的方式进行分割,…,则第2014个图形中,共有()个正六边形.A.4027B.6040C.6061D.10066【答案】B【分析】观察第二个图形,有1+3=4个;第三个图形,有1+3+3=7个;依此类推,发现规律即可解答.【详解】解:第二个图形中有1+3=4个;第三个图形中有1+3+3=7个;...∵第n个图形中有1+3(n-1)=3n-2个;∵第2014个图形中有1+3×(2014-1)=6040个;故选B.【点睛】本题考查了图形的变化规律:结合图形观察前几个具体数值,即可发现每一次总是多3个正六边形是关键.二、填空题9.如表是一组密码的一部分,目前已破译出“守初心”的对应口令是“担使命”,根据上述破译方法,破译出“找差距”的对应口令是_______.【答案】抓落实【分析】根据表格中汉字所在行及列的位置以及对应口令所在行和列的位置探索规律,从而求解.【详解】解:由题意“守”位于第3行第4列,其对应口令“担”位于第1行第3列“初”位于第5行第2列,其对应口令“使”位于第3行第1列“心”位于第4行第7列,其对应口令“命”位于第2行第6列∵位于第n行第m列的汉字,其对应口令位于第(n-2)行第(m-1)列,由此,“找”位于第7行第2列,其对应口令位于第5行第1列,即“抓”“差”位于第3行第2列,其对应口令位于第1行第1列,即“落”“距”位于第5行第7列,其对应口令位于第3行第6列,即“实”故答案为:抓落实.【点睛】本题考查规律探索,准确理解题意,分析汉字所在位置的规律是解题关键. 10.如图各网格中四个数之回都有相同的规律,则第9个网格中右下角的数为_________.【答案】119【分析】从图中观察出各个格子中的数据的规律,找出第九个格子的各个数字即可.【详解】解:由图中的数字可知,左上角的数字是一些连续的正整数,从1开始,左下角的数字是对应的左上角的数据加1,右上角的数字是对应的左下角的数字加2, 右下角的数字是左下角的数字与右上角的数字乘积再加左上角数字的和,故第9个正方形中的左上角的数字是9,左下角的数字是10,右上角的数字是11,右下角的数字是:10×11+9=119;故答案为:119.【点睛】本题考查数字变化的规律的相关内容,解题的关键是找出各个数字之间的规律. 11.观察下列各式:∵2204-=;∵22318-=;∵224212-=;∵225316-=;∵226420-=;……;用含自然数n 的等式表示你发现的规律:__________________.【答案】(n +2)2-n 2=4(n +1)【分析】分别列出n =0,1,2,3,4,5…的情况,再进行总结归纳即可.【详解】解:∵n =0,(0+2)2-02=4×1,∵n =1,(1+2)2-12=4×2,∵n =2,(2+2)2-22=4×3,∵n =3,(3+2)2-32=4×4,∵n =4,(4+2)2-42=4×5,…,所以n =n 时,(n +2)2-n 2=4(n +1),故答案为:(n +2)2-n 2=4(n +1).【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.12.设123,,a a a ,…是一列正整数,其中1a 表示第一个数,2a 表示第二个数,……,n a 表示第n 个数(n 是正整数).若12a =,()()221411n n n a a a +=---,则(1)2a =_______(2)2021a =______.【答案】4 4042【分析】先将4a n =(a n +1-1)2-(a n -1)2,变形,结合a 1=2,a 1,a 2,a 3……是一列正整数,得出递推公式a n +1=a n +2,进而可得a n =2n ,将n =2021代入即可求得答案.【详解】解:∵a 1=2,4a n =(a n +1-1)2-(a n -1)2,a 1,a 2,a 3……是一列正整数,∵a n -1≥0,(a n +1-1)2=(a n -1)2+4a n =(a n +1)2,∵a n +1-1=a n +1,∵a n +1=a n +2,∵a 1=2,∵a 2=4,a 3=6,a 4=8,a 5=10,…∵a n =2n ,∵a 2021=2×2021=4042.故答案为:4;4042.【点睛】本题考查了数字的变化规律,由已知条件推出递推关系式,进而得出含n 字母的各项的表达式,是解题的关键.13.观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________. 【答案】()221n n --.【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可.【详解】解:∵22110=-,22321=-,22532=-,…∵第n 个等式为:()22211n n n -=-- 故答案是:()221n n --.【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键.14.数202020212022379⋅⋅的个位数字是____.【答案】7【分析】由3n 的个位数字是3,9,7,1四次一循环,7n 的个位数字是7,9,3,1四次一循环,9n 的个位数字是9,1,9,1四次一循环,继而可以求得32009×72010×132011的个位数字.【详解】解:∵3n (n 为从1开始的正整数)的个位数字是3,9,7,1四次一循环, 7n 的个位数字是7,9,3,1四次一循环,9n 的个位数字是9,1,9,1四次一循环,又∵2020÷4=505,2021÷4=505…1,2022÷4=505…2,∵32020的末尾数字为1,72021的末尾数字为7,92022的末尾数字为1,∵1×7×1=7,∵32020×72021×92022的个位数字是7.故答案为:7.【点睛】此题考查了尾数特征.此题难度适中,注意得到3,7,9为底数的整数幂的个位数字的规律是解此题的关键.15.阳阳和明明玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台阶数为一级、二级、三级…逐步增加时,楼梯的上法数依次为1,2,3,5,8,13,21,…(这就是著名的裴波那契数列),请你仔细观察这列数的规律后回答:(1)上10级台阶共有__________种上法.(2)这列数的前2020个数中共有________个偶数.【答案】89 673【分析】(1)认真观察不难发现,这列数中,任意相邻两个数的和都等于相邻的后一个数,也就是第10个数应该是第8个、9个的和;(2)观察发现,每3个数中必有一个偶数,且偶数在3个数中间,依此规律可求出问题答案.【详解】解:(1)∵1+2=3,2+3=5,3+5=8,5+8=13,8+13=21,13+21=34,21+34=55,34+55=89,∵上10级台阶共有89种上法;(2)∵2020÷3=673…1,∵偶数个数为673个.【点睛】本题考查了数字型规律,根据已知条件找寻数列中的规律是解题的关键.16.数列1,1,2,3,5,8,13,21,34,55,…的排列规律:前两个数是1,从第3个数开始,每一个数都是它前两个数的和,这个数列叫做斐波契数列,在斐波契数列前2020个数中共有_______个偶数.【答案】673【分析】由于数列1,1,2,3,5,8,13,21,34,55,…中是两个奇数然后一个偶数,接着又是两个奇数,一个偶数,由此即可确定斐波那契数列的前2020个数中共有多少个偶数.【详解】∵数列1,1,2,3,5,8,13,21,34,55,…,中是两个奇数然后一个偶数,而÷=⋅⋅⋅⋅⋅⋅;余数是1,那么这个数列的第2020个数是奇数,202036731∵斐波那契数列的前2020个数中共有673个偶数.故答案为:673.【点睛】此题主要考查了数字的变化规律,解题时首先正确理解题意,然后根据题意找出隐含的规律即可解决问题.17.如图,每一图中有若干个大小不同的菱形,第一幅图中有1个菱形,第二幅图中有3个菱形,第三幅图中有5个菱形,如果第n幅图中有2021个菱形,则n为____________.【答案】1011【分析】根据题意分析可得:第1幅图中有1个,第2幅图中有2×2-1=3个,第3幅图中有2×3-1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.【详解】解:根据题意分析可得:第1幅图中有1个.第2幅图中有2×2-1=3个.第3幅图中有2×3-1=5个.第4幅图中有2×4-1=7个.….可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n-1)个.当图中有2021个菱形时,2n-1=2021,所以:n=1011,故答案为:1011.【点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.18.如图,边长为12320202021、、、、的正方形套在一起,形成一个庞大的回宫格,则阴影部分的面积是_______.【答案】2043231【分析】若只有1个阴影部分,则面积为20212-20202,有2个阴影部分,面积为(20212-20202)+(20192-20182),…【详解】解:阴影部分的面积为(20212-20202)+(20192-20182)+(20172-20162)+…+(32-22)+1=2021+2020+2019+2018+…+3+2+1=() 1202120212+⨯=1011×2021=2043231,故答案为:2043231.【点睛】本题考查图形的变化规律;得到阴影部分面积的组成是解决本题的难点;找到相应的计算方法是解决本题的突破点.19.如图,各网格中四个数之间都有相同的规律,则第9个网格中右下角的数为______.【答案】119【分析】观察序号与网格中上面最左边的数字的关系,第二个数字与序号的关系,左下角的数字与序号的关系,右下角数字与上面所说三个数字的关系,确定好计算即可【详解】根据题意,得网格中上面最左边的数字等于序号,第二个数字与序号+1,左下角的数字与序号+2,右下角数字等于对角线上的数字积加上序号,∵第n个网格中,右下角的数字=(n+1)(n+2)+n,当n=9时,(n+1)(n+2)+n=10×11+9=119,故答案为:119.【点睛】本题考查了数字中规律,仔细思考各数字与序号的关系是解题的关键.2,3,20.把所有的正整数按如图所示规律排列形成数表.若正整数6对应的位置记为() 12,7对应的正整数是_______.则()【答案】138【分析】2,3,可得表示方法,观察出1行1根据表格中的数据,以及正整数6对应的位置记为()列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解决问题.【详解】2,3,解:∵正整数6对应的位置记为()即表示第2行第3列的数,12,7表示第12行第7列的数,∵()由1行1列的数字是12-0=12-(1-1)=1,2行2列的数字是22-1=22-(2-1)=3,3行3列的数字是32-2=32-(3-1)=7,…n行n列的数字是n2-(n-1)=n2-n+1,∵第12行12列的数字是122-12+1=133,∵第12行第7列的数字是138,故答案为:138.【点睛】此题考查观察分析归纳总结顾虑的能力,解答此题的关键是找出两个规律,即n 行n 列数的特点为(n 2-n +1),且每一行的第一个数字逆箭头方向顺次减少1,此题有难度. 21.数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1次点A 向左移动3个单位长度至点1A ,第2次从点1A 向右移动6个单位长度至点2A ,第3次从点2A 向左移动9个单位长度至点3A ,…,按照这种移动方式进行下去,如果点n A 与原点的距离不小于20,那么n 的最小值是_______. 【答案】13 【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,于是可得到A 13表示的数为-17-3=-20,A 12表示的数为16+3=19,则可判断点A n 与原点的距离不小于20时,n 的最小值是13. 【详解】解:第一次点A 向左移动3个单位长度至点A 1,则A 1表示的数,1-3=-2; 第2次从点A 1向右移动6个单位长度至点A 2,则A 2表示的数为-2+6=4; 第3次从点A 2向左移动9个单位长度至点A 3,则A 3表示的数为4-9=-5; 第4次从点A 3向右移动12个单位长度至点A 4,则A 4表示的数为-5+12=7; 第5次从点A 4向左移动15个单位长度至点A 5,则A 5表示的数为7-15=-8; …则A 7表示的数为-8-3=-11,A 9表示的数为-11-3=-14,A 11表示的数为-14-3=-17,A 13表示的数为-17-3=-20,A 6表示的数为7+3=10,A 8表示的数为10+3=13,A 10表示的数为13+3=16,A 12表示的数为16+3=19,所以点A n 与原点的距离不小于20,那么n 的最小值是13. 故答案为13. 【点睛】本题考查了规律型问题,认真观察、仔细思考,找出点表示的数的变化规律是解决问题的关键.22.下列图形是由同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,每一个小正方形表示一块地砖,如果按图1、2、3 的次序铺设地砖,把第n 个图形用图n 表示,那么图100中的白色小正方形地砖的块数是_______.【答案】703 【分析】根据图象中地砖个数发现规律,图n 中有()32n +块黑色地砖,图n 中一共有()105n +块地砖,就可以得到白色地砖数,令100n =即可求出结果. 【详解】解:图1中有5块黑色地砖,图2中比图1中多3块黑色地砖,有8块黑色地砖, 图3中比图2中多3块黑色地砖,有11块黑色地砖, …图n 中有()53132n n +-=+块黑色地砖, 图1中一共有5315⨯=块地砖, 图2中一共有5525⨯=块地砖, 图3中一共有5735⨯=块地砖, …图n 中一共有()521105n n +=+块地砖,∵图100中白色小正方形地砖的块数是:()10100531002703⨯+-⨯+=(块). 故答案是:703. 【点睛】本题考查找规律,解题的关键是找出图形中的规律,并用n 将规律通过代数式表示出来. 23.2020年6日1日,湖州市政府发布了全新湖洲城市形象标识,小周同学对新形象标识很感兴趣,用电脑绘画软件绘制了如下图形,其中第(1)个图形有3个形象标识,第(2)个图形有7个形象标识,第(3)个图形有13个形象标识,按此规律绘制下去.(1)小周绘制的第(5)个图形中有_________个形象标识.(2)小周绘制的第(n)个图形中有_________个形象标识.【答案】31 (n2+n+1)【分析】观察图形可知,每个图形中形象标识的个数为序号数的平方+序号数+1,依此可求第5个和第n个图有多少个形象标识.【详解】解:由图形可知,第1个图形有12+1+1=3个形象标识,第2个图形有22+2+1=7个形象标识,第3个图形有32+3+1=13个形象标识,第4个图形有42+4+1=21个形象标识,(1)小周绘制的第(5)个图形中有52+5+1=31个形象标识.(2)小周绘制的第(n)个图形中有(n2+n+1)个形象标识.故答案为:31;(n2+n+1).【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.三、解答题24.探究:211112222122-=⨯-⨯=,32222-=⨯-⨯=,222212243333-=⨯-⨯=,2222122……(1)请仔细观察,写出第4个等式;(2)请你找规律,写出第n个等式;(3)计算:12320192020++++-.22222【答案】(1)25-24=2×24-1×24=24;(2)2n+1-2n=2×2n-1×2n=2n;(3)-2【分析】(1)根据给出的内容,直接可以仿写25-24=2×24-1×24=24,(2)2n +1-2n =2×2n -1×2n =2n ,(3)将原式进行变形,即提出负号后,就转化为原题中的类型,利用(1)(2)的结论,直接得出结果. 【详解】解:(1)由题意可得: 25-24=2×24-1×24=24; (2)2n +1-2n =2×2n -1×2n =2n ; (3)1232019202022222++++-=()1232019202022222++++-=1232018201922222++++-... =2-22 =-2 【点睛】此题主要考查了数字变化规律,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:2n +1-2n =2n 成立. 25.一列数a 1,a 2,a 3,…,a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,…,a n =111n a --.(1)求a 2,a 3的值;(2)求a 1+a 2+a 3+…+a 2021的值. 【答案】(1)212a =,32a =;(2)1009 【分析】(1)将11a =-代入2111a a =-计算可得2a ,再将2a 代入3211a a =-,可求出3a ;(2)根据规律可得出结果. 【详解】解:(1)把11a =-代入2111a a =-得, 2111(1)2a =--=,把212a =代入3211a a =-得,312112a ==-,∵212a =,32a =; (2)将32a =代入4311a a =-得, 41112a ==-- 同理5111(1)2a ==--, 62a =,71a =-,812a =, ⋯⋯12345678920172018201932a a a a a a a a a a a a ++==++=++=⋯=++, 所以1232021111112121212222a a a a +++⋯+=-++-++-++⋯⋯-+31673122=⨯-+ 1009=.【点睛】本题考查有理数的混合运算,探索数字的变化规律,正确的计算2a ,3a ,4a ,5a ⋯⋯进而得出变化规律是解决问题的关键. 26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:111122334++⨯⨯⨯11111122334=-+-+-13144=-=. (1)猜想并写出:1(1)n n =+________. (2)直接写出结果:111112233420182019++++=⨯⨯⨯⨯___________.(3)计算111124466820182020++++⨯⨯⨯⨯.【答案】(1)111n n -+;(2)20182019;(3)10094040【分析】(1)根据题目中的式子,可以写出相应的猜想; (2)先裂项,然后再计算即可;(3)根据题目中式子的特点,每项提取12,再裂项计算即可. 【详解】解:(1)由题意可得:111(1)1n n n n =-++;(2)111112233420182019++++⨯⨯⨯⨯=111111112233420182019-+-+-++- =112019- =20182019; (3)111124466820182020++++⨯⨯⨯⨯=111111111224466820182020⎛⎫-+-+-++- ⎪⎝⎭=111222020⎛⎫- ⎪⎝⎭ =1100922020=10094040【点睛】本题考查了规律型:数字的变化类:探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法. 27.阅读下列材料:11112(123012)23(234123)34(345234)333⨯=⨯⨯-⨯⨯⨯=⨯⨯-⨯⨯⨯=⨯⨯-⨯⨯;由以上三个等式相加,可得1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完以上材料,请你计算下列各题: (1)计算:12233499100⨯+⨯+⨯++⨯(写出过程)(2)直接写出直接:122334(1)n n ⨯+⨯+⨯+⋯+⨯+=_________. (3)计算:123234345181920⨯⨯+⨯⨯+⨯⨯++⨯⨯(写出过程)【答案】(1)333300;(2)()()1123n n n ++;(3)35910 【分析】根据给定等式的变化找出变化规律()()()()()1112113n n n n n n n n +=++--+⎡⎤⎣⎦;(1)根据变化规律将算式展开后即可得出原式=1991001013⨯⨯⨯,此题得解; (2)根据变化规律将算式展开后即可得出原式=()()1123n n n ++,此题得解;(3)通过类比找出变化规律“n (n +1)(n +2)=14[n (n +1)(n +2)(n +3)-(n -1)n (n +1)(n +2)]”,依此规律将算式展开后即可得出结论. 【详解】解:观察,发现规律:112(123012)3⨯=⨯⨯-⨯⨯,123(234123)3⨯=⨯⨯-⨯⨯,134(345234)3⨯=⨯⨯-⨯⨯,…,∵()()()()()1112113n n n n n n n n +=++--+⎡⎤⎣⎦; (1)12233499100⨯+⨯+⨯++⨯=()()()111123012234123 (9910010198991003)33⨯⨯-⨯⨯+⨯⨯-⨯⨯++⨯⨯-⨯⨯ =1991001013⨯⨯⨯ =333300;(2)122334(1)n n ⨯+⨯+⨯+⋯+⨯+=()()()()()()111230122341231121.13..33n n n n n n ++--+⎡⎤⎣⎦⨯⨯-⨯⨯+⨯⨯-⨯⨯++ =()()1123n n n ++;(3)123234345181920⨯⨯+⨯⨯+⨯⨯++⨯⨯=()()()1111234012323451234 (181920211718192044)4⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯ =1181920214⨯⨯⨯⨯ =35910 【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中数字的变化特点,利用类比的数学思想解答.28.用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一系列图案,请仔细观察,并回答下列问题:(1)第4个图案中有白色纸片多少张?(2)第n个图案中有白色纸片多少张?(3)第几个图案有白色纸片有2011张?(写出必要的步骤)【答案】(1)13;(2)(3n+1)张(3)第670个图案有白色纸片有2011张,见解析【分析】(1)观察图形的变化可得第4个图案中有白色纸片有3×4+1=13张;(2)结合(1)即可得规律,第n个图案中有白色纸片(3n+1)张;(3)结合(2)发现的规律即可求得白色纸片有2011张是第几个图案.【详解】(1)观察图形的变化可知:第1个图案中有白色纸片张数为:3×1+1=4;第2个图案中有白色纸片张数为:3×2+1=7;第3个图案中有白色纸片张数为:3×3+1=10;第4个图案中有白色纸片张数为:3×4+1=13;(2)根据(1)发现规律:第n个图案中有白色纸片张数为:(3n+1)张.(3)根据(2)可知:3n+1=2011,解得n=670.答:第670个图案有白色纸片有2011张.【点睛】此题考查规律型-图形的变化类,解题的关键是根据图形的变化寻找规律.29.图1是用绳索织成的一片网的一部分,小明为了研究这片网的结点数(V),网眼数(F),边数(E)之间的关系,他采用由特殊到一般的方法进行探索,列表如下:V F E之间(1)表中“∵”处应填的数字为__________;根据上述探索过程,可能猜想,,满足的数量关系是__________.(2)如图2,若网眼形状为六边形,请仿照小明的探索方法,完成下面表格并猜想,,V F E 之间满足的数量关系.根据上述探索过程,可以猜想,,V F E 之间满足的数量关系是________. 【答案】(1)17,1V F E +-=;(2)表见解析,1V F E +-= 【分析】(1)根据表格中的数据可以得到表中“∵”处应填的数字并猜想出V ,F ,E 之间满足的等量关系;(2)根据(1)中的例子,可以猜想出若网眼形状为六边形,V ,F ,E 之间满足的等量关系. 【详解】解:(1)由表格可得, 表中“∵”处应填的数字为17,根据上述探索过程,可以猜想V ,F ,E 之间满足的等量关系为:V+F -E=1, 故答案为:17,V+F -E=1; (2)若网眼形状为六边形 当V=6时,F=1,E=6, 当V=10时,F=2,E=11, 当V=16时,F=4,E=19, 当V=22时,F=6,E=27,则V ,F ,E 之间满足的等量关系为V+F -E=1, 故答案为:V+F -E=1【点睛】30.先阅读下面文字,然后按要求解题.例:123100?+++⋅⋅⋅+=如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为11002993985051101+=+=+=⋅⋅⋅=+=,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果. (1)补全例题解题过程;123100(1100)(299)(398)(5051)101++++=++++++++=⨯_____=_____.(2)计算:2468100++++⋅⋅⋅+(3)计算:()(2)(3)(99)a a b a b a b a b +++++++⋅⋅⋅++. 【答案】(1)50,5050;(2)2550;(3)1004950a b + 【分析】(1)根据题干中的示例计算即可得解;(2)根据两数之和为102,再乘以数字的个数即可得;(3)将所有的a 相加、所有含b 的式子相加,含b 的代数式利用以上求和方法求解可得. 【详解】解:(1)123100+++⋯+(1100)(299)(398)(5051)++++++⋯++10150=⨯5050=,故答案为:50、5050; (2)2468100++++⋅⋅⋅+1(2100)22100=+⨯⨯10225=⨯ 2550=;(3)原式100(23499)a b b b b b =+++++⋯+99(199)1002a b ⨯+=+1004950a b =+.【点睛】本题主要考查数字的变化规律,解题的关键是熟练掌握(1)1232n n n ++++⋯+=.。

《近五年中考考点规律探究》专题

《近五年中考考点规律探究》专题

《近五年中考考点规律探究》专题班级 姓名只要站起来的次数比倒下去的次数多,那就是成功。

【类型十八:规律探究】(2014•鸡西第20题3分)20.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE 。

将△ADE 沿AE 对折至△AFE ,延长EF交边BC 于点G,连接AG 、CF 。

则下列结论:①△ABG ≌△AFG ②BG =CG ③AG ∥CF ④S △EGC =S △AFE ⑤∠AGB +∠AED =145°其中正确的个数是 ( ) A .2 B. 3 C. 4 D. 5(2013•鸡西第10题3分)10.已知等边三角形ABC 的边长是2,以BC 边上的高AB 1为边作等边三角形,得到第一个等边三角形AB 1C 1,再以等边三角形AB 1C 1的B 1C 1边上的高AB 2为边作等边三角形,得到第二个等边三角形AB 2C 2,再以等边三角形AB 2C 2的边B 2C 2边上的高AB 3为边作等边三角形,得到第三个等边AB 3C 3;…,如此下去,这样得到的第n 个等边三角形AB n C n 的面积为()n .(2012•鸡西第20题3分)如图,在平面直角坐标系中有一边长为1的正方形OABC ,边OA 、OC 分别在x 轴、y 轴上,如果以对角线OB 为边作第二个正方形OBB 1C 1,再以对角线OB 1为边作第三个正方形OB 1B 2C 2,照此规律作下去,则点B 2012的坐标为 .(2011•鸡西第20题3分)20.如图,△ABC 是边长为1的等边三角形.取BC 边中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的面积记作S 2.照此规律作下去,则S 2011= .6题图 第20题图 A B D C GE A F(2010•鸡西第6题3分)6.观察下表,请推测第5个图形有 根火柴棍.(2009•鸡西第9题3分)9.有一列数1234251017--,,,,,那么第7个数为 .(2012黑龙江龙东,10,3分)如图,直线y=x ,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2,再过点A 2作x 轴的垂线交直线于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,……按此作法进行去,点B n 的纵坐标为 (n 为正整数).(2011黑龙江龙东,10,3分)如图,四边形ABCD 中,对角线AC ⊥BD ,且AC=8,BD=4,各边中点分别为A 1、B 1、C 1、D 1,顺次连接得到四边形A 1B 1C 1D 1,再取各边中点A 2、B 2、C 2、D 2,顺次连接得到四边形A 2B 2C 2D 2,……,依此类推,这样得到四边形A n B n C n D n ,则四边形A n B n C n D n 的面积为 。

物态变化规律的探究实验专题练习[答案]

物态变化规律的探究实验专题练习[答案]

专训一:熔化和凝固规律的探究1.【中考·聊城】在探究某种物质熔化时温度随时间变化的规律实验中,记录的数据如表所示:时间/min05101520253035物质的温度/℃50708080808090100(1)由以上数据,在方格纸上已描出了各点,请用平滑曲线连接各点,画出此物质熔化时温度随时间变化的图像;(第1题图)(2)由图像可知,此物质是________(填“晶体”或“非晶体”),其熔点是________℃;2.【中考·湘潭】在“探究晶体熔化和凝固规律”的实验中,绘制出了如图所示的图象;(1)图中,海波的熔化过程是________段(用图中字母表示),此过程中海波________(填“吸”或“放”)热;(2)图中,海波在D点是________态,在G点是________态;(均填“固”或“液”)(3)为了探究不同晶体熔化时吸收的热量是否相同,在相同的烧杯中分别装上80 g的冰和萘,用________(填“相同”或“不同”)的酒精灯加热,测出它们熔化过程所用的时间如表;由此可知,质量相同的不同晶体熔化时吸收的热量是________(填“相同”或“不同”)的;(第2题图)物质熔化时间/min冰9萘4专训二:汽化和液化规律的探究(控制变量法) 3.【中考·武汉】小明和小华分别利用图甲所示的相同装置探究水沸腾时温度变化的特点,当水温接近90 ℃时,每隔0.5分钟记录一次温度,并绘制出了如图乙所示的温度与时间关系的图像;(第3题图)(1)实验时,当看到水中有大量气泡不断上升、变大,到水面破裂开来,里面的________散发到空气中,就表明水沸腾了;(2)分析图乙可知,小华将水加热至沸腾的时间明显较长,最有可能的原因是__________________________________________________________________;(3)小明在第9 min撤掉酒精灯后,发现有一段时间水温依然保持不变;如图乙所示,这段时间内烧杯底部的温度________(填“高于”“等于”或“低于”)杯内水的温度,原因是__________________________________________________ ______________________________________________________________;4.学习了影响液体蒸发快慢的因素后,李丽同学猜想液体蒸发快慢可能还与液体的种类有关;请你利用下面提供的实验样品,设计实验验证李丽的猜想是否正确;(1)实验中应控制液体上方空气流动的快慢、液体与空气接触的面积和__________________ 都相同;这种科学探究的方法叫__________________ ;(2)实验室已提供装好酒精和水的几个样品,如图所示;按实验要求,选择图中________ 两个样品进行对比,能够比较方便地进行研究;[第4题(2)图](3)若一个同学选好两个液体样品后,将一个放在室内,另一个放在室外,经过相同时间后进行对比,这样做________ (填“正确”或“不正确”);原因是____________________________________________________________________ _________________________________________________________________;(4)按要求正确选择样品并进行正确操作,经过相同时间后样品的情况如图所示;据此,你认为李丽的猜想________(填“正确”或“不正确”);[第4题(4)图]5.为了探究液化的发生条件,小明设计并进行了如下实验(如图所示):(1)用酒精灯对烧瓶加热一段时间后,发现瓶中水量减少;这是由于水________(填物态变化名称)造成的;(2)金属盘底部出现水滴,这是由于金属盘的温度________,使水蒸气发生________而形成的;(3)通过实验可知:______________可使气体液化;(第5题图)6.为了验证液化要放热,小红设计并进行了如下实验(如图所示):(1)将烧瓶内水沸腾时所产生的水蒸气通入试管A中,试管A放在装冷水的容器B内,过一段时间,观察到试管A中产生的现象是____________________________________________________________________;(2)实验中,可以看到温度计C的示数升高,这个实验说明了水蒸气液化时要________热量;(第6题图)(第7题图)专训三:升华和凝华规律的探究7.如图所示是小矾同学为探究物质凝华过程是吸热还是放热而设计的实验装置图;(1)实验中碘吸热后升华成碘蒸气,不一会儿看到盖住杯口的玻璃板内表面有颗粒碘出现,这是碘蒸气________形成;(2)于是她提出的猜想是_____________________________________________________________________________________________________________ _______________________________________________;(3)为验证猜想可采取的实验方法是___________________________________________________________________________________________________ ________________________________________________________________;8.小明看到家中日光灯管的两端各有一圈黑色(如图甲所示),从外面擦怎么也擦不掉,他觉得奇怪,于是向爸爸请教,爸爸让他在一支长试管内装入少量的碘粉,塞上底部悬挂了少量棉线的橡皮塞,用酒精灯慢慢加热,如图乙所示;(第8题图)答案专训21.解:(1)如图所示;(2)晶体;80点拨:由图可知,该物质从第10 min 开始熔化,到第25 min熔化结束,该过程吸收热量,温度不变,故该物质是晶体,熔点是80 ℃;(第1题图)2.(1)BC;吸(2)液;固(3)相同;不同3.(1)水蒸气(2)小华用的水的质量比小明的大(3)高于;水沸腾要吸收热量,而水温保持不变,说明水能继续从杯底吸热4.(1)液体温度;控制变量法(2) 甲、乙(3)不正确;没有控制液体温度和液体上方空气流速相同(4) 正确5.(1)汽化(2)较低;液化(3)降低温度6.(1)试管壁有小水珠(液化)(2)放出。

专题30规律探究问题【解析版】

专题30规律探究问题【解析版】

专题30规律探究问题一.选择题(共10小题)1.(2022•西藏)按一定规律排列的一组数据:,﹣,,﹣,,﹣,….则按此规律排列的第10个数是( )A.﹣B.C.﹣D.【分析】把第3个数转化为:,不难看出分子是从1开始的奇数,分母是n2+1,且奇数项是正,偶数项是负,据此即可求解.【解析】原数据可转化为:,﹣,,﹣,,﹣,…,∴=(﹣1)1+1,﹣=(﹣1)2+1,=(﹣1)3+1,...∴第n个数为:(﹣1)n+1,∴第10个数为:(﹣1)10+1=﹣.故选:A.2.(2022•牡丹江)观察下列数据:,﹣,,﹣,,…,则第12个数是( )A.B.﹣C.D.﹣【分析】根据给出的数据可以推算出第n个数是×(﹣1)n+1所以第12个数字把n=12代入求值即可.【解析】根据给出的数据特点可知第n个数是×(﹣1)n+1,∴第12个数就是×(﹣1)12+1=﹣.故选:D.3.(2022•云南)按一定规律排列的单项式:x,3x2,5x3,7x4,9x5,……,第n个单项式是( )A.(2n﹣1)x n B.(2n+1)x n C.(n﹣1)x n D.(n+1)x n【分析】根据题目中的单项式,可以发现系数是一些连续的奇数,x的指数是一些连续的整数,从而可以写出第n个单项式.【解析】∵单项式:x,3x2,5x3,7x4,9x5,…,∴第n个单项式为(2n﹣1)x n,故选:A.4.(2022•新疆)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是( )A.98B.100C.102D.104【分析】由三角形的数阵知,第n行有n个偶数,则得出前9行有45个偶数,且第45个偶数为90,得出第10行第5个数即可.【解析】由三角形的数阵知,第n行有n个偶数,则得出前9行有1+2+3+4+5+6+7+8+9=45个偶数,∴第9行最后一个数为90,∴第10行第5个数是90+2×5=100,故选:B.5.(2022•广州)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n个图形需要2022根小木棒,则n的值为( )A.252B.253C.336D.337【分析】根据图形特征,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,得出第n个图形需要的小木棒根数即可.【解析】由题意知,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,第n个图形需要6n+2(n﹣1)=(8n﹣2)个小木棒,当8n﹣2=2022时,解得n=253,故选:B.6.(2022•玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF的顶点A 处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )A.4B.2C.2D.0【分析】分别计算红跳棋和黑跳棋过2022秒钟后的位置,红跳棋跳回到A点,黑跳棋跳到F点,可得结论.【解析】∵红跳棋从A点按顺时针方向1秒钟跳1个顶点,∴红跳棋每过6秒返回到A点,2022÷6=337,∴经过2022秒钟后,红跳棋跳回到A点,∵黑跳棋从A点按逆时针方向3秒钟跳1个顶点,∴黑跳棋每过18秒返回到A点,2022÷18=112•6,∴经过2022秒钟后,黑跳棋跳到E点,连接AE,过点F作FM⊥AE,由题意可得:AF=AE=2,∠AFE=120°,∴∠FAE=30°,在Rt△AFM中,AM=AF=,∴AE=2AM=2,∴经过2022秒钟后,两枚跳棋之间的距离是2.故选:B.7.(2022•江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是( )A.9B.10C.11D.12【分析】列举每个图形中H的个数,找到规律即可得出答案.【解析】第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.8.(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为( )A.32B.34C.37D.41【分析】根据图形的变化规律得出第n个图形中有4n+1个正方形即可.【解析】由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,…,第n个图案中有4n+1个正方形,∴第⑨个图案中正方形的个数为4×9+1=37,故选:C.9.(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为( )A.15B.13C.11D.9【分析】根据前面三个图案中菱形的个数,得出规律,第n个图案中菱形有(2n﹣1)个,从而得出答案.【解析】由图形知,第①个图案中有1个菱形,第②个图案中有3个菱形,即1+2=3,第③个图案中有5个菱形即1+2+2=5,……则第n个图案中菱形有1+2(n﹣1)=(2n﹣1)个,∴第⑥个图案中有2×6﹣1=11个菱形,故选:C.10.(2022•荆州)如图,已知矩形ABCD的边长分别为a,b,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形A1B1C1D1;第二次,顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2;…如此反复操作下去,则第n次操作后,得到四边形A n B n∁n D n的面积是( )A.B.C.D.【分析】连接A1C1,D1B1,可知四边形A1B1C1D1的面积为矩形ABCD面积的一半,则S1=ab,再根据三角形中位线定理可得C2D2=C1,A2D2=B1D1,则S2=C1×B1D1=ab,依此可得规律.【解析】如图,连接A1C1,D1B1,∵顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1,∴四边形A1BCC1是矩形,∴A1C1=BC,A1C1∥BC,同理,B1D1=AB,B1D1∥AB,∴A1C1⊥B1D1,∴S1=ab,∵顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2,∴C2D2=C1,A2D2=B1D1,∴S2=C1×B1D1=ab,……依此可得S n=,故选:A.二.填空题(共14小题)11.(2022•恩施州)观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为a n,且满足+=.则a4= ,a2022= .【分析】由题意可得a n=,即可求解.【解析】由题意可得:a1=2=,a2==,a3=,∵+=,∴2+=7,∴a4==,∵=,∴a5=,同理可求a6==,•∴a n=,∴a2022=,故答案为:,.12.(2022•宿迁)按规律排列的单项式:x,﹣x3,x5,﹣x7,x9,…,则第20个单项式是 ﹣x39 .【分析】观察指数规律与符号规律,进行解答便可.【解析】根据前几项可以得出规律,奇数项为正,偶数项为负,第n项的数为(﹣1)n+1×x2n﹣1,则第20个单项式是(﹣1)21×x39=﹣x39,故答案为:﹣x39.13.(2022•怀化)正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是 744 .【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数•第n行有n个数,则前n行共有个数,再根据偶数的特征确定第几行第几个数是几.【解析】由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•第n行有n个数.∴前n行共有个数.∴前27行共有378个数,∴第27行第21个数是一共378个数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.14.(2022•泰安)将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是 (10,18) .【分析】根据第n行的最后一个数是n2,第n行有(2n﹣1)个数即可得出答案.【解析】∵第n行的最后一个数是n2,第n行有(2n﹣1)个数,∴99=102﹣1在第10行倒数第二个,第10行有:2×10﹣1=19个数,∴99的有序数对是(10,18).故答案为:(10,18).15.(2022•青海)木材加工厂将一批木料按如图所示的规律依次摆放,则第n个图中共有木料 根.【分析】观察图形可得:第n个图形最底层有n根木料,据此可得答案.【解析】由图可知:第一个图形有木料1根,第二个图形有木料1+2=3(根),第三个图形有木料1+2+3=6(根),第四个图形有木料1+2+3+4=10(根),......第n个图有木料1+2+3+4+......+n=(根),故答案为:.16.(2022•大庆)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是 49 .【分析】从数字找规律,进行计算即可解答.【解析】由题意得:第一个图案中的“”的个数是:4=4+3×0,第二个图案中的“”的个数是:7=4+3×1,第三个图案中的“”的个数是:10=4+3×2,...∴第16个图案中的“”的个数是:4+3×15=49,故答案为:49.17.(2022•绥化)如图,∠AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1⊥OA交射线OB 于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2⊥OA交射线OB于K2,在射线OA上截取P2P3,使P2P3=P2K2…按照此规律,线段P2023K2023的长为 (1+)2022 .P n K n的式子,从而可以写出线段P2023K2023的长.【解析】由题意可得,P1K1=OP1•tan60°=1×=,P2K2=OP2•tan60°=(1+)×=(1+),P3K3=OP3•tan60°=(1+++3)×=(1+)2,P4K4=OP4•tan60°=[(1+++3)+(1+)2]×=(1+)3,…,P n K n=(1+)n﹣1,∴当n=2023时,P2023K2023=(1+)2022,故答案为:(1+)2022.18.(2022•聊城)如图,线段AB=2,以AB为直径画半圆,圆心为A1,以AA1为直径画半圆①;取A1B 的中点A2,以A1A2为直径画半圆②;取A2B的中点A3,以A2A3为直径画半圆③…按照这样的规律画下去,大半圆内部依次画出的8个小半圆的弧长之和为 π .【分析】由AB=2,可得半圆①弧长为π,半圆②弧长为()2π,半圆③弧长为()3π,......半圆⑧弧长为()8π,即可得8个小半圆的弧长之和为π+()2π+()3π+...+()8π=π.【解析】∵AB=2,∴AA1=1,半圆①弧长为=π,同理A1A2=,半圆②弧长为=()2π,A2A3=,半圆③弧长为=()3π,......半圆⑧弧长为=()8π,∴8个小半圆的弧长之和为π+()2π+()3π+...+()8π=π.故答案为:π.19.(2022•十堰)如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,50节链条总长度为 91 cm.【分析】先求出1节链条的长度,2节链条的总长度,3节链条的总长度,然后从数字找规律,进行计算即可解答.【解析】由题意得:1节链条的长度=2.8cm,2节链条的总长度=[2.8+(2.8﹣1)]cm,3节链条的总长度=[2.8+(2.8﹣1)×2]cm,...∴50节链条总长度=[2.8+(2.8﹣1)×49]=91(cm),故答案为:91.20.(2022•常德)剪纸片:有一张长方形的纸片,用剪刀沿一条不过任何顶点的直线将其剪成了2张纸片;从这2张中任选一张,再用剪刀沿一条不过任何顶点的直线将其剪成了2张纸片,这样共有3张纸片;从这3张中任选一张,再用剪刀沿一条不过任何顶点的直线将其剪成了2张纸片,这样共有4张纸片;…;如此下去,若最后得到10张纸片,其中有1张五边形纸片,3张三角形纸片,5张四边形纸片,则还有一张多边形纸片的边数为 6 .【分析】根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,多边形的边数增加4,如第一次,将其中两个边分成四条边,且剪刀所在那条直线增加两条边,即为2+2×2+1×2=8=4+4×1(边),分成两个图形;第二次,边数为:8﹣2+2×2+2×1=12=4+4×2,分成三个图形;……;当剪第n刀时,边数为4+4n,分成(n+1)个图形;令n=9即可得出结论.【解析】根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,多边形的边数增加4,2+2×2+1×2=8=4+4×1(边),分成两个图形;第二次,边数为:8﹣2+2×2+2×1=12=4+4×2,分成三个图形;……;当剪第n刀时,边数为4+4n,分成(n+1)个图形;∵最后得到10张纸片,设还有一张多边形纸片的边数为m,∴令n=9,有4+4×9=5+3×3+5×4+m,解得m=6.故答案为:6.21.(2022•德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,…………由此类推,图④中第五个正六边形数是 45 .【分析】根据前三个图形的变化寻找规律,即可解决问题.【解析】图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,……图③的点数叫做五边形数,从上至下第一个五边形数是1,第二个五边形数是1+4=5,第三个五边形数是1+4+7=12,……由此类推,图④中第五个正六边形数是1+5+9+13+17=45.故答案为:45.22.(2022•遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为127 .【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【解析】∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.23.(2022•黑龙江)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有 485 .【分析】由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.【解析】第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=2×32﹣1=17,第三个图形正三角形的个数为17×3+2=2×33﹣1=53,第四个图形正三角形的个数为53×3+2=2×34﹣1=161,第五个图形正三角形的个数为161×3+2=2×35﹣1=485.如果是第n个图,则有2×3n﹣1个故答案为:485.24.(2022•黑龙江)如图所示,以O为端点画六条射线OA,OB,OC,OD,OE,OF,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线 OC 上.【分析】根据规律得出每6个数为一周期.用2013除以6,根据余数来决定数2013在哪条射线上.【解析】∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.三.解答题(共2小题)25.(2022•嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225= 3×4×100+25 ;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.【分析】(1)根据规律直接得出结论即可;(2)根据=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25即可得出结论;(3)根据题意列出方程求解即可.【解析】(1)∵①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;∴③当a=3时,352=1225=3×4×100+25,故答案为:3×4×100+25;(2)=100a(a+1)+25,理由如下:=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25;(3)由题知,﹣100a=2525,即100a2+100a+25﹣100a=2525,解得a=5或﹣5(舍去),∴a的值为5.26.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式: (2×5+1)2=(6×10+1)2﹣(6×10)2 ;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解析】(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.。

专题01 规律探究问题(精练)-初中中考数学高频考点突破全攻略(原卷板+解析版)

专题01 规律探究问题(精练)-初中中考数学高频考点突破全攻略(原卷板+解析版)

一、选择题(10×3=30分)1. (2017广西百色)观察以下一列数的特点:0,1,﹣4,9,﹣16,25,…,则第11个数是()A.﹣121 B.﹣100 C.100 D.1212. (2017日照)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.1393.(2016·四川达州·3分)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.504. (2017湖北随州)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为()A.84株B.88株C.92株D.121株5.(2017·烟台)用棋子摆出下列一组图形(如图):按照这种规律摆下去,第n个图形用的棋子个数为 ( )A.3n B.6n C.3n+6 D.3n+36.将从1开始的自然数,按如图所示的规律排列,在2,3,5,7,10,13,17,…,处分别拐第1,2,3,4,5,6,7,…,次弯,则第33次拐弯处的那个数是()A.290 B.226 C.272 D.3027.用菱形纸片按规律依次拼成如图3-5-1的图案.第1个图案中有5张菱形纸片;第2个图案中有9张菱形纸片;第3个图案中有13张菱形纸片.按此规律,第6个图案中的菱形纸片的张数为()图3-5-1A.21 B.23 C.25 D.298. (2017浙江湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13 B.14 C.15 D.169.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4 B.23C.2 D.010. (2017山东聊城)如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O 为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为.二、填空题(6×4=24分).11.(2018湖北荆州)(3.00分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是.12.(2017湖北江汉)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为.13. (2017贵州安顺)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n﹣1B n顶点B n的横坐标为.14.(2018•贵州遵义•4分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为.15.(2018广西桂林)将从1开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)…按此规律,自然数2018记为列行第1列第2列第3列第4列第1行 1 2 3 4第2行8 7 6 5第3行9 10 11 12第4行16 15 14 13 ……………第n行…………16.(2018广西贵港)(3.00分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为().三、解答题(共46分).17. (2017山东聊城)如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O 为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,求的长.18.(2017内江)观察下列等式:第一个等式:第二个等式:第三个等式:第四个等式:按上述规律,回答下列问题:(1)请写出第六个等式:a6= = ﹣;(2)用含n的代数式表示第n个等式:a n= = ﹣;(3)a1+a2+a3+a4+a5+a6= (得出最简结果);(4)计算:a1+a2+…+a n.19. (2016安徽,18,8分)(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:1+3+5+…+(2n ﹣1)+( 2n+1 )+(2n ﹣1)+…+5+3+1= .20. (2018·湖北随州·11分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化例:将0.7化为分数形式 由于0.7 =0.777…,设x=0.777…① 则10x=7.777…② ②﹣①得9x=7,解得x=79,于是得0.7 =79. 同理可得0.3 =39=13,1.4 =1+0.4 =1+49=139根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) 【基础训练】 (1)0.5 = ,5.8 = ; (2)将0.23化为分数形式,写出推导过程;【能力提升】(3)0.315 = ,2.018= ;(注:0.315=0.315315…,2.018=2.01818…)【探索发现】(4)①试比较0.9与1的大小:0.91(填“>”、“<”或“=”)②若已知0.285714=27,则3.714285= .(注:0.285714=0.285714285714…)一、选择题(10×3=30分)1. (2017广西百色)观察以下一列数的特点:0,1,﹣4,9,﹣16,25,…,则第11个数是()A.﹣121 B.﹣100 C.100 D.121【解答】解:0=﹣(1﹣1)2,1=(2﹣1)2,﹣4=﹣(3﹣1)2,9=(4﹣1)2,﹣16=﹣(5﹣1)2,∴第11个数是﹣(11﹣1)2=﹣100,故选B.2. (2017日照)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.1393.(2016·四川达州·3分)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.50【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选:B.4. (2017湖北随州)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为()A.84株B.88株C.92株D.121株5.(2017·烟台)用棋子摆出下列一组图形(如图):按照这种规律摆下去,第n个图形用的棋子个数为 ( )A.3n B.6n C.3n+6 D.3n+3【解析】∵第1个图需棋子3+3=6;第2个图需棋子3×2+3=9;第3个图需棋子3×3+3=12;…∴第n个图需棋子(3n+3)个.6.将从1开始的自然数,按如图所示的规律排列,在2,3,5,7,10,13,17,…,处分别拐第1,2,3,4,5,6,7,…,次弯,则第33次拐弯处的那个数是()A.290 B.226 C.272 D.302【解析】:拐弯处的数与其序数的关系如下表:拐弯的序数0 1 2 3 4拐弯处的数 1 2 3 5 7拐弯的序数 5 6 7 8 …拐弯处的数10 13 17 21 …由此可见相邻两数的差是1,1,2,2,3,3,4,4,...,则第33次拐弯处的数是1+2×(1+2+ (16)+17=290.故选A.学科@网7.用菱形纸片按规律依次拼成如图3-5-1的图案.第1个图案中有5张菱形纸片;第2个图案中有9张菱形纸片;第3个图案中有13张菱形纸片.按此规律,第6个图案中的菱形纸片的张数为()图3-5-1A.21 B.23 C.25 D.298. (2017浙江湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13 B.14 C.15 D.16【解答】解:如图1,连接AC,CF,则AF=3,∴从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是14次,故选:B.9.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4 B.23C.2 D.010. (2017山东聊城)如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O 为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为.【解答】解:连接P1O1,P2O2,P3O3…∵P1是⊙O2上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,二、填空题(6×4=24分).11.(2018湖北荆州)(3.00分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是.【解答】解:∵第1次输出的结果是25,第2次输出的结果是5,第3次输出的结果是1,第4次输出的结果是5,第5次输出的结果是5,…,∴第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数),∴第2018次输出的结果是5.故答案为:5.学科@网12.(2017湖北江汉)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为.13. (2017贵州安顺)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n﹣1B n顶点B n的横坐标为.14.(2018•贵州遵义•4分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为.【解答】解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.15.(2018广西桂林)将从1开始的连续自然数按图规律排列:规定位于第m行,第n 列的自然数10记为(3,2),自然数15记为(4,2)…按此规律,自然数2018记为列行第1列第2列第3列第4列第1行 1 2 3 4第2行8 7 6 5第3行9 10 11 12第4行16 15 14 13 ……………第n行…………【分析】根据表格可知,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.用2018除以4,根据除数与余数确定2018所在的行数,以及是此行的第几个数,进而求解即可.16.(2018广西贵港)(3.00分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为().三、解答题(共46分).17. (2017山东聊城)如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O 为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,求的长.【分析】连接P1O1,P2O2,P3O3,易求得P n O n垂直于x轴,可得为圆的周长,再找出圆半径的规律即可解题.学科@网【解答】解:连接P1O1,P2O2,P3O3…∵P1是⊙O2上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,18.(2017内江)观察下列等式:第一个等式:第二个等式:第三个等式:第四个等式:按上述规律,回答下列问题:(1)请写出第六个等式:a6= = ﹣;(2)用含n的代数式表示第n个等式:a n= = ﹣;(3)a1+a2+a3+a4+a5+a6= (得出最简结果);(4)计算:a1+a2+…+a n.【分析】(1)根据已知4个等式可得;(2)根据已知等式得出答案;(3)利用所得等式的规律列出算式,然后两两相消,计算化简后的算式即可得;(4)根据已知等式规律,列项相消求解可得.=﹣=.19. (2016安徽,18,8分)(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+(2n+1 )+(2n﹣1)+…+5+3+1=.【分析】(1)根据1+3+5+7=16可得出16=42;设第n幅图中球的个数为a n,列出部分a n的值,根据数据的变化找出变化规律“a n﹣1=1+3+5+…+(2n﹣1)=n2”,依此规律即可解决问题;(2)观察(1)可将(2)图中得黑球分三部分,1到n行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.(2)观察图形发现:20. (2018·湖北随州·11分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可例:将0.7化为分数形式由于0.7 =0.777…,设x=0.777…① 则10x=7.777…② ②﹣①得9x=7,解得x=79,于是得0.7 =79. 同理可得0.3 =39=13, 1.4 =1+0.4 =1+49=139根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【基础训练】(1)0.5 = , 5.8 = ; (2)将0.23化为分数形式,写出推导过程;【能力提升】(3)0.315 = , 2.018= ;(注:0.315 =0.315315…, 2.018=2.01818…) 【探索发现】 (4)①试比较0.9与1的大小:0.9 1(填“>”、“<”或“=”) ②若已知0.285714=27,则 3.714285= .(注:0.285714=0.285714285714…)【分析】根据阅读材料可知,每个整数部分为零的无限循环小数都可以写成分式形式,如果循环节有n位,则这个分数的分母为n个9,分子为循环节.学科@网(3)同理0.315=315999=35111,2.0=2+1181099=11155故答案为:35111,11155(4)①0.9=99=1故答案为:0.9=1②3.714285=3+714285999999=3+57=267故答案为:26 7。

第9章 三角形专题训练:规律探究、归纳推理问题(含答案)

第9章 三角形专题训练:规律探究、归纳推理问题(含答案)

专题:规律探究、归纳推理问题1.观察下列关于自然数的等式:22-9×12=-5①,52-9×22=-11②,82-9×32=-17③,……根据上述规律,解决下列问题:(1)完成第四个等式:112-9×__________2=________;(2)根据上面的规律,写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.2.发现任意五个连续整数的平方和是5的倍数.验证(1)(-1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个数为n,写出它们的平方和,并说明它们的平方和是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.3.已知△ABC中,∠A=30°.(1)如图①,∠ABC、∠ACB的平分线交于点O,则∠BOC=________°;(2)如图②,∠ABC、∠ACB的三等分线分别对应交于点O1、O2,则∠BO2C=________°;(3)如图③,∠ABC、∠ACB的n等分线分别对应交于点O1、O2…O n-1(内部有n-1个点),求∠BO n-1C(用含n的代数式表示);(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于点O1、O2…O n-1.若∠BO n-1C =60°,求n的值.参考答案与解析1.解:(1)4-23(2)猜想:(3n-1)2-9n2=-6n+1.验证:(3n-1)2-9n2=9n2-6n+1-9n2=-6n+1.2.解:验证(1)(-1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(-1)2+02+12+22+32的结果是5的3倍.(2)由题知五个连续整数的中间一个数为n,则其余的4个整数分别是n-2,n-1,n+1,n+2,它们的平方和为(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2=n2-4n+4+n2-2n+1+n2+n2+2n+1+n2+4n+4=5n2+10.∵5n2+10=5(n2+2),又∵n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数.延伸设三个连续整数的中间一个数为n,则其余的2个整数是n-1,n+1,它们的平方和为(n-1)2+n2+(n+1)2=n2-2n+1+n2+n2+2n+1=3n2+2.∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.3.解:(1)105(2)80(3)∵∠BAC=30°,∴∠ABC+∠ACB=150°.∵点O n-1是∠ABC与∠ACB的n等分线的交点,∴∠O n-1BC+∠O n-1CB=n-1n(∠ABC+∠ACB)=n-1n·150°,∴∠BO n-1C=180°-n-1 n·150°.(4)由(3)得180°-n-1n×150°=60°,解得n=5.。

专题29 规律探究题(共26题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题29 规律探究题(共26题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题29规律探究题(26题)一、单选题1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.54【答案】B【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.+=根木棍,【详解】解:第①个图案用了459+⨯=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.2.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311A .()31.34B .()31,34-【答案】A【分析】根据图象可得移动3次完成一个循环,从而可得出点坐标的规律()323n A n n --,.【详解】解:∵()121A -,,()412A -,,()703A ,,()1014A ,,L ,∴()323n A n n --,,∵1003342=⨯-,则34n =,∴()1003134A ,,故选:A .【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律.5.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,,34131111nn na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.6.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形,曲线11112DA B C D A 是由多段90︒的圆心角的圆心为C ,半径为1CB ; 11C D 的圆心为D ,半径为 11111111,DC DA A B B C C D 、、、的圆心依次为A B C D 、、、循环,则20232023A B的长是()A .40452πB .2023【答案】A【分析】曲线11112DA B C D A …是由一段段1114(1)22n n AD AA n -==⨯-+,n BAA .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.8.(2023·四川内江·统考中考真题)对于正数x ,规定2()1x f x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+A .202340a =B .2024a 【答案】B【分析】利用图形寻找规律2n A 【详解】解:第1圈有1个点,即第2圈有8个点,即2A 到(91,1A第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.二、填空题10.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.11.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃C H【答案】1226【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.CH,【详解】解:甲烷的化学式为4设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,……,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有盏.【答案】10【分析】灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”,确定1-100中,各个数因数的个数,完全平方数的因数为奇数个,从而求解.【详解】所有灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”;因数的个数为奇数的自然数只有完全平方数,1-100中,完全平方数为1,4,9,16,25,36,49,64,81,100;有10个数,故有10盏灯被按奇数次,为“亮”的状态;故答案为:10.【点睛】本题考查因数分解,完全平方数,理解因数的意义,完全平方数的概念是解题的关键.14.(2023·湖北十堰·统考中考真题)用火柴棍拼成如下图案,其中第①个图案由4个小等边三角形围成1个小菱形,第②个图案由6个小等边三角形围成2个小菱形,……,若按此规律拼下去,则第n 个图案需要火柴棍的根数为(用含n 的式子表示).【答案】66n +/66n+【分析】当1n =时,有()2114+=个三角形;当2n =时,有()2216+=个三角形;当3n =时,有()2318+=个三角形;第n 个图案有()2122n n +=+个三角形,每个三角形用三根计算即可.【详解】解:当1n =时,有()2114+=个三角形;【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片62=分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++=.(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.17.(2023·湖南怀化·统考中考真题)在平面直角坐标系中,AOB 为等边三角形,点A 的坐标为()1,0.把AOB 按如图所示的方式放置,并将AOB 进行变换:第一次变换将AOB 绕着原点O 顺时针旋转60︒,同时边长扩大为AOB 边长的2倍,得到11A OB △;第二次旋转将11A OB △绕着原点O 顺时针旋转60︒,同时边长扩大为11A OB △,边长的2倍,得到22A OB △,….依次类推,得到20332033A OB ,则20232033A OB △的边长为,点2023A 的坐标为.【答案】20232()202220222,32-⨯【分析】根据旋转角度为60︒,可知每旋转6次后点A 又回到x 轴的正半轴上,故点2023A 在第四象限,且202320232OA =,即可求解.在2023Rt OHA 中,2023HOA ∠∴202320232023cos 2OH OA HOA =⋅∠=2023202320232023sin 2A H OA HOA =⋅∠=∴点2023A 的坐标为()202220222,32-⨯.故答案为:20232,()202220222,32-⨯.【点睛】本题考查图形的旋转,解直角三角形的应用.熟练掌握图形旋转的性质,根据旋转角度找到点的坐标规律是解题的关键.18.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.19.(2023·山东枣庄·统考中考真题)如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= .【答案】2023253【分析】求出1234,,,P P P P …的纵坐标,从而可计算出123n S S S S +++⋯+的值.【详解】当1x =时,1P 的纵坐标为8当2x =时,2P 的纵坐标为4,当3x =时,3P 的纵坐标为83,∴12320238202320242532023S S S S ⨯+++⋯+==.故答案为:2023253.【点睛】本题考查了反比例函数与几何的综合应用,解题的关键是求出881n S n n =-+.20.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.【答案】()2023,1-【分析】将四分之一圆弧对应的A 律即可.【详解】∵A 点坐标为()1,1,且A ∴1A 点坐标为()2,0,又∵2A 为1A 点绕O 点顺时针旋转故2023A 为以点C 为圆心,半径为2022的2022A 顺时针旋转90︒所得故2023A 点坐标为()2023,1-.故答案为:()2023,1-.【点睛】本题考查了点坐标规律探索,通过点的变化探索出坐标变化的规律是解题的关键.22.(2023·山东东营·统考中考真题)如图,在平面直角坐标系中,直线l :33y x =-与x 轴交于点1A ,以1OA 为边作正方形111A B C O 点1C 在y 轴上,延长11C B 交直线l 于点2A ,以12C A 为边作正方形2221A B C C ,点2C 在y 轴上,以同样的方式依次作正方形3332A B C C ,…,正方形2023202320232022A B C C ,则点2023B 的横坐标是.【答案】2022313⎛⎫+ ⎪ ⎪⎝⎭【分析】分别求出点点1B 的横坐标是1,点2B 的横坐标是313+,点3B 的横坐标是223431333⎛⎫+=+ ⎪ ⎪⎝⎭,找到规律,得到答案见即可.【详解】解:当0y =,033x =-,解得1x =,∴点()11,0A ,∵111A B C O 是正方形,∴11111OA A B OC ===,∴点()11,1B ,和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.24.(2023·山东泰安·统考中考真题)已知,12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形,按下图所示摆放.点235,,,A A A 都在x 轴正半轴上,且2356891A A A A A A ==== ,则点2023A 的坐标是.【答案】()2023,3-【分析】先确定前几个点的坐标,然后归纳规律,按规律解答即可.【详解】解:由图形可得:()()()()()()2356892,0,3,0,5,0,6,0,8,0,9,0,A A A A A A 如图:过1A 作1A B x ⊥轴,【答案】202223【分析】过点1A作1A M x⊥轴,交直线130AOM∠=︒,再根据等边三角形的性质、()12,0A ,12OA ∴=,当2x =时,233y =,即123232,,33M A M ⎛⎫= ⎪ ⎪⎝⎭,1113tan 3A M A OM A O ∴∠==,130A OM ∴∠=︒,112A B A 是等边三角形,211121160,A A B A A A B ∠=︒=∴,11130O O A M B A ∴∠=︒∠=,1112A B OA ==∴,1113sin 6022A B B C ∴=⋅︒=⨯,即点1B 的纵坐标为322⨯,同理可得:点2B 的纵坐标为2322⨯,点3B 的纵坐标为3322⨯,点4B 的纵坐标为4322⨯,归纳类推得:点n B 的纵坐标为132232n n -⨯=(n 为正整数),则点2023B 的纵坐标为2023120222323-=,故答案为:202223.【点睛】本题考查了点坐标的规律探索、等边三角形的性质、正比例函数的应用、解直角三角形等知识点,正确归纳类推出一般规律是解题关键.【答案】404623【分析】解直角三角形得出AOB ∠222ABC A B C ∽,得出111A B C S = ()2222n n n n n A B C ABC ABC S S S == ,从而得出【详解】解:∵22OB =,∴设(),C C C x y ,则3C C y x =,∴tan 3C Cy BOC x ∠==,∴60BOC ∠=︒,∴1cos602222OC OB =⨯︒=⨯=,3sin 602262BC OB =⨯︒=⨯=,∵130AOC BOC AOB ∠=∠-∠=︒,∴1AOB AOC ∠=∠,∴OA 平分BOC ∠,∵12AC l ⊥,AB OB ⊥,∴1263AC AB ==,∵1AB AC =,OA OA =,∴1Rt Rt OAB OAC ≌,∴122OC OB ==,∴112222CC OC OC =-=-=,∴12ABC OAB ACC BOCS S S S =-- 126126122222623232=⨯⨯⨯-⨯⨯-⨯⨯3=,∵2BC l ⊥,∴90BCO ∠=︒,∴906030CBO ∠=︒-︒=︒,∵112B C l ⊥,2BC l ⊥,222B C l ⊥,∴2112B B C C B C ∥∥,∴112230C B O C B O CBO ∠=∠=∠=︒,。

专题 整式中的规律探究题(原卷版)

专题 整式中的规律探究题(原卷版)

(苏科版)七年级上册数学《第3章 代数式》专题 整式中的规律探究题1.(2023春•耿马县期末)按一定规律排列的单项式:2a ,3a 2,4a 3,5a 4,6a 5,…,第n 个单项式是( )A .(n +1)a nB .(n +1)a 2nC .na 2nD .2na n2.(2022春•湖北期末)按一定规律排列的单项式:2a 2,4a 3,8a 4,16a 5,32a 6,…,第n 个单项式是( )A .2n a nB .2n ﹣1a n +1C .2n a n +1D .2n +1an3.(2023•大理市模拟)观察下列关于x 的单项式:x ,﹣3x 2,5x 3,﹣7x 4,9x 5,﹣11x 6,…,按此规律,第n 个单项式为( )A .(2n ﹣1)x nB .﹣(2n ﹣1)x nC .(﹣1)n (2n ﹣1)x nD .(﹣1)n +1(2n ﹣1)x n4.(2023•楚雄市二模)按一定规律排列的单项式:a 3,−a 25,a 39,−a 417,…,第n 个单项式是( )A .(−1)n a n2n1B .(−1)n a n 2n +11C .(−1)n +1a n 2n 1D .(−1)n +1a n 2n +115.(2022秋•云阳县期中)观察下列单项式:a ,﹣a 2,a 3,﹣a 4,a 5,…,按此规律第n 个单项式是 .(n 为正整数)6.(2023•西藏)按一定规律排列的单项式:5a ,8a 2,11a 3,14a 4,….则按此规律排列的第n 个单项式为  .(用含有n 的代数式表示)7.按照规律填上所缺的单项式并回答问题:(1)a 、﹣2a 2、3a 3、﹣4a 4, ;(2)试写出第2008个单项式;(3)试写出第n 个单项式.8.观察下列单项式:﹣x ,3x 2,﹣5x 3,7x 4,…,﹣37x 19,39x 20,…,回答下列问题:(1)这些单项式的系数的规律是什么?(2)这些单项式的次数的规律是什么?(3)根据上面的规律,归纳出第n 个单项式是什么.(4)第2023和2024个单项式是什么?1.(2023•双柏县模拟)按一定规律排列的多项式:x ﹣y ,x 2+2y ,x 3﹣3y ,x 4+4y ,x 5﹣5y ,x 6+6y ,…,则第n 个多项式是( )A .x n +(﹣1)n ny B .(﹣1)n x n +ny C .x n +(﹣1)n +1nyD .(﹣1)n x n +(﹣1)n ny2.按一定规律排列的多项式:﹣x +2y ,x 2+4y ,﹣x 3+6y ,x 4+8y ,﹣x 5+10y ,x 6+12y ,…,根据上述规律,可知第n 个多项式是( )A .(﹣1)n x n +ny B .(﹣1)n x n +2ny C .(﹣1)n +1x n +2nyD .(﹣1)n x n +(﹣1)n ny3.一组按规律排列的多项式:a +b ,a 2﹣b 3,a 3+b 5,a 4﹣b 7,……,其中第10个式子的次数是( )A .10B .17C .19D .214.(2023•巧家县二模)观察下列代数式:1﹣x 2,2+x 3,3﹣x 4,4+x 5,……,根据其中的规律可得第2023个式子是( )A .2022﹣x 2023B .2022+x 2023C .2023﹣x 2024D .2023+x 20245.有一组多项式:a ﹣b 2,a 3+b 4,a 5﹣b 6,a 7+b 8,…,请观察它们的构成规律,用你发现的规律写出第n 个多项式为  .6.按一定规律排列的多项式:x +2y ,﹣x 2+4y ,x 3+8y ,﹣x 4+16y ,x 5+32y ,…,根据上述规律,则第n 个多项式是  .7.观察下列各式及其展开式(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4(a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5……请你猜想(2x ﹣1)8的展开式中含x 2项的系数是( )A .224B .180C .112D .488.已知一列多项式:12x 2−x ,32x 2+2x ,56x 2−3x ,76x 2+4x ,910x 2−5x ,1110x 2+6x ,1314x 2−7x ,1514x 2+8x ,⋯(1)第9个多项式是  ,第10个多项式是  .(2)当n 是奇数时,第n 个多项式是 ,第(n +1)个多项式是  .(3)已知2x 2+x =3,求前100个多项式的和.1.(2023•牡丹江模拟)按一定规律排列的一列数依次为3,6,12,24,…,按此规律排列下去,这列数的第7个数是( )A .96B .124C .192D .2342.(2022秋•衡南县期末)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性,若把第一个三角数记为a 1,第二个三角数记为a 2,…,第n 个三角数记为αn ,计算a 2021﹣a 2020的值为( )A .2021B .2020C .2019D .20183.(2023春•镇雄县期末)一组按规律排列的式子:﹣2,52,−83,114,….第n 个式子是( )(n 为正整数)A .(−1)n +13n−1nB .(−1)n3n−1n 1C .(−1)n2n 1nD .(−1)n3n−1n4.(2023春•渝北区校级期中)当x ≠﹣1时,我们把−1x 1称为x 的“和1负倒数”.如:2的“和1负倒数”为−121=−13,若x 1=1,x 2是x 1的“和1负倒数”,x 3是x 2的“和1负倒数”…依次类推,则x 1•x 2•x 3•…x 2023的值为( )A .1B .﹣1C .12D .−125.(2023春•泗水县期中)将正整数按如图所示的规律排列下去,若有序数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示8,已知1+2+3+⋯+n =n(n 1)2,则表示2023的有序数对是( )A .(64,7)B .(64,64)C .(64,58)D .(64,57)6.(2023•新洲区模拟)有一列数,记为a 1,a 2,⋯,a n ,记其前n 项和为S n =a 1+a 2+⋯+a n ,定义T n =S 1S 2⋯S nn为这列数的“亚运和”,现有99个数a 1,a 2,⋯,a 99,其“亚运和”为1000,则1,a 1,a 2,⋯,a 99这100个数的“亚运和”为( )A .791B .891C .991D .10017.(2023•天河区校级模拟)观察按一定规律排列的一组数:2,12,27,…,其中第n个数记为a n;第n+1个数记为a n+1,第n+2个数记为a n+2,且满足1a n+1a n+2=2a n+1,则a4= ,a2023= .8.(2023•烈山区一模)观察以下等式:第1个等式21=11+11;第2个等式23=12+16;第3个等式25=13+115;第4个等式27=14+128.……按照以上规律,解决下列问题:(1)写出第5个等式: ;(2)写出你猜想的第n个等式: (用含n的等式表示),并证明你的结论.9.(2023秋•瓯海区校级月考)观察下列等式:第1个等式:a1=11×3=12×(1−13);第2个等式:a2=13×5=12×(13−15);第3个等式:a3=15×7=12×(15−17);…青解答下列问题:(1)按以上规律列出第5个等式:a5= .(2)用含有n的代数式表示第n个等式:a n= (n为正整数);(3)求a1+a2+…+a100的值.1.(2023•洪山区开学)如图,摆第一个图形需要4根火柴,摆第二个图形需要7根火柴,…,以此类推.那么摆第八个图形需要( )根火柴.A .24B .27C .25D .282.(2022秋•凤翔县期末)找出以下图形变化的规律,则第2022个图形中黑色正方形的数量是( )A .3030B .3031C .3032D .30333.(2023•东海县开学)如图,一张正方形桌子四周可以坐4人,如果按如图所示的方式拼桌子,六张桌子拼在一起可以坐  人.4.(2023春•凉州区期末)观察下列图形,它们是按一定规律排列的,按此规律,第100个图形中“〇”的个数为 .5.(2022秋•无锡月考)探究规律:将棋子按下面的方式摆出正方形.(1)按图示规律,第(6)图需要 个棋子;(2)按照这种方式摆下去,摆第n(n为正整数)个正方形需要 个棋子;(3)按照这种方式摆下去,摆第2020个正方形需要多少棋子?6.下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有 个★,第六个图形共有 个★;(2)第n个图形中有★ 个;(3)根据(2)中的结论,第几个图形中有2020个★?7.(2023春•肇东市期末)用棋子摆出下列一组图形:(1)填写表:图形编号123456图形中的棋子 (2)照这样的方式摆下去,那么第n个图形的棋子数是 枚;(3)如果某一图形共有102枚棋子,那么它是第 个图形.8.(2022秋•濮阳县期中)如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)2节链条长 cm,6节链条长 cm;(2)n节链条长多少cm?(3)如果一辆自行车的链条由60节这样的链条组成,那么这辆自行车上链条总长度是多少?9.(2022秋•永兴县期末)一串图形按如图所示的规律排列.(说明:下列所指的小正方形都是与第1个图形一样大小的正方形)(1)第5个图形中有几个小正方形?第6个图形呢?(2)求出第n个图形中小正方形的个数.(3)求出第20个图形中小正方形的个数.(4)是否存在某个图形,其小正方形的个数恰好是下列各数:①5050;②1000.给出你的判断,并说明理由.。

中考数学专题复习规律探究题练习(四)

中考数学专题复习规律探究题练习(四)

中考数学专题复习规律探究题练习(四)学校:___________姓名:___________班级:___________考生__________ 评卷人 得分一、解答题1.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为(1)1232n n n ++++⋯+=. 如果图3、图4中的圆圈均有13层.(1)我们自上往下,在每个圆圈中都图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是________;(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数-23,-22,-21,-20,…,求最底层最右边圆圈内的数是________;(3)求图4中所有圆圈中各数值的绝对值之和.(写出计算过程)2.已知点P (0x ,0y )和直线y=kx+b ,则点P 到直线y=kx+b 的距离证明可用公式d=002||1kx y b k -++ 计算.例如:求点P (﹣1,2)到直线y=3x+7的距离. 解:因为直线y=3x+7,其中k=3,b=7. 所以点P (﹣1,2)到直线y=3x+7的距离为:d=002||1kx y b k -++=2|3(1)27|1k ⨯--++ =210=105. 根据以上材料,解答下列问题:(1)求点P (1,﹣1)到直线y=x ﹣1的距离;(2)已知⊙Q 的圆心Q 坐标为(0,5),半径r 为2,判断⊙Q 与直线y=3x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x ﹣6平行,求这两条直线之间的距离.3.观察以下等式:第1个等式:2222233+=⨯;第2个等式:2333388+=⨯;第3个等式:244441515+=⨯;第4个等式:255552424+=⨯;……按照以上规律,解决下列问题:(1)写出第5个等式:____________________________________________________________;(2)写出你猜想的第n 个等式:____________________;(用含n 的等式表示),并证明.4.观察下列各式规律:⊙ 52-22=3×7;⊙72-42=3×11;⊙ 92-62=3×11;…;根据上面等式的规律:(1)写出第6个和第n 个等式; (2)证明你写的第n 个等式的正确性.5.观察下列等式: 2111123⎛⎫÷⨯+= ⎪⎝⎭ 21111324⎛⎫÷⨯+= ⎪⎝⎭21111435⎛⎫÷⨯+= ⎪⎝⎭ 21111546⎛⎫÷⨯+= ⎪⎝⎭()1写出第⑥个等式: ;()2写出你猜想的第n 个等式: (用含n 的等式表示),并证明.6.化简:2334122232+⨯⨯⨯⨯+45342⨯⨯+…+20203201920202⨯⨯.为了能找到复杂计算问题的结果,我们往往会通过将该问题分解,试图找寻算式中每个式子是否存在某种共同规律,然后借助这个规律将问题转化为可以解决的简单问题.下面我们尝试着用这个思路来解决上面的问题.请你按照这个思路继续进行下去,并把相应横线上的空格补充完整. 【分析问题】第1个加数:23122⨯⨯=112⨯﹣2122⨯;第2个加数:34232⨯⨯=2122⨯﹣3132⨯;第3个加数:45342⨯⨯=3132⨯﹣4142⨯;第4个加数: =2142⨯﹣5152⨯; 【总结规律】第n 个加数: = ﹣ .【解决问题】请你利用上面找到的规律,继续化简下面的问题.(结果只需化简,无需求出最后得数)2334122232+⨯⨯⨯⨯+45342⨯⨯+…+20203201920202⨯⨯.7.(1)观察下列图形与等式的关系,并填空: 第一个图形:;第二个图形:;第一个等式:9+4=13;第二个等式:13+8=21;第三个图形:;……;第三个等式: + = ;……;(2)根据以上图形与等式的关系,请你猜出第n 个等式(用含有n 的代数式表示),并证明.8.观察以下等式:第1个等式:23-22=13+2×1+1; 第2个等式:33-32=23+3×2+22; 第3个等式:43-42=33+4×3+32; ……按照以上规律,解决下列问题:(1)写出第4个等式:__________________;(2)写出你猜想的第n 个等式(用含n 的等式表示),并证明.参考答案:1.(1)79;(2)6;(3)2554. 【解析】 【详解】【分析】(1)13层时最底层最左边这个圆圈中的数是前12层圆圈的个数和再加1; (2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数即可得; (3)将图⊙中的所有数字加起来利用所给的公式进行计算即可得.【详解】(1)当有13层时,前12层共有:1+2+3+…+12=78个圆圈,78+1=79, 故答案为79;(2)图⊙中所有圆圈中共有1+2+3+…+13=()131312⨯+=91个数,其中23个负数,1个0,67个正数, 故答案为67;(3)图⊙中共有91个数,分别为-23,-22,-21,...,66,67, 图⊙中所有圆圈中各数的和为: -23+(-22)+...+(-1)+0+1+2+ (67)()9123672⨯-+=2002.【点睛】本题是一道找规律的题目,通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.注意连续整数相加的时候的这种简便计算方法:1+2+3+…+n=()12n n +.2.(1)22;(2)见解析;(3)25. 【解析】 【分析】(1)根据点P 到直线y=kx+b 的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q 到直线y=3x+9,然后根据切线的判定方法可判断⊙Q 与直线y=3x+9相切;(3)利用两平行线间的距离定义,在直线y=-2x+4上任意取一点,然后计算这个点到直线y=-2x-6的距离即可. 【详解】(1)因为直线y=x-1,其中k=1,b=-1, 所以点P (1,-1)到直线y=x-1的距离为:d=002211(1)(1)1222111kx y b k -+⨯--+-===++; (2)⊙Q 与直线y=3x+9的位置关系为相切.理由如下:圆心Q (0,5)到直线y=3x+9的距离为:d=230594221(3)⨯-+==+, 而⊙O 的半径r 为2,即d=r , 所以⊙Q 与直线y=3x+9相切;(3)当x=0时,y=-2x+4=4,即点(0,4)在直线y=-2x+4, 因为点(0,4)到直线y=-2x-6的距离为:d=20-2-46102551(2)⨯-==+-(), 因为直线y=-2x+4与y=-2x-6平行, 所以这两条直线之间的距离为25. 【点睛】本题考查了一次函数的综合题:熟练掌握一次函数图象上点的坐标特征、切线的判定方法和两平行线间的距离的定义. 3.(1)266663535+=⨯;(2)211(1)(1)(2)(2)n n n n n n n n ++++=+⋅++,证明见解析.【解析】 【分析】(1)根据提供的算式写出第5个算式即可; (2)根据规律写出通项公式然后证明即可. 【详解】解:(1)根据已知规律,第5个等式为266663535+=⨯, 故应填:266663535+=⨯; (2)根据题意,第n 个等式为211(1)(1)(2)(2)n n n n n n n n ++++=+⋅++证明:左边[](1)(2)1(1)(2)1(1)(2)(1)(2)(2)(2)(2)n n n n n n n n n n n n n n n n n n n ++++++++++=+==++++()222(1)21(1)(1)1(1)(2)(2)(2)n n n n n n n n n n n n n ++++++===+⋅=+++右边,⊙等式成立. 【点睛】本题考查规律探索问题,从特殊的、简单的问题推理到普通的、复杂的问题,从中归纳问题的规律,体现了逻辑推理与数学运算的核心素养.4.(1)第6个:221512327-=⨯,第n 个:()()()22232343n n n +-=+;(2)证明见解析 【解析】 【分析】(1仿照⊙⊙⊙写出第6和第n 个等式即可;(2)结合(1)发现的规律,并运用整式的四则混合运算证明即可. 【详解】解:(1)⊙ 52-22=3×7;⊙72-42=3×11;⊙ 92-62=3×11;…; 所以第6个等式为:152-122=3×27:所以第n 个等式为:(2n+3)2-(2n )2=3(4n+3) (2)证明:左边=(2n+3+2n )(2n+3-2n ) =3(4n+3) =右边所以第n 个等式正确. 【点睛】本题考查了规律型中的数字的变化类,观察数字的变化、寻找规律是解答本题的关键. 5.(1)21161187⎛⎫⨯ ⎪+⎭=⎝÷;(2)()2121111n n n ⎛⎫⨯ ⎪+⎭=⎝++÷,证明见解析【解析】 【分析】(1)根据所给等式的特点,写出第⊙个等式即可;(2)由所给等式可知:等号左边的被除数是1,括号内的两个分数的分子都是1,第一个分数的分母和序数相同,第二个分数的分母比序数大2,然后再加1,而等号右边是比序数大1的数的平方,据此可写出第n 个等式,然后根据分式的混合运算法则进行证明. 【详解】解:(1)2111123⎛⎫÷⨯+= ⎪⎝⎭21111324⎛⎫÷⨯+= ⎪⎝⎭21111435⎛⎫÷⨯+= ⎪⎝⎭21111546⎛⎫÷⨯+= ⎪⎝⎭∴第⊙个等式为:()2211681161=7⎛⎫⨯ ⎪⎝⎭÷+=+;(2)由分析可猜想第n 个等式为:()2121111n n n ⎛⎫⨯ ⎪+⎭=⎝++÷, 证明:左边()()221112112n n n n n =÷+=++=+=+右边, 故等式成立. 【点睛】本题考查了数字类规律探索、分式的混合运算,根据所给式子,分析变化的部分与不变的部分,正确得出规律是解题的关键.6.56452⨯⨯;12(1)2n n n n ++⨯+⨯,12n n ⨯,11(1)2n n ++⨯;2020202010102120202⨯-⨯ 【解析】 【分析】(1)观察前3个加数即可写出第4个加数;通过前4个加数即可发现规律写出第n 个加数;(2)根据(1)中的规律进行化简即可计算.【详解】解:(1)因为第1个加数:223111221222=-⨯⨯⨯⨯;第2个加数:3234112322232=-⨯⨯⨯⨯;第3个加数:4345113423242=-⨯⨯⨯⨯;所以第4个加数:5456114524252=-⨯⨯⨯⨯总结规律:所以第n 个加数:()()1121112212n nn n n n n n +++=-⨯+⨯⨯+⨯.解决问题: 原式=223342019202011111111...1222223232422019220202-+-+-++-⨯⨯⨯⨯⨯⨯⨯⨯ =202011220202-⨯ =2020202010102120202⨯-⨯故答案为:56452⨯⨯;12(1)2n n n n ++⨯+⨯,12n n ⨯,11(1)2n n ++⨯;2020202010102120202⨯-⨯ 【点睛】本题考查数的规律,根据已知条件找出数字规律是解题关键. 7.(1)17,12,29;(2)(4n+5)+4n =8n+5,证明见解析 【解析】 【分析】(1)观察图形的变化写出前两个个图形与等式的关系,进而可得第三个等式; (2)结合(1)总结规律即可得第n 个等式. 【详解】解:(1)观察图形的变化可知:第一个图形:9+4=13,即4×1+5+4=13=8×1+5, 第二个图形:13+8=21,即4×2+5+4×2=21=8×2+5, 第三个图形:17+12=29,即4×3+5+4×3=29=8×3+5, … 发现规律:第n 个等式为:(4n+5)+4n =8n+5; 故答案为:17,12,29; (2)由(1)发现的规律:所以第n 个等式为:(4n+5)+4n =8n+5; 证明:左边=4n+5+4n =8n+5=右边. 所以等式成立. 【点睛】本题考查了规律型:图形的变化类,解决本题的关键是观察图形的变化寻找规律,总结规律.8.(1)3232554544-=+⨯+;(2)猜想出第n 个等式为3232(1)(1)(1)n n n n n n +-+=+++,证明见解析.【解析】 【分析】(1)根据前三个等式归纳总结出规律即可得;(2)先归纳总结出一般规律,得出第n 个等式,再利用因式分解的方法分别计算等式的两边即可得证. 【详解】(1)由前三个等式可得:第4个等式为3232554544-=+⨯+ 故答案为:3232554544-=+⨯+;(2)猜想出第n 个等式为3232(1)(1)(1)n n n n n n +-+=+++,证明如下:等式的左边[]3222(1)(1)(1)(1)1(1)n n n n n n =+-+=++-=+等式的右边()32222(1)(1)21(1)n n n n n n n n n n n n n ⎡⎤=+++=+++=++=+⎣⎦则等式的左边=等式的右边 所以等式成立. 【点睛】本题考查了因式分解的实际应用,理解题意,正确归纳类推出一般规律是解题关键.。

专题32 中考热点规律探究填空选择专项训练-2023年中考数学二轮复习核心考点拓展训练(解析版)

专题32 中考热点规律探究填空选择专项训练-2023年中考数学二轮复习核心考点拓展训练(解析版)

专题32 中考热点规律探究填空选择专项训练(解析版)专题诠释:规律探究是最近中考热点,多以填空选择形式呈现。

此类题的最大特点:问题的结论或条件不直接给出,二常常给出一列数、一列等式或一列图形的一部分。

其解题思维过程是:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论,确定需要求的结论. 这里精选最新最经典的规律探究题,欢迎下载使用。

一.选择题(共10小题)1.(2021•广西模拟)计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,…归纳各计算结果中的个位数字规律,猜测22021﹣1的个位数字是( )A.1B.3C.7D.5思路引领:根据题目中给出的式子的结果,可以发现结果的个位数字的变化特点,从而可以求得22021﹣1的个位数字.解:∵21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,…,∴计算结果中的个位数字依次以1,3,7,5循环出现,∵2021÷4=5051 4,∴22021﹣1的个位数字是1,故选:A.总结提升:本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现结果的个位数字的变化特点,写出所求式子的个位数字.2.(2021春•沙坪坝区校级月考)使用黑白棋子按照一定规律摆放成三角形阵.前五次摆放的情况如图所示,如果按照此规律继续构建三角形阵,摆放到第( )个三角形阵时,该三角形阵中的黑棋子第一次比白棋子多.A.6B.7C.8D.9思路引领:分别求出黑白棋子的变化规律,建立方程求解即可.解:设一共有n个图形,由图可知,白棋子的变化规律为每次增加3个,则第n 个白棋子的个数为3n +3,黑棋子的变化为:n =1时,0个;n =2时,0+1=1个;n =3时,0+1+2=3个;n =4时,0+1+2+3=6个;故第n 个图案中黑棋子个数为0+1+2+3+...+(n ﹣1)=n 2⋅(n ―1)=n 2―n 2,∴n 2―n 2=3n +3,解得n =7+732,n =7―732(不符题意,舍去),∴n 2―n 2>3n +3,n >7+732,∵n 取正整数,且黑棋子第一次比白棋子多,∴n =8.故选:C .总结提升:本题主要考查图形变换类的题目,解题关键在于求出黑白棋子各自的变化规律.3.(2022秋•大埔县期中)某同学用一等边三角形木板制作一些相似的直角三角形.如图,其方法是:过C 点作CD 1⊥AB 于D 1,再过D 1作D 1D 2⊥CA 于D 2,再过D 2作D 2D 3⊥AB 于D 3…,若△ABC 的边长为a ,则CD 1=32a ,D 1D 2=34a ,D 2D 3=38a ,依此规律,则D 5D 6的长为( )A .316aB .332aC .364aD .3128a 思路引领:把CD 1、D 1D 2、D 2D 3的分母写成2n 的形式,从中找出规律,根据规律解答.解:CD 1=32a =321a ,D1D2=34a=322a,D2D3=38a=323a,则D5D6的长为:326a=364a,故选:C.总结提升:本题考查的是相似三角形的性质、等边三角形的性质,掌握相似三角形的对应边成比例是解题的关键.4.(2022春•裕华区校级期中)如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2),……则第2022秒点P所在位置的坐标是( )A.(44,2)B.(44,3)C.(45,3)D.(45,2)思路引领:分析点P在坐标系中的运动路线,寻找点P运动至x轴或y轴时的点坐标的规律.解:根据题意列出P的坐标寻找规律.P1(1,0);P8(2,0);P9(3,0);P24(4,0);P48(6,0);即P2n(2n+2)坐标为(2n,0).P2024(44,0).∴P2022坐标为P2024(44,0)退回两个单位→(44,1)→(44,2).故选:A.总结提升:考查平面直角坐标系中点的坐标变化,分析点P运动路线规律,找到点P在x轴上的交点坐标规律为解题关键,难点在于拆分2024=44×46.5.(2022秋•桥西区校级期中)计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,……归纳各计算结果中的个位数字规律,则22022的个位数字是( )A.1B.3C.4D.5思路引领:通过观察发现每四次运算结果的尾数循环出现一次,再由2022÷4=505……2,即可求解22022﹣1的个位数字是3.解:∵21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,……,∴每四次运算结果的尾数循环出现一次,∵2022÷4=505……2,∴22022﹣1的个位数字是3,∴22022的个位数字是4,故选:C.总结提升:本题考查数字的变化规律,解题的关键是通过观察,探索出循环规律.6.(2021秋•西城区校级期中)如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的图形是一个轴对称图形,一共有( )种涂法.A.1B.2C.3D.4思路引领:根据轴对称图形的定义,画出图形即可.解:如图,满足条件的三角形有三个.故选:C.总结提升:本题考查利用轴对称图形设计图案,解题的关键是连接轴对称图形的定义,属于中考常考题型.7.(2022•苏州模拟)下列各正方形中的四个数之间都有相同的规律,根据此规律,x的值为( )A.135B.153C.170D.189思路引领:首先通过分析找到a与b的关系,然后找到b与18的关系,进而找到x与b和18的关系,即可以得到结果.解:根据题目可以知道:4=2×2,6=3×2,8=4×2,……,2=1+1,3=2+1,4=3+1,……,∴18=2b,a=b﹣1;∴b=9,a=8;又∵9=(4﹣1)×(2+1),20=(6﹣1)×(3+1),35=(8﹣1)×(4+1),……,∴x=(18﹣1)×(b+1)=17×10=170.故选:C.总结提升:本题考查数的规律,解题的关键是通过一列数,找到斜对角的关系是本题的突破口,然后再通过乘法的分解即可求出x.8.(2022•杭州模拟)如图,小正方形是按一定规律摆放的,则适合填补图中空白处的是( )A.B.C.D.思路引领:根据题意知原图形中各行、各列中点数之和为10,据此可得.解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:D.总结提升:本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.9.(2022秋•罗山县期中)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第2020次旋转结束时,点D的坐标为( )A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)思路引领:先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×505,所以第2020次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转0次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可得到旋转后的点D的坐标.解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵2020=4×505,∴每4次一个循环,第2020次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转0次,每次旋转90°,∴点D的坐标为(﹣3,10).故选:B.总结提升:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.10.(2022秋•莲池区期末)已知点E(x0,y0),点F(x2,y2),点M(x1,y1)是线段EF的中点,则x1=x0+x22,y1=y0+y22.在平面直角坐标系中有三个点A(1,﹣1),B(﹣1,﹣1),C(0,1),点P(0,2)关于点A的对称点P1(即P,A,P1三点共线,且PA=P1A),P1关于点B的对称点P2,P2关于点C的对称点P3,…按此规律继续以A,B,C三点为对称点重复前面的操作.依次得到点P4,P5,P6…,则点P2022的坐标是( )A.(0,2)B.(2,0)C.(2,﹣4)D.(﹣4,2)思路引领:先利用定义依次求出各点,再总结规律即可求解.解:由题意,P1(2,﹣4),P2(﹣4,2),P3(4,0),P4(﹣2,﹣2),P5(0,0),P6(0,2),P7(2,﹣4),……可得每6次为一个循环,∵2022÷6=337,∴点P2022的坐标是(0,2),故选:A.总结提升:本题考查了数式规律,解题关键是理解题意并能发现规律.二.填空题(共16小题)11.(2020秋•江阴市月考)用形状和大小相同的黑色棋子按如图所示的方式排列,按照这样的规律,第101个图形需要棋子 304 枚.思路引领:解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.解:第一个图需棋子3+1=4;第二个图需棋子3×2+1=7;第三个图需棋子3×3+1=10;…第n个图需棋子(3n+1)枚,故第101个图形需要棋子数为:3×101+1=304.故答案为:304.总结提升:此题考查了规律型中的图形变化问题,主要培养学生的观察能力和空间想象能力.12.(2021•广东模拟)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,以AC为较长的直角边,按逆时针方向作Rt△ACC1,且∠ACC1=900,∠BAC=∠CAC1;再以AC1为较长的直角边,按逆时针方向作Rt△AC1C2,且∠AC1C2=90°,∠CAC1=∠C1AC2;…按此规律一直下去,则AC n﹣1的长为 .思路引领:证明△ABC∽△ACC1∽AC1C2的面积,根据相似三角形的性质得C1C2AC1=CC1AC=BCAB,根据勾股定理得AC=5=(5)120,则CC1=52,根据勾股定理得AC1=52=(5)221,可得探究规律,可得结论.解:由题意,∠BAC=∠CAC1=∠C1AC2,ABC=∠ACC1=∠AC1C2=90°,∴△ABC∽△ACC1∽AC1C2,∴C1C2AC1=CC1AC=BCAB=12,∵AB=2,BC=1,∴AC=5=(5)1 20,CC1=5 2,∴AC1=52=(5)221,•,∴AC n﹣1=(5)n2n―1.故答案为:(5)n2n―1.总结提升:本题考查相似三角形的性质,勾股定理等知识,解题的关键是学会探究规律,利用规律解决问题.13.(2022秋•任城区校级期末)如图,在抛物线y=x2的内部依次画正方形,使对角线在y轴上,另两个顶点落在抛物线上.按此规律类推,第2023个正方形的边长是 .思路引领:由题意可知,直线OA1是第一象限的角平分线,故解析式为y=x,联立方程求得A1的坐标,进而求得第一个正方形边长和B1的坐标,即可得直线B1A2的解析式为y=x+2,联立方程求得A2的坐标,进而求得第二个正方形的边长和B2的坐标,即可得到直线B2A3的解析式为y=x+6,联立方程求得A3的坐标,即可求得第三个正方形的边长……,以此类推得出规律,即可得到第2023个正方形的边长是2023 3.解:根据题意,∠B1OA1=45°,即直线OA1是第一象限的角平分线,则解析式为y=x,联立y=xy=x2,解得x=0y=0或x=1y=1,故A1(1,1),∴OA1=12+12=2,OB1=2,即第1个正方形边长为2,∵∠B2B1A2=45°=∠B1OA1,∴直线B1A2的解析式中的x系数与直线OA1的解析式中x系数相等,且经过B1(0,2),∴直线B1A2的解析式为y=x+2,联立y=x+2 y=x2,解得x=―1y=1或x=2y=4,故A2(2,4),∴A2B1=22+(4―2)2=22,OB2=6,即第2个正方形边长为22,∵∠B3B2A3=45°=∠B2B1A2,∴直线B2A3的解析式中的x系数与直线OA1的解析式中x系数相等,且经过B2(0,6),∴直线B2A3的解析式为y=x+6,联立y=x+6 y=x2,解得x=―2y=4或x=3y=9,故A3(3,9),∴A3B2=32+(9―6)2=32,OB3=12,即第3个正方形边长为32,…按此规律类推,第n个正方形的边长为n2,∴第2023个正方形的边长是20233,故答案为:20233.总结提升:本题考查了二次函数的性质,二次函数图象上点的坐标特征,利用方程组求得交点坐标,求得抛物线上点的坐标是解题的关键.14.(2021秋•管城区校级期中)初三学生小明为表达对母校的感情,用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,……,按照此规律,从第(70)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是 .思路引领:先根据已知图形得出第70个图形中,正方体一共有1+2+3+……+69+70=2485个,再用带“心”字的正方体个数除以总个数即可得.解:∵第1个图形中正方体的个数为1,第2个图形中正方体的个数3=1+2,第3个图形中正方体的个数6=1+2+3,∴第70个图形中,正方体一共有1+2+3+……+70=(1+70)×702=2485(个),其中写有“心”字的正方体有70个,∴抽到带“心”字正方体的概率是702485=271.故答案为:2 71.总结提升:本题主要考查概率公式及图形的变化规律,解题的关键是得出第n个图形中正方体个数和概率公式.15.(2021秋•官渡区期末)在平面直角坐标系中,抛物线y=x2的图象如图所示,已知点A的坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x 轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4…,依次进行下去,则点A2022的坐标为 .思路引领:根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2022的坐标.解:∵A点坐标为(1,1),∴直线OA的解析式为y=x,A1(﹣1,1),∵A1A2∥OA,∴直线A1A2的解析式为y=x+2,解y=x+2y=x2得x=―1y=1或x=2y=4,∴A2(2,4),∴A3(﹣2,4),∵A3A4∥OA,∴直线A3A4的解析式为y=x+6,解y=x+6y=x2得x=―2y=4或x=3y=9,∴A4(3,9),∴A5(﹣3,9)…,∴A2022(1012,10122),故答案为:(1012,10122).总结提升:本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.16.(2022春•汕尾期末)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,点A1,A2,A3,A4,…在直线l 上,点C1,C2,C3,C4,…在x轴正半轴上,则A4的坐标是 ;A n的坐标是 .思路引领:由题意可得A1,A2,A3,A4的坐标,可得点A坐标规律,即可求解.解:由题意可得正方形OA1B1C1边长为1,正方形A2B2C2C1的边长为2,正方形A3B3C3C2的边长为4,…正方形A n B n∁n C n﹣1的边长为2n﹣1,∴A1(0,1),A2(1,2),A3(3,4),A4(7,8)…A n(2n﹣1﹣1,2n﹣1),故答案为:(7,8),(2n﹣1﹣1,2n﹣1).总结提升:本题考查一次函数图象上点的坐标特征、规律型:点的坐标,解答本题的关键是明确题意,利用数形结合的思想解答.17.(2022•金坛区模拟)如图,在由10个完全相同的正三角形构成的网格图中,∠α,∠β如图所示,则tan (α+β)= .思路引领:连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理可得出:∠CDE =∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,DE=3a,由三角函数定义即可得出答案.解:连接DE,如图所示:在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°,同理得:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=BD•sin∠DBE=2a•sin60°=3a,∴tan(α+β)=AEDE=2a3a=233.故答案为:23 3.总结提升:本题考查了解直角三角形、等边三角形的性质以及图形的变化规律等知识;构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.18.(2022•丛台区校级模拟)如图,平面直角坐标系中,边长为1的正方形OAP1B的顶点A、B分别在x轴、y轴上,点P1在反比例函数y=kx(x>0)的图象上,过P1A的中点B1作矩形B1AA1P2,使顶点P2落在反比例函数的图象上,再过P2A1的中点B2作矩形B2A1A2P3,使顶点P3落在反比例函数的图象上,…,依此规律可得:(1)点P2的坐标为 ;(2)作出矩形B18A17A18P19时,落在反比例函数图象上的顶点P19的坐标为 .思路引领:(1)利用正方形的性质得到P1(1,1),则可确定反比例函数的解析式为y=1x,再利用点B1的纵坐标为12,根据反比例函数图象上点的坐标特征得到点P2的纵坐标为12,则点P2横坐标为2;(2)同样方法得到点P3的纵坐标为122,点P3的横坐标为22,利用2的指数与P点的序号数的关系可得到点P19的坐标.解:(1)∵正方形OAP1B的边长为1,∴P1(1,1),把P1(1,1)代入y=kx(x>0)的得到k=1×1=1,∴反比例函数的解析式为y=1 x ,∵点B1为P1A的中点,∴点B1的纵坐标为1 2,∵四边形B1AA1P2为矩形,∴点P2的纵坐标为1 2,∵点P2在y=1x的图象上,∴点P2横坐标为(2,12);(2)∵点P2横坐标为(2,12),点B2为P2A1的中点,∴点B2的纵坐标为12×12=122,∵四边形B2A1A2P3为矩形,∴点P3的纵坐标为1 22,∵点P3在y=1x的图象上,∴点P3的横坐标为22,•,∴点P19的纵坐标为1 218,∴点P19的横坐标为218,即P19(218,1 218).故答案为:(218,1 218).总结提升:本题考查了反比例函数图象上点的坐标特征,矩形的性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了规律性问题的解决方法和反比例函数图象上点的坐标特征.19.(2022•滕州市三模)如图,在平面直角坐标系中,正方形A1B1C1A2与正方形A2B2C2A3是以O为位似中心的位似图形,且位似比为12,点A1,A2,A3在x轴上,延长A3C2交射线OB1与点B3,以A3B3为边作正方形A3B3C3A4;延长A4C3,交射线OB1与点B4,以A4B4为边作正方形A4B4C4A5;…按照这样的规律继续作下去,若OA1=1,则正方形A2021B2021C2021A2022的面积为 .思路引领:根据位似图形的概念求出OA2,根据正方形的面积公式计算,总结规律,根据规律解答即可.解:∵正方形A1B1C1A2与正方形A2B2C2A3是以原点O为位似中心的位似图形,且相似比为1 2,∴A1B1A2B2=12,∵A1B1⊥x轴,A2B2⊥x轴,∴A1B1∥A2B2,∴OA1B1∽△OA2B2,∴OA1OA2=A1B1A2B2=12,∵OA1=1,∴OA2=2,∴A1A2=1,∴正方形A1B1C1A2的面积=1=40,∵OA1=A1A2=A1B1=1,∴∠B1OA1=45°,∴OA2=A2B2=2,∴正方形A2B2C2A3的面积=2×2=41,∵A3B3⊥x轴,∴OA3=A3B3=4,∴正方形A3B3C3A4的面积=4×4=16=42,……则正方形A2021B2021C2021A2022的面积为42021﹣1=42020=24040,故答案为:24040.总结提升:本题考查的是位似图形的性质、图形的变化规律,掌握位似图形的性质、相似多边形的性质是解题的关键.20.(2022春•诸暨市期中)为了求1+2+22+…+22021的值,可令S=1+2+22+…+22021,则2S=2+22+…+22022,因此2S﹣S=22022﹣1,所以1+2+22+…+22021=22022﹣1.按照以上推理计算出1+3﹣1+3﹣2+…+3﹣2021的值是 .思路引领:仿照所给的求解方式进行解答即可.解:令S=1+3﹣1+3﹣2+…+3﹣2021,则13S=3﹣1+3﹣2+…+3﹣2021+3﹣2022,因此13S﹣S=3﹣2022﹣1,则―23S=3―2022―1,得:S=3―2021―32,所以1+3﹣1+3﹣2+…+3﹣2021=3―2021―32.故答案为:3―2021―32.总结提升:本题主要考查数字的变化规律,有理数的混合运算,解答的关键是理解清楚题目所给的求解方式并灵活运用.21.(2021•零陵区一模)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…以此类推,则点N2021的坐标为 .思路引领:先求出N1至N6点的坐标,找出其循环的规律为每6个点循环一次即可求解.解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,﹣8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2021÷6=336……5,即循环了336次后余下5,故N2021的坐标与N5点的坐标相同,其坐标为(3,﹣4).故答案为:(3,﹣4).总结提升:本题考查了平面直角坐标系内点的对称规律问题,本题需要先去验算前面一部分点的坐标,进而找到其循环的规律后即可求解.22.(2022春•白碱滩区期末)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点A n,则点A2022的坐标是 .思路引领:由题意可知,智能机器人的运动路径规律为每八次一个循环,再结合点的坐标即可求解.解:由题意可知,智能机器人的运动路径规律为每八次一个循环,即智能机器人从原点O出发,每运动8次到达点的横坐标增加4个单位长度,∵2022÷8=252……6,∴智能机器人共运动了252个循环加6次,则252×4+3=1011,∴此时A2022(1011,﹣1),故答案为:(1011,﹣1).总结提升:本题考查了轨迹,点的坐标﹣规律型,正确得出智能机器人的运动路径规律为每八次一个循环是解题的关键.23.(2022秋•依安县期末)如图,在平面直角坐标系中,第1次将边长为1的正方形OABC绕点O逆时针旋转45°后,得到正方形OA1B1C1;第2次将正方形OA1B1C1绕点O逆时针旋转45°后,得到正方形OA2B2C2…按此规律,绕点O旋转得到正方形OA2020B2020C2020,则点B2021的坐标为 .思路引领:根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC 绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.解:如图,∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,OB1,OB2,OB6,OB4…,由勾股定理得:OB=2,由旋转得:OB=OB1=OB2=OB3=⋯=2,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,2),B2(﹣1,1),B3(―2,0),B4(﹣1,﹣1),B5(0,―2),…,发现是8次一循环,所以2020÷8=252 (4)∴点B2020的坐标为(﹣1,﹣1),点B2021的坐标为(0,―2).故答案为:(0,―2).总结提升:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.24.(2021•宣州区校级自主招生)如图,射线OM在第一象限,且与x轴正半轴的夹角为60°,过点D (6,0)作DA⊥OM于点A,作线段OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB,以AB为边在△AOB的外侧作正方形ABCA1,延长A1C交射线OB于点B1,以A1B1为边在△A1OB1的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,以A2B2为边在△A2OB2的外侧作正方形A2B2C2A3…按此规律进行下去,则正方形A2020B2020C2020A2021的周长为 .思路引领:由题意可知∠MOB n=30°,AO=3,AB=3,所以正方形ABCA1的边长为3,∵CB∥AM,∴CB1=tan30°•BC=1,故A1B1=1+3,以此计算可得每个正方形的边长,进而发现规律.解:由已知得∠AOD=60°,∴∠ADO=30°.∵BE垂直平分OD,∴BO=BD,∴∠BOD=∠ADO=30°,∴∠AOB=60°﹣30°=30°,∴OA=12OD=3,∴AB=tan30°•OA=33×3=3,∴BC=3,∴正方形ABCA1的周长为43;易得A1B1=3+33×3=3+1,∴正方形A1B1C1A2的周长为4(3+1);同理可得A2B2=3+1+(3+1)×33=(3+1)(1+33);B2C2=(3+1)(1+33 ),∴正方形A2B2C2A3的周长为4(3+1)(1+33 );同理A3B3=(3+1)(1+33)+(3+1)(1+33)×33=(1+33)2(3+1),B3C3=(1+33)2(3+1),∴正方形A3B3C3A4的周长为4(1+33)2(3+1);A4B4=(1+33)3(3+1)=B4C4,∴正方形A4B4C4A5的周长为4(1+33)3(3+1);......以此类推可知正方形正方形A2020B2020C2020A2021的周长为4(1+33)2019(3+1).故答案为:4(1+33)2019(3+1).总结提升:本题考查正方形的性质、垂直平分线的性质,以及三角函数知识,正确找到规律是解题关键.25.(2020春•文登区期末)如图,在△ABC中,点A1,B1,C1分别是AC,BC,AB的中点,连接A1C1,A1B1,四边形A1B1BC1的面积记作S1;点A2,B2,C2分别是A1C,B1C,A1B1的中点,连接A2C2,A2B2,四边形A2B2B1C2的面积记作S2…,按此规律进行下去,若S△ABC=a,则S2020= .思路引领:根据三角形中位线定理可求出S1的值,进而可得出S2的值,找出规律即可得出S2020的值.解:∵A1C1,A1B1是△ABC的中位线,∴A1C1=12BC,A1C1∥BC.∴△A1C1B1∽△ABC,∴S△AC1A1=14S△ABC=14a.同理S△ACB1=14S△ABC=14a.∴S1=a―14a―14a=12a;同理可得,S2=a 23;…∴S n=a22n―1;∴S2020=a 24039.故答案是:a 24039.总结提升:本题考查的是相似三角形的性质及三角形中位线定理,正确得出面积变化规律是解答此题的关键.26.如图,直线l:y=33x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l 于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则S n= .思路引领:由直线l:y=33x+1可求出与x轴交点A的坐标,与y轴交点A1的坐标,进而得到OA,OA1的长,也可求出Rt△OAA1的各个内角的度数,是一个特殊的直角三角形,以下所作的三角形都是含有30°角的直角三角形,然后这个求出S1、S2、S3、S4、……根据规律得出Sn.解:直线l:y=33x+1,当x=0时,y=1;当y=0时,x=―3∴A(―3,0)A1(0,1)∴∠OAA1=30°又∵A1B1⊥l,∴∠OA1B1=30°,在Rt△OA1B1中,OB1=33•OA1=33,∴S1=12OA1⋅OB1=36;同理可求出:A2B1=43,B1B2=43×33,∴S2=12A2B1⋅B1B2=12×43×(43×33)=36×(43)2;依次可求出:S3=36×(43)4;S4=36×(43)6;S5=36×(43)8⋯⋯因此:S n=36×(43)2n―2=3332×(43)2n,故答案为:3332×(43)2n.总结提升:考查一次函数的图象和性质、解直角三角形、三角形的面积、以及找规律归纳总结结论的能力,由于数据较繁琐、计算量交点,容易出现错误;因此在方法正确的前提下,认真正确的计算则显得尤为重要.。

2019年春人教版七年级数学下册 专题复习-规律探究专题训练

2019年春人教版七年级数学下册 专题复习-规律探究专题训练

七下期末复习专题——规律探究一、数的规律1、观察一列有规律的数:4,8,16,32,…,它的第2007个数是( )A .20072B .200721-C .20082D .200622、请你认真观察和分析图中数字变化的规律,由此得到图中所缺的数字应为( ) A .32B .29C .25D .233、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:当输入数据是8时,输出的数是( )A .861B .865C .867D .8694、观察下列等式:122=,224=,328=,4216=,5232=,6264=,72128=,…….通过观察,用你所发现的规律确定20062的个位数字是 .5、按一定规律排列的一列数依次为23,58,1015,1724,2635,,按此规律排列下去,这列数的第n 个数是 (n 是正整数).6、观察规律并填空:111123248,,,…,第5个数是 ,第n 个数是 .7、我们把分子为1的分数叫做单位分数.如111234,,,…,任何一个单位分数都可以拆分成两个不同单位分数的和,如11111111123634124520=+=+=+,,,…(1)根据对上述式子的观察,你会发现1115=+□○.请写出□,○所表示的数; (2)进一步思考,单位分数1n(n 是不小于2的正整数)11=+△☆,请写出△,☆所表示的式子,并加以验证. 二、式的规律1、观察下面的单项式:a ,22a -,34a ,48a -,.根据你发现的规律,第8个式子是.2、观察下列单项式:x , -3x 2, 5x 3, -7x 4, 9x 5,…按此规律,可以得到第2010个单项式是______,第n 个单项式怎样表示________.3、观察下列一串单项式的特点: , , , ,,… 按此规律第9个单项式是______,第n 个单项式是______,它的系数是_____,次数是_ _. 三、等式的规律 1、观察下列等式:按照上述规律,第n 行的等式为 .2、观察下列各式:21321⨯=- ;22431⨯=-; 23541⨯=-;24651⨯=- …………请你根据发现的规律,写出第n 个等式: . 3、已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,…,若299a ab b+=⨯(a b ,为正整数),则ab = . 4、观察下列等式:22(12)4114+-⨯=+ ; 22(22)4224+-⨯=+;22(32)4334+-⨯=+ …则第n 个等式可以表示为 .5、观察算式:211=; 21342+==; 213593++==;21357164+++==; 213579255++++==;……xy y x 22-y x 34y x 48-y x 516…图①图②图③3()2()1()用代数式表示这个规律(n 为正整数):13579(21)n ++++++-= .6、观察下列各式:22151(11)1005225=⨯+⨯+=, 22252(21)1005625=⨯+⨯+= 22353(31)10051225=⨯+⨯+=, ……依此规律,第n 个等式(n 为正整数)为 . 7、观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式:(2)通过猜想,写出与第n 个图形相对应的等式______________________.8、观察下列等式111122=-⨯,1112323=-⨯,1113434=-⨯, 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯.(1)猜想并写出:1(1)n n =+ .(2)直接写出下列各式的计算结果: ①111112233420062007++++=⨯⨯⨯⨯ ;②1111122334(1)n n ++++=⨯⨯⨯+ .四、图形的规律1、用M ,N ,P ,Q 各代表四种简单几何图形(线段、正三角形、正方形、圆)中的一种.图-1—图-4是由M ,N ,P ,Q 中的两种图形组合而成的(组合用“&”表示).那么,下列组合图形中,表示P&Q 的是( )2、如图,图①,图②,图③,……是用围棋棋子摆成的一列具有一定规律的“山”字.则第n 个“山”字中的棋子个数是 .3、用火柴棒按以下方式搭小鱼,搭1条小鱼用8根火柴棒,搭2条小鱼用14根,,则搭n 条小鱼需要 根火柴棒.(用含n 的代数式表示)4、按如下规律摆放三角形: 则第(4)堆三角形的个数为 ;第(n )堆三角形的个数为 .5、将图①所示的正六边形进行分割得到图②,再将图②中最小的某一个正六边形按同样的方式进行分割得到图③,再将图③中最小的某一个正六边形按同样的方式进行分割,…,则第n 个图形中,其有 个六边形.①401413⨯+=⨯-;②411423⨯+=⨯-; 421433⨯+=⨯-;③ ④⑤ _________________;_________________;A .B .C .D .M&PN&PN&QM&图-1图-2图-3图-4……图①图②图③图④参考答案 一、数的规律1、C2、B3、B4、45、n n n 2122++6、3215,n n 21+ 7、(1)6,30;(2)1+n ,)1(+n n二、式的规律1、8128a -2、20104019x -,n n x n )12()1(1--+3、y x 9256,y x n n n 112)1(-+- 三、等式的规律1、22)1(12n n n -+=+2、1)1()2(2-+=+n n n3、7204、44)2(22+=-+n n n5、2n6、225100)1()510(+⨯+=+n n n7、(1)344134-⨯=+⨯,354144-⨯=+⨯; (2)341)1(4-=+-n n8、(1)1+n n ;(2)①20072006,②1+n n四、图形的规律1、B2、25+n3、26+n4、(1)14, (2)23+n5、23-n。

初一上数学真题专题练习---规律探究与新定义运算

初一上数学真题专题练习---规律探究与新定义运算

规律探究与新定义运算【真题精选】1.(2020秋•161月考)按一定规律排列的一列数依次为,﹣,,﹣,,﹣,…,按此规律排列下去,这列数中第8个数是,第n个数是(n为正整数).2.(2020秋•海淀月考)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……第2020个单项式是()A.2020a B.﹣2020a C.a2020D.﹣a2020 3.(2019秋•昌平区月考)观察下面的单项式:2x,4x2,8x3,16x4根据你发现的规律,写出第6个式子是,第n个式子是.4.(2020秋•房山期末)观察下列单项式:0,3x2,8x3,15x4,24x5…,按此规律写出第20个单项式是.5.(2015秋•人大附中)观察下列单项式,2x,﹣5x2,10x3,﹣17x4,…根据你发现的规律写出第8个式子是,第n个式子是.6.(2020秋•海淀校级期中)有一列式子,按照一定的规律排列成﹣3a2,9a5,﹣27a10,81a17,﹣243a26…,则第n个式子为(n为正整数).7.(2020秋•西城校级期中)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,第n个相同的数是2023,则n等于()A.337B.338C.339D.3408.(2020秋•海淀期末)在一列数a1,a2,a3,a4,…a n中,已知a1=2,a2=,a3=,a4=,…a n=,则a2020=.9.(2021秋•西城期末)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣2的差倒数是,如果a1=﹣4,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…以此类推,则a1+a2+a3+a4+…+a61的值是()A.﹣55B.55C.﹣65D.65 10.(2021•海淀月考)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是.如果a1=﹣3,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,那么a1﹣a2+a3﹣a4…+a401﹣a402+a403﹣a404的值是()A.B.﹣3C.D.11.(2020秋•朝阳期中)根据如图数字之间的规律,问号处应填()A.61B.52C.43D.37 12.(2021•西城月考)如图,图1是“杨辉三角”数阵;图2是(a+b)n的展开式(按b的升幂排列).若(1+x)45的展开式按x的升幂排列得:(1+x)45=a0+a1x+a2x2+…+a45x45,则a2=.13.(2021•海淀月考)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为.14.(2020秋•西城期末)观察图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2020个图形中共有()个〇.A.6058B.6059C.6060D.6061 15.(2020秋•东城月考)观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7…将这组数排成如图的形式,按图中规律排下去,则第6行中从左边数第3个数是()A.28B.﹣28C.﹣34D.34 16.(2020秋•海淀校级期中)世界上最著名的数列之一﹣﹣斐波那契数列,是从兔子繁殖问题引申出的一个数学模型.兔子在出生两个月后就具有繁殖能力,一对兔子每个月能生出一对小兔子.如果所有兔子都不死,那么一年后可以繁殖的兔子的对数会成斐波那契数列.斐波那契数列1,1,2,3,5,8,13,21,…的排列规律是:从第3个数开始,每一个数都是它前面两个数的和.在斐波那契数列的前2021个数中,共出现的偶数的个数为()A.670B.671C.672D.673 17.(2020秋•西城期末)观察下列各算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式的规律,你认为22020的末位数字应该是()A.2B.4C.6D.818.(2020秋•海淀区校级月考)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2020次跳后它停的点所对应的数为()A.1B.2C.3D.519.(2020秋•西城区校级期中)如下表,从左向右依次在每个小格子中都填入一个有理数,使得其中任意四个相邻小格子中所填数之和都等于15.已知第3个数为7,第5个数为m﹣1,第16个数为2,第78个数为3﹣2m,则m的值为,第2021个数为.20.(2020秋•丰台期末)如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为.21.(2021秋•朝阳期末)按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种B.2种C.3种D.4种22.(2020秋•海淀月考)规定一种新的运算=ad﹣bc,那么=.23.(2020秋•西城区校级期中)定义计算“△”,对于两个有理数a,b,有a△b=ab﹣(a+b),例如:﹣3△2=﹣3×2﹣(﹣3+2)=﹣6+1=﹣5,则3△﹣2=,[(﹣1)△(m﹣1)]△4=.24.(2021春•海淀区校级期末)对于任意的有理数a,b,如果满足+=,那么我们称这一对数a,b为“相随数对”,记为(a,b).若(m,n)是“相随数对”,则3m+2[3m+(2n﹣1)]=.25.(2020秋•东城期末)一般情况下不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得成立的一对数m,n为“相伴数对”,记为(m,n).(1)若(m,1)是“相伴数对”,则m=;(2)(m,n)是“相伴数对”,则代数式mm﹣[n+(6﹣12n﹣15m)]的值为.规律探究与新定义运算参考答案与试题解析一.试题(共25小题)1.【分析】观察已知一列数的变化发现:分子都是1,分母是序号数的平方加1,奇数项是正数,偶数项是负数,据此可以解答.【解答】解:根据分析可知:一列数依次为:,﹣,,﹣,,﹣,…,按此规律排列下去,则这列数中的第8个数是﹣,所以第n个数是:(﹣1)n+1(n是正整数).故答案为:﹣;(﹣1)n+1.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.2.【分析】根据题目中的单项式,可以发现单项式的变化特点,从而可以写出第n个单项式,然后即可写出第2020个单项式.【解答】解:∵一列单项式为:a,﹣a2,a3,﹣a4,a5,﹣a6,…,∴第n个单项式为(﹣1)n+1•a n,当n=2020时,这个单项式是(﹣1)2020+1•a2020=﹣a2020,故选:D.【点评】本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现单项式的变化特点,写出相应的单项式.3.【分析】观察已知单项式,归纳总结得到一般性规律,确定出第6个式子与第n个式子即可.【解答】解:归纳总结得:第6个式子是26x6=64x6,第n个式子是2n x n,故答案为:64x6,2n x n【点评】此题考查了单项式,根据题意归纳总结得到一般性规律是解本题的关键.4.【分析】找出单项式规律求解即可.【解答】解:由0,3x2,8x3,15x4,24x5…,可得第n项为(n2﹣1)x n,所以第20个单项式是399x20.故答案为:399x20.【点评】本题主要考查了单项式,解题的关键是正确的找出单项式规律.5.【分析】观察得到奇数位上的单项式的系数为正,偶数位上的单项式的系数为负,并且单项式的系数的绝对值为x的指数的平方加1,即第n个式子为:(﹣1)n+1(n2+1)x n,n =8即可得到第8个式子.【解答】解:根据所给式子可得:第n个式子为:(﹣1)n+1(n2+1)x n,则第8个式子是﹣65x8.故答案为:﹣65x8,(﹣1)n+1(n2+1)x n.【点评】本题考查了关于数字的变化规律:先要观察每个单项式的系数和字母指数的特点,得出数字变化的规律,然后写出一般规律性的式子.6.【分析】利用归纳法来求已知数列的通式.【解答】解:∵第一个式子:﹣3a2=,第二个式子:9a5=,第三个式子:﹣27a10=,第四个式子:81a17=,….则第n个式子为:(n为正整数).故答案是:.【点评】本题考查了单项式.此题的解题关键是找出该数列的通式.7.【分析】根据题目中的数据,可以发现数字的变化特点,从而可以求得n的值,本题得以解决.【解答】解:由题目中的数据可知,第一行是一些连续的奇数,第二行奇数个数为奇数,偶数个数为偶数,第二行的第m个数为1+3(m﹣1)=3m﹣2,令3m﹣2=2023,得m=675,∵第一行和第二行第n个相同的数是2023,∴n=(675+1)÷2=338,故选:B.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出n的值.8.【分析】根据已知条件进行计算分别得出前几个数,进而发现规律:每3个数一个循环,即可求解.【解答】解:∵a1=2,∴a2==﹣1;a3==;a4==2;…,发现规律:每3个数一个循环,所以2020÷3=673…1,则a2020=a1=2.故答案为:2.【点评】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律,运用规律.9.【分析】根据题意可以写出前几项,然后即可发现数字的变化规律,然后即可求得所求式子的值,本题得以解决.【解答】解:由题意可得,a1=﹣4,a2=,a3=,a4=﹣4,a5=,a6=,…,∵﹣4+==﹣,61÷3=20…1,∴a1+a2+a3+a4+…+a61=20×(﹣)+(﹣4)=﹣51+(﹣4)=﹣55,故选:A.【点评】本题考查数字的变化类、倒数,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.10.【分析】根据差倒数定义分别求出前几个数字,即可发现规律进而得结果.【解答】解:∵a1=﹣3,∴a2==,a3==,a4==﹣3,……∴这个数列以﹣3,,依次循环,∵404÷3=134…2,∴a403的值是﹣3,a404的值是,那么a1﹣a2+a3﹣a4…+a401﹣a402+a403﹣a404=﹣3﹣++3+﹣﹣3﹣++3+﹣﹣ (3)=﹣3﹣=﹣.故选:A.【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.11.【分析】由图可知每个圆中的规律为左边与上边对应的数相乘得到的积再加上右边的数,所得结果为最下边的数.【解答】解:由图可知每个圆中的规律为:1×2+2=4,2×3+3=9,3×5+4=19,4×7+5=33,∴最后一个圆中5×11+6=61,∴?号所对应的数是61,故选:A.【点评】本题考查数字的变化规律;能够通过图形找到每个圆中的四个数之间的关系是解题的关键.12.【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和,计算得到结论.【解答】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x)45=a0+a1x+a2x2+…+a45x45,则a2=1+2+3+…+44==990;故答案为:990.【点评】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b的指数是从低到高.13.【分析】由图形知第n个三角形数为1+2+3+…+n=,第n个正方形数为n2,据此可以得出最大的三角形数和正方形数,即可以求得m和n的值,从而可以计算出m+n的值.【解答】解:由图形知第n个三角形数为1+2+3+…+n=,第n个正方形数为n2,当n=19时,=190<200,当n=20时,=210>200,所以最大的三角形数m=190;当n=14时,n2=196<200,当n=15时,n2=225>200,所以最大的正方形数n=196;则m+n=190+196=386,故答案为:386.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现三角形数和正方形数的变化特点,求出m、n的值.14.【分析】观察图形的变化可得第n个图形中共有〇的个数,进而可得第2020个图形中共有〇的个数.【解答】解:观察图形的变化可知:第1个图形中共有3×1+1=4个〇;第2个图形中共有3×2+1=7个〇;第3个图形中共有3×3+1=10个〇;…所以第n个图形中共有(3n+1)个〇;所以第2020个图形中共有〇的个数为:3×2020+1=6061.故选:D.【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形并发现图形变化的规律.15.【分析】根据数字的变化情况寻找规律即可求解.【解答】解:因为第一行﹣1第二行2,﹣3,4第三行﹣5,6,﹣7,8,﹣9第四行10,﹣11,12,﹣13,14,﹣15,16,共7个数;所以,第五行﹣17,18,﹣19,20,﹣21,22,﹣23,24,﹣25,共9个数;第六行26,﹣27,28,﹣29,…34,﹣35,36,共11个数.所以第6行中从左边数第3个数是28.【点评】本题考查了数字的变化类,解决本题的关键是寻找规律.16.【分析】从题目上可看出第3个,第6个,第9个为偶数,依此类推每3项就是一个偶数,2021÷3=673.所以应该有673个偶数.【解答】解:从数列中可看出每3个,就有一个偶数,2021÷3=673.所以有673个偶数.故选:D.【点评】本题是一个规律性题目,关键是看出每3个数中就有一个偶数,可求解.17.【分析】通过观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2020÷4=505,得出22020的个位数字与24的个位数字相同,是6.【解答】解:2n的个位数字是2,4,8,6四个一循环,所以2020÷4=505,则22020的末位数字是6.故选:C.【点评】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化寻找规律.18.【分析】利用青蛙停在奇数点上,则下一次沿顺时针方向跳两个点,若停在偶数点上,则下一次沿逆时针方向跳一个点这一规律,找出青蛙跳跃停留的点对应的数字是以3,5,2,1循环往复,由此得到结论.【解答】解:由题意得:青蛙第1次跳到的那个点是3,∵若青蛙停在奇数点上,则下一次沿顺时针方向跳两个点,∴青蛙第2次跳到的那个点是5,∴青蛙第3次跳到的那个点是2.∵若青蛙停在偶数点上,则下一次沿逆时针方向跳一个点,∴青蛙第4次跳到的那个点是1,∴青蛙第5次跳到的那个点是3;归纳类推得:青蛙跳后它停的点所对应的数是以3,5,2,1循环往复的,∵2020=4×505,∴经2020次跳后它停的点所对应的数与经4次跳后它停的点所对应的数相同,即为1,【点评】本题主要考查了数字的变化的规律,准确找出变化的数字的循环规律是解题的关键.19.【分析】根据题意,任意四个相邻格子中的和等于15,列出等式,找出规律,计算出m 的值;再求出第2021个数是几即可.【解答】解:∵任意四个相邻小格子中所填数之和都等于15,∴第5个数(5﹣4=1)与第1个数相同,都为m﹣1;第16个数(16÷4=4)与第4个数相同,都为2;第78个数(78÷4=19…2)与第2个数相同,都为3﹣2m;∴m﹣1+3﹣2m+7+2=15,解得m=﹣4,则m﹣1=﹣4﹣1=﹣5,3﹣2m=11,∵2021÷4=505…1,∴第2021个数是﹣5.故答案为:﹣4;﹣5.【点评】本题主要考查有理数的加法及数字的变化规律,解决此题的关键是根据题意,列出等式,求出字母的值,找出规律.20.【分析】根据设计的程序进行计算,找到循环的规律,根据规律推导计算.【解答】解:由设计的程序,知依次输出的结果是50,25,32,16,8,4,2,1,8,4,2,1…,发现从8开始循环.则2019﹣4=2015,2015÷4=503…3,故第2019次输出的结果是2.故答案为:2【点评】此题主要考查了数字的变化规律,正确发现循环的规律,根据循环的规律进行推广.该题中除前4次不循环外,后边是4个一循环.21.【分析】由5x+1=556,解得x=111,即开始输入的x为111,最后输出的结果为556;当开始输入的x值满足5x+1=111,最后输出的结果也为556,可解得x=22;当开始输入的x值满足5x+1=22,最后输出的结果也为556,但此时解得的x的值为小数,不合题意.【解答】解:∵输出的结果为556,∴5x+1=556,解得x=111;而111<500,当5x+1等于111时最后输出的结果为556,即5x+1=111,解得x=22;当5x+1=22时最后输出的结果为556,即5x+1=22,解得x=4.2(不合题意舍去),所以开始输入的x值可能为22或111.故选:B.【点评】本题考查了代数式求值:先把代数式进行变形,然后把满足条件的字母的值代入计算得到对应的代数式的值.也考查了解一元一方程.22.【分析】根据题意给出的运算法则以及整式的运算法则即可求出答案.【解答】解:原式=4﹣2(1﹣x)=4﹣2+2x=2+2x故答案为:2+2x【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.【分析】先根据定义得出算式,再根据整式的加减法则求出即可.【解答】解:3△﹣2=3×(﹣2)﹣[3+(﹣2)]=﹣7,[(﹣1)△(m﹣1)]△4=[﹣m+1﹣m+2]△4=(﹣2m+3)△4=(﹣2m+3)×4﹣(﹣2m+3+4)=﹣8m+12+2m﹣7=﹣6m+5,故答案为:﹣7,﹣6m+5.【点评】本题考查了整式的加减,能正确根据运算法则进行化简是解此题的关键.24.【分析】根据(m,n)是“相随数对”得出9m+4n=0,再将原式化成9m+4n﹣2,最后整体代入求值即可.【解答】解:∵(m,n)是“相随数对”,∴,∴,整理得:9m+4n=0,∴3m+2[3m+(2n﹣1)]=3m+2[3m+2n﹣1]=3m+6m+4n﹣2=9m+4n﹣2=0﹣2=﹣2,故答案为:﹣2.【点评】本题考查代数式求值,理解“相随数对”的意义是正确计算的关键.25.【分析】(1)利用新定义“相伴数对”列出算式,计算即可求出m的值;(2)利用新定义“相伴数对”列出关系式,原式去括号合并后代入计算即可求出值.【解答】解:(1)根据题意得:+=,去分母得:15m+10=6m+6,移项合并得:9m=﹣4,解得:m=﹣;(2)由题意得:+=,即=,整理得:15m+10n=6m+6n,即9m+4n=0,则原式=m﹣n﹣3+6n+m=m+5n﹣3=(9m+4n)﹣3=﹣3,故答案为:(1)﹣;(2)﹣3【点评】此题考查了整式的加减﹣化简求值,弄清题中的新定义是解本题的关键.。

专题02 规律探究(中考数学特色专题训练卷)(原卷版)

专题02 规律探究(中考数学特色专题训练卷)(原卷版)

专题02 规律探究(中考数学特色专题训练卷)1.(2021•济宁)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是( )A .23B .511C .59D .122.(2021•攀枝花)观察依次排列的一串单项式x ,﹣2x 2,4x 3,﹣8x 4,16x 5,…,按你发现的规律继续写下去,第8个单项式是( ) A .﹣128x 7B .﹣128x 8C .﹣256x 7D .﹣256x 83.(2021•十堰)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A .2025B .2023C .2021D .20194.(2021•镇江)如图,小明在3×3的方格纸上写了九个式子(其中的n 是正整数),每行的三个式子的和自上而下分别记为A 1,A 2,A 3,每列的三个式子的和自左至右分别记为B 1,B 2,B 3,其中,值可以等于789的是( )A .A 1B .B 1C .A 2D .B 35.(2020•西藏)观察下列两行数: 1,3,5,7,9,11,13,15,17,… 1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n 个相同的数是103,则n 等于( )A.18B.19C.20D.216.(2021•玉林)观察下列树枝分叉的规律图,若第n个图树枝数用Y n表示,则Y9﹣Y4=()A.15×24B.31×24C.33×24D.63×247.(2021•随州)根据图中数字的规律,若第n个图中的q=143,则p的值为()A.100B.121C.144D.1698.(2021•阜新)如图,弧长为半圆的弓形在坐标系中,圆心在(0,2).将弓形沿x轴正方向无滑动滚动,当圆心经过的路径长为2021π时,圆心的横坐标是()A.2020πB.1010π+2020C.2021πD.1011π+20209.(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F10.(2021•铜仁市)观察下列各项:112,214,318,4116,…,则第n 项是 .11.(2021•江西)如图在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全表第四行空缺的数字是 .12.(2021•荆门)如图,将正整数按此规律排列成数表,则2021是表中第 行第 列.13.(2021•怀化)观察等式:2+22=23﹣2,2+22+23=24﹣2,2+22+23+24=25﹣2,…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m ,用含m 的代数式表示这组数的和是 .14.(2021•呼和浩特)若把第n 个位置上的数记为x n ,则称x 1,x 2,x 3,…,x n 有限个有序放置的数为一个数列A .定义数列A 的“伴生数列”B 是:y 1,y 2,y 3,…,y n ,其中y n 是这个数列中第n 个位置上的数,n =1,2,…,k 且y n ={0,x n−1=x n+11,x n−1≠x n+1并规定x 0=x n ,x n +1=x 1.如果数列A 只有四个数,且x 1,x 2,x 3,x 4依次为3,1,2,1,则其“伴生数列”B 是 .15.(2021•眉山)观察下列等式:x 1=√1+112+122=32=1+11×2; x 2=√1+122+132=76=1+12×3; x 3=√1+132+142=1312=1+13×4; …根据以上规律,计算x 1+x 2+x 3+…+x 2020﹣2021= .16.(2021•凉山州)如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;…照这样拼图,则第n个图形需要根火柴棍.17.(2021•鄂尔多斯)将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有个“〇”.18.(2021•绥化)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图①中有5个三角形,图①中有11个三角形,图①中有19个三角形…依此规律,则第n个图形中三角形个数是.19.(2021•常德)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有1×1个小正方形,所有线段的和为4,第二个图形有2×2个小正方形,所有线段的和为12,第三个图形有3×3个小正方形,所有线段的和为24,按此规律,则第n个网格中所有线段的和为.(用含n的代数式表示)20.(2021•恩施州)古希腊数学家定义了五边形数,如下表所示,将点按照表中方式排列成五边形点阵,图形中的点的个数即五边形数;图形…五边形数 1 5 12 22 35 51 …将五边形数1,5,12,22,35,51,…,排成如下数表;观察这个数表,则这个数表中的第八行从左至右第2个数为 .21.(2020•遂宁)如图所示,将形状大小完全相同的“①”按照一定规律摆成下列图形,第1幅图中“①”的个数为a 1,第2幅图中“①”的个数为a 2,第3幅图中“①”的个数为a 3,…,以此类推,若2a 1+2a 2+2a 3+⋯+2a n=n 2020.(n 为正整数),则n 的值为 .22.(2021•宁夏)如图,在平面直角坐标系中,等腰直角三角形OAB ,①A =90°,点O 为坐标原点,点B 在x 轴上,点A 的坐标是(1,1).若将①OAB 绕点O 顺时针方向依次旋转45°后得到①OA 1B 1,①OA 2B 2,①OA 3B 3,…,可得A 1(√2,0),A 2(1,﹣1),A 3(0,−√2),…则A 2021的坐标是 .23.(2021•兴安盟)如图,点B 1在直线l :y =12x 上,点B 1的横坐标为1,过点B 1作B 1A 1①x 轴,垂足为A 1,以A 1B 1为边向右作正方形A 1B 1C 1A 2,延长A 2C 1交直线l 于点B 2;以A 2B 2为边向右作正方形A 2B 2C 2A 3,延长A3C2交直线l于点B3;…;按照这个规律进行下去,点B2021的坐标为.24.(2021•黑龙江)如图,正方形A0B0C0A1的边长为1,正方形A1B1C1A2的边长为2,正方形A2B2C2A3的边长为4,正方形A3B3C3A4的边长为8…依次规律继续作正方形A n B n①n A n+1,且点A0,A1,A2,A3,…,A n+1在同一条直线上,连接A0C1交,A1B1于点D1,连接A1C2,交A2B2于点D2,连接A2C3,交A3B3于点D3,…记四边形A0B0C0D1的面积为S1,四边形A1B1C1D2的面积为S2,四边形A2B2C2D3的面积为S3,…,四边形A n﹣1B n﹣1C n﹣1D n的面积为S n,则S2021=.25.(2021•泰安)如图,点B1在直线l:y=12x上,点B1的横坐标为2,过点B1作B1A1①l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形A n B n B n+1①n的边长为(结果用含正整数n的代数式表示).26.(2021•锦州)如图,①MON=30°,点A1在射线OM上,过点A1作A1B1①OM交射线ON于点B1,将①A1OB1沿A1B1折叠得到①A1A2B1,点A2落在射线OM上;过点A2作A2B2①OM交射线ON于点B2,将①A2OB2沿A2B2折叠得到①A2A3B2,点A2落在射线OM上;…按此作法进行下去,在①MON内部作射线OH,分别与A1B1,A2B2,A3B3,…,A n B n交于点P1,P2,P3,…P n,又分别与A2B1,A3B2,A4B3,…,A n+1B n,交于点Q1,Q2,Q3,…,Q n.若点P1为线段A1B1的中点,OA1=√3,则四边形A n P n Q n A n+1的面积为(用含有n的式子表示).27.(2021•砀山县一模)如图,下列各正方形中的四个数之间具有相同的规律.根据此规律,回答下列问题:(1)第5个图中4个数的和为 . (2)a = ;c = .(3)根据此规律,第n 个正方形中,d =2564,则n 的值为 .28.(2021•黄山区二模)观察所示图形的面积:图1的面积可表示为13=12;图2的面积可表示为13+23=32;图3的面积可表示为13+23+33=62.(1)猜想:13+23+33+…+n 3= = (用含有n 的代数式表示); (2)计算:23+43+63+⋯+20032022.29.(2021•安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列. [观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?30.(2021•青岛一模)[问题提出]:将一个边长为n(n≥2)的菱形的四条边n等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?[问题探究]:要研究上面的问题,我们不妨先从特例入手,进而找到一般规律.探究一:将一个边长为2的菱形的四条边分别2等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图1,从上往下,共有2行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~2的平行四边形,共有2+1=3个;(2)第二行有斜边长为1,底长为1~2的平行四边形,共有2+1=3个;为了便于归纳分析,我们把平行四边形下面的底在第二行的所有平行四边形均算作第二行的平行四边形,以下各行类同第二行.因此底第二行还包括斜边长为2,底长为1~2的平行四边形,共有2+1=3个.即:第二行平行四边形共有2×3个.所以如图1,平行四边形共有2×3+3﹣9﹣(2+1)2.我们再研究菱形的个数:分析:边长为1的菱形共有22个,边长为2的菱形共有12个,所以:如图1,菱形共有22+12=5=16×2×3×5个探究二:将一个边长为3的菱形的四条边分别3等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图2,从上往下,共有3行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=6个;(2)第二行有斜边长为1,底长为1~2的平行四边形,共有3+2+1=6个;底在第二行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=6个,即:第二行平行四边形共有2×6个.(3)第三行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=6个;底在第三行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=6个.底在第三行还包括斜边长为3,底长为1~3的平行四边形,共有3+2+1=6个.即:第三行平行四边形共有3×6个.所以:如图2,平行四边形共有3×6+2×6+6=(3+2+1)×6=(3+2+1)2.我们再研究菱形的个数:分析:边长为1的菱形共有32个,边长为2的菱形共有22个,边长为3的菱形共有12个.所以:如图2,菱形共有32+22+12=14=16×3×4×7个.探究三:将一个边长为4的菱形的四条边4等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图3,从上往下,共有4行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=10个.(2)第二行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=10个.底在第二行还包括斜边长为2,底长为1~4的平行四边形,共有4+3+2+1=10个.即:第二行平行四边形总共有2×10个.(3)模仿上面的探究,第三行平行四边形总共有 个;(4)按照以上规律,第四行平行四边形总共有 个.所以:如图3,平行四边形总共有 个.我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个.所以:如图3,菱形共有42+32+22+12=30=16× 个.(仿照前面的探究,写成三个整数相乘的形式)【问题解决】将一个边长为n (n ≥2)的菱形的四条边n 等分,连接对边对应的等分点,根据上边的规律,得出该菱形被剖分的网格中的平行四边形的个数是 和菱形的个数分别是16× .(用含n 的代数式表示). 【问题应用】将一个边长为n (n ≥2)的菱形的四条边n 等分,连接各边对应的等分点,若得出该菱形被剖分的网格中的平行四边形的个数是441个,则n = .【拓展延伸】将一个边长为n (n ≥2)的菱形的四条边n 等分,连接各边对应的等分点,当该菱形被剖分的网格中的平行四边形的个数与菱形的个数之比是135:19时,则n = .。

规律变化探究性问题-2023年中考数学压轴题专项训练(解析版)

规律变化探究性问题-2023年中考数学压轴题专项训练(解析版)

规律变化探究性问题1.压轴题速练一、单选题1(2023春·重庆丰都·九年级校考阶段练习)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有3颗棋子,第②个图形一共有9颗棋子,第③个图形一共有18颗棋子,⋯,则第⑦个图形中棋子的颗数为()A.84B.108C.135D.152【答案】A【分析】根据第①个图形的棋子数是3=3×1,第②个图形的棋子数是9=3×1+2,第③个图形的棋子数是18=3×1+2+3,据此求出第⑦个图形 ,⋯,可得第n个图形的棋子数是3×1+2+⋯+n中棋子的颗数为多少即可.【详解】∵第①个图形的棋子数是3=3×1,第②个图形的棋子数是9=3×1+2,第③个图形的棋子数是18=3×1+2+3,⋯,∴第n个图形的棋子数是3×1+2+⋯+n,∴第⑦个图形中棋子的颗数为:3×1+2+⋯+7=3×24=84.故选:A.【点睛】此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.2(2022秋·山东菏泽·九年级校考阶段练习)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,按如图所示的方式放置,点A1,A2,A3,⋯和点C1,C2,C3,⋯分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2 (3,2),则B2021的坐标是()A.(22021,22022)B.(22021,22020)C.(22021-1,22020)D.(22021+1,22020)【答案】C【分析】根据B1(1,1),B2(3,2),B3(7,4),⋯⋯,B n的横坐标为2n-1,B n的纵坐标为2n-1,再求解即可.【详解】解:∵B11,1,即B121-1,21-1∴A10,1,∴b=1,∵B23,2,即B222-1,22-1∴C1A2=2,∴A2B1=1,∴A1B1=A2B1,∴∠A2A1B1=45°,∴y=x+1,∵C2B2=A2B2=A3B2,∴A3C2=4,∴B37,4,即B323-1,23-1⋯⋯,∴B n的横坐标为2n-1,B n的纵坐标为2n-1,∴B2021的坐标是22021-1,22020,故选:C.【点睛】本题考查图形的变化规律,通过观察所给的图形,探索出正方形边长与点坐标的关系是解题的关键.3(2023春·重庆渝北·九年级校联考阶段练习)观察下列“蜂窝图”,按照这样的规律,则第2023个图案中的“”的个数是()A.6074B.6072C.6070D.6068【答案】C【分析】根据题意可得出第n个图案中的“”的个数为3n+1个,即可求解.【详解】解:∵第1个图案中的“”的个数=1×3+1=4(个),第2个图案中的“”的个数=2×3+1=7(个),第3个图案中的“”的个数=3×3+1=10(个),•••第2023个图案中的“”的个数=3×2023+1=6070(个),故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律.4(2022秋·四川资阳·九年级统考期末)如图,直线l的解析式为y=33x,点M10,1,M1N1⊥y轴交直线l于点N1;点M2为y轴上位于M1上方的一点,且M1M2=M1N1,M2N2⊥y轴交直线l于点N2;点M3为y轴上位于M2上方的一点,且M2M3=M2N2,M3N3⊥y轴交直线l于点N3⋯,按此规律,线段N2022N2023的长为()A.31+32021 B.31+32022 C.231+32021 D.231+32022【答案】C【分析】根据解析式得出:N13,1,N233+1,3+1,N333+12,3+12,从而得出规律,再计算N2022N2023的长度即可.【详解】解:∵M10,1,∴将y=1代入y=33x得:x=3,∴N13,1,∴M20,3+1∴将y=3+1代入y=33x得:x=33+1,∴N233+1,3+1,∴M30,3+12,∴将y=3+12代入y=33x得:x=33+12,N333+12,3+12,∴N n33+1n-1,3+1n-1∴N202233+12021,3+12021N202333+12022,3+12022∴N2022N2023=323+14044+3+14044-323+14042+3+14042 =33+14044+3+14044-33+14042+3+14042=23+12022-23+12021=231+3 2021故选:C .【点睛】本题考查一次函数的性质,点的坐标的规律,正确得出规律是解题的关键.5(2023·山东德州·模拟预测)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算法》一书中,用如图的三角形解释二项式a +b 2的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算a +b 10的展开式中第三项的系数为()A.36B.45C.55D.66【答案】B【分析】根据“杨辉三角”确定出所求展开式第三项的系数即可.【详解】找规律发现a +b 3的第三项系数为3=1+2;a +b 4的第三项系数为6=1+2+3;a +b5的第三项系数为10=1+2+3+4;不难发现a +b n 的第三项系数为1+2+3+⋯+n -2 +n -1 ,∴a +b 10第三项系数为1+2+3+⋯+9=45,故选:B .【点睛】此题考查了探索数字规律以及数学常识,弄清“杨辉三角”中的系数规律是解本题的关键.6(2023·湖南益阳·校考模拟预测)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB 、AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交于点O 2,同样以AB 、AO 2为两邻边作平行四边形ABC 2O 2,⋯,依此类推,则平行四边形ABC n O n 的面积为()A.52n -1B.52nC.52n +1D.52n +2【答案】B【分析】先根据矩形的性质可得△ABO 1的面积为54,再根据平行四边形的性质可得平行四边形ABC 1O1的面积为52,同样的方法可得平行四边形ABC2O2和平行四边形ABC3O3的面积,然后归纳类推出一般规律即可得.【详解】解:∵矩形ABCD的面积为5,∴△ABO1的面积为54,∵四边形ABC1O1是平行四边形,∴平行四边形ABC1O1的面积为2×54=52,同理可得:平行四边形ABC2O2的面积为2×14×52=54=522,平行四边形ABC3O3的面积为2×14×522=523,归纳类推得:平行四边形ABC n O n的面积为52n,其中n为正整数,故选:B.【点睛】本题考查了矩形的性质、平行四边形的性质,正确归纳类推出一般规律是解题关键.7(2022春·四川内江·九年级专题练习)如图,在平面直角坐标系中,等腰直角△OAB位置如图,∠OBA=90°,点B的坐标为(1,0),每一次将△OAB绕点O逆时针旋转90°,同时每边扩大为原来的2倍,第一次旋转得到△OA1B1,第二次旋转得到△OA2B2,⋯,以此类推,则点A2022的坐标是()A.(22022,22022)B.(-22021,22021)C.(22021,-22021)D.(-22022,-22022)【答案】D【分析】△AOB是等腰直角三角形,OA=1,根据等腰直角三角形的性质,可得点A(1,1)逆时针旋转90°后可得A1(-2,2),同理A2(-4,-4),依次类推可求得,A3(8,-8),A4(16,16),这些点所位于的象限为每4次一循环,根据规律即可求出A2022的坐标.【详解】∵△OAB是等腰直角三角形,点B的坐标为(1,0),∴AB=OB=1,∴A点坐标为(1,1).将△OAB绕原点O逆时针旋转90°得到等腰直角三角形OA1B1,且A1B1=2AB,再将△OA1B1绕原点O顺时针旋转90°得到等腰直角三角形OA2B2,且A2B2=2A1B1,依此规律,∴点A旋转后的点所位于的象限为每4次一循环,即A1(-2,2),A2(-4,-4),A3(8,-8),A4(16,16).∵2022=505×4+2,∴点A2022与A2同在一个象限内.∵-4=-22,8=23,16=24,∴点A2022(-22022,-22022).故选:D.【点睛】本题考查了等腰直角三角形在平面直角坐标系中旋转的规律问题,熟练掌握等腰直角三角形的性质并能够在坐标系中找到点的坐标的变化规律是解题的关键.8(2022秋·全国·九年级专题练习)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-1,1),B (0,-2),C(1,-0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4⋯⋯按此作法进行下去,则点P2022的坐标为()A.(0,2)B.(-2,0)C.(2,-4)D.(-2,-2)【答案】A【分析】先画出点P1,P2,P3,P4,P5,P6的坐标,再归纳类推出一般规律,由此即可得.【详解】解:如图,P1-2,0,P22,-4,P30,4,P4-2,-2,P52,-2,P60,2,是以6次为一个循环,∵2022=6×337,∴点P2022的坐标与点P6的坐标相同,即为0,2,故选:A.【点睛】本题考查规律型:坐标与图形变化-旋转,解题关键在于归纳类推出一般规律.9(2022秋·八年级单元测试)如图所示,直线y=33x+33与y轴相交于点D,点A1在直线y=3 3x+33上,点B1在x轴,且∆OA1B1是等边三角形,记作第一个等边三角形;然后过B1作B1A2∥OA1与直线y=33x+33相交于点A2,点B2在x轴上,再以B1A2为边作等边三角形A2B2B1,记作第二个等边三角形;同样过B2作B2A3∥OA1与直线y=33x+33相交于点A3,点B3在x轴上,再以B2A3为边作等边三角形A3B3B2,记作第三个等边三角形;⋯依此类推,则第n个等边三角形的顶点A纵坐标为()A.2n-1B.2n-2C.2n-1×3D.2n-2×3【答案】D【分析】可设直线与x轴相交于C点.通过求交点C、D的坐标可求∠DCO=30°.根据题意得△COA1、△CB1A2、△CB2A3⋯都是等腰三角形,且腰长变化有规律.在正三角形中求高即可得解.【详解】解:设直线与x轴相交于C点.令x=0,则y=33;令y=0,则x=-1.∴OC=1,OD=33.∵tan∠DCO=ODOC =33,∴∠DCO=30°.∵△OA1B1是正三角形,∴∠A1OB1=60°.∴∠CA1O=∠A1CO=30°,∴OA1=OC=1.∴第一个正三角形的高=1×sin60°=32;同理可得:第二个正三角形的边长=1+1=2,高=2×sin60°=3;第三个正三角形的边长=1+1+2=4,高=4×sin60°=23;第四个正三角形的边长=1+1+2+4=8,高=8×sin60°=43;⋯第n个正三角形的边长=2n-1,高=2n-2×3.∴第n个正三角形顶点A的纵坐标是2n-2×3.故选:D.【点睛】本题是一次函数综合题型,主要考查了等腰三角形的性质,一次函数图象上点的坐标特征.10(2023秋·山东济宁·九年级统考期末)如图,直线y=x+1与x轴、y轴分别相交于点A、B,过点B 作BC⊥AB,使BC=2BA.将ΔABC绕点O顺时针旋转,每次旋转90°.则第2022次旋转结束时,点C的对应点C'落在反比例函数y=kx的图象上,则k的值为()A.-4B.4C.-6D.6【答案】C【分析】过点C作CD⊥y轴,垂足为D,则△BCD是等腰直角三角形,根据BC=22,确定点C的坐标,第一次旋转的坐标,根据第二次旋转坐标与点C关于原点对称,第三次旋转坐标与第一次坐标关于原点对称,确定循环节为4,计算2022÷4的余数,确定最后的坐标,利用k=横坐标×纵坐标计算即可.【详解】如图,过点C作CD⊥y轴,垂足为D,∵直线y=x+1与x轴、y轴分别相交于点A、B,过点B作BC⊥AB,使BC=2BA,∴A(-1,0),B(0,1),AB=2,BC=22,∴OA=OB,∠ABO=∠BAO=∠CBD=∠DCB=45°,∴DC=BD=2,∴DC=BD=2,OD=OB+BD=3,∴点C(-2,3),第一次旋转的坐标为(3,2),第二次旋转坐标与点C关于原点对称为(2,-3),第三次旋转坐标与第一次坐标关于原点对称为(-3,-2),第四次回到起点,∴循环节为4,∴2022÷4=505⋯2,∴第2022次变化后点的坐标为(2,-3),∴k=-3×2=-6,故选C.【点睛】本题考查了一次函数与坐标轴的交点,勾股定理,等腰直角三角形的判定和性质,旋转的性质,反比例函数的解析式的确定,点的坐标的对称性,利用旋转性质,确定点的对称性及其坐标是解题的关键.二、填空题11(2022秋·山东泰安·八年级校考期末)如图,已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形⋯依此类推,则第2019个三角形的长.【答案】122018【分析】根据“三角形的中位线平行于第三边并且等于第三边的一半”可知第2个三角形的周长为12,第三个三角形的周长为12×12=122,⋯以此类推,找到规律,即可求出第2019个三角形的周长.【详解】根据“三角形的中位线平行于第三边并且等于第三边的一半”可知第2个三角形的周长为12,第3个三角形的周长为12×12=12 2,第4个三角形的周长为12 2×12=123,⋯第n 个三角形的周长为12n -1,∴第2019个三角形的周长为122018.故答案为:12 2018.【点睛】本题主要考查了三角形中位线定理,找出规律是解题的关键.12(2023·湖北恩施·统考一模)一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到0,1 ,然后接着按图中箭头所示方向运动[即0,0 →0,1 →1,1 →1,0 →⋅⋅⋅],且每秒移动一个单位,那么第2023秒时质点所在位置的坐标是.【答案】1,44【分析】应先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3,5,7,9⋯,此时点在坐标轴上,进而得到规律.【详解】解:由题意可知,这点移动的速度是1个单位长度/每秒,设这点为x ,y ,到达1,0时用了3秒,到达2,0时用了4秒,从2,0到0,2有4个单位长度,则到达0,2时用了4+4=8秒,到0,3时用了9秒;从0,3到3,0有6个单位长度,则到达3,0时用9+6=15秒,到4,0时用16秒;从4,0到0,4有8个单位长度,则到达0,4时用16+8=24秒,到0,5时用了25秒;从0,5到5,0有10个单位长度,则到达5,0时用25+10=35秒,到6,0时用了36秒;⋯,可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,∵45×45=2025,2025→0,45,2026→1,45,2024→0,44,2023→1,44,∴第2023秒时这个点所在位置的坐标为1,44,故答案为:1,44.【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键.13(2023·广东深圳·深圳市南山外国语学校校考一模)化学中直链烷烃的名称用“碳原子数+烷”来表示.当碳原子数为1~10时,依次用天干--甲、乙、丙、丁、戊、己、庚、辛、千、癸--表示,其中甲烷、乙烷、丙烷的分子结构式如图所示,则第7个庚烷分子结构式中“H”的个数是.【答案】16【分析】观察题干中分子结构式发现规律,第n个分子结构式中“H”的个数是2n+2,据此即可得到答案.【详解】解:观察分子结构式可知,第1个甲烷分子结构式中“H”的个数是4;第2个乙烷分子结构式中“H”的个数是6;第3个丙烷分子结构式中“H”的个数是8;⋯⋯∴第n个分子结构式中“H”的个数是2n+2,∴第7个庚烷分子结构式中“H”的个数是2×7+2=16,故答案为:16.【点睛】本题考查了图形类规律探索,通过观察归纳出规律是解题关键.14(2023·甘肃陇南·校考一模)按一定规律排列的式子:-3ba,8ba3,-15ba5,24ba7,⋯⋯第n个式子是.【答案】(-1)n⋅n(n+2)b a2n-1【分析】根据所给式子找出各部分的规律解答即可.【详解】解:3b,8b,15b,24b,⋯,分子可表示为:n(n+2)b.a,a3,a5,a7,⋯,分母可表示为:a2n-1,则第n 个式子为:(-1)n ⋅n (n +2)ba2n -1.故答案是:(-1)n ⋅n (n +2)ba 2n -1.【点睛】本题考查了规律型:数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.此题注意分别观察各部分的符号规律.15(2023·海南省直辖县级单位·统考一模)用火柴棒按上图的方式摆出一系列图案,按这种方式摆下去,第n 个图案所用的火柴棒的根数为.【答案】3n 2+3n 2【分析】先根据图案排列规律求出第n 个图案的三角形的个数,再根据没有个三角形有三根火柴棒计算即可得解.【详解】解:第1个图案有1个三角形,第2个图案有1+2个三角形,第3个图案有1+2+3个三角形,⋯,依此类推,第n 个图案有:1+2+3+⋯+n 个三角形,∵1+2+3+⋯+n =n n +12,∴第n 个图案所用的火柴棒的根数为3×n n +1 2=3n 2+3n2.故答案为:3n 2+3n2.【点睛】本题是对图形变化规律的考查,先求出第n 个图案的三角形的个数是解题的关键.16(2023·山东枣庄·校考模拟预测)观察图中每一个大三角形中白色三角形的排列规律,则第n 个大三角形中白色三角形有(用含n 代数式表示)个.【答案】30+31+32+33+⋯⋯3n -1【分析】分别数出第1个图形、第2个图形、第3个图形、第4个图形中白色三角形的个数,总结出白色三角形的增长规律,即可推出第n 个大三角形中白色的三角形的个数.【详解】解:第1个图形的白色三角形个数为1,第2个图形的白色三角形个数为1+3=30+31,第3个图形的白色三角形个数为1+3+9=30+31+32,第4图形的白色三角形个数为1+3+9+27=30+31+32+33,⋯,以此类推,第n个图形的白色三角形个数为30+31+32+33+⋯⋯3n-1,故答案为:30+31+32+33+⋯⋯3n-1.【点睛】本题考查规律型中的图形变化问题,解答此题要有以下步骤:①先数出白色三角形的个数;②探索出白色三角形的增长规律;③根据规律解题.本题运算量比较大,要仔细计算.17(2023秋·重庆永川·七年级统考期末)如图是一个电子青蛙游戏盘,已知AB=7,BC=6,AC=5,BP0=3.电子青蛙在AB边上的P0处,第一步跳到P1处,使BP1=BP0,第二步跳到P2处,使CP2=CP1,第三步跳到P3处,使AP3=AP2,⋯⋯,按上述的规则跳下去,第2023步落点为P2023,则P1与P2023之间的距离为.【答案】0【分析】根据上述规则,显然6次完成一个循环.因为2023÷6=372⋯1,则P2023与P1重合,于是得到结论.【详解】解:第一步跳到P1处,使BP1=BP0=3,第二步跳到P2处,使CP2=CP1=3,第三步跳到P3处,使AP3=AP2=2,第四步跳到P4处,BP3=BP4=5,第五步跳到P5处,CP4=CP5=1,第六步跳到p6处,AP5=AP6=4,与P0重合,∴6次一循环,则2023÷6=372⋯1,则P2023与P1重合.∴P1与P2023之间的距离为0,故答案为:0.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中各点的变化规律,利用数形结合的思想解答.18(2023秋·河南许昌·九年级校考期末)平面直角坐标系中,若干个半径为1,圆心角为60°的扇形组成的图形如图所示,点P从原点O出发,向右沿箭头所指方向做上下起伏运动,点P在直线上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒π3个单位长度,则2021秒时,点P的坐标是.【答案】20212,32【分析】根据勾股定理和弧长公式求出的P 1坐标,设第n 秒运动到P n (n 为自然数)点,根据点P 的运动规律找出部分P n 点的坐标,根据坐标的变化找出变化规律“P 4n +14n +12,32,P 4n +2(n +1,0),P 4n +34n +32,-32 ,P 4n +4(2n +2,0)”,依此规律即可得出结论.【详解】解:如图,过点A 作AB ⊥x 轴,垂足为B ,由题意可得:OA =1,∠AOB =60°,∴OB =12,AB =32,一段弧线长为60×12π180=π3,∴P 112,32,设第n 秒运动到P n (n 为自然数)点,观察,发现规律:P 112,32 ,P 2(1,0),P 332,-32,P 4(2,0),P 552,32 ,⋯,∴P 4n +14n +12,32 ,P 4n +2(n +1,0),P 4n +34n +32,-32 ,P 4n +4(2n +2,0).∵2021=4×505+1,∴P 2021为20212,32 ,故答案为:20212,32 .【点睛】本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,难度不大,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.19(2022秋·山东临沂·九年级统考期中)若关于x 的一元二次方程x 2-3x +m 2+m =0m >0 ,当m =1,2,3,⋯,2022时,相应的一元二次方程的两根分别记为α1,β1;α2,β2;⋯;α2022,β2022,则1α1+1β1+1α2+1β2+⋯1α2022+1β2022的值为.【答案】60662023【分析】利用根与系数的关系得到α1+β1=3,α1β1=1×2;α2+β2=3,α2β2=2×3;⋯α2022+β2022=3,α2022β2022=2022×2023;把原式变形,再代入,即可求出答案.【详解】解:∵x 2-3x +m 2+m =0,m =1,2,3,⋯,2022,∴由根与系数的关系得:α1+β1=3,α1β1=1×2;α2+β2=3,α2β2=2×3;⋯α2022+β2022=3,α2022β2022=2022×2023;∴原式=α1+β1α1β1+α2+β2α2β2+....α2022+β2022α2022β2022=31×2+32×3+....32022×2023=3×1-12+12-13+....12022-12023=3×1-12023 =3×20222023=60662023故答案为:60662023【点睛】本题考查了一元二次方程根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0a ≠0的两根时,x 1+x 2=-b a ,x 1x 2=ca.20(2023·江苏扬州·九年级专题练习)如图,在正方形ABCD 中,顶点A -5,0 ,C 5,10 ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90°,则第2023次旋转结束时,点G 的坐标为.【答案】-4,3【分析】根据正方形的性质得到AB =BC =CD =10,∠C =∠ABF =90°,根据全等三角形的性质得到∠BAF =∠CBE ,根据余角的性质得到∠BGF =90°,过G 作GH ⊥AB 于H ,根据相似三角形的性质得到BH =2,根据勾股定理得到HG =4,求得G 3,4 ,找出规律即可得到结论.【详解】解:∵四边形ABCD 是正方形,∴AB =BC =CD =10,∠C =∠ABF =90°,∵点F 是BC 的中点,CD 与y 轴交于点E ,∴CE =BF =5,∴△ABF ≌△BCE (SAS ),∴∠BAF =∠CBE ,∵∠BAF +∠BFA =90°,∴∠FBG +∠BFG =90°,∴∠BGF =90°,∴BE ⊥AF ,∵AF =AB 2+BF 2=102+52=55,∴BG =AB ⋅BFAF=25,过G 作GH ⊥AB 于H ,∴∠BHG =∠AGB =90°,∵∠HBG =∠ABG ,∴△ABG ∽△GBH ,∴BG AB=BH BG ,∴BG 2=BH ⋅AB ,∴BH =25210=2,∴HG =BG 2-BH 2=4,∴G 3,4 ,∵将正方形ABCD 绕点O 顺时针旋转,每次旋转90°,∴第一次旋转90°后对应的G 点的坐标为4,-3 ,第二次旋转90°后对应的G 点的坐标为-3,-4 ,第三次旋转90°后对应的G 点的坐标为-4,3 ,第四次旋转90°后对应的G 点的坐标为3,4 ,⋯,∵2023=4×505+3,∴每4次一个循环,第2023次旋转结束时,相当于正方形ABCD 绕点O 顺时针旋转3次,∴第2023次旋转结束时,点G 的坐标为-4,3 ,故答案为:-4,3 .【点睛】本题考查了正方形的性质,坐标与图形变换-旋转,相似三角形的判定和性质,勾股定理,正确的理解题意是解题的关键.三、解答题21(2023·安徽六安·统考二模)观察以下等式:第1个等式:23=12+16;第2个等式:25=13+115;第3个等式:27=14+128;第4个等式:29=15+145;⋯⋯按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n 个等式,并证明你的结论.【答案】(1)213=17+191(2)22n +1=1n +1+1n +1 2n +1【分析】(1)由题干给出的4个等式,抓住不变的量,寻找变化的量前后之间的联系,即可得出第6个等式;(2)用n 表示(1)中找到的规律,利用分式的混合运算法则证明即可.【详解】(1)解:∵第1个等式:23=12+16;第2个等式:25=13+115;第3个等式:27=14+128;第4个等式:29=15+145;⋯⋯∴第6个等式为:213=17+191,故答案为:213=17+191;(2)解:第n 个等式为:22n +1=1n +1+1n +1 2n +1,证明:1n +1+1n +1 2n +1 =2n +1n +1 2n +1 +1n +1 2n +1=2n +1n +1 2n +1 =22n +1.故答案为:22n +1=1n +1+1n +1 2n +1.【点睛】本题考查了运算规律的探究,分式的加减运算,掌握规律的探究方法与分式的加减运算是解题的关键.22(2022秋·江苏徐州·七年级校考阶段练习)先观察,再解题:因为1-12=11×2,12-13=12×3,13-14=13×4,⋯所以(1)15×6=.(2)请接着完成下面的计算:11×2+12×3+13×4+⋯+149×50=1-12 +12-13 +13-14 +⋯+149-150(3)参照上述解法计算11×3+13×5+15×7+⋯+149×51.【答案】(1)15-16;(2)4950;(3)2551【分析】(1)根据所给的等式的形式进行求解即可;(2)利用所给的等式的形式进行求解即可;(3)仿照(2)的解答方式进行求解即可.【详解】(1)解:由题意得:15×6=15-16,故答案为:15-16;(2)解:11×2+12×3+13×4+⋯+149×50=1-12 +12-13 +13-14 +⋯+149-150=1-12+12-13+13-14+⋯+149-150=1-150=4950;(3)解:11×3+13×5+15×7+⋯+149×51=12×1-13 +12×13-15 +12×15-17 +⋯+12×149-151 =12×1-13+13-15+15-17⋯+149-151 =12×1-151 =12×5051=2551.【点睛】本题主要考查数字的变化规律,解答的关键是由所给的等式总结出存在的规律.23(2022秋·安徽宣城·七年级统考期末)如图,每个小正方形的面积均为1.将左图中黑色的小正方形移动,得到右边拼成的长方形,根据两种图形方法计算小正方形的个数;如图得出以下等式:(1)请写出第3个等式:;(2)猜想第n个等式为:(用含n的等式表示);(3)当n为多少时,左图中的最底端有2024个小正方形?此时左图中共有多少个小正方形?【答案】(1)2+4+6+8=4×5(2)2+4+6+⋯+2(n+1)=(n+1)(n+2)(3)n=1011,共有1025156个小正方形【分析】(1)根据给出的等式写出答案即可;(2)根据这3个等式写出答案即可;(3)因为最底端有2024个小正方形,所以2(n+1)=2024,得出n的值,再计算有多少个小正方形即可.【详解】(1)解:2+4+6+8=4×5;(2)解:2+4+6+⋯+2(n+1)=(n+1)(n+2);(3)解:因为最底端有2024个小正方形,所以2(n+1)=2024,解得:n=1011所以2+4+6+⋯+2024=1012×1013=1025156(个)答:n=1011,共有1025156个小正方形.【点睛】本题考查图形的规律,根据给出的式子找到规律是解题的关键.24(2023·安徽·模拟预测)以下是一幅幅平面镶嵌图案,它们由相同的灰色正方形和白色等边三角形排列而成,观察图案,如图1,当正方形只有1个时,等边三角形有4个;如图2,当正方形有2个时,等边三角形有7个;以此类推⋯⋯(1)第5个图案中正方形有个,等边三角形有个.(2)第n个图案中正方形有个,等边三角形有个.(3)若此类图案中有2023个等边三角形,该图案中正方形有多少个?【答案】(1)5,16;(2)n,3n+1;(3)该图案中正方形有674个【分析】(1)观察第1个图案可知:中间的一个正方形对应4个等边三角形,第2个图案可知增加一个正方形,变成了7个等边三角形,增加了3个等边三角形,•••,依次计算可解答;(2)观察第1个图案,有1个等边三角形;第2个图案,有3+4个等边三角形;•••,依次计算可解答;(3)根据等边三角形的个数求出图形的个数,即可确定正方形的个数.【详解】(1)解:观察第1和2个图案可知:图案中每增加1个正方形,则等边三角形增加3个,∴第5个图案中正方形有5个,等边三角形有4+3+3+3+3=16(个).故答案为:5,16;(2)解:第1个图案:正方形有1个,等边三角形有:4(个),第2个图案:正方形有2个,等边三角形有:4+3=7(个),第3个图案:正方形有3个,等边三角形有:4+2×3=10(个),第4个图案:正方形有4个,等边三角形有:4+3×3=13(个),⋅⋅⋅⋅⋅⋅第n个图案:正方形有n个,等边三角形有:4+3(n-1)=(3n+1)个,故答案为:n,3n+1;(3)解:∵3n+1=2023,解得:n=674,∴按此规律镶嵌图案,该图案中正方形有674个.【点睛】本题考查了平面镶嵌,以等边三角形和正方形的拼图为背景,关键是考查规律性问题的解决方法,探究规律要认真观察、仔细思考,善用联想来解决这类问题.25(2023·安徽·模拟预测)十一期间,泉城广场的一个公共区域用盆栽进行了美化,盆栽按如图的方式摆放,图中的盆栽被折线隔开分成若干层,第一层有1个盆栽,第二层有3个盆栽,第三层有5个盆栽,第四层有7个盆栽,⋯⋯,以此类推.请观察图形规律,解答下列问题:(1)第10层有个盆栽,第a层有个盆栽,前n层共有个盆栽;(2)计算:1+3+5+⋯⋯+25=;(3)拓展应用:求27+29+⋯⋯+1921的值.【答案】(1)19,2n-1,n2(2)169(3)923352【分析】(1)根据已知数据即可得出每一小层盆栽个数是连续的奇数,进而得出答案;(2)利用已知数据得出答案即可;(3)利用已知数据得出答案即可.【详解】(1)解:第10层有19个盆栽,第n 层有2n -1 个盆栽;前n 层共有1+3+5+⋯⋯+2n -1 =n 2,故答案为:19,2n -1 ,n 2;(2)解:1+3+5+⋯+25=132=169,故答案为:169;(3)解:27+29+31⋯⋯+1921=1+3+5+⋯+1921 -(1+3+5+⋯+25)=9612-132=923521-169=923352【点睛】此题主要考查了图形的变化类,根据已知得出数字的变化规律是解题关键.26(2022秋·山东济南·七年级统考期中)利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.请你尝试利用数形结合的思想方法解决下列问题(1)如图①,一个边长为1的正方形,依次取正方形面积的12,14,18⋯12n ,根据图示我们可以知道:12+14+18+116+⋯+12n =.(用含有n 的式子表示)(2)如图②,一个边长为1的正方形,第一次取正方形面积的23,然后依次取剩余部分的23,根据图示:计算:23+29+227+⋯+23n =.(用含有n 的式子表示)(3)如图③是一个边长为1的正方形,根据图示:计算:13+29+427+881+⋯+2n -13n =.(用含有n 的式子表示)【答案】(1)1-12n(2)1-13n(3)1-2n3n【分析】(1)根据题意找出规律进行计算即可;(2)根据题干给出图形,依次取正方形面积的23,29,227,⋯,找出规律即可;(3)根据题干给出图形,依次取正方形面积的13,29,427,⋯,找出规律即可.【详解】(1)解:∵第1次截取后剩余12,第2次截取后剩余12×12=122,第3次截取后剩余12×12×12=123,⋯,第n 次截取后剩余12×12×...×12 n 个=12n ,∴12+14+18+116+12n =1-12n .故答案为:1-12n .(2)解:∵第1次截取后剩余13,第2次截取后剩余13×13=132,第3次截取后剩余13×13×13=133,⋯,第n 次截取后剩余13×13×...×13 n 个=13n ,∴23+29+227+23n =1-13n .故答案为:1-13n .(3)解:∵第1次截取后剩余23,第2次截取后剩余23×23=2232,第3次截取后剩余23×23×23=2333,⋯,第n 次截取后剩余23×23×...×23 n 个=2n 3n ,∴13+29+427+881+2n -13n =1-2n 3n .故答案为:1-2n 3n .【点睛】本题考查的图形的变化类,根据题干给出的图形,利用数形结合求解是解答此题的关键.27(2022秋·浙江杭州·七年级校考期中)完成下列填空:(1)已知a 1=11×2×3+12=23,a 2=12×3×4+13=38,a 3=13×4×5+14=415,⋯⋯,依据上述规律,则a 99==.(2)有若干张边长都是2的四边形纸片和三角形纸片,从中取一些纸片按如图所示的顺序拼接起来(排在第一位的是四边形),可以组成一个大的平行四边形或一个大的梯形.如果所取的四边形与三角形纸片数的和是5时,那么组成的大平行四边形或梯形的周长是;如果所取的四边形与三角形纸片数的和是n ,那么组成的大平行四边形或梯形的周长是.(3)下面是按一定规律排列的一列数:第1个数:a 1=12-1+-12;第2个数:a 2=13-1+-12 1+(-1)23 1+(-1)34;第3个数:a 3=14-1+-12 1+(-1)23 1+(-1)34 1+(-1)45 1+(-1)56 ;⋯⋯则第n 个数为:.【答案】(1)199×100×101+1100,1009999(2)20,3n +5或3n +4(3)a n =1n +1-1+-12 1+(-1)23 1+(-1)34 ⋯1+(-1)2n -12n【分析】(1)找到规律,根据规律填空即可;(2)第1张纸片的周长为8,由2张纸片所组成的图形的周长比第1张纸片的周长增加了2.由3张纸片所组成的图形的周长比前2张纸片所组成的图形的周长增加了4,按此规律可求解;(3)找到规律,根据规律填空即可.【详解】(1)解:∵a 1=11×2×3+12=23,a 2=12×3×4+13=38,a 3=13×4×5+14=415,⋯⋯,∴a n =1n (n +1)(n +2)+1n +1=n +1n (n +2),∴a 99=199×100×101+1100=1009999,故答案为:199×100×101+1100,1009999;(2)解:解:从图形可推断:纸张张数为5,图片周长为8+2+4+2+4=3×5+5=20;当n 为奇数时,组成的大平行四边形或梯形的周长为:8+2+4+⋯+2+4=3n +5;当n 为偶数时,组成的大平行四边形或梯形的周长为:8+2+⋯+4+2=3n +4.综上,组成的大平行四边形或梯形的周长为3n +5或3n +4.故答案为:20,3n +5或3n +4.(3)解:∵第1个数:a1=12-1+-12;第2个数:a2=13-1+-121+(-1)231+(-1)34;第3个数:a3=14-1+-121+(-1)231+(-1)341+(-1)451+(-1)56;⋯⋯∴第n个数为a n=1n+1-1+-121+(-1)231+(-1)34⋯1+(-1)2n-12n.故答案为:a n=1n+1-1+-121+(-1)231+(-1)34⋯1+(-1)2n-12n.【点睛】本题考查了规律型:图形的变化以及数字的变化,解第(2)题的关键是将纸片的张数分奇偶两种情况进行讨论,得出组成的大平行四边形或梯形的周长.28(2022秋·山西吕梁·七年级统考期中)如图,每张小纸带的长为40cm,用胶水把它们粘贴成一张长纸带,接头粘贴重叠部分的长为3cm.(1)用2张这样的小纸带粘贴成的纸带的长度为77cm,则用3张这样的小纸带粘贴成的纸带的长度为cm.(2)①用n张这样的小纸带粘贴成的纸带的长度是cm;②计算用20张这样的小纸带粘贴成的纸带的长度.【答案】(1)114(2)①(37n+3);②743cm【分析】(1)理解接头是每相邻两张有一个接头,则三张有两个接头,从而求出每张纸带的长度,即可求解;(2)①结合(1)推而广之,n张有(n-1)个接头,n张这样的小纸带粘贴成的纸带的长度是40n-3×(n-1)=(37n+3)cm;②直接把n=30代入①即可求解.【详解】(1)解:每张纸带的长度为:77+3÷2=40(cm);∴3张这样的小纸带粘贴成的纸带的长度为:40×3-2×3=114(cm).(2)解:①n张纸带的长度为:40n-3×(n-1)=(37n+3)cm.②当n=20时,37n+3=743(cm).∴20张这样的小纸带粘贴成的纸带的长度为743cm.【点睛】本题考查图形规律,代数式求值,解决问题的关键是读懂题意,找出图形规律是解题的关键.29(2023春·七年级课时练习)观察下列各式(x-1) (x+1)=x2-1(x-1)x2+x+1=x3-1。

规律探究专项训练(含答案)

规律探究专项训练(含答案)

规律探究专项训练一、单选题(共8道,每道12分)1.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是( )A.38B.52C.66D.74答案:D解题思路:试题难度:三颗星知识点:数的规律2.下面是按照一定规律排列的一列数:第1个数:;第2个数:;第3个数:;...第n个数:那么,在第10个数,第11个数,第12个数,第13个数中,最大的数是( )A.第10个数B.第11个数C.第12个数D.第13个数答案:A解题思路:试题难度:三颗星知识点:数的规律3.按照如图所示的方法排列黑色小正方形地砖,则第9个图形中的黑色小正方形地砖有( )A.85块B.113块C.145块D.181块答案:C解题思路:试题难度:三颗星知识点:图形规律4.如图,已知A1,A2,A3,…,A n,A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n,A n+1作x轴的垂线,交直线y=2x于点B1,B2,B3,…,B n,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1,依次相交于点P1,P2,P3,…,P n.△A1B1P1,△A2B2P2,△A3B3P3,…,△A n B n P n的面积依次记为S1,S2,S3,…,S n,则S n为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数综合题5.如图,已知直线y=x,点的坐标为(1,0),过点作x轴的垂线,交直线于点,以原点为圆心,的长为半径画弧,交x轴于点;再过点作x轴的垂线,交直线于点,以原点为圆心,的长为半径画弧,交x轴于点.按此作法进行下去,则点(n为正整数)的纵坐标为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:一次函数综合题6.如图,在△ABC中,∠ACB=90°,∠B=30°,AC=1,AC在直线上.将△ABC绕点A顺时针旋转到位置①,可得到点,此时;将位置①的三角形绕点顺时针旋转到位置②,可得到点,此时;将位置②的三角形绕点顺时针旋转到位置③,可得到点,此时.按此规律继续旋转,当得到点时,的长为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:循环规律7.如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,...,依此类推,这样至少移动______次后该点到原点的距离不小于41.( )A.27B.28C.29D.30答案:B解题思路:试题难度:三颗星知识点:循环规律8.如图,在平面直角坐标系中,已知点C的坐标为,连接OC,将线段OC绕点O顺时针旋转60°,再将长度扩大2倍,得到;将线段绕点O顺时针旋转60°,再将长度扩大2倍,得到.如此继续下去,当得到时,点的坐标为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:复合规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
数学专题复习(一):规律探索性问题
1.观察下列图形,则第n 个图形中三角形的个数是( )
A .22n +
B .44n +
C .44n -
D .4n
2.有一列数12
34
251017
--,,,,
…,那么第7个数是 .
3.观察算式:
221.4135-=⨯;222.5237-=⨯;223.6339-=⨯224.74311-=⨯;………… 则第n (n 是正整数)个等式为________.
4、(2009年益阳市)如图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.
-
5.观察下面的一列单项式:x ,22x -,3
4x ,48x -,…根据你发现的规律,第7个式子为 ;
第n 个式子为
6.观察下列一组数:21,43,65,87
,…… ,它们是按一定规律排列的. 那么这一组数的第k 个
数是 .
7.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图
形需要黑色棋子的个数是 .
8、如图,第10个图形白色纸片________张;⑵ 第n 个图案台有白色纸片________张.
9.如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________
10.一个叫巴尔末的中学教师成功地从光谱数据59,1216,2125,3236,…中得到巴尔末公式,从而打
开了光谱奥秘的大门,请你按照这种规律,写出第n (n ≥1)个数据是___________.
11. (2009年梅州市)如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.
12、已知点A 、B 在数轴上对应的数如图
1,动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,以此类推,……点P 能够移动与A 、B 重合的位置吗?若能,请探索第几次移动时重合,若不能,请说明理由。

13、已知等边三角形ABC 在数轴上的位置如图,点A 、C 对应的数分别为0和-1,将此三角形绕着
顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则翻转2019次后,点C 所对应的数是多少呢?
14、正方形ABCD 在数轴上的位置如图,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶
点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2018次后,数轴上数2018所对应的点是哪个点?
第1个 第2个 第3个
……


第1幅
第2幅
第3幅 第n 幅
第二轮复习
资 料
第1个 第2个 第3个
(1)
(2)
(3)
……。

相关文档
最新文档