(完整版)01背包问题

合集下载

01背包问题(回溯法)

01背包问题(回溯法)

01背包问题(回溯法) 回溯法是⼀个既带有系统性⼜带有跳跃性的搜索算法。

它在包含问题的所有解的解空间树中,按深度优先策略,从根结点出发搜索解空间树。

算法搜索⾄解空间树的任意⼀结点时,先判断该结点是否包含问题的解。

如果肯定不包含,则跳过对该结点为根的⼦树搜索,逐层向其祖先结点回溯;否则,进⼊该⼦树,继续按深度优先策略搜索。

问题的解空间⽤回溯法解问题时,应明确定义问题的解空间。

问题的解空间⾄少包含问题的⼀个(最优)解。

对于 n=3 时的 0/1 背包问题,可⽤⼀棵完全⼆叉树表⽰解空间,如图所⽰:求解步骤1)针对所给问题,定义问题的解空间;2)确定易于搜索的解空间结构;3)以深度优先⽅式搜索解空间,并在搜索过程中⽤剪枝函数避免⽆效搜索。

常⽤的剪枝函数:⽤约束函数在扩展结点处剪去不满⾜约束的⼦树;⽤限界函数剪去得不到最优解的⼦树。

回溯法对解空间做深度优先搜索时,有递归回溯和迭代回溯(⾮递归)两种⽅法,但⼀般情况下⽤递归⽅法实现回溯法。

算法描述 解 0/1 背包问题的回溯法在搜索解空间树时,只要其左⼉⼦结点是⼀个可⾏结点,搜索就进⼊其左⼦树。

当右⼦树中有可能包含最优解时才进⼊右⼦树搜索。

否则将右⼦树剪去。

代码:public class Knapsack_Problem01 {double m=100; //背包最⼤容量int n=5; //物品的个数int[] w = {10,20,30,40,50}; //第i个物品的重量int[] v = {20,30,65,40,60}; //第i个物品的价值int[] a = new int[n]; //记录在树中的移动路径,为1的时候表⽰选择该组数据,为0的表⽰不选择该组数据int maxvalue = 0; //背包的最⼤权重值public static void main(String[] args){Knapsack_Problem01 p = new Knapsack_Problem01();p.Search(0);}public void Search(int i) //i表⽰递归深度{if(i>=n){CheckMax();}else {a[i] = 0;Search(i+1);a[i] = 1;Search(i+1);}}public void CheckMax(){int weight = 0;int value = 0;for(int i=0;i<n;i++) //判断是否达到上限{if(a[i] == 1){weight = weight + w[i];value = value + v[i];}}if(weight <= m){if(value >= maxvalue){maxvalue = value;System.out.print("最⼤价值是:" + maxvalue +" ");System.out.print("所选取的物品为(1代表选中,0代表不选中): ");for(int j=0;j<n;j++){System.out.print(a[j]);System.out.print(' ');}System.out.print('\n');}}}}。

贪心算法-01背包问题

贪心算法-01背包问题

贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。

2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。

若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。

显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。

3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。

由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。

此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。

动态规划——01背包问题

动态规划——01背包问题

动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。

01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。

我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。

只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。

运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。

由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。

这样,可以⼤幅度地降低时间复杂度。

有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。

显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。

可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。

可知dp[0][j]值⼀定为零。

那么,该怎么递推求取所有⼦问题的解呢。

显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。

当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。

①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。

拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。

01背包问题动态规划算法

01背包问题动态规划算法

01背包问题动态规划算法
01背包问题是求在限定条件下,在一定的容量内最优装载物品,使得总价值最大。

动态规划算法是一种用于解决多阶段决策问题的途径,其特点是将原问题划分成若干子问题,每个子问题只求解一次,保存子问题的解,避免了重复计算。

01背包问题动态规划算法的步骤如下:
1、确定状态:物品的种数i (i=1,2,…n),背包的容量j (j=0,1,2,…V)。

2、确定状态转移方程:f[i][j]=max{f[i-1][j],f[i-1][j-wi]+vi}。

3、确定初始状态:f[i][0]=0,f[0][j]=0。

4、确定输出:最后f[n][V]即为最优解。

5、根据状态转移方程从左到右,从上到下进行迭代计算。

01背包问题(01knapsackproblem)

01背包问题(01knapsackproblem)

01背包问题(01knapsackproblem)0 / 1 背包问题(0 / 1 knapsack problem)背包问题(Knapsack problem)是⼀种组合优化的问题。

问题可以描述为:给定⼀组物品,每种物品都有⾃⼰的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最⾼。

问题的名称来源于如何选择最合适的物品放置于给定背包中。

相似问题经常出现在商业、[组合数学],[计算复杂性理论]、[密码学]和[应⽤数学]等领域中。

也可以将背包问题描述为,即在总重量不超过W的前提下,总价值是否能达到V。

1、题⽬描述假设商店中有如下3个商品,他们的重量和价格如下:索引重量价值011500143000232000假如你是⼀个⼩偷,你有⼀个重量为4的包,每个商品只能偷⼀次,请问你怎么偷才会使得最后的价值最⼤?2、分析这种问题⼀般可以⽤动态规划很好地解决。

但是如果我不⽤动态规划,⽽是⽤搜索所有情况来解决也可以,每个商品都有偷或不偷的选项,所以n个商品就有n^2种情况,所以⽤遍历的⽅法时间复杂度为O(n^2) n为商品的数量现在我们假设B(k, w)表⽰的是前k个商品,在背包容量为w的情况下能偷的最⾼价值当现在⾯对的第k个物品重量太重时:B(k, w) = B(k-1, w),代表我在多了⼀个物品的选择的情况下,仍然和没有这件物品时的选择⼀样,所以结果也⼀样(因为我偷不了或者我不偷的情况)当第k个物品的重量我可以接受时:B(k, w) = B(k-1, w - 这件物品的重量) + 这件物品的价值代表我如果偷了这件物品,那剩下的w - 这件物品重量的空间可以容纳的最⼤价值就是在上⼀次选择时B(k-1, w - 这件物品的重量)的值。

再加上这件物品的价值就是我偷了这件物品的最⼤值。

所以,在衡量⼀个B(k, w)时,⾸先看⼀下能不能偷,能得话看⼀下偷还是不偷两个的最⼤值,就是B(k, w)的值,所以我们回到上⾯的问题,问题的解就是B(2,4)的值我们⽤⼆维数组 dp[][]来表⽰整个的过程可选商品 \ 背包容量012340号商品(1,1500)015001500150015000 ~ 1号商品(4,3000)015001500150030000 ~ 2号商品(3,2000)01500150020003500如图中加粗数字1500代表的是在有前两个商品,背包容量为2时可以偷的最⼤价值为1500图中加粗数字3000,即在有前2个商品,背包重量为4时,可以偷的最⼤价值为3000,这个数是这样算的:第⼆个商品(1号)重量为4,正好满⾜,如果偷的话所以价值为3000 + 0 = 3000如果不偷的话价值和只有1个商品,背包容量为4的价值⼀样,1500取最⼤值为3000所以问题的关键就在构建这个⼆维数组3、实现/*** 时间复杂度:O(n * capacity) n为商品数量,capacity为包的⼤⼩* 空间复杂度:O(n * capacity) 可以优化为capacity*/public class Main{/*** 0/1 背包问题* @param w w[i]代表i号物品的重量(从0开始)* @param v v[i]代表i号物品的价值(从0开始)* @param capacity 代表包的最⼤容量* @return 可以偷的商品的最⼤值*/public static int knapsack(int[] w, int[] v, int capacity){int goods = w.length; // 商品数int[][] dp = new int[goods][capacity + 1];// 初始化第⼀⾏,因为第⼀⾏上层没有元素了,即只有第⼀个商品时for(int j = 1; j <= capacity; j++){if(j >= w[0]) dp[0][j] = v[0];}// 前i个商品, 背包容量为j时偷得最⼤价值for(int i = 1; i < goods; i++) {for(int j = 1; j < capacity + 1; j++) {// 如果容量不够放下第i个商品if(w[i] > j) {dp[i][j] = dp[i-1][j];} else { // 如果可以放下这件商品dp[i][j] =Math.max(dp[i-1][j], v[i] + dp[i-1][j-w[i]]);}}}// System.out.println(Arrays.deepToString(dp));return dp[goods - 1][capacity];}}⽤滚动数组优化空间复杂度:因为如果我们从后往前构建每⼀⾏,那上⼀⾏保留的就可以在构建时候⽤/*** 时间复杂度:O(n * capacity) n为商品数量,capacity为包的⼤⼩* 空间复杂度:O(capacity)*/public class Main{/*** 0/1 背包问题* @param w w[i]代表i号物品的重量(从0开始)* @param v v[i]代表i号物品的价值(从0开始)* @param capacity 代表包的最⼤容量* @return 可以偷的商品的最⼤值*/public static int knapsack(int[] w, int[] v, int capacity){int goods = w.length; // 商品数int[] dp = new int[capacity + 1];// 前i个商品, 背包容量为j时偷得最⼤价值for(int i = 0; i < goods; i++) {for(int j = capacity; j > 0; j--) {// 如果能装下就更新,装不下就不更新(上⼀⾏的值)if(j - w[i] >= 0) {dp[j] = Math.max(dp[j], v[i] + dp[j - w[i]]);}}}return dp[capacity];}}。

5.5动态规划求解01背包问题

5.5动态规划求解01背包问题
xn-1: 若xn=0,则判断(Pl,Wl)∈ Sn-2?,以确定Xn-1的值 若xn=1,则依据(Pl-pn,Wl-wn)∈ Sn-2?,以判断Xn-1的值
xn-2,…,x1将依次推导得出
例2的解向量推导
S0={(0,0)}
S1={(0,0),(1,2)}
S2={(0,0),(1,2), (2,3),(3,5)}
● Si的构造
记S1i 是fi-1(X-wi)+pi的所有序偶的集合,则
S1i {( P,W ) | (P pi ,W wi ) S i1}
其中,Si-1是fi-1的所有序偶的集合
Si的构造:由Si-1和 S1i 按照支配规则合并而成。
支配规则:如果Si-1和S1i 之一有序偶(Pj,Wj),另一有(Pk,Wk),
5.5动态规划求解 0/1背包问题
1.问题描述 背包容量M,n个物品,分别具有效益值P1…Pn,物
品重量w1…wn,从n个物品中,选择若干物品放入 背包,物品要么整件放入背包,要么不放入。怎 样决策可以使装入背包的物品总效益值最大?
形式化描述:
目标函数:
约束条件:
max pixi
1i j
wixi M
1in
xi
0或1,
pi
0, wi
0,1
i
n
0/1背包问题:KNAP(1,n,M)
❖ 0/1背包问题:M=6,N=3,W=(3,3,4),P=(3,3,5) ❖ 贪心法:p3/w3 > p1/w1 > p2/w2 ❖ 贪心解 ∑P=5(0,0,1) ❖ 最优解是:∑P=6(1,1,0)
❖ 贪心法求解0/1背包问题不一定得到最优解! ❖ 动态规划求解的问题必须满足最优化原理

动规-背包九讲完整版

动规-背包九讲完整版
如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将 f[0..V]全部设 为 0。
为什么呢?可以这样理解:初始化的 f 数组事实上就是在没有任何物品可以放入背包时的合 法状态。如果要求背包恰好装满,那么此时只有容量为 0 的背包可能被价值为 0 的 nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都 应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不 装”,这个解的价值为 0,所以初始时状态的值也就全部为 0 了。
前言
本篇文章是我(dd_engi)正在进行中的一个雄心勃勃的写作计划的一部分,这个计划的内容是 写作一份较为完善的 NOIP 难度的动态规划总结,名为《解动态规划题的基本思考方式》。现 在你看到的是这个写作计划最先发布的一部分。
背包问题是一个经典的动态规划模型。它既简单形象容易理解,又在某种程度上能够揭示动 态规划的本质,故不少教材都把它作为动态规划部分的第一道例题,我也将它放在我的写作 计划的第一部分。
这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始 化进行讲解。
小结
01 背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另 外,别的类型的背包问题往往也可以转换成 01 背包问题求解。故一定要仔细体会上面基本思 路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。
感谢 XiaQ,它针对本文的第一个 beta 版发表了用词严厉的六条建议,虽然我只认同并采纳 了其中的两条。在所有读者几乎一边倒的赞扬将我包围的当时,你的贴子是我的一剂清醒 剂,让我能清醒起来并用更严厉的眼光审视自己的作品。
当然,还有用各种方式对我表示鼓励和支持的几乎无法计数的同学。不管是当面赞扬,或是 在论坛上回复我的贴子,不管是发来热情洋溢的邮件,或是在即时聊天的窗口里竖起大拇 指,你们的鼓励和支持是支撑我的写作计划的强大动力,也鞭策着我不断提高自身水平,谢 谢你们!

动态规划01背包问题

动态规划01背包问题
最终,f[n][W]就是最优解,其中 n 是物品的总数,W 是背包 的容量。
01 背包问题的时间复杂度为 O(nW),空间复杂度为 O(nW)。
• 选择放入第 i 个物品。此时,背包的剩余容量为 j-w[i], 所以 f[i][j] = f[i-1][j-w[i]] + v[i]。 • 不选择放入第 i 个物品。此时,f[i][j] = f[i-1][j]。
综上所述,状态转移方程为:
f[i][j] = max(f[i-1][j], f[i-1][j-w[i]] + v[i])
01 背包问题是一种经典的动态规划问题,其目的是在限制条 件下,使得背包内的物品价值最大。
在 01 背包问题中,每种物品都有其体积和价值。同时,背 包也有一定的容量限制。问题的目标是在不超过背包容量的 前提下,使得背包内物品的价值最大。
为了解决 [j]表示前 i 个物品放入一个容量为 j 的背包可以获得的最大价值。然后,我们考虑第 i 个物品的 选择情况,其中有两种情况:

动态规划算法0-1背包问题课件PPT

动态规划算法0-1背包问题课件PPT

回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。

背包问题之零一背包

背包问题之零一背包

背包问题之零⼀背包注:参考⽂献《背包九讲》.零⼀背包问题⼀:题⽬描述 有 N 件物品和⼀个容量为 V 的背包.放⼊第 i 件物品耗⽤的费⽤为C i(即所占⽤背包的体积),得到的价值是 W i.求将哪些物品装⼊背包所得到的总价值最⼤.⼆:基本思路 01背包是最基础的背包问题,这道题的特点是每种物品仅有⼀件,可以选择放或不放,且不要求背包必须被放满,只要求最后的总价值最⼤. ⽤⼦问题定义状态:F[i][v] 表⽰对于前 i 件物品,当背包容量为 v 时所能得到的价值最⼤值.设想,将 "前 i 件物品放⼊容量为 v 的背包中" 这个⼦问题,若只考虑第 i 件物品的策略(要么放要么不放),那么就可以转化为⼀个之和前 i - 1 件物品相关的问题.如果不放第 i 件物品, 那么问题就转化为 ”前 i - 1 件物品放⼊容量为 v 的背包中“,价值就是 F[i - 1][v]; 如果放第 i 件物品,那么问题就转化为 ”前 i - 1 件物品放⼊剩下的容量为v - C i的背包中”, 此时获得的价值为 F[i - 1][v - C i] + W i。

特殊的,当 v < C i时,可以认为当前的容量是放不下第 i 件物品的,即此时相当于不放第 i 件物品的价值F[i - 1][v].分析到这⾥则可得状态转移⽅程为: F[i][v] = v < C i F[i - 1][v] : max( F[i - 1][v], F[i - 1][v - C i] + W i ).在这⾥要特别的说明⼀下,这个⽅程⾮常重要,⼀定要知道这是怎么推出来的,⼏乎后⾯的所有的背包问题都和这个⽅程有着密不可分的联系.伪代码如下:F[0...N][0...V] <--- 0for i <--- 1 to N for v <--- C i to V F[i][v] = v < C i F[i - 1][v] : max( F[i - 1][v], F[i - 1][v - C i] + W i );具体代码:1void _01Pack(int F[][MAXV], int N, int V, int C[], int W[]){2 memset(F, 0, sizeof(F));3for(int i = 1; i <= N; i++) {4for(int v = 0; v <= V; v++) {5 F[i][v] = v < C[i] ? F[i - 1][v] : max(F[i - 1][v], F[i - 1][v - C[i]] + W[i]); //放或者不放两者之中选择最优者6 }7 }8 }三:优化空间复杂度 可以清楚的看到上⾯算法的时间复杂度和空间复杂度均为 O(N * V), 这⾥时间复杂度已经不能得到优化,但是空间复杂度确可以优化到O(V). 先看上⾯代码是如何实现的.最外⾯⼀层循环,每次计算出⼆维数组 F[i][0...V] 的值,计算的时候 F[i][0...V] 是由它的上⼀层 F[i - 1][0...V] ⽽得到的.那么如果把这个数组换成⼀维的 F[v] 那么还能保留上⼀次的状态吗.答案是可以的.由于动态规划算法的⽆后效性,第 i + 1 件物品的选择与否不会影响到第 i 件物品(即它的前⼀件物品)的选择状态.那么可以在上⾯第⼆次循环中按照 v <--- V...0 递减的顺序来计算 F[v], 这样计算F[v] 时所需要的状态 F[v] 和 F[v - C i] + W i 仍然还是上⼀次的状态.⽽计算 F[v] 之后, v 的顺序是递减的, F[v] 不会影响到 F[v'] (v' < v), 因为F[v']只与 F[v'](上⼀次的值) 和 F[v - C i] 有关, ⽽ F[v] > F[v'] > F[v' - C i]. 所以⼜可得状态转移⽅程. F[v] = max( F[v], F[v - C i] + W i ).伪代码如下:F[0...V] <--- 0for i <--- 1 to N for v <--- V to C i F[v] = max( F[v], F[v - C i] + W i );具体代码:1void _01Pack(int F[], int N, int V, int C[], int W[]){2 memset(F, 0, sizeof(F));3for(int i = 1; i <= N; i++) {4for(int v = V; v >= C[i]; v--) {5 F[i][v] = max(F[v], F[v - C[i]] + W[i]);6 }7 }8 }可以看到从第⼀个状态转移⽅程到第⼆个状态转移⽅程的空间优化效率还是挺⼤的: F[i][v] = max( F[i - 1][v], F[i - 1][v - C i] + W i ). ----> F[v] = max( F[v], F[v - C i] + W i ).在第⼆个⽅程中 F[v]1 = max(F[v]2, F[v - C i] + W i), 其实 F[v]2 就相当与⽅程⼀中的 F[i - 1][v], 对应的 F[v - C i] + W i就相当于 F[i -1][v - C i] + W i.这⼀正确性是在内层循环递减的前提下才成⽴的.否则, 将内层循环改为递增, 那么 F[i][v] 其实是由 F[i][v] 和 F[i][v - C i] 推出来的,这不符合基本思路中的探讨.之前说过由于 01背包的特殊性,这⾥将 01背包抽象化,⽅便之后的调⽤.解决单个物品 01背包的伪代码:def ZeroOnePack (F, C, W) for v <--- V to C F[v] = max( F[v], F[v - C] + W );这么写之后, 01背包总问题解决的伪代码就可以改写成:F[0...V] <--- 0for i <--- 1 to N ZeroOnePack(F, C[i], W[i]);具体代码:1const int MAXN = 10000;2int N, V, C[MAXN], W[MAXN];34void ZeroOnePack(int F[], int C, int W) { // 对于单个物品的决策5for(int v = V; v >= C; v--) {6 F[v] = max(F[v], F[v- C] + W);7 }8 }910void solv(int F[]) {11 memset(F, 0, sizeof(F));12for(int i = 1; i <= V; i++) {13 ZeroOnePack(F, C[i], W[i]);14 }15 }四: 01背包问题的拓展 ------ 初始化的细节问题 在上述 01背包的问题中,仅问得是 “如何选取,才能使的最后的总价值最⼤”, 这⾥并没有规定是否必须装满背包, 但是有的题将会给予这个附加条件, 即“在要求恰好装满背包的前提下, 如何选取物品, 才能使的最后的总价值最⼤ ”. 这两种问法, 在代码实现上相差⽆⼏.如果是上述问法,要求 “恰好装满背包”, 那么在初始化时除了将 F[0] 赋值为 0 之外, 其他的 F[1...V] 都应该赋值为 -∞,这样就可以保证最后的得到的 F[V] 是⼀种恰好装满背包的最优解.如果没有要求必须把背包装满,⽽是只希望价值尽量最⼤,初始化时应该将F[0...V] 全部设置为 0. 之所以可以这么做,是因为初始化的 F[] 事实就是没有任何物品放⼊背包时的合法状态.如果要求背包恰好装满,那么只有容量为 0 的背包在什么也不装且价值为 0 的情况下被装 "恰好装满",其他容量的背包如果不装物品, 那么默认的情况下都是不合法状态,应该被赋值为 -∞, 即对于第⼀个物品⽽⾔, 其合法状态只能由 F[0] 转移得到.如果背包并⾮必须被装满,那么任何容量的背包在没有物品可装时都存在⼀个合法解,即什么都不装,且这个解的价值为 0.所以将其全部初始化为 0 是可以的. 注:这个技巧完全可以拓展到其他背包问题中.伪代码:def ZeroOnePack (F, C, W) for v <--- V to C F[v] = max( F[v], F[v - C] + W )end defdef slov() F[0] = 0, F[1...V] <--- -∞ for i <--- 1 to N ZeroOnePack(F, C[i], W[i])end def具体代码:1const int MAXN = 10000;2int N, V, C[MAXN], W[MAXN];34void ZeroOnePack(int F[], int C, int W) {5for(int v = V; v >= C; v--) {6 F[v] = max(F[v], F[v- C] + W);7 }8 }910void solv(int F[]) {11 F[0] = 0;12for(int i = 1; i <= V; i++) F[i] = INT_MIN; // 除F[0] = 0之外, 其他全部赋值为负⽆穷13for(int i = 1; i <= V; i++) {14 ZeroOnePack(F, C[i], W[i]);15 }16 }五:⼀个常数级别的优化上述伪代码的:for i <--- 1 to N for v <--- V to C i可以优化为:for i <--- 1 to N for v <--- V to max( V - SUM(i...N)C i, C i)。

01背包问题及变种详解

01背包问题及变种详解

P01: 01背包问题题目有N件物品和一个容量为V的背包。

第i件物品的费用是c[i],价值是w[i]。

求解将哪些物品装入背包可使价值总和最大。

基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。

则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。

所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。

如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

优化空间复杂度以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。

那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。

背包问题(1)

背包问题(1)

背包问题报告小组成员:张灿、吴雪涛、高坤、占强、习慧平小组分工情况小组成员查找资料制作ppt 编写程序讲解ppt 制作报告张灿ⅴⅴⅴⅴⅴ吴雪涛ⅴ高坤ⅴⅴ占强ⅴ习慧平ⅴ背包问题一、背包问题的历史由来它是在1978年由Merkel和Hellman提出的。

它的主要思路是假定某人拥有大量物品,重量各不同。

此人通过秘密地选择一部分物品并将它们放到背包中来加密消息。

背包中的物品中重量是公开的,所有可能的物品也是公开的,但背包中的物品是保密的。

附加一定的限制条件,给出重量,而要列出可能的物品,在计算上是不可实现的。

背包问题是熟知的不可计算问题,背包体制以其加密,解密速度快而其人注目。

在解决大量的复杂组合优化问题时,它常常作为一个子问题出现,从实际的观点看,许多问题可以用背包问题来描述,如装箱问题,货仓装载,预算控制,存储分配,项目选择决策等,都是典型的应用例子。

随着网络技术的不断发展,背包公钥密码在电子商务中的公钥设计中也起着重要的作用。

然而当问题的规模较大时,得到最优解是极其困难的。

但是,大多数一次背包体制均被破译了,因此现在很少有人使用它。

二、背包问题的描述背包问题(Knapsack problem)是一种组合优化的NP完全问题。

问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。

问题的名称来源于如何选择最合适的物品放置于给定背包中。

相似问题经常出现在商业、组合数学,计算复杂性理论、密码学和应用数学等领域中。

也可以将背包问题描述为决定性问题,即在总重量不超过W的前提下,总价值是否能达到V?三、背包问题的定义我们有n种物品,物品j的重量为w j,价格为p j。

我们假定所有物品的重量和价格都是非负的。

背包所能承受的最大重量为W。

如果限定每种物品只能选择0个或1个,则问题称为0-1背包问题。

可以用公式表示为:maximizesubject to如果限定物品j最多只能选择b j个,则问题称为有界背包问题。

遗传算法求解01背包问题

遗传算法求解01背包问题

遗传算法求解01背包问题一、问题描述01背包问题属于组合优化问题的一个例子,求解01背包问题的过程可以被视作在很多可行解当中求解一个最优解。

01背包问题的一般描述如下:给定n个物品和一个背包,物品i的重量为W i,其价值为V i,背包的容量为C。

选择合适的物品装入背包,使得背包中装入的物品的总价值最大。

注意的一点是,背包内的物品的重量之和不能大于背包的容量C。

在选择装入背包的物品时,对每种物品i只有两种选择:装入背包或者不装入背包,即只能将物品i装入背包一次。

称此类问题为0/1背包问题。

01背包问题是NP问题,传统的解决方法有动态规划法、分支界限法、回溯法等等。

传统的方法不能有效地解决01背包问题。

遗传算法(Genetic Algorithms)则是一种适合于在大量的可行解中搜索最优(或次优)解的有效算法。

二、遗传算法1、遗传算法的基本思想遗传算法的搜索从一个被称作种群的候选解集开始,新的种群由旧的种群中产生以期得到更好的种群。

从旧种群中按照解的适应度来选择解以产生新的解;适应度越大,解被选择生成后代的机率也越大。

这个从已有种群中选择双亲并产生后代的迭代过程持续到遗传算法的停止条件满足为止。

2、遗传算法的基本元素。

遗传算法由以下几个原素组成:由染色体组成的种群,根据适应度进行选择以及交叉产生后代。

三、用遗传算法求解01背包问题1、01背包问题中染色体的表示。

用向量X来表示染色体,X = {x1,x2,……,x n}。

,x i∈{0,1},x i=1表示物品i装入了背包,x i =0表示物品i未装入背包。

每个染色体对应其当前装入背包的物品的总价值和总重量。

背包中物品的中价值代表了该物品的适应度。

程序中定义了这样的一个结构来表示染色体:typedef struct{int Weight; //染色体代表的物品的总重量int Fitness; //染色体代表的物品的价值(适应度)int Gene[NUMG]; //用元素取值于定义域{0,1}的数组表示染色体。

递归法求01背包问题

递归法求01背包问题

递归法求01背包问题一、问题描述0/1背包问题:现有n种物品,对1<=i<=n,已知第i种物品的重量为正整数W i,价值为正整数V i,背包能承受的最大载重量为正整数W,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过W且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、算法分析递归法:在利用递归法解决0-1背包问题时,我们可以先从第n个物品看起。

每次的递归调用都会判断两种情况:(1)背包可以放下第n个物品,则x[n]=1,并继续递归调用物品重量为W-w[n],物品数目为n-1的递归函数,并返回此递归函数值与v[n]的和作为背包问题的最优解;(2)背包放不下第n个物品,则x[n]=0,并继续递归调用背包容量为W,物品数目为n-1的递归函数,并返回此递归函数值最为背包问题的最优解。

递归调用的终结条件是背包的容量为0或物品的数量为0.此时就得到了0-1背包问题的最优解。

用递归法解0-1背包问题可以归结为下函数:⎩⎨⎧+---=][])[,1(),1(),(n v n w m n KnapSack m n KnapSack m n KnapSack nn 选择了物品没有选择物品 第一个式子表示选择物品n 后得到价值][])[,1(n v n w m n KnapSack +--比不选择物品n 情况下得到的价值),1(m n KnapSack -小,所以最终还是不选择物品n;第二个式子刚好相反,选择物品n 后的价值][])[,1(n v n w m n KnapSack +--不小于不选择物品n 情况下得到了价值),1(m n KnapSack -,所以最终选择物品n 。

在递归调用的过程中可以顺便求出所选择的物品。

下面是标记物品被选情况的数组x[n]求解的具体函数表示:⎩⎨⎧=10][n x ][])[,1(),(),1(),(n v n w m n KnapSack m n KnapSack m n KnapSack m n KnapSack +--=-= 在函数中,递归调用的主体函数为KnapSack ,m 表示背包的容量,n 表示物品的数量,x[n]表示是否选择了第n 个物品(1—选,0—不选)。

0-1背包问题(分支限界法)

0-1背包问题(分支限界法)

分支限界法——01背包问题12软工028 胡梦颖一、问题描述0-1背包问题:给定n种物品和一个背包。

物品i的重量是Wi,其价值为Vi,背包的容量为C。

应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。

不能将物品i装入背包多次,也不能只装入部分的物品i。

二、问题分析分支限界法类似于回溯法,也是在问题的解空间上搜索问题解的算法。

一般情况下,分支限界法与回溯法的求解目标不同。

回溯法的求解目标是找出解空间中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。

由于求解目标不同,导致分支限界法与回溯法对解空间的搜索方式也不相同。

回溯法以深度优先的方式搜索解空间,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间。

分支限界法的搜索策略是,在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一扩展结点。

为了有效地选择下一扩展结点,加速搜索的进程,在每一个活结点处,计算一个函数值(限界),并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解。

这种方式称为分支限界法。

人们已经用分支限界法解决了大量离散最优化的问题。

三.源代码#include <stdio.h>#include<malloc.h>#define MaxSize 100 //结点数的最大值typedef struct QNode{float weight;float value;int ceng;struct QNode *parent;bool leftChild;}QNode,*qnode;typedef struct{qnode Q[MaxSize];int front,rear;}SqQueue; //存放结点的队列SqQueue sq;float bestv=0; //最优解int n=0; //实际物品数float w[MaxSize]; //物品的重量float v[MaxSize]; //物品的价值int bestx[MaxSize]; // 存放最优解qnode bestE;void InitQueue(SqQueue &sq ) //队列初始化{sq.front=1;sq.rear=1;}bool QueueEmpty(SqQueue sq) //队列是否为空{if(sq.front==sq.rear)return true;elsereturn false;}void EnQueue(SqQueue &sq,qnode b) //入队{if(sq.front==(sq.rear+1)%MaxSize){printf("队列已满!");return;}sq.Q[sq.rear]=b;sq.rear=(sq.rear+1)%MaxSize;} qnode DeQueue(SqQueue &sq) //出队{qnode e;if(sq.front==sq.rear){printf("队列已空!");return 0;}e=sq.Q[sq.front];sq.front=(sq.front+1)%MaxSize;return e;}void EnQueue1(float wt,float vt, int i ,QNode *parent, bool leftchild) {qnode b;if (i==n) //可行叶子结点{ if (vt==bestv){ bestE=parent;bestx[n]=(leftchild)?1:0;}return;}b=(qnode)malloc(sizeof(QNode)); //非叶子结点b->weight=wt;b->value=vt;b->ceng=i;b->parent=parent;b->leftChild=leftchild;EnQueue(sq,b);}void maxLoading(float w[],float v[],int c){float wt=0;float vt=0;int i=1; //当前的扩展结点所在的层float ew=0; //扩展节点所相应的当前载重量float ev=0; //扩展结点所相应的价值qnode e=NULL;qnode t=NULL;InitQueue(sq);EnQueue(sq,t); //空标志进队列while (!QueueEmpty(sq)){wt=ew+w[i];vt=ev+v[i];if (wt <= c){if(vt>bestv)bestv=vt;EnQueue1(wt,vt,i,e,true); // 左儿子结点进队列} EnQueue1(ew,ev,i,e,false); //右儿子总是可行;e=DeQueue(sq); // 取下一扩展结点if (e == NULL){if (QueueEmpty(sq))break;EnQueue(sq,NULL); // 同层结点尾部标志e=DeQueue(sq); // 取下一扩展结点i++;}ew=e->weight; //更新当前扩展结点的值ev=e->value;}printf("最优取法为:\n");for( int j=n-1;j>0;j--) //构造最优解{bestx[j]=(bestE->leftChild?1:0);bestE=bestE->parent;}for(int k=1;k<=n;k++){if(bestx[k]==1)printf("物品%d:重量:%.1f,价值:%.1f\n",k,w[k],v[k]);}printf("最大价值为:%.1f\n",bestv);}void main(){int c;float ewv[MaxSize];printf("请输入背包的最大容量v:");scanf("%d",&c);printf("请输入物品总数n:");scanf("%d",&n);printf("请输入物品的重量和单位重量价值:\n");for(int i=1;i<=n;i++){printf("第%d件物品:",i);scanf("%f%f",&w[i],&ewv[i]);v[i]=w[i]*ewv[i];}maxLoading(w,v,c);}五.实验结果。

01背包问题

01背包问题

01背包问题一、问题描述一个正在抢劫商店的小偷发现了n个商品,第i个商品价值V i美元,重Wi磅,V i和Wi都是整数;这个小偷希望拿走价值尽量高的商品,但他的背包最多能容纳W磅的商品,W是一个整数。

我们称这个问题是01背包问题,因为对每个商品,小偷要么把它完整拿走,要么把它留下;他不能只拿走一个商品的一部分,或者把一个商品拿走多次。

二、解决方案背包问题作为NP完全问题,暂时不存在多项式时间算法1.动态规划2.回溯法3.分支界限法三、方案详解3.1动态规划动态规划(Dynamic programming,DP)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

动态规划常常适用于有重叠子问题和最优子结构性质的问题。

概述:动态规划在查找有很多重叠子问题的情况的最优解时有效。

它将问题重新组合成子问题。

为了避免多次解决这些子问题,它们的结果都逐渐被计算并被保存,从简单的问题直到整个问题都被解决。

因此,动态规划保存递归时的结果,因而不会在解决同样的问题时花费时间。

动态规划只能应用于有最优子结构的问题。

最优子结构的意思是局部最优解能决定全局最优解(对有些问题这个要求并不能完全满足,故有时需要引入一定的近似)。

简单地说,问题能够分解成子问题来解决。

特征:1、问题存在最优子结构2、问题的最优解需要在子问题中作出选择3、通过查表解决重叠子问题,避免重复计算动态规划的设计:1.刻画一个最优解的结构特征;2.递归地定义最优解的值;3.计算最优解的值,通常采用自底向上的方法;4.利用计算的信息构造一个最优解。

问题分析最优子结构:(1)问题分析:令f(i,j)表示在前i(0≤i<n)个物品中能够装入容量为j(0≤j≤W)的背包中的物品的最大价值,则可以得到如下的动态规划函数:(2)f[i,j]=0(i=0 OR j=0)f[i,j]=f[i-1,j] j<w i ①f[i,j]=max{f[i-1,j] ,f[i-1,j-wi] +vi } j>wi ②①式表明:如果第i个物品的重量大于背包的容量,则装人前i个物品得到的最大价值和装入前i-1个物品得到的最大价是相同的,即物品i不能装入背包;②式表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-wi的背包中的价值加上第i个物品的价值vi;(b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。

01背包问题及变种详解

01背包问题及变种详解

P01: 01背包问题题目有N件物品和一个容量为V的背包。

第i件物品的费用是c[i],价值是w[i]。

求解将哪些物品装入背包可使价值总和最大。

基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。

则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。

所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。

如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

优化空间复杂度以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。

那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。

回溯法01背包问题例题

回溯法01背包问题例题

回溯法是一种解决0-1背包问题的有效方法。

以下是使用回溯法解决0-1背包问题的具体步骤和例题:1.定义问题:假设有N件物品,每件物品有一定的重量Wi和价值Vi,背包能够承受的最大重量为W。

目标是选择一些物品放入背包,使得背包中物品的总价值最大,同时不超过背包的最大承重。

2.使用回溯法求解:回溯法的核心是深度优先搜索,通过尝试每一种可能性来找到最优解。

o初始化:将所有物品按照价值从大到小排序。

o递归函数:▪如果当前选择的物品重量超过了背包的承重,则返回(因为无法放入背包)。

▪如果当前选择的物品价值大于之前所有选择物品的总价值,则更新当前最大价值。

▪标记当前选择的物品为已选(例如,使用一个布尔数组表示)。

▪递归地尝试下一个物品。

o回溯:如果递归到最后一个物品,并且没有超过背包的承重,则将最后一个物品加入背包,并更新最大价值。

然后回溯到上一个物品,尝试不放入背包中。

3.求解步骤:o初始状态:未选择任何物品,总价值为0。

o递归函数:对于每个物品i,如果未选择(即第i个物品的布尔数组标记为false),则执行递归函数。

如果选择了第i个物品,并且总价值大于当前最大价值,则更新最大价值。

标记第i个物品为已选。

然后递归地尝试下一个物品。

o回溯:如果尝试了所有物品都没有超过背包的承重,并且总价值大于当前最大价值,则将最后一个选择的物品加入背包,并更新最大价值。

然后回溯到上一个物品,尝试不放入背包中。

4.例题:假设有3件物品,重量分别为20、15、10,价值分别为20、30、25,背包的承重为25。

根据回溯法求解的步骤如下:o首先尝试第一个物品(重量20,价值20)。

由于20>25,所以无法放入背包。

o接下来尝试第二个物品(重量15,价值30)。

由于15+20=35>25,所以也无法放入背包。

o然后尝试第三个物品(重量10,价值25)。

由于10+20=30<25,所以可以放入背包中。

此时的最大价值为25+25=50。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。

01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }
只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。

首先要明确这张表是至底向上,从左到右生成的。

为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。

对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。

同理,c2=0,b2=3,a2=6。

对于承重为8的背包,a8=15,是怎么得出的呢?
根据01背包的状态转换方程,需要考察两个值,
一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;
在这里,
f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值
f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值
f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6
由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包
以下是actionscript3 的代码
public function get01PackageAnswer(bagItems:Array,bagSize:int):Array
{
var bagMatrix:Array=[];
var i:int;
var item:PackageItem;
for(i=0;i<bagItems.length;i++)
{
bagMatrix[i] = [0];
}
for(i=1;i<=bagSize;i++)
{
for(var
j:int=0;j<bagItems.length;j++)
{
item = bagItems[j] as PackageItem;
if(item.weight > i)
{
//i背包转不下item
if(j==0)
{
bagMatrix[j][i] = 0;
}
else
{
bagMatrix[j][i]=bagMatrix[j-1][i];
}
}
else
{
//将item装入背包后的价值总和
var itemInBag:int;
if(j==0)
{
bagMatrix[j][i] = item.value;
continue;
}
else
{
itemInBag = bagMatrix[j-1][i-item.weight]+item.value;
}
bagMatrix[j][i] = (bagMatrix[j-1][i] > itemInBag ? bagMatrix[j-1][i] : itemInBag)
}
}
}
//find answer
var answers:Array=[];
var curSize:int = bagSize;
for(i=bagItems.length-1;i>=0;i--)
{
item = bagItems[i] as PackageItem;
if(curSize==0)
{
break;
}
if(i==0 && curSize > 0)
{
answers.push();
break;
}
if(bagMatrix[i][curSize]-bagMatrix[i-1][curSize-item.weight ]==item.value)
{
answers.push();
curSize -= item.weight;
}
}
return answers;
}
PackageItem类
public class PackageItem
{
public var name:String;
public var weight:int;
public var value:int;
public function PackageItem(name:String,weight:int,value:int)
{
= name;
this.weight = weight;
this.value = value;
}
}
测试代码
var
nameArr:Array=['a','b','c','d','e'];
var weightArr:Array=[2,2,6,5,4];
var valueArr:Array=[6,3,5,4,6];
var bagItems:Array=[];
for(var
i:int=0;i<nameArr.length;i++)
{
var bagItem:PackageItem = new PackageItem(nameArr[i],weightArr[i],valueArr[i]);
bagItems[i]=bagItem;
}
var arr:Array = ac.get01PackageAnswer(bagItems,10);。

相关文档
最新文档