2015上海市黄浦区初三数学二模及答案

合集下载

2015年上海二模23题汇总

2015年上海二模23题汇总

2015年二模23题几何证明汇总2015年宝山嘉定联合模拟考试数学试卷23.(本题满分12分,每小题满分各6分)如图8,已知△ABC 和△ADE 都是等边三角形,点D 在边BC 上,点E 在边AD 的右侧,联结CE .(1)求证:︒=∠60ACE ;(2)在边AB 上取一点F ,使BD BF =,联结DF 、EF .求证:四边形CDFE 是等腰梯形.2014学年第二学期奉贤区调研测试 23.(本题满分12分,每小题满分各6分)已知:如图,在四边形ABCD 中,AB//CD ,点E 是对角线AC 上一点,∠DEC=∠ABC ,且CA CE CD ⋅=2. (1)求证:四边形ABCD 是平行四边形;(2)分别过点E 、B 作AB 和AC 的平行线交于点F ,联结若∠FCE= ∠DCE ,求证:四边形EFCD 是菱形.静安、青浦区2014学年第二学期23.(本题满分12分,第小题满分6分)如图,在梯形ABCD 中,AB//CD ,AD =BC ,E 是CD 的中点,BE 交AC 于F ,过点F 作FG ∥AB ,交AE 于点G .(1) 求证:AG=BF ;(2) 当CF CA AD ⋅=2时,求证:AC AG AD AB ⋅=⋅.EDCGFAB(第23题图) B (第23题图) A图8上海闵行区2015年九年级二模数学试卷23. (本题满分12分,其中每小题各6分)如图,已知在梯形ABCD 中,AD ∥BC, ∠A=90º,AB=AD ,点E 在边AB 上,且DE ⊥CD,DF 平分∠EDC ,交BC 于点F ,联结CE 、EF. (1)求证:DE=DC;(2)如果2BE BF BC =⋅,求证:∠BEF=∠CEF.杨浦区2014学年度第二学期初三质量调研数学试卷23. 已知,如图,Rt △ABC 和Rt △CDE 中,90ABC CDE ∠=∠=︒,且BC 与CD 共线,联结AE ,点M 为AE 中点,联结DM ,交AC 于点G ,联结MD ,交CE 于点H ;(1)求证:MB MD =;(2)当AB BC =,DC DE =时,求证:四边形MGCH 为矩形;黄浦区2015年九年级学业考试模拟卷23. 如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,联结BE 、DF ,DF 交对角线AC 于点G ,且DE DG =;(1)求证:AE CG =; (2)求证:BE ∥DF ;2015年松江区初中毕业生学业模拟(二模)考试23.(本题满分12分,每小题各6分)如图,已知在正方形ABCD 中,点E 在CD 边上,过C 点作AE 的垂线交于点F ,联结DF ,过点D 作DF 的垂线交AF 于点G ,联结BG.(1)求证:△ADG ≌△CDF ;(2)如果E 为CD 的中点,求证:BG ⊥AF.徐汇区2015年初中毕业统一学业模拟考试23.(本题满分12分)如图7,在正方形ABCD 中,E 为对角线AC 上一点,联结EB 、ED ,延长BE 交AD 于点F. (1)求证:∠BEC =∠DEC ;(2)当CE=CD 时,求证:2DF EF BF =.ABCDEF 图7A(第23题图)EGDFCB2014学年金山第二学期期中质量检测23.(本题满分12分)已知:如图,在中ABC Rt ∆中,︒=∠90ACB ,BC AC =,点E 在边AC 上,延长BC 至D 点,使CD CE =,延长BE 交AD 于F ,过点C 作CG //BF ,交AD 于点G ,在BE 上取一点H ,使DCG HCE ∠=∠. (1)求证:ACD BCE ∆≅∆; (2) 求证:四边形FHCG 是正方形. [注:若要用1∠、2∠等,请不要标在此图,要标在答题纸的图形上]闸北区2015年初中毕业统一学业模拟考试23.(本题共2小题,第(1)小题5分,第(2)小题7分,满分12分)如图,在Rt △ABC 中,∠BAC = 90°,AD = CD ,点E 是边AC 的中点,联结DE ,DE 的延长线与边BC 相交于点F ,AG // BC ,交DE 于点G ,联结AF 、CG .(1)求证:AF = BF ;(2)如果AB = AC ,求证:四边形AFCG 是正方形.GFE D BAC第23题图 H ABCDEF(第23题图)G虹口普陀2015年长宁初三数学二模考试检测试卷23.(本题满分12分)如图,正方形ABCD 中,点E 、F 分别在边BC 、CD 上,AE=AF ,AC 和EF交于点O ,延长AC 至点G ,使得AO=OG ,联结EG 、FG. (1)求证: BE=DF ;(2)求证:四边形AEGF 是菱形.崇明县2014学年第二学期教学质量调研测试卷23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H . (1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.A BD H G FE C(第23题图)。

2015年上海市黄浦区中考数学、语文、英语二模试卷及答案

2015年上海市黄浦区中考数学、语文、英语二模试卷及答案

【解答】解:A、对角线相等的平行四边形是矩形,所以 A 选项错误; B、对角线相等的平行四边形是矩形,所以 B 选项错误; C、四个角都相等的四边形是矩形,所以 C 选项错误; D、四个角都相等的四边形是矩形,所以 D 选项正确. 故选 D. 【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和 结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如 果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 二、填空题(每题 4 分,共 48 分) 7. (4 分) (2015•黄浦区二模)计算: (a2)2= a4 . 【考点】幂的乘方与积的乘方. 【分析】根据幂的乘方和积的乘方的运算法则求解.
二、填空题(每题 4 分,共 48 分) 7. (4 分) (2015•黄浦区二模)计算: (a2)2= 8. (4 分) (2015•房山区二模)分解因式:2x2﹣8x+8= 9. (4 分) (2015•黄浦区二模)计算: + = . 是
菁优网版 权所有
6. (4 分) (2015•黄浦区二模)下列命题中真命题是( A.对角线互相垂直的四边形是矩形 B.对角线相等的四边形是矩形 C.四条边都相等的四边形是矩形 D.四个内角都相等的四边形是矩形 【考点】命题与定理. 【分析】根据矩形的判定方法对四个命题进行判断.
菁优网版 权所有

第 6页(共 26页)
菁优网版 权所有
C.y=(x+1)2﹣2
D.y=(x+2)2﹣1
【分析】把抛物线的平移问题转化为点平移的问题:先确定抛物线 y=x2 的顶点坐标为(0, 0) , 再根据点平移的规律得到把向下平移 1 个单位, 再向左平移 2 个单位后得到对应点的坐 标为(﹣2,﹣1) ,然后根据顶点式写出平移后的抛物线解析式. 【解答】解:抛物线 y=x2 的顶点坐标为(0,0) ,把点(0,0)向下平移 1 个单位,再向左 平移 2 个单位后得到对应点的坐标为(﹣2,﹣1) , 所以所得抛物线的表达式是 y=(x+2)2﹣1. 故选:D. 【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故 a 不变, 所以求平移后的抛物线解析式通常可利用两种方法: 一是求出原抛物线上任意两点平移后的 坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 5. (4 分) (2015•黄浦区二模)如果两圆的半径长分别为 6 与 2,圆心距为 4,那么这两个 圆的位置关系是( ) A.内含 B.内切 C.外切 D.相交 【考点】圆与圆的位置关系. 【分析】根据数量关系来判断两圆的位置关系.设两圆的半径分别为 R 和 r,且 R≥r,圆心 距为 d:外离,则 d>R+r;外切,则 d=R+r;相交,则 R﹣r<d<R+r;内切,则 d=R﹣r; 内含,则 d<R﹣r. 【解答】解:∵两圆半径之差=6﹣2=4=圆心距, ∴两个圆的位置关系是内切. 故选 B. 【点评】本题考查了由两圆位置关系的知识点,利用了两圆内切时,圆心距等于两圆半径的 差求解.

2015年上海市浦东新区初三数学二模(含答案)

2015年上海市浦东新区初三数学二模(含答案)

2015年上海市浦东新区初三数学⼆模(含答案)浦东新区初三教学质量检测数学试卷(2015.4.21)⼀、选择题:(本⼤题共6题,每题4分,满分24分) 1.下列等式成⽴的是()(A )2222-=-;(B )236222=÷;(C )5232)2(=;(D )120=. 2.下列各整式中,次数为5次的单项式是()(A )xy 4;(B )xy 5;(C )x+y 4;(D )x+y 5.3.如果最简⼆次根式2+x 与x 3是同类⼆次根式,那么x 的值是()(A )-1;(B )0;(C )1;(D )2. 4.如果正多边形的⼀个内⾓等于135度,那么这个正多边形的边数是()(A )5;(B )6;(C )7;(D )8. 5.下列说法中,正确的个数有()①⼀组数据的平均数⼀定是该组数据中的某个数据;②⼀组数据的中位数⼀定是该组数据中的某个数据;③⼀组数据的众数⼀定是该组数据中的某个数据.(A )0个;(B )1个;(C )2个;(D )3个.6.已知四边形ABCD 是平⾏四边形,对⾓线AC 与BD 相交于点O ,那么下列结论中正确的是()(A )当AB =BC 时,四边形ABCD 是矩形;(B )当AC ⊥BD 时,四边形ABCD 是矩形;(C )当OA =OB 时,四边形ABCD 是矩形;(D )当∠ABD =∠CBD 时,四边形ABCD 是矩形.⼆、填空题:(本⼤题共12题,每题4分,满分48分)7.计算:23-= . 8.分解因式:x x 43-= . 9.⽅程43+=x x 的解是.10.已知分式⽅程312122=+++x x x x ,如果设x x y 12+=,那么原⽅程可化为关于y 的整式⽅程是.11.如果反⽐例函数的图像经过点(3,-4),那么这个反⽐例函数的⽐例系数是. 12.如果随意把各⾯分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的骰⼦抛到桌⾯上,那么正⾯朝上的数字是合数的概率是.13.为了解某⼭区⾦丝猴的数量,科研⼈员在该⼭区不同的地⽅捕获了15只⾦丝猴,并在它们的⾝上做上标记后放回该⼭区.过段时间后,在该⼭区不同的地⽅⼜捕获了32只⾦丝猴,其中4只⾝上有上次做的标记,由此可以估计该⼭区⾦丝猴的数量约有只.14.已知点G 是△ABC 的重⼼,m AB =,n BC =,那么向量AG ⽤向量m 、n 表⽰为. 15.如图,已知AD ∥EF ∥BC,AE=3BE ,AD =2,EF =5,那么BC = .16.如图,已知⼩岛B 在基地A 的南偏东30°⽅向上,与基地A 相距10海⾥,货轮C 在基地A 的南偏西60°⽅向、⼩岛B 的北偏西75°⽅向上,那么货轮C 与⼩岛B 的距离是海⾥. A B C DE F (第15题图)CAD B (第18题图)17.对于函数()2b ax y +=,我们称[a ,b ]为这个函数的特征数.如果⼀个函数()2b ax y +=的特征数为[2,-5],那么这个函数图像与x 轴的交点坐标为.18.如图,已知在Rt △ABC 中,D 是斜边AB 的中点,AC =4,BC=2,将△ACD 沿直线CD 折叠,点A 落在点E 处,联结AE ,那么线段AE 的长度等于.三、解答题:(本⼤题共7题,满分78分) 19.(本题满分10分)化简并求值:12)111(22+-÷-+x x x x ,其中12+=x . 20.(本题满分10分)解不等式组:->--≥+,1262,6325x x x x 并写出它的⾮负整数解.21.(本题满分10分,其中每⼩题各5分)已知:如图,在△ABC 中,D 是边BC 上⼀点,以点D 为圆⼼、CD 为半径作半圆,分别与边AC 、BC 相交于点E 和点F .如果AB =AC =5,cos B =54,AE =1.求:(1)线段CD 的长度;(2)点A 和点F 之间的距离.22.(本题满分10分)⼩张利⽤休息⽇进⾏登⼭锻炼,从⼭脚到⼭顶的路程为12千⽶.他上午8时从⼭脚出发,到达⼭顶后停留了半⼩时,再原路返回,下午3时30分回到⼭脚.假设他上⼭与下⼭时都是匀速⾏⾛,且下⼭⽐上⼭时的速度每⼩时快1千⽶,求⼩张上⼭时的速度.C(第21题图)23.(本题满分12分,其中每⼩题各6分)如图,已知在平⾏四边形ABCD 中,AE ⊥BC ,垂⾜为点E ,AF ⊥CD ,垂⾜为点F .(1)如果AB =AD ,求证:EF ∥BD ;(2)如果EF ∥BD ,求证:AB =AD .24.(本题满分12分,其中第(1)⼩题3分,第(2)⼩题4分,第(3)⼩题5分)已知:如图,直线y =kx +2与x 轴的正半轴相交于点A (t ,0)、与y 轴相交于点B ,抛物线c bx x y ++-=2经过点A 和点B ,点C 在第三象限内,且AC ⊥AB ,tan ∠ACB =21.(1)当t =1时,求抛物线的表达式;(2)试⽤含t 的代数式表⽰点C 的坐标;(3)如果点C 在这条抛物线的对称轴上,求t 的值.(第24题图)A B C DE F(第23题图)25.(本题满分14分,其中第(1)⼩题3分,第(2)⼩题6分,第(3)⼩题5分)如图,已知在△ABC 中,射线AM ∥BC ,P 是边BC 上⼀动点,∠APD =∠B ,PD 交射线AM 于点D ,联结CD .AB =4,BC =6,∠B =60°.(1)求证:BP AD AP ?=2;(2)如果以AD 为半径的圆A 与以BP 为半径的圆B 相切,求线段BP 的长度;(3)将△ACD 绕点A 旋转,如果点D 恰好与点B 重合,点C 落在点E 的位置上,求此时∠BEP 的余切值.A B C P D (第25题图) M AB C (第25题备⽤图)M浦东新区初三教学质量检测数学试卷参考答案及评分说明⼀、选择题1.D ; 2.A ; 3.C ; 4.D ; 5.B ; 6.C .⼆、填空题7.32-; 8.)2)(2(-+x x x ; 9.4=x ; 10.0232=+-y y ; 11.12-;12.31; 13.120; 14.n m ρρ3132+; 15.6; 16.210; 17.)(0,25; 18.558.三、解答题19.解:原式=12122+-÷-x x x x x …………………………………………………………(2分) =22)1(1x x x x -?-………………………………………………………………(2分) =xx 1-.………………………………………………………………………(2分)把12+=x 代⼊,得原式=)12)(12()12(2122-+-=+………………………………………………(2分)=22-.……………………………………………………………………(2分) 20.解:由6325-≥+x x ,得4-≥x .…………………………………………………(3分)由1262->-xx ,得2∴此不等式组的⾮负整数解是0、1.…………………………………………(2分) 21.解:(1)作DH ⊥CE ,垂⾜为点H .∵D 为半圆的圆⼼,AC =5,AE =1,∴221==EC CH .……………………(2分)∵AC AB =,∴C B ∠=∠.……………………………………………………(1分)∴54cos cos ==B C .在Rt △CDH 中,∵54cos ==CD CH C ,CH =2,∴25=CD . …………………(2分)(2)作AM ⊥BC ,垂⾜为点M ,联结AF .∵25=CD ,∴5=CF .…………………………………………………………(1分)在Rt △ACM 中,∵54cos ==AC CM C ,5=AC ,∴4=CM .………………(1分)∴3452222=-=-=CM AC AM .…………………………………………(1分)∵CF =5,CM =4,∴1=FM .……………………………………………………(1分)∴10132222=+=+=FM AM AF .………………………………………(1分)22.解:设⼩张上⼭时的速度为每⼩时x 千⽶.…………………………………………(1分)根据题意,得711212=++x x .…………………………………………………(4分)化简,得 0121772=--x x .…………………………………………………(2分)解得 31=x ,742-=x .…………………………………………………………(1分)经检验:3=x ,742-=x 都是原⽅程的解,但742-=x 不符合题意,舍去.(1分)答:⼩张上⼭时的速度为每⼩时3千⽶.……………………………………………(1分)23.证明:(1)∵四边形ABCD 是平⾏四边形,∴∠ABE=∠ADF .…………………(1分)∵AE ⊥BC ,AF ⊥CD,∴∠AEB=∠AFD=90o. ……………………(1分)∵AB =AD ,∴△ABE ≌△ADF . ………………………………………(1分)∴BE =DF .…………………………………………………………………(1分)∵BC =AD =AB =CD ,∴CDDFBC BE =.……………………………………(1分)∴EF ∥BD .………………………………………………………………(1分)(2)∵∠ABE=∠ADF ,∠AEB=∠AFD ,∴△ABE ∽△ADF .…………(1分)∴ADABDF BE =.……………………………………………………………(1分)∵EF ∥BD ,∴CDDFBC BE =.……………………………………………(1分)∵四边形ABCD 是平⾏四边形,∴AB=CD ,AD=BC .∴AB DFAD BE =.……………………………………………………………(1分)∴AB ADDF BE =.∴ABADAD AB =,即22AD AB =.…………………………………………(1分)∴AB =AD .…………………………………………………………………(1分) 24.解:(1)∵t =1,y =kx +2,∴A (1,0),B (0,2).………………………………………(1分)把点A (1,0)、B (0,2)分别代⼊抛物线的表达式,得=++-=.2,10c c b …………………………………………………………(1分)解得?=-=.2,1c b∴所求抛物线的表达式为y =-x 2-x +2.……………………………………(1分)(2)作CH ⊥x 轴,垂⾜为点H ,得∠AHC =∠AOB =90°.∵AC ⊥AB ,∴∠OAB +∠CAH =90°.⼜∵∠CAH +∠ACH =90°,∴∠OAB =∠ACH .∴△AOB ∽△CHA .…………………………………………(1分)∴ACABAH OB CH OA ==.∵tan ∠ACB =21=AC AB ,∴21==AH OB CH OA .…………………(1分)∵OA =t ,OB =2,∴CH =2t ,AH =4.…………………………(1分)∴点C 的坐标为(t -4,-2t ).…………………………(1分)(3)∵点C (t -4,-2t )在抛物线y =-x 2+bx +c 的对称轴上,∴24bt =-,即82-=t b .………………………………………(1分)把点A (t ,0)、B (0,2)代⼊抛物线的表达式,得-t 2+bt +2=0. …………(1分)∴02)82(2=+-+-t t t ,即0282=+-t t . ………………(1分)解得t =144±.………………………………………………(1分)∵点C (t -4,-2t )在第三象限,∴t =144+不符合题意,舍去.∴t =144-.……………………………………………………(1分)25.解:(1)∵AM ∥BC ,∴∠PAD =∠APB .∵∠APD =∠B ,∴△APD ∽△PBA .…………………………(1分)∴BPAPAP AD =.………………………………………………………(1分)∴BP AD AP ?=2.………………………………………………(1分)(2)过点A 作AH ⊥BC ,垂⾜为点H .∵∠B =60°,AB =4,∴BH =2,32=AH .………………(1分)设BP =x ,那么2-=x PH .∴164)32()2(2222+-=+-=x x x AP .………………………(1分)∴xx x BP AP AD 16422+-==.…………………………(1分)⽽AB =4,BP =x ,因此(i )如果两圆外切,那么41642=++-x xx x .整理,得0842=+-x x .∵08442(ii )如果两圆内切,那么41642=-+-x xx x .解得x =2.…………………………………………………………(1分)或41642=+--xx x x .此⽅程⽆解.………………………………………………(1分)综上所述,如果两圆相切,那么BP =2.(3)过点A 作AH ⊥BC ,垂⾜为点H .由题意,可知AD =AB =4,即41642=+-xx x .…………………(1分)∴x =4.………………………………………………………(1分)⼜∵BC =6,BH =2,∴CH =4.∴AD =CH .∵AD ∥CH ,∴四边形AHCD 是平⾏四边形.∵∠AHC =90°,∴平⾏四边形AHCD 是矩形.∴∠ABE =∠ADC =90°,…………………………………(1分)EB =CD =32.……………………………(1分)过点P 作PK ⊥BE ,垂⾜为点K .∵∠ABC =60°,∴∠PBK =30°.⼜∵BP =4,∴PK =2,BK =32.∴EK =34.∴cot ∠BEP =32.………………………………(1分)。

2015年上海中考各区二模数学试题及答案汇总

2015年上海中考各区二模数学试题及答案汇总
2 2 2 2
BC OC = ∴ OC ,∴ OD
2 2
x r 2 − x2
2
=
r 2 − x2 r
2
,…………………(1 分)
∴ xr = r − x , x + rx − r − 0 , 5 ∵ r ≠ 0 , ( rx ) + rx − 1 ≠ 0 , rx = − 1 ± (负值舍去) ,………………………(1 分) 2 BC x 5 −1 ∴sin∠ODC=sin∠COB = OB .……………(1 分) = = r 2
2 2 2 2
年长宁区初三数学教学质量检测试卷 长宁区初三数学教学质量检测试卷参考答案 初三数学教学质量检测试卷参考答案
2
x
2
2
2
∆ADE
2
∆ADE
1
2
D
E
H
F
C
P
G R
O
A
Q
B
初三数学基础考试卷—3—
2015
年上海各区县中考二模试题及答案
∴DE=CF. (1 分) (2)据题意,设 DP=t,PA=10-t,AQ=3t,QB=12-3t,BR=1.5t(0 < t < 4). (1 分) ∵矩形 ABCD ∴∠A=∠B=90° 若△PAQ 与△QBR 相似,则有 AP AQ 10 - t 3t 14 ① QB = (2 分) = t= BR 12 - 3t 1.5t 5
25
D P E F C
O R
A
Q
B
第 25 题图
初三数学基础考试卷—2—
2015
年上海各区县中考二模试题及答案
2015 18. 1
或 11 . 6 24.(本题满分 12 分) 解:(1) y = x − 2tx + t − 2 = (x - t ) - 2 ∴A(t,-2)(2 分) y ∵点 C 的横坐标为 1,且是线段 AB 的中点 ∴t =2 (1 分) ∴ y = (x - 2 ) - 2 D ∴P(1,-1).(1 分) O (2)据题意,设 C(x,-2)(0< x < t),P(x, ( x − t ) − 2 )E P B C A AC= t-x,PC= ( x − t ) (1 分) 第 24 题图 ∵AC=PC ∴t-x = ( x − t ) ∵x < t ∴ t - x=1 即 x = t - 1 ∴AC=PC=1 (2 分) AC ∵DC//y 轴 ∴ PC ∴EB= t ∴OE=2-t = EB AB 1 1 3 ∴S = 1 (OE + DP) × OD = (3 − t )(t − 1) = − t + 2t − (1< t <2). (2 分) 2 2 2 2 1 1 1 (3) S = 2 DP × AB = 2 ×1× t = 2 t (1 分) 1 3 ∵ S = 2S ∴ 1 t = 2( − t + 2t − ) 2 2 2 3 解得 t = 3 , t = 2 (不合题意)∴ t = .(2 分) 2 2 25.(本题满分 14 分) (1)证:作 OH⊥DC 于点 H,设⊙O 与 BC 边切于点 G,联结 OG. (1 分) ∴∠OHC=90° ∵⊙O 与 BC 边切于点 G ∴OG=6,OG⊥BC ∴∠OGC=90° ∵矩形 ABCD ∴∠C=90° ∴四边形 OGCH 是矩形 ∴CH=OG ∵OG=6 ∴CH=6 (1 分) ∵矩形 ABCD ∴AB=CD 第 25 题图(1) ∵AB=12 ∴CD=12 ∴DH=CD﹣CH=6 ∴DH= CH ∴O 是圆心且 OH⊥DC ∴EH=FH (2 分)

2015年黄浦区数学二模卷及答案

2015年黄浦区数学二模卷及答案

2015年黄浦区初三数学二模卷(时间:100分钟,满分:150分)一、选择题:(本大题共6题,每题4分,满分24分)1、 下列分数中,可以化为有限小数的是( )A 、115B 、118C 、315D 、3182、 下列二次根式中最简根式是( )ABCD3、 下列是某地今年春节放假七天最低气温(℃)的统计结果:这七天最低气温的众数和中位数分别是( )A 、4,4B 、4,5C 、6,5D 、6,64、 将抛物线2y x =向下平移1个单位,再向左平移2个单位后,所得新抛物线的表达式是( )A 、2(1)2y x =-+B 、2(2)1y x =-+C 、2(1)2y x =+-D 、2(2)1y x =+-5、 如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是( ) A 、内含B 、内切C 、外切D 、相交6、 下列命题中真命题是( )A 、对角线互相垂直的四边形是矩形B 、对角线相等的四边形是矩形C 、四条边都相等的四边形是矩形D 、四个内角都相等的四边形是矩形二、填空题:(本大题共12题,每题4分,满分48分)7、 计算:22()=a;8、 因式分解:2288x x -+= ;9、 计算:111x x x +=+- ; 101x =-的根是 ;11、如果抛物线2(2)3y a x x a =-+-的开口向上,那么a 的取值范围是 ;12、某校八年级共四个班,各班寒假外出旅游的学生人数如图1所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为 ;13、将一枚质地均匀的硬币抛掷2次,硬币正面均朝上的概率是 ; 14、如果梯形的下底长为7,中位线长为5,那么其上底长为 ; 15、已知AB 是O 的弦,如果O 的半径长为5,AB 长为4,那么圆心O 到弦AB 的距离是 ;图1四班三班二班一班16、如图2,在平行四边形ABCD 中,点M 是边CD 中点,点N 是边BC 上的点,且12CN BN =,设AB a =,BC b =,那么MN 可用a 、b 表示为 ;17、如图3,△ABC 是等边三角形,若点A 绕点C 顺时针旋转30°至点A ’,联结A ’B ,则∠ABA ’度数是 ;18、如图4-1,点P 是以r 为半径的圆O 外一点,点P ’在线段OP 上,若满足2'OP OP r ⋅=,则称点P’是点P 关于圆O 的反演点。

【VIP专享】2015年黄浦区数学二模卷及答案

【VIP专享】2015年黄浦区数学二模卷及答案


6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。

中考数学:2015上海黄浦区中考数学二模压轴题

中考数学:2015上海黄浦区中考数学二模压轴题

3 12 x ,所以点 D 的坐标为 (4, ) . a a 12 由于 AC//y 轴,所以点 C 的坐标为 (a, ) . a
由于直线 OA 的解析式为 y
2
华东师大出版社独家资源
华枫教育培训电子资源
中考数学
所以 CD//x 轴.因此四边形 ABDC 是矩形. 所以点 B、 C 到对角线 AP 的距离相等. 因此△ABP 与△ACP 是同底等高的两个三角形, 它们的面积相等.所以
CD BF 3 1 y ,即 . CE BC x 2
2 3x 3 .定义域是 ≤x< 2 3 . x 2
4
整理,得 y
图2
华东师大出版社独家资源
华枫教育培训电子资源
中考数学
(3)△EFG 与△CDG 都是直角三角形,分两种情况讨论相似: ①如图 3,当∠FEG=∠DCG 时,由于∠FDG=∠DCG,所以∠FEG=∠FDG. 因此 FE=FD.所以 FC 垂直平分 DE.此时 CE=CD= 3 . ②如图 4,当∠FEG=∠CDG 时,EF//CD.此时 EF⊥AB. 作 EH⊥CD 于 H,那么四边形 EFDH 是矩形,DF=EH. 所以 y=
S△ABP S 的值是否随 a 的变化而变化?如果不变,求出 △ABP S△ACP S△ACP
图1
备用图
思路点拨
1.点 B 是确定的,点 C、P 随点 A 的改变而改变. 2.已知 a>4 隐含了点 A 在点 B 的右侧这个条件.
满分解答
12 =2.所以点 P 的坐标为(6, 2). x 1 由 O(0, 0)、P(6, 2),得直线 AO 的解析式为 y x . 3
满分解答
(1)在 Rt△ABC 中,∠A=30°,BC=2,所以 AB=4,AC= 2 3 . 在 Rt△ACD 中,∠A=30°,AC= 2 3 ,所以 CD= 3 ,AD=3. (2)如图 2,∠CDE 与∠BFD 都是∠EDF 的余角, 所以∠CDE=∠BFD. 又因为∠DCE=∠B=60°,所以△CDE∽△BFD. 所以

上海市2015各区初三数学二模考试第18题详细解析

上海市2015各区初三数学二模考试第18题详细解析

1.黄浦OP r外一点,如图,点为半径的圆是以18.2??r??OPOP OPP在线段,则点上,若满足?OPP是点的反演点,如图,在称点关于圆??O?BO?4ABO?B?90BAB?2A分,圆、,Rt△的半径为中,2,如果点,??OBBAA;别是点、关于圆的反演点,那么的长是2.奉贤18.如图,已知钝角三角形ABC,∠A=35°,OC为边AB上的中线,将△AOC ''',处,A处,点落在点联结绕着点O顺时针旋转,点C落在BC边上的点ABA CC '、在同一直线上,如果点A、C A;那么∠的度数为''CBABAO(第18题图)3.普陀4杨3?BAC tan?,,18. 如图,△中,ABC?90?ABC?4,将三角形绕着点旋转,点落在直线C A4?BC??处,若、、上的点处,点落在点CC BBBAB?恰好在一直线上,则的长为;BAB5.松江A,BC=6cmAB=AC=5cm,△18.如图,在ABC中,如果将D.交AC于点BD 平分∠BDABC,D处,A沿BD翻折,点落在点A′ABD△2.的面积为△那么D A′C_______________cm CBC6.崇明F中,18.如图,在,,点是DCBABC??CA??C?90BCD与点重合,的中点,将沿着直线EF折叠,使点ABC?DABAE ,那么的值于点折痕交于点,交BED sin?ABACFE 18题图)(第.为7.浦东徐汇8闵行9.ABC点D在边BC上,将△C=90o18. 如图,已知在Rt△ABC中,∠,AC=BC=1,CB AC 1与边处,联结AC 1,直线落在点沿直线AD翻折,使点CC 1 BF= ▲的延长线相交于点F.如果∠DAB=∠BAF,那么10.静安、青浦外切、O⊙.18如图,⊙O的半径为1,O的半径为2,O=5,⊙O分别与⊙O12121.半径内切,那么⊙O的取值范围是O与⊙r2OO 虹口11.1A2,. 18在中,,(如图)若将绕点顺时针方向旋转到的位置,.联结,则的长为D BC长宁12.ADEF如图,18.△ABC≌△(点A、、B分别与点D △,BC=6,ABC固定不动,AB=AC=5对应)E,F边从在△DEF运动,并满足点EBCB移动向C M EF DE重合)、不与(点EBC,始终经过点,A BEC是等腰三角形时,△,当MAC与边交于点AEM.BE=13金山A DM ,把矩形中,,.在矩形188AB?6ABCD?AD上的点沿直线翻折,点落在边MNABCDADEB BCN处,若,那么的长等于ENAMAE?2嘉定、宝山14.GDA上,中,,点在边18.在矩形DC15ABCD?ADE,翻折后点落到点联结,△沿直线FADEAEDAE E,如果作,垂足为点,如图5过点GAD?FGF.,那么GD3AD??DE F CB5图解析答案1.黄浦2.奉贤3.普陀4.杨浦5.松江6.崇明7.浦东徐汇89.闵行10.静安、青浦虹口11.12.长宁13.金山嘉定、宝山14.。

2015年上海中考数学二模24题整理

2015年上海中考数学二模24题整理

已知B :在平面直角坐标系中,抛物线 y = ax 2 + x 的对称轴为直线 x =2,顶点为 A .(1)求抛物线的表达式及顶点 A 的坐标; A点 P 24 题 y = ( x - m )2 + n 的顶点 D 在直线 AB 上,与 y 轴的交点为 C 。

动点之角度(2015 二模 崇明)24.(本题满分 12 分,每小题各 6 分)如图,已知抛物线 y = ax 2 + bx + c 经过点 A (0, - 4) ,点 B (-2, 0) ,点 C (4, 0) .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点 M 在 y 轴上, ∠OMB + ∠OAB = ∠ACB ,求点 M 的坐标.yy(2015 二模 奉贤)24.(本题满分 12 分,第(1)小题 4 分,第(2)小题 8 分)B OC x O C xA(备用图)(2)(第为抛物线对称轴上一点,联结 OA 、OP .x图)①当 OA ⊥OP 时,求 OP 的长;②过点 P 作 OP 的垂线交对称轴右侧的抛物线于点 B ,联结 OB ,当∠OAP =∠OBP 时,求点 B 的坐标.(2015 二模 杨浦)24.(本题满分 12 分,第(1)小题 4 分,第(2)小题 4 分,第 (3)小题 4 分,)已知:在直角坐标系中,直线 y =x +1 与 x 轴交与点 A ,与 y 轴交与点 B ,抛物线12(1)若点 C (非顶点)与点 B 重合,求抛物线的表达式;y(2)若抛物线的对称轴在y轴的右侧,且CD⊥AB,求∠CAD的正切值;(3)在第(2)的条件下,在∠ACD的内部作射线CP交抛物线的对称轴于点P,使得∠DCP=∠CAD,求点P的坐标。

动点之相似(2015二模宝山嘉定)24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(图9),双曲线y=k(k≠0)与直线y=x+2都经过点xA(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.y(2015二模金山)24.(本题满分12分)已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;B A 如图,在直角坐标系 xOy 中,抛x 物线 y = ax O 2 - 2ax + c 与 x 轴的正半轴相x 交于点 A 、与 y 轴 (3)直线 y = kx + 2 与 y 轴交于点 N ,与直线 AC 的交点为 M ,当 ∆MNC 与 ∆AOC 相似时,求点 M 的坐标.动点之面积(2015 二模 黄浦)24. (本题满第(1)小题满分 3 分,第(2) 分 12 分,小题满分 4分,第(3)小题满分 5 分)如图 7,在平面直角坐标系xOy 中,已知点 A 的坐标为(a ,3)(其中a >4),射线 OA与反比例函数y = 12 的图像交于点 P ,点 B 、C 分别在函数y = 12 的图像上,且 AB //x 轴,xxAC //y 轴.(1)当点 P 横坐标为 6,求直线 AO 的表达式;(2)联结 BO ,当 AB = BO 时,求点 A 坐标;(3)联结 BP 、CP ,试猜想:S ∆ABP 的值是否随 a 的变化而变化?如果不变,求出 S ∆ABP 的SS∆ACP∆ACP值;如果变化,请说明理由.(2015 二模 静安青浦)24.(本题满分 12 分,第(1)小题满分 8 分,第(2)小题满分 4 分)PCO 图7的正半轴相交于点 B ,它的对称轴与 x 轴相交于点 C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;如图,已知抛物线 y = x 2 - 2tx + t 2 - 2 的顶点 A 在第四象限,过点 A 作 AB ⊥y 轴于点 B ,A (-1,0),B (4,0 ),C (0,2 ).点D 是点 C 关于原点的对称C 点A ,联结 B D ,点E 是 x 轴上的E (2)如果点 D 在此抛物线上,DF ⊥OA ,垂足为 F ,DF 与线段 AB 相交于点G ,且 S∆ADG : S∆AFG= 3 : 2 ,求点 D 的坐标.y(2015 二模 长宁)24.(本题满分 12 分)BCC 是线段 AB 上一点(不与 A 、B 重合),过点 C 作 CD ⊥x 轴于点 D ,并交抛物线于点 P .(1)若点 C 的横坐标为 1,且是线段 AB 的中点,求点 P 的坐标;(2)若直线 AP 交 y 轴负半轴于点 E ,且 AC =CP ,求四边形 OEPD 的面积 S 关于 t 的函数解析式,并写出定义域;(3)在(2)的条件下,当△ADE 的面积等于 2S 时 ,求 t 的值.y动点之直角、等腰三角形存在性DO x(2015 二模 普陀 ) 如图10,在平面直角坐标系xOy 中,二次函数的图像经过点 PB一个动点,设点 E 的坐标为(m , 0),过点 E 作 x 轴的垂线 l 交抛物线于点 P .第 24 题(1)求这个二次函数的解析式;图(2)当点E 在线段 OB 上运动时,直线 l 交 BD 于点 Q .当四边形CDQP 是平行四边形时,求 m 的值;(3)是否存在点 P ,使△ B DP 是不以 BD 为斜边的直角三角形,如果存在,请直接写出点 P 的坐标;如果不存在,请说明理由.y y(2015二模松江)24.(本题满分12分,每小题各4分)C C如图,二次函数y=-x2+bx的图像与x轴的正半轴交于点A(4,0),过A点的直线与A OB x A O B xy轴的正半轴交于点B,与二次函数的图像交于另一点C,过点C作CH⊥x轴,垂足为H.设二次函数图像的顶点为D,其对称轴与直线AB及x轴分别交于点E和点F.(1)求这个二次函数的解析式;(2)如果CE=3BC,求点B的坐标;(3)如果△DHE是以DH为底边的等腰三角形,求点E的坐标.动点之梯形(2015二模徐汇)24.如图,在平面直角坐中,O为坐标原点,开口向上的抛物线与x点A(-1,0)和点B(3,0),D为抛物线的直线AC与抛物线交于点C(5,6).(1)求抛物线的解析式;(2)点E在x轴上,且∆AEC和∆AED相似,求点E的坐标;标系轴交于顶点,(3)若直角坐标平面中的点F和点A、C、D构成求点F的坐标.其他直角梯形,且面积为16,试((2015 二模 闵行)24.(本题满分 12 分,其中每小题各 4 分)如图,已知在平面直角坐标系 xOy 中,抛物线 y = ax 2 - 2ax - 4 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C ,其中点 A 的坐标为(-3,0).点 D 在线段 AB 上,AD = AC .(1)求这条抛物线的关系式,并求出抛物线的对称轴;(2)如果以 DB 为半径的圆 D 与圆 C 外切,求圆 C 的半径;(3)设点 M 在线段 AB 上,点 N 在线段 BC 上.如果线段 MN 被直线 CD 垂直平分,求BN 的值. CN(2015 二模 浦东)24. 本题满分 12 分,其中第(1)小题 3 分,第(2)小题 4 分,第(3)小题 5 分) 已知:如图,直线 y =kx +2 与 x 轴的正半轴相交于点 A(t ,0)、与 y 轴相交于点 B ,抛物线 y = - x 2 + bx + c 经过点 A 和点 B ,点 C 在第三象限内,且 AC ⊥AB ,tan∠ACB = 1 .2(1)当 t =1 时,求抛物线的表达式;(2)试用含 t 的代数式表示点 C 的坐标;(3)如果点 C 在这条抛物线的对称轴上,求 t2020-2-8的值.。

2015年上海各区中考数学二模压轴题24、25题图文解析

2015年上海各区中考数学二模压轴题24、25题图文解析

《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。

2015年上海市黄浦区中考数学二模试卷解析

2015年上海市黄浦区中考数学二模试卷解析

2015年上海市黄浦区中考数学二模试卷、选择题(每题4分,共24 分)1. (4分)(2015?黄浦区二模)下列分数中,可以化为有限小数的是()A. —B. —C. 一D.—15 18 15 182. (4分)(2015?黄浦区二模)下列二次根式中最简根式是(3这七天最低气温的众数和中位数分别是()A . 4, 4B . 4, 5 C. 6, 5 D . 6, 624. (4分)(2015?黄浦区二模)将抛物线y=x2向下平移1个单位,再向左平移2个单位后, 所得新抛物线的表达式是()2 2 2 2A . y= (x- 1)+2B . y= (x - 2)+1 C. y= (x+1 )- 2 D . y= (x+2 )- 15. (4分)(2015?黄浦区二模)如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是()A .内含B.内切C.外切D.相交6. (4分)(2015?黄浦区二模)下列命题中真命题是()A •对角线互相垂直的四边形是矩形B. 对角线相等的四边形是矩形C. 四条边都相等的四边形是矩形D .四个内角都相等的四边形是矩形二、填空题(每题4分,共48分)2 27. (4分)(2015?黄浦区二模)计算:(a )= ____2& (4分)(2015?房山区二模)分解因式:2x - 8x+8=9. (4分)(2015?黄浦区二模)计算::,+ =—x+l X - 110. (4分)(2004?上海)方程寸—,=x - 1的根是 __________________ .211 . (4分)(2015?黄浦区二模)如果抛物线y= (2- a)x +3x - a的开口向上,那么a的取值范围是_______________ .12 . (4分)(2015?黄浦区二模)某校八年级共四个班,各班寒假外出旅游的学生人数如图所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为______________ .20. (6分)(2015?黄浦区二模)解方程组:x 2-Sy^-2® K -y=l@人数(人)2012S10E -0 E 三四班’班级13.(4分)(2015?黄浦区二模)将一枚质地均匀的硬币抛掷 2次,硬币正面均朝上的概率是 ______________ .14.(4分)(2015?黄浦区二模)如果梯形的下底长为7,中位线长为5,那么其上底长为 ______________ .15. (4分)(2015?黄浦区二模)已知 AB 是O O 的弦,如果O O 的半径长为5, AB 长为4,那么圆心O 到弦AB 的距离是 ___________________ .16. (4分)(2015?黄浦区二模)如图,在平行四边形 ABCD 中,点M 是边CD 中点,点N是边BC 上的点,且 ='•设小=于=】,那么川可用I 、【表示为.BN 2D________ C17. (4分)(2015?黄浦区二模)如图, △ ABC 是等边三角形,若点 A 绕点C 顺时针旋转 30°至点A ;联结 A B ,则/ ABA 度数是 ___________________ .18. (4分)(2015?黄浦区二模)如图1,点P 是以r 为半径的圆O 外一点,点P 在线段OP 上,若满足OP?OP=r 2,则称点P 是点P 关于圆O 的反演点.如图2,在Rt △ ABO 中,/ B=90 °,AB=2 , BO=4 ,圆O 的半径为2,如果点A '、B 分别是点A 、B 关于圆O 的反演点,那么A B ' 的长是 .三、解答题(48分)119. (6分)(2015?黄浦区二模)计算:4°+ -( ■- 1) -1 +|1 - _:|.21. (6分)(2015?盘锦二模)温度通常有两种表示方法:华氏度(单位:T)与摄氏度(单位:C),已知华氏度数y与摄氏度数x之间是一次函数关系,如表列出了部分华氏度与摄氏度之间的对应关系:华氏度数x (C)035100摄氏度数y (T)3295212(1 )选用表格中给出的数据,求y关于x的函数解析式(不需要写出该函数的定义域) (2)已知某天的最低气温是- 5 C,求与之对应的华氏度数.22. (6分)(2015?黄浦区二模)如图,在梯形ABCD中,AD // BC, AB丄BC ,已知AD=2 , cot/ ACB= •,梯形ABCD的面积是9;3(1 )求AB的长;(2)求tan/ ACD 的值.23. (6分)(2015?黄浦区二模)如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,联结BE、DF, DF交对角线AC于点G,且DE=DG ;(1)求证:AE=CG ;(2)求证:BE // DF .xOy中,已知点A的坐标为(a,12 123)(其中a> 4),射线OA与反比例函数y=——的图象交于点P,点B、C分别在函数y=——的图象上,且AB // x轴,AC // y轴;(1)当点P横坐标为6,求直线AO的表达式;(2)联结BO,当AB=BO时,求点A坐标;(3)联结BP、CP,试猜想:"「的值是否随a的变化而变化?如果不变,S AACP求出■ 的S AACP 值;如果变化,请说明理由.25. (9 分)(2015?黄浦区二模)如图,Rt△ ABC 中,/ C=90 ° / A=30 ° BC=2 , CD 是斜边AB 上的高,点E为边AC上一点(点E不与点A、C重合),联结DE,作CF丄DE, CF 与边AB、线段DE分别交于点F、G ;(1)求线段CD、AD的长;(2 )设CE=x, DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△ EFG与厶CDG相似时,求线段CE的长.B2015年上海市黄浦区中考数学二模试卷参考答案与试题解析一、选择题(每题4分,共24分)1. (4分)(2015?黄浦区二模)下列分数中,可以化为有限小数的是()A . B. C.三D .上15 1S 15 13【分析】根据分数与小数间的转化,可得答案.【解答】解:A、亠是无限循环小数,故A错误;15B、.是无限循环小数,故B错误;1SC、亠是有限小数,故C正确;15D、士是无限循环小数,故D错误;故选:C.2. (4分)(2015?黄浦区二模)下列二次根式中最简根式是B . ■: C. S D .【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含开的尽的因数,故A错误;B、被开方数含开的尽的因数,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含分母,故D错误;故选:C.3日期除夕初一初二初三初四初五初六最低气温(C)44561064这七天最低气温的众数和中位数分别是()A . 4, 4B . 4, 5 C. 6, 5 D . 6, 6【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【解答】解:将一周气温按从小到大的顺序排列为4, 4, 4, 5, 6, 6, 10,中位数为第四个数5;4出现了3次,故众数为4.故选B .24. (4分)(2015?黄浦区二模)将抛物线y=x向下平移1个单位,再向左平移2个单位后,所得新抛物线的表达式是()2 2 2 2A . y= (x- 1)+2B . y= (x - 2)+1 C. y= (x+1 ) - 2 D . y= (x+2 ) - 1【分析】把抛物线的平移问题转化为点平移的问题:先确定抛物线y=x2 3的顶点坐标为(0, 0),再根据点平移的规律得到把向下平移1个单位,再向左平移2个单位后得到对应点的坐标为(-2,- 1),然后根据顶点式写出平移后的抛物线解析式.2【解答】解:抛物线y=x的顶点坐标为(0, 0),把点(0, 0)向下平移1个单位,再向左平移2个单位后得到对应点的坐标为(- 2, - 1),所以所得抛物线的表达式是y= (x+2)2- 1.故选:D.5. (4分)(2015?黄浦区二模)如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是()A .内含B.内切C.外切D.相交【分析】根据数量关系来判断两圆的位置关系•设两圆的半径分别为R和r,且R才,圆心距为d:外离,贝U d> R+r;外切,则d=R+r;相交,则R- r v d v R+r;内切,贝U d=R - r; 内含,贝U d v R - r.【解答】解:•••两圆半径之差=6 - 2=4=圆心距,•••两个圆的位置关系是内切.故选B .6. (4分)(2015?黄浦区二模)下列命题中真命题是()A •对角线互相垂直的四边形是矩形B. 对角线相等的四边形是矩形C. 四条边都相等的四边形是矩形D .四个内角都相等的四边形是矩形【分析】根据矩形的判定方法对四个命题进行判断.【解答】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线相等的平行四边形是矩形,所以B选项错误;C、四个角都相等的四边形是矩形,所以C选项错误;D、四个角都相等的四边形是矩形,所以D选项正确.故选D .二、填空题(每题4分,共48分)2 2 47. (4分)(2015?黄浦区二模)计算:(a )= a .【分析】根据幕的乘方和积的乘方的运算法则求解.【解答】解:(a2)2=a4.2 2& ( 4分)(2015?房山区二模)分解因式:2x - 8x+8= 2 (x - 2)【分析】先提公因式2,再用完全平方公式进行因式分解即可.【解答】解:原式=2 (x2- 4x+4)=2 ( x- 2)故答案为2 (x - 2)故答案为:a4.9. (4分)(2015?黄浦区二模)计算:”+—•_,—x+1 X - 1 —- 1 —【分析】原式通分并利用同分母分式的加法法则计算,即可得到结果.【解答】解:原式故答案为:10. (4分)(2004?上海)方程寸■—・:=x - 1的根是x=3 .【分析】把方程两边平方去根号后求解,注意检验.【解答】解:两边平方得7 - x= (x - 1)2,即(x+2)(x - 3)=0,解得:x= - 2或x=3 ,代入原方程,当x= - 2时,左边=.「二=3,右边=-3,原方成不成立. 当x=3时,左边=:,右边=2,原方程成立.故方程亍_、.=x - 1的根是x=3 ,故本题答案为:x=3 .211. (4分)(2015?黄浦区二模)如果抛物线y= (2- a)x +3x - a的开口向上,那么a的取值范围是a v 2 .【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数 2 - a>0,解不等式即可求得a的取值.【解答】解:因为抛物线y= (2 - a)x2+3x - a的开口向上,所以2- a>0,即a v 2.故答案为:a v 2.12. (4分)(2015?黄浦区二模)某校八年级共四个班,各班寒假外出旅游的学生人数如图所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为40%4</鐵(人)【分析】根据条形统计图给出的数据求出外出旅游学生的总人数,再用三班外出旅游学生人数除以总人数即可得出答案.【解答】解:三班外出旅游学生人数占全年级外出旅游学生人数的百分比为20------ ----------- X100%=40% ;12+8+20+10故答案为:40%.13. (4分)(2015?黄浦区二模)将一枚质地均匀的硬币抛掷2次,硬币正面均朝上的概率是:.一4—【分析】列举出所有情况,看正面都朝上的情况数占总情况数的多少即可.【解答】解:如图所示:正反A A正反正反共4种情况,正面都朝上的情况数有1种,所以概率是 .4故答案是■.414. (4分)(2015?黄浦区二模)如果梯形的下底长为7中位线长为5,那么其上底长为3 . 【分析】设出梯形的上底长,直接运用梯形的中位线定理列出关于上底入的方程,求出入即可解决问题.【解答】解:设梯形的上底长为入由题意得:-,,2解得:*3,故答案为3.15. (4分)(2015?黄浦区二模)已匸AB是O O的弦,如果O O的半径长为5, AB长为4, 那么圆心O到弦AB的距离是_ f二1【分析】根据题意画出图形,过点O作OD丄AB于点D,由垂径定理可得出AD的长,在Rt A OAD中,利用勾股定理及可求出OD的长.【解答】解:如图所示:过点O作OD丄AB于点D,•/ AB=4 ,••• AD= AB= >4=2,2 2在Rt△ OBD 中,•/ OA=5 , AD=2 ,•OD=二-,匸.=•「:::'=:-.故答案为:二7.16. (4分)(2015?黄浦区二模)如图,在平行四边形ABCD中,点M是边CD中点,点N 是边BC上的点,且卜.设小―,那么讪用表示为—匚―【分析】首先由四边形ABCD是平行四边形,求得「'=.•「=;,又由点M是边CD中点,点N是边BC上的点,且侯1,求得宀J再利用三角形法则求解即可求得答案.【解答】解::•四边形ABCD是平行四边形,•••点M是边CD中点,点N是边BC上的点,且■;;=':,17. (4分)(2015?黄浦区二模)如图,△ ABC是等边三角形,若点A绕点C顺时针旋转30°至点A 联结A B,则/ ABA度数是15°.【分析】如图,首先运用旋转变换的性质得到AC=A C, / ACA =30 °运用等腰三角形的性质得到,/ A BC=45。

上海2015二模试卷含答案(二套)

上海2015二模试卷含答案(二套)

九年级数学 共5页 第1页2014学年奉贤区调研测试九年级数学 2015.04(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 1.下列计算中正确的是(▲)A .633a a a =+; B .633a a a =⋅ ; C .033=÷a a ; D .633)(a a =. 2.二元一次方程32=+y x 的解的个数是(▲)A . 1个;B .2个;C .3个;D .无数个. 3.关于反比例函数xy 2=的图像,下列叙述错误的是(▲) A .y 随x 的增大而减小; B .图像位于一、三象限;C .图像是轴对称图形;D .点(-1,-2)在这个图像上.4.一名射击运动员连续打靶8次,命中环数如图所示,这组数据的众数与中位数分别为(▲)A .9与8;B .8与9;C .8与8.5;D .8.5与9.5.相交两圆的圆心距是5,如果其中一个圆的半径是3,那么另外一个圆的半径可以是(▲)A .2;B .5;C .8;D .10. 6.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD ≌△ACD 的条件是(▲)A .∠B =45°;B .∠BAC =90°;C .BD =AC ;D .AB =AC .(第4题图)DCB A(第6题图)九年级数学 共5页 第2页二、填空题:(本大题共12题,每题4分,满分48分) 7.用代数式表示:a 的5倍与b 的27的差: ▲ ; 8.分解因式:1522--x x = ▲ ; 9.已知函数3+=x x f )(,那么=-)(2f ▲ ;10.某红外线遥控器发出的红外线波长为0.000 000 94m ,这个数用科学记数法表示为 ▲ ; 11.若关于x 的方程022=--k x x 有两个不相等的实数根,则k 的取值范围为 ▲ ; 12.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ▲ ;13.已知函数b x y +-=2,函数值y 随x 的增大而▲ (填“增大”或“减小”); 14.如果正n 边形的中心角是40°,那么n = ▲ ;15.已知△ABC 中,点D 在边BC 上,且BD =2DC .设AB a = ,=,那么AD →等于▲ (结果用、表示);16.小明乘滑草车沿坡比为1:2.4的斜坡下滑130米,则他下降的高度为▲米;17.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等 腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于 ▲ ;18.如图,已知钝角三角形ABC ,∠A=35°,OC 为边AB 上的中线,将△AOC 绕着点O 顺时针旋转,点C 落在BC 边上的点'C 处,点A 落在点'A 处,联结'BA ,如果点A 、C 、'A 在同一直线上,那么∠''C BA 的度数为 ▲ ;三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:1o )12(45cos 22218-++--+.CBOA (第18题图)九年级数学 共5页 第3页20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧-≤-+<-x x x x 2371211513)(,将其解集在数轴上表示出来,并写出这个不等式组的最.小整数解.....21.(本题满分10分,每小题满分各5分)已知:如图,在△ABC 中,AB=AC =6,BC =4,AB 的垂直 平分线交AB 于点E ,交BC 的延长线于点D . (1)求∠D 的正弦值; (2)求点C 到直线DE 的距离.CB A(第21题图)EDS22.(本题满分10分)某学校组织为贫困地区儿童捐资助学的活动,其中七年级捐款总数为1000元,八年级捐款总数比七年级多了20%.已知八年级学生人数比七年级学生人数少25名,而八年级的人均捐款数比七年级的人均捐款数多4元.求七年级学生人均捐款数.23.(本题满分12分,每小题满分各6分)已知:如图,在四边形ABCD中,AB//CD,点E是对角线AC上一点,∠DEC=∠ABC,且CACECD⋅=2.(1)求证:四边形ABCD是平行四边形;(2)分别过点E、B作AB和AC的平行线交于点F,联结CF,若∠FCE=∠DCE,求证:四边形EFCD是菱形.D BA九年级数学共5页第4页九年级数学 共5页 第5页24.(本题满分12分,第(1)小题4分,第(2)小题8分)已知:在平面直角坐标系中,抛物线x ax y +=2的对称轴为直线x =2,顶点为A . (1)求抛物线的表达式及顶点A 的坐标; (2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物 线于点B ,联结OB ,当∠OAP =∠OBP 时, 求点B 的坐标.九年级数学 共5页 第6页25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图,线段AB =8,以A 为圆心,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD . (1)若CD=6,求四边形ABCD 的面积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .DCB (第25题图)AB(备用图)A九年级数学 共5页 第7页奉贤区初三调研考数学卷参考答案 201504一 、选择题:(本大题共8题,满分24分)1.B ; 2.D ; 3.A ; 4.C ; 5.B ; 6.D . 二、填空题:(本大题共12题,满分48分) 7.b a 725-; 8.)3)(5(+-x x ; 9.1; 10.7104.9-⨯; 11.1->k ; 12.72; 13.减小; 14.9; 15.32+; 16.50; 17.2或1; 18.20°. 三.(本大题共7题,满分78分) 19. (本题满分10分)解:原式=1222223-+--+. (2)= 122+. ………………………………………………………………………2分20.(本题满分10分)解:由①得:2x >- .………………………………………………………………………2分 由②得:4x ≤.………………………………………………………………………2分 所以,原不等式组的解集是24x -<≤.……………………………………………2分 数轴上正确表示解集.………………………………………………………………2分 所以,这个不等式组的最小整数解是-1.…………………………………………2分21. (本题满分10分)(1)过点A 作AH ⊥BC 于点H ………………………………………………………………1分 ∵ AB=AC ,BC =4 ∴BH =21BC =2 在△ABH 中,∠BHA=90°, ∴sin ∠BAH =31=AB BH …………………………………2分∵ DE 是AB 的垂直平分线 ∴∠BED=90° BE=3∴∠BED=∠BHA又∵∠B=∠B ∴∠BAH=∠D …………………………………………………1分九年级数学 共5页 第8页∴sin ∠D= sin ∠BAH=13……………………………………………………………1分 即∠D 的正弦值为13(2)解:过点C 作CM ⊥DE 于点M ………………………………………………………1分在△BED 中,∠BED=90°,sin ∠D =13,BE=3 ∴BD =9sin =∠DBE∴CD=5………………………………………………2分在△MCD 中,∠CMD=90°,sin ∠D =31=CD CM ∴CM=35.…………………2分 即点C 到DE 的距离为3522.(本题满分10分)解:设七年级人均捐款数为x 元,则八年级人均捐款数为)4(+x 元 .…………………1分根据题意,得4%)201(1000251000++=-x x .……………………………………4分 整理,得 0160122=-+x x .……………………………………………1分解得 20,821-==x x .……………………………………………………2分 经检验:20,821-==x x 是原方程的解,0202<-=x 不合题意,舍去.…………1分 答:七年级人均捐款数为8元.……………………………………………………………1分 23.(本题满分12分,每小题满分各6分) 证明:(1)CA CE CD ⋅=2 ∴CACDCD CE =∵∠ECD =∠DCA ∴△ECD ∽△DCA ……………………………………………2分 ∴∠ADC =∠DEC ∵∠DEC =∠ABC ∴∠ABC =∠ADC …………………1分∵AB ∥CD ∴∠ABC+∠BCD=1800 ∠BAD+∠ADC =1800∴∠BAD =∠BCD ………………………………………………………………………2分 ∴四边形ABCD 是平行四边形………………………………………………………1分(2)∵EF ∥AB BF ∥AE ∴四边形ABFE 是平行四边形∴ AB ∥EF AB=EF …………………………………………………………………2分 ∵四边形ABCD 是平行四边形∴AB ∥CD AB=CD九年级数学 共5页 第9页∴CD ∥EF CD=EF∴四边形EFCD 是平行四边形 ………………………………………………………2分 ∵CD ∥EF ∴∠FEC=∠ECD 又∵∠DCE=∠FCE ∴∠FEC=∠FCE ∴EF=FC∴平行四边形EFCD 是菱形 …………………………………………………………2分24.(本题满分12分,每小题4分)(1)∵ 抛物线x ax y +=2的对称轴为直线x =2.∴221=-a ∴41-=a .……………………………………………………………1分 ∴抛物线的表达式为:x x y +-=241.…………………………………………………1分 ∴顶点A 的坐标为(2,1). ……………………………………………………………2分(2)设对称轴与x 轴的交点为E .①在直角三角形AOE 和直角三角形POE 中,AE OE OAE =∠tan ,OEPEEOP =∠tan ∵OA ⊥OP ∴EOP OAE ∠=∠ ∴OEPEAE OE =……………………………2分 ∵AE =1,OE=2 ∴PE=4…………………………………………………………1分 ∴OP=524222=+……………………………………………………………1分②过点B 作AP 的垂线,垂足为F ………………………………………………………1分 设点B (a a a +-241,),则2-=a BF ,a a EF -=241 在直角三角形AOE 和直角三角形POB 中,OE AE OAE =∠cot ,OPBPOBP =∠cot ∵OBP OAE ∠=∠, ∴21==OP BP OE AE ∵PEO BFP ∠=∠,POE BPF ∠=∠∴△BPF ∽△POE ,∴OEPFPO BP PE BF == ∵OE=2, ∴PF=1,1412+-=a a PE ∴2114122=+--a a a九年级数学 共5页 第10页解得101=a ,22=a (不合题意,舍去)…………………………………………2分 ∴点B 的坐标是(10,-15).……………………………………………………………1分 25.解:(1)作AH ⊥CD ,垂足为点H ……………………………………………………1分∵ CD=6∴321===CD DH CH …………………………………………………1分 ∵AD=5∴AH=4………………………………………………………………1分∴28)(21=⋅+=AH AB CD S ABCD 梯形……………………………………………1分 (2)作CP ⊥AB ,垂足为点P ∵⊙A 中,AH ⊥CD ,CD=x∴x CH 21=∴x CH AP 21==…………… ………………………………1分 ∴x BP 218-=……………………………… ………………………………1分 222DH AD AH AHD Rt -=∆中,24125x -=∴2224125x AH CP -==…………………… ………………………………1分 在222BP CP BC BPC Rt +=∆中, 即222)218()4125(x x y -+-= 解得:()100889≤<-=x xy ………………………………………………2分(3)设AH 交MN 于点F ,联结AE∵BC 的中点为M ,AD 的中点为N ∴MN ∥CD∵CE ∥AD ∴DC=NE=x ………………………………………………………………1分 ∵MN ∥CD ∴AD AN DH NF =∵ 2xDH = ∴4x NF = ∴43x EF =……1分 在直角三角形AEF 和直角三角形AFN 中222EF AE AF -=222NF AN AF -= ∴2222)43(5)4()25(x x -=-∴265=x …………………………………………………………………2分 即当CD 长为265时,CE//AD .九年级数学 共5页 第11页崇明县2014学年第二学期教学质量调研测试卷九年级数学(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效. 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列运算中,正确的是 ……………………………………………………………………( )(A)1293=±3 (C)030-=() (D)2139-=2.轨道交通给人们的出行提供了便捷的服务,据悉,上海轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为 ………………………( )(A)52.0610⨯(B)320.610⨯(C)42.0610⨯(D)50.20610⨯3.从下列不等式中选择一个与12x +≥组成不等式组,如果要使该不等式组的解集为1x ≥,那么可以选择的不等式可以是 ………………………………………………………………( ) (A)1x >-(B)2x >(C)1x <-(D)2x <4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是……………………………………………………………………………( )(A)12y y >(B)12y y <(C)12y y =(D)无法判断5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………( )(A)(B) (C) (D)6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是 ………………………………………………………………………………………( )九年级数学 共5页 第12页(A)AC BD =, AB CD ∥, AB CD = (B)AD BC ∥, A C ∠=∠(C)AO BO CO DO ===, AC BD ⊥(D)AO CO =, BO DO =, AB BC =九年级数学 共5页 第13页二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.因式分解:34x x -= ▲ .8.2,那么x = ▲ .9.如果分式242x x -+的值为0,那么x 的值为 ▲ .10.已知关于x 的一元二次方程2610x x m -+-=有两个相等的实数根,那么m 的值为 ▲ .11.已知在方程222232x x x x++=+中,如果设22y x x =+,那么原方程可化为关于y 的整式方程是 ▲ . 12.布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为 ▲ .13.某学校在开展“节约每一滴水”的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是 ▲ 吨.14.如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a = ,AD b = ,如果用向量,a b表示向量BC ,那么BC =▲ .15.如图,已知ABC ∆和ADE ∆均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果9AB =,3BD =,那么CF 的长度为 ▲ .16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =,那么CD = ▲ .17.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为 ▲ .(第14题图)AB C D (第15题图)AC EF D (第16题图)B九年级数学 共5页 第14页18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 ▲ .三、解答题(本大题共7题,满分78分)19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-. 20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩21.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点,AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =.(1)求线段AE 的长; (2)求sin DAE ∠的值.BACFD(第18题图)(第21题图)CABE D九年级数学 共5页 第15页22.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为千米/小时,在甲地游玩的时间为小时;(2)小明从家出发多少小时的时候被妈妈追上?此时离家多远?23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H .(1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.(第22题图))A BDHG FEC(第23题图)九年级数学 共5页 第16页24.(本题满分12分,每小题各6分)如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C . (1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.(第24题图)(备用图)九年级数学 共5页 第17页25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E , 点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域; (2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径;(3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图)(备用图1)B AC (备用图2)BAC。

上海市黄浦区中考数学二模试卷

上海市黄浦区中考数学二模试卷

20XX 年上海市黄浦区中考数学二模试卷一、选择题(每题 4 分,共 24 分)1.( 4 分)( 2015?黄浦区二模)以下分数中,能够化为有限小数的是()A .B.C.D.2.( 4 分)( 2015?黄浦区二模)以下二次根式中最简根式是()A .B.C. D .3.( 4 分)( 2015?黄浦区二模)如表是某地今年春节放假七天最低气温(℃)的统计结果日期大年夜初一初二初三初四初五初六最低气温(℃)44561064这七天最低气温的众数和中位数分别是()A.4,4 B.4, 5 C.6,5 D.6,62向下平移4.( 4 分)( 2015?黄浦区二模)将抛物线y=x 1 个单位,再向左平移 2 个单位后,所得新抛物线的表达式是()A . y=( x﹣ 1)2+2B . y=( x﹣ 2)2+1C. y= (x+1 )2﹣ 2 D .y= ( x+2 )2﹣ 15.( 4 分)( 2015?黄浦区二模)假如两圆的半径长分别为 6 与 2,圆心距为4,那么这两个圆的地点关系是()A .内含B .内切C .外切D .订交6.( 4 分)( 2015?黄浦区二模)以下命题中真命题是()A.对角线相互垂直的四边形是矩形B.对角线相等的四边形是矩形C.四条边都相等的四边形是矩形D.四个内角都相等的四边形是矩形二、填空题(每题 4 分,共 48 分)7.( 422分)( 2015?黄浦区二模)计算:( a ) =.8.( 4分)( 2015?房山区二模)分解因式:2x 2﹣ 8x+8= .9.( 4分)( 2015?黄浦区二模)计算:+=.10.( 4 分)( 2004?上海)方程=x ﹣1 的根是.11.(4 分)( 2015?黄浦区二模)假如抛物线2﹣a 的张口向上,那么 a 的取y= ( 2﹣ a) x +3x值范围是.12.( 4 分)( 2015?黄浦区二模)某校八年级共四个班,各班寒假出门旅行的学生人数如下图,那么三班出门旅行学生人数占整年级出门旅行学生人数的百分比为.13.( 4 分)( 2015?黄浦区二模)将一枚质地平均的硬币投掷 2 次,硬币正面均向上的概率是.14.( 4 分)( 2015?黄浦区二模)假如梯形的下底长为 7,中位线长为 5,那么其上底长为.15.(4 分)( 2015?黄浦区二模)已知 AB 是⊙ O 的弦,假如⊙ O 的半径长为 5, AB 长为 4,那么圆心 O 到弦 AB 的距离是.16.(4 分)( 2015?黄浦区二模)如图,在平行四边形ABCD 中,点 M 是边 CD 中点,点 N是边 BC 上的点,且= .设 = , = ,那么可用 、 表示为.17.( 4 分)( 2015?黄浦区二模)如图, △ ABC 是等边三角形,若点 A 绕点 C 顺时针旋转 30°至点 A ′,联络 A ′B ,则∠ ABA ′度数是.18.( 4 分)( 2015?黄浦区二模)如图 1,点 P 是以 r 为半径的圆 O 外一点,点 P ′在线段 OP 上,若知足 OP?OP ′=r 2,则称点 P ′是点 P 对于圆 O 的反演点.如图 2,在 Rt △ ABO 中,∠B=90 °, AB=2 ,BO=4 ,圆 O 的半径为 2,假如点 A ′、B ′分别是点 A 、B 对于圆 O 的反演点, 那么 A ′B ′ 的长是.三、解答题( 48 分)19.( 6 分)( 2015?黄浦区二模)计算: 0﹣( ﹣ 1﹣ |.4 + ﹣ 1) +|120.( 6 分)( 2015?黄浦区二模)解方程组:.21.( 6 分)( 2015?盘锦二模)温度往常有两种表示方法:华氏度(单位:℉)与摄氏度(单位:℃),已知华氏度数y 与摄氏度数 x 之间是一次函数关系,如表列出了部分华氏度与摄氏度之间的对应关系:华氏度数 x(℃)035100摄氏度数 y(℉)3295212(1)采用表格中给出的数据,求y 对于 x 的函数分析式(不需要写出该函数的定义域);(2)已知某天的最低气温是﹣ 5℃,求与之对应的华氏度数.22.(6 分)( 2015?黄浦区二模)如图,在梯形ABCD 中,AD ∥ BC,AB ⊥ BC ,已知 AD=2 ,cot∠ ACB= ,梯形 ABCD 的面积是 9;(1)求 AB 的长;(2)求 tan∠ ACD 的值.23.( 6 分)( 2015?黄浦区二模)如图,在正方形ABCD 中,点 E 在对角线AC 上,点 F 在边 BC 上,联络 BE 、 DF, DF 交对角线 AC 于点 G,且 DE=DG ;(1)求证: AE=CG ;(2)求证: BE∥ DF .24.( 9 分)( 2015?黄浦区二模)如图,在平面直角坐标系xOy 中,已知点 A 的坐标为( a,3)(此中 a> 4),射线 OA 与反比率函数y=的图象交于点P,点 B 、C 分别在函数y=的图象上,且AB ∥ x 轴, AC ∥ y 轴;(1)当点 P 横坐标为 6,求直线 AO 的表达式;(2)联络 BO,当 AB=BO 时,求点 A 坐标;(3)联络 BP、CP,试猜想:的值能否随 a 的变化而变化?假如不变,求出的值;假如变化,请说明原因.25.( 9 分)( 2015?黄浦区二模)如图, Rt△ ABC 中,∠ C=90 °,∠ A=30 °,BC=2 ,CD 是斜边 AB 上的高,点 E 为边 AC 上一点(点 E 不与点 A、 C 重合),联络 DE ,作 CF⊥ DE,CF 与边 AB 、线段 DE 分别交于点 F、 G;(1)求线段 CD、 AD 的长;(2)设 CE=x ,DF=y ,求 y 对于 x 的函数分析式,并写出它的定义域;(3)联络 EF,当△ EFG 与△ CDG 相像时,求线段 CE 的长.20XX 年上海市黄浦区中考数学二模试卷参照答案与试题分析一、选择题(每题 4 分,共24 分)1.( 4 分)( 2015?黄浦区二模)以下分数中,能够化为有限小数的是()A .B.C.D.【剖析】依据分数与小数间的转变,可得答案.【解答】解: A 、是无穷循环小数,故 A 错误;B、是无穷循环小数,故 B 错误;C、是有限小数,故 C 正确;D、是无穷循环小数,故 D 错误;应选: C.2.( 4 分)( 2015?黄浦区二模)以下二次根式中最简根式是()A.B.C.D.【剖析】 判断一个二次根式能否是最简二次根式的方法, 就是逐一检查最简二次根式的两个条件能否同时知足,同时知足的就是最简二次根式,不然就不是.【解答】 解: A 、被开方数含开的尽的因数,故 A 错误;B 、被开方数含开的尽的因数,故 B 错误;C 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C 正确;D 、被开方数含分母,故 D 错误;应选: C .3.( 4 分)( 2015?黄浦区二模)如表是某地今年春节放假七天最低气温(℃)的统计结果 日期 大年夜 初一 初二 初三 初四 初五 初六 最低气温(℃)4456 106 4这七天最低气温的众数和中位数分别是()A .4,4B .4, 5C .6,5D .6,6【剖析】 众数就是出现次数最多的数, 而中位数就是大小处于中间地点的数,依据定义即可求解.【解答】 解:将一周气温按从小到大的次序摆列为4, 4,4, 5, 6, 6, 10,中位数为第四个数5;4 出现了 3 次,故众数为 4. 应选 B .4.( 4 分)( 2015?黄浦区二模)将抛物线 y=x 2向下平移 1 个单位,再向左平移 2 个单位后, 所得新抛物线的表达式是( )A . y=( x ﹣ 1)2 +2B . y=( x ﹣ 2) 2 +1C . y= (x+1 ) 2﹣ 2D .y= ( x+2 )2﹣ 1【剖析】 把抛物线的平移问题转变为点平移的问题:先确立抛物线 y=x 2 的极点坐标为( 0, 0),再依据点平移的规律获得把向下平移1 个单位, 再向左平移2 个单位后获得对应点的坐标为(﹣ 2,﹣ 1),而后依据极点式写出平移后的抛物线分析式.【解答】 解:抛物线 y=x 2的极点坐标为( 0, 0),把点( 0,0)向下平移 1 个单位,再向左 平移 2 个单位后获得对应点的坐标为(﹣ 2,﹣ 1),因此所得抛物线的表达式是 y= ( x+2 ) 2﹣1. 应选: D .5.( 4 分)( 2015?黄浦区二模)假如两圆的半径长分别为圆的地点关系是()6 与2,圆心距为4,那么这两个A .内含B .内切C .外切D .订交【剖析】 依据数目关系来判断两圆的地点关系.设两圆的半径分别为 R 和 r ,且距为 d :外离,则 d > R+r ;外切,则 d=R+r ;订交,则 R ﹣ r < d < R+r ;内切,则R ≥r ,圆心d=R ﹣ r ;内含,则 d < R ﹣ r .【解答】 解:∵两圆半径之差 =6﹣ 2=4=圆心距, ∴两个圆的地点关系是内切. 应选 B .6.( 4 分)( 2015?黄浦区二模)以下命题中真命题是( )A .对角线相互垂直的四边形是矩形B .对角线相等的四边形是矩形C.四条边都相等的四边形是矩形D.四个内角都相等的四边形是矩形【剖析】依据矩形的判断方法对四个命题进行判断.【解答】解: A 、对角线相等的平行四边形是矩形,因此 A 选项错误;B、对角线相等的平行四边形是矩形,因此 B 选项错误;C、四个角都相等的四边形是矩形,因此 C 选项错误;D、四个角都相等的四边形是矩形,因此 D 选项正确.应选 D.二、填空题(每题 4 分,共 48 分)2 2 7.( 4 分)( 2015?黄浦区二模)计算:( a ) = 【剖析】依据幂的乘方和积的乘方的运算法例求解.2 2 4【解答】解:( a ) =a .4a .故答案为: a 4.8.( 4 分)( 2015?房山区二模)分解因式:2x 2﹣ 8x+8= 2(x﹣ 2)2.【剖析】先提公因式2,再用完整平方公式进行因式分解即可.2【解答】解:原式 =2( x ﹣ 4x+4)故答案为2( x﹣ 2)2.9.( 4 分)( 2015?黄浦区二模)计算:+=.【剖析】原式通分并利用同分母分式的加法法例计算,即可获得结果.【解答】解:原式 ==,故答案为:10.( 4 分)( 2004?上海)方程=x ﹣1 的根是x=3.【剖析】把方程两边平方去根号后求解,注意查验.2即( x+2)(x﹣ 3) =0,解得: x= ﹣2 或 x=3 ,代入原方程,当x= ﹣2 时,左侧 ==3,右侧 =﹣ 3,原方成不建立.当 x=3 时,左侧 = ,右侧 =2,原方程建立.故方程=x ﹣ 1 的根是 x=3 ,故此题答案为:x=3 .11.(4 分)( 2015?黄浦区二模)假如抛物线2y= ( 2﹣ a) x +3x ﹣a 的张口向上,那么 a 的取值范围是a< 2 .【剖析】依据二次函数的性质可知,当抛物线张口向上时,二次项系数2﹣ a>0,解不等式即可求得 a 的取值.【解答】解:由于抛物线 y=( 2﹣ a) x 2+3x﹣ a 的张口向上,因此 2﹣ a>0,即 a<2.故答案为: a< 2.12.( 4 分)( 2015?黄浦区二模)某校八年级共四个班,各班寒假出门旅行的学生人数如图所示,那么三班出门旅行学生人数占整年级出门旅行学生人数的百分比为40% .【剖析】依据条形统计图给出的数据求出出门旅行学生的总人数,再用三班出门旅行学生人数除以总人数即可得出答案.【解答】解:三班出门旅行学生人数占整年级出门旅行学生人数的百分比为×100%=40% ;故答案为: 40%.13.( 4 分)( 2015?黄浦区二模)将一枚质地平均的硬币投掷 2 次,硬币正面均向上的概率是.【剖析】列举出全部状况,看正面都向上的状况数占总状况数的多少即可.【解答】解:如下图:共 4 种状况,正面都向上的状况数有 1 种,因此概率是.故答案是.14.( 4 分)(2015?黄浦区二模)假如梯形的下底长为7,中位线长为5,那么其上底长为3.【剖析】设出梯形的上底长,直接运用梯形的中位线定理列出对于上底λ的方程,求出λ即可解决问题.【解答】解:设梯形的上底长为λ;由题意得:,解得:λ=3,故答案为 3.15.(4 分)( 2015?黄浦区二模)已知AB 是⊙ O 的弦,假如⊙ O 的半径长为5, AB 长为 4,那么圆心 O 到弦 AB 的距离是.【剖析】依据题意画出图形,过点O 作 OD ⊥AB 于点 D,由垂径定理可得出AD 的长,在Rt△ OAD 中,利用勾股定理及可求出OD 的长.【解答】解:如下图:过点 O 作 OD⊥AB 于点 D,∵AB=4 ,∴AD= AB= ×4=2 ,在 Rt△ OBD 中,∵OA=5 , AD=2 ,∴OD===.故答案为:.16.(4 分)( 2015?黄浦区二模)如图,在平行四边形ABCD 中,点 M 是边 CD 中点,点 N是边BC上的点,且=.设=,=,那么可用、表示为﹣.【剖析】第一由四边形ABCD 是平行四边形,求得= =,又由点M是边CD中点,点N 是边 BC 上的点,且=,求得与,再利用三角形法例求解即可求得答案.【解答】解:∵四边形ABCD 是平行四边形,∴= =,∵点 M 是边 CD 中点,点N 是边 BC 上的点,且=,∴==,==,∴=﹣=﹣.故答案为:﹣.17.( 4 分)( 2015?黄浦区二模)如图,△ABC是等边三角形,若点 A 绕点 C 顺时针旋转30°至点 A ′,联络 A ′B,则∠ ABA ′度数是15° .【剖析】如图,第一运用旋转变换的性质获得AC=A ′C,∠ACA ′=30 °;运用等腰三角形的性质获得,∠ A ′BC=45 °,借助∠ ABC=60 °,即可解决问题.【解答】解:如图,由题意得:AC=A ′C,∠ ACA ′=30 °;∵△ ABC 为等边三角形,∴∠ ACB= ∠ ABC=60 °,AC=BC ,∴BC=A ′C,∠ A ′BC= ∠ BA ′C==45°,∴∠ ABA ′=60 °﹣ 45°=15°.18.( 4 分)( 2015?黄浦区二模)如图 1,点 P 是以 r 为半径的圆 O 外一点,点 P′在线段 OP 上,若知足 OP?OP′=r 2,则称点 P′是点 P 对于圆 O 的反演点.如图 2,在 Rt△ ABO 中,∠B=90 °, AB=2 ,BO=4 ,圆 O 的半径为 2,假如点 A ′、B ′分别是点 A 、B 对于圆 O 的反演点,那么 A ′B′的长是.【剖析】先证明△ AOB ∽△ B ′OA ′,而后依据相像三角形的对应角相等能够推知∠OA ′B′=∠OBA=90 °,依据勾股定理即可求得.【解答】解:∵ A ′、 B′分别是点 A 、 B 对于圆 O 的反演点,∴=,又∵∠ O=∠ O,∴△ AOB ∽△ B′OA ′,∴∠ OA ′B′=∠ OBA=90 °,∵ A B=2 , BO=4 ,圆 O 的半径为 2, ∴OA=2 ,∴OA ′==,OB ′==1,∴A ′B ′==.故答案为:.三、解答题( 48 分)19.( 6 分)( 2015?黄浦区二模)计算: 0﹣(﹣ 1﹣ |.4 + ﹣ 1) +|1 【剖析】 先依据 0 指数幂及负整数指数幂的计算法例、 绝对值的性质及数的开方法例分别计算出各数,再依据实数混淆运算的法例进行计算即可.【解答】 解:原式 =1+2﹣ + ﹣ 1=3﹣( +1 )+ ﹣1 =3﹣﹣1+﹣1=1.20.( 6 分)( 2015?黄浦区二模)解方程组: .【剖析】 把 x ﹣ y=1 化为 x=y+1 ,代入方程 ① ,求出 y ,再把 y 值代入 x=y+1 ,求出 x 即可.【解答】 解:由 ② 得: x=y+1 ③ ,把③ 代入 ① 得:( y+1) 2﹣ 2y 2=﹣ 2,即 y 2﹣ 2y ﹣ 3=0 , 解得: y 1=﹣ 1, y 2=3 ,把 y 1=﹣ 1, y 2=3 代入 ③ 得 x 1=0, x 2=4.故方程组的解为, .21.( 6 分)( 2015?盘锦二模)温度往常有两种表示方法:华氏度(单位:℉)与摄氏度(单 位:℃),已知华氏度数 y 与摄氏度数 x 之间是一次函数关系,如表列出了部分华氏度与摄氏度之间的对应关系:华氏度数 x (℃) 0 35 100 摄氏度数 y (℉)3295212(1)采用表格中给出的数据,求 y 对于 x 的函数分析式(不需要写出该函数的定义域);(2)已知某天的最低气温是﹣ 5℃,求与之对应的华氏度数.【剖析】( 1)设一次函数的分析式为 y=kx+b ,由待定系数法求出其解即可;( 2)当 x=﹣ 5 时代入( 1)的分析式求出其解即可.【解答】 解:( 1)设 y=kx+b ,把( 0, 32)和( 35, 95)代入得:,解得:,∴y=.(2)当 x=﹣ 5 时, y=﹣ 9+32=23 .∴某天的最低气温是﹣5℃,与之对应的华氏度数为23℉.22.(6 分)( 2015?黄浦区二模)如图,在梯形ABCD 中,AD ∥ BC,AB ⊥ BC ,已知 AD=2 ,cot∠ ACB=,梯形ABCD的面积是9;(1)求 AB 的长;(2)求 tan∠ ACD 的值.【剖析】( 1)依据锐角三角函数设出边长,利用梯形的面积公式列方程即可;(2)作 DH ⊥ AC 于 H ,利用三角形相像,列比率式求出DH=,AH=,CH=AC﹣AH=,即可求出tan∠ ACD==.【解答】解:( 1)在 R t ABC 中, cot∠ ACB==,设 BC=4k , AB=3k ,∴S 梯形ABCD =(AD+BC)?AB=(2+4k)?3k=9,∴k=1 或 k=﹣(舍),∴A B=3 ;(2)作 DH⊥ AC 于 H,∵AD ∥BC,∴∠ DAH= ∠ ACB ,∴△ ADH ∽△ CAB ,∴= = =,∴DH=,AH=,∴CH=AC ﹣ AH=,∴t an∠ACD== .23.( 6 分)( 2015?黄浦区二模)如图,在正方形ABCD 中,点 E 在对角线AC 上,点 F 在边 BC 上,联络 BE 、 DF, DF 交对角线 AC 于点 G,且 DE=DG ;(1)求证: AE=CG ;(2)求证: BE∥ DF .【剖析】( 1)先证∠ AED= ∠ CGD ,再证明△ADE ≌△ CDG ,依据全等三角形的对应边相等即可得出结论;(2)先证明△ BCE ≌△ DCE ,得出对应角相等∠ BEC= ∠ DEG,得出∠ BEC= ∠ DGE,即可证出平行线.【解答】证明:( 1)∵ DE=DG ,∴∠ DEG= ∠ DGE,∴∠ AED= ∠ CGD ,∵四边形 ABCD 是正方形,∴AD=CD=BC ,∠ DAC= ∠ BCE= ∠DCA=45 °,在△ ADE 和△ CDG 中,,∴△ ADE ≌△ CDG ( AAS ),∴AE=CG ;(2)在△BCE 和△ DCE 中,,∴△ BCE ≌△ DCE (SAS),∴∠ BEC= ∠ DEG ,∴∠ BEC= ∠ DGE ,∴BE ∥DF.24.( 9 分)( 2015?黄浦区二模)如图,在平面直角坐标系xOy 中,已知点 A 的坐标为( a,3)(此中 a> 4),射线 OA 与反比率函数y=的图象交于点P,点 B 、C 分别在函数y=的图象上,且AB ∥ x 轴, AC ∥ y 轴;(1)当点 P 横坐标为 6,求直线 AO 的表达式;(2)联络 BO,当 AB=BO 时,求点 A 坐标;(3)联络 BP、CP,试猜想:的值能否随 a 的变化而变化?假如不变,求出的值;假如变化,请说明原因.【剖析】( 1)依据自变量的值,可得函数值,依据待定系数法,可得函数分析式;(2)依据函数值,可得自变量的值,依据勾股定理,可得OB 长,依据AB=OB ,可得 A 点坐标;(3)联立函数分析式,可得方程组,依据解方程组,可得P 点坐标,依据自变量与函数值的对应关系,可得 B 、 C 点坐标,依据三角形面积公式,可得答案.【解答】解:( 1)当 x=6 时, y=2 ,∴ P( 6, 2),设直线AO 的分析式为 y=kx ,代入 P( 6, 2)得 k=,∴直线 AO 的分析式为y= x;(2)由 AB ∥x 轴,得 B 点横坐标为 4.当 y=3 时, x=4 ,∴B ( 4,3).OB==5,∵AB=OB ,∴5=a﹣ 4,即 a=9,∴A(9,3);(3)直线 AO 的分析式为y= x,联立 y=,得,解得.∴P(2,),作 PM⊥ AB ,PN ⊥AC .当 x=a 时, y=,即C(a,),当y=3时,x=4,即B(4,3).AC=3 ﹣, PN=a﹣ 2, AB=a ﹣4, PM=3 ﹣,∴S△ABP=(a﹣ 4)( 3﹣), S△ACP=( a﹣ 2)( 3﹣),∴==1.25.( 9 分)( 2015?黄浦区二模)如图, Rt△ ABC 中,∠ C=90 °,∠ A=30 °,BC=2 ,CD 是斜边 AB 上的高,点 E 为边 AC 上一点(点 E 不与点 A、 C 重合),联络 DE ,作 CF⊥ DE,CF 与边 AB 、线段 DE 分别交于点 F、 G;(1)求线段 CD、 AD 的长;(2)设 CE=x ,DF=y ,求 y 对于 x 的函数分析式,并写出它的定义域;(3)联络 EF,当△ EFG 与△ CDG 相像时,求线段 CE 的长.【剖析】( 1)利用特别角的三角函数可知sin∠ B=,tan∠A=,由此求得线段CD 、AD的长;(2)证得△ CDE ∽△ BFC ,得出=,整理得出答案即可;(3)分两种状况考虑:①当△ EGF∽△ DGC 时;②当△ FEG∽△ CGD 时;利用相像的性质商讨得出答案即可.【解答】解:( 1)在 Rt△ BCD 中,BC=2 ,∠ B=90 °﹣∠ A=60 °,sin∠ B=,即 CD=×2=,同理 tan∠ A=,AD==3;(2)∵∠ CDE= ∠ BFC=90 °﹣∠ DCF,∠ ECD= ∠B=60 °,∴△ CDE ∽△ BFC ,∴= ,即=,∴y=﹣1,(≤x<2);(3)∠ EGF=∠ CGD=90 °①当△ EGF∽△ DGC 时,∠ GEF=∠ GDC ,∴E F∥DC,∴= ,即= =,解得 x=;②当△ EG∽△ CGD 时,∴∠ GEF=∠ GCD= ∠GDF ,∴E F=DF ,又∵ CF⊥ DE ,∴E G=DG ,∴C D=CE=;综上, CE=或;。

2015年上海市黄浦区中考数学二模试卷

2015年上海市黄浦区中考数学二模试卷

2015年上海市黄浦区中考数学二模试卷参考答案与试题解析一、选择题(每题4分,共24分)1.(4分)(2015•黄浦区二模)下列分数中,可以化为有限小数的是()A.B.C.D.【考点】:实数的概念M121【难易度】:容易题【分析】:根据分数与小数间的转化,可得.A、是无限循环小数,故A错误;B、是无限循环小数,故B错误;C、=0.2是有限小数,故C正确;D、是无限循环小数,故D错误;【解答】:答案C.【点评】:本题考查了有限小数与无限小数的定义,难度不大,解题时,只要将分数化为小数可直接得出答案。

2.(4分)(2015•黄浦区二模)下列二次根式中最简根式是()A.B.C.D.【考点】:最简二次根式M223【难易度】:容易题【分析】:判定一个二次根式是否为最简二次根式,就是逐个检查最简二次根式的两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.则:A、被开方数含开的尽的因数,故A错误;B、被开方数含开的尽的因数,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含分母,故D错误;【解答】:答案C.【点评】:本题考查了最简二次根式的判断,难度不大,需要熟记最简二次根式必须满足的两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.(4分)(2015•黄浦区二模)如表是某地今年春节放假七天最低气温(℃)的统计结果日期除夕初一初二初三初四初五初六最低气温(℃) 4 4 5 6 10 6 4这七天最低气温的众数和中位数分别是()A.4,4 B.4,5 C.6,5 D.6,6【考点】:中位数、众数M524【难易度】:容易题【分析】:由众数就是出现次数最多的数,而中位数就是大小处于中间位置的数或中间两数的平均数。

将一周气温按从小到大的顺序排列为4,4,4,5,6,6,10,则4出现次数的最多,故众数为4;中位数为第四个数5.【解答】:答案B.【点评】:本题考查了众数和中位数的计算方式,属于基础题,需要熟记:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做这组数据的众数,注意一组数据的众数可以不唯一。

黄浦区2015年初三数学教学质量检测试卷参考答案

黄浦区2015年初三数学教学质量检测试卷参考答案

黄浦区2015年九年级学业考试模拟考数学参考答案与评分标准一、选择题:(本大题共6题,每题4分,满分24分)1. C ;2. C ;3.B ;4. D ;5. B ;6. D .二、填空题:(本大题共12题,每题4分,满分48分)7. 4a ; 8. 22(2)x -; 9. 21(1)(1)x x x ++-; 10. 3x =; 11. 2a <; 12. 40%; 13.14 ; 14. 3; 15.16. 1123a b -; 17. 15︒;18. . 三、解答题:(本大题共7题,满分78分)19. (本题满分10分)原式=))1211+-+ ………………………………………………………(8分)=1. ………………………………………………………………………………(2分)20. (本题满分10分)解:由②得 1x y =+.③ ……………………………………………………(2分)将③代入①得22(1)22y y +-=-.………………………………………………………(1分)整理,得 2230y y --=.……………………………………………………………(2分)解得 11y =-,23y =. …………………………………………………………(2分)代入③得 10x =,24x =.………………………………………………………………(2分)所以,原方程的解是110,1;x y =⎧⎨=-⎩214,3.x y =⎧⎨=⎩…………………………………………………(1分)21. (本题满分10分,第(1)满分7分,(2)小题满分3分)解:(1)设函数解析式为y kx b =+(0k ≠). ……………………………………………(2分)由0x =时,32y =, 得 320k b =⋅+.…………………………………………(1分)解得 32b = . ………………………………………………(1分)由100x =时,212y =,得 2121003k =+. ……………………………………(1分)解得 95k =. ……………………………………………………(1分) ∴y 关于x 的函数解析式是9325y x =+. ………………………………………………(1分)(2)将5x =-,代入9325y x =+,得9(5)325y =⋅-+. …………………………………(1分)解得 23y =. …………………………………………………………………(1分)∴这天的最低气温是23F . ……………………………………………………………(1分)22. (本题满分10分,第(1)、(2)小题满分各5分)解:(1)设AB x =.∴ 4cot 3BC AB ACB x =⋅∠=. …………………………………………………………(1分)由题意得431(2)92x x +⋅=. …………………………………………………………(2分) 解得1293, 2x x ==-(舍). …………………………………………………………(1分)所以AB 的长为3. ………………………………………………………………………(1分)(2)过点D 作DE ⊥AC ,垂足为E .…………………………………………………………(1分)在Rt △ABC 中,AB =3,BC =4,∴5AC =. ……………………………………………………………(1分) ∴ 3sin 5ABACB AC ∠==,4cos 5BCACB AC ∠==. ……………………………………(1分)∵AD //BC ,∴DAC ACB ∠=∠.在Rt △AED 中,AD =2,s i n 56D E A D D A C =⋅∠=,cos 58AE AD DAC =⋅∠=.………………………………(1分)在Rt△CED中,665tan81755DEACDCE∠===-.………………………………………(1分)23. (本题满分12分,第(1)、(2)小题满分各6分)证明:(1)∵四边形ABCD是正方形,∴AD=CD. ……………………………………………………………………………(1分)∴DAE DCG∠=∠.……………………………………………………………………(1分)∵DE=DG,∴DEG DGE∠=∠.………………………………………………………(1分)∴AED CGD∠=∠.……………………………………………………………………(1分)在△AED与△CGD中,DAE DCG∠=∠,AED CGD∠=∠,AD=CD,∴△AED≌△CGD.……………………………………………………………………(1分)∴AE=CG. ……………………………………………………………………………(1分)(2) ∵四边形ABCD是正方形,∴AD//BC. ………………………………………………………………………………(1分)∴CG CFAG AD=. …………………………………………………………………………(1分)∵AE=CG.∴AC AE AC CG-=-,即CE=AG. ……………………………………………………………………………(1分)∵四边形ABCD是正方形,∴AD=BC. ……………………………………………………………………………(1分)∴CG CFCE BC=. …………………………………………………………………………(1分)∴BE//DF. ……………………………………………………………………………(1分)24. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)解:(1)∵反比例函数12yx=的图像经过横坐标为6的点P,∴点P的坐标为(6,2).………………………………………………………(1分)设直线AO的表达式为y kx=(0k≠).…………………………………………(1分)将点P(6,2)代入y kx=,解得13k=.∴所求反比例函数的解析式为13y x =.………………………………………………(1分)(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,解得 4x =. ∴点B 坐标为(4,3).…………………………………………………………………(1分)∵AB =BO ,∴4a -解得9a =. ……………………………………………………………(2分) ∴点A 坐标为(9,3).………………………………………………(1分)(3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E , ∴32ADO AEO S S a ∆∆==.………………………………………………(1分) ∵点C 坐标为(a ,12a).∴6CEO S ∆=,同理6BDO S ∆=,…………………(1分) ∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.………………………(1分) ∵△ABP 与△ABO 同高,∴ABP ABO S AP S AO ∆∆=.……………………………(1分) 同理ACP ACO S AP S AO ∆∆=.∴1ABP ACPS S ∆∆=. 即当a 变化时,ABP ACP S S ∆∆的值不变,且恒为1.………………………(1分) 25. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分) 解:(1)∵Rt △ABC 中,90C ︒∠= ,∵CD 是斜边AB 上的高, 即90ADC ︒∠=,又∵90C ︒∠= ,∴BCD ACD A ACD ∠+∠=∠+∠.∴30BCD A ∠=∠=.………………………………………………(1分)在Rt △BDC 中,cos 2cos303CD BC BCD =⋅∠=⋅=1分) 在Rt △ADC 中,cot 3AD CD A =⋅∠=. …………………………(1分)(2)∵CF ⊥DE ,CD ⊥AB ,∴CDG EDF CFD EDF ∠+∠=∠+∠.即=CDG CFD ∠∠. ……………(1分) 同理 ACD B ∠=∠. △CDE ∽△BFC .…………………………………………………(1分) ∴CE CD BC BF =,即CE CD BC DF BD=+. 又∵在Rt △BDC 中,sin 1BD BC BCD =⋅∠=, ∴2x =.………………………………………………………(1分)∴y =x ≤<.……………………………………(2分) (3)∵EGF CGD ∠=∠,1°当FEG CDG ∠=∠时,EF //CD . ∴FD AD CE AC =,即x x .……………………………(1分)解得x =负值已舍).…………………………………………………………(1分) 2°当FEG DCG ∠=∠时,∵90CDF ∠=,CF ⊥DE ,∴DCG EDF ∠=∠.又∵FEG DCG ∠=∠,∴EDF FEG ∠=∠.∴EF =FD .又∵CF ⊥DE ,∴GE =GD ,即CF 是DE 的垂直平分线.…………………………………(1分)∴CE =CD.………………………………………………………………………………(1分)综上所述CE1分)。

2015年上海各区中考数学二模压轴题24、25题图文解析

2015年上海各区中考数学二模压轴题24、25题图文解析

《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄浦区2015年九年级学业考试模拟卷
一. 选择题
1. 下列分数中,可以化为有限小数的是()
A. 1
15; B. 1
18
; C. 3
15
; D. 3
18

2. 下列二次根式中最简根式是()
A. B. C. D.
3. 下表是某地今年春节放假七天最低气温(C︒)的统计结果
A. 4,4;
B. 4,5;
C. 6,5;
D. 6,6;
4. 将抛物线2
y x
=向下平移1个单位,再向左平移2个单位后,所得新抛物线的表达式是()
A. 2
(1)2
y x
=-+; B. 2
(2)1
y x
=-+;
C. 2
(1)2
y x
=+-; D. 2
(2)1
y x
=+-;
5. 如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是()
A. 内含;
B. 内切;
C. 外切;
D. 相交;
6. 下列命题中真命题是()
A. 对角线互相垂直的四边形是矩形;
B. 对角线相等的四边形是矩形;
C. 四条边都相等的四边形是矩形;
D. 四个内角都相等的四边形是矩形;
二. 填空题
7. 计算:22()a = ;
8. 因式分解:2288x x -+= ; 9. 计算:
111
x x x +=+- ; 10. 方程1x =-的根是 ;
11. 如果抛物线2(2)3y a x x a =-+-的开口向上,那么a 的取值范围是 ;
12. 某校八年级共四个班,各班寒假外出旅游的学生人数如图所示,那么三班外
出旅游学生人数占全年级外出旅游学生人数的百分比为 ;
13. 将一枚质地均匀的硬币抛掷2次,硬币证明均朝上的概率是 ; 14. 如果梯形的下底长为7,中位线长为5,那么其上底长为 ;
15. 已知AB 是O e 的弦,如果O e 的半径长为5,AB 长为4,那么圆心O 到弦AB
的距离是 ;
16. 如图,在平行四边形ABCD 中,点M 是边CD 中点,点N 是边BC 上的点,

1
2CN BN =,设AB a =uu u r r ,BC b =uu u r r ,那么MN uuu r 可用a r 、b r 表示为 ; 17. 如图,△ABC 是等边三角形,若点A 绕点C 顺时针旋转30°至点A ',联结
A B ',则ABA '∠度数是 ;
18. 如图,点P 是以r 为半径的圆O 外一点,点P '在线段OP 上,若满足
2OP OP r '⋅=,则称点P '是点P 关于圆O 的反演点,如图,在Rt △ABO 中,90B ∠=︒,2AB =,4BO =,圆O 的半径为2,如果点A '、B '分别是点A 、B 关于圆O 的反演点,那么A B ''的长是 ;
三. 解答题
19.
计算:10
12
481)|1-+-+;
20. 解方程组:22221x y x y ⎧-=-⎨-=⎩①
②;
21. 温度通常有两种表示方法:华氏度(单位:F ︒)与摄氏度(单位:C ︒),已知华氏度数y 与摄氏度数x 之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:
定义域);
(2)已知某天的最低气温是-5C ︒,求与之对应的华氏度数;
22. 如图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,已知2AD =,
4
cot 3
ACB ∠=,梯形ABCD 的面积是9; (1)求AB 的长;
(2)求tan ACD ∠的值;
23. 如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,联结BE 、
DF ,DF 交对角线AC 于点G ,且DE DG =;
(1)求证:AE CG =;
(2)求证:BE ∥DF ;
24. 如图,在平面直角坐标系xOy 中,已知点A 的坐标为(,3)a (其中4a >),射线OA 与反比例函数12y x =
的图像交于点P ,点B 、C 分别在函数12
y x
=的图像上,且AB ∥x 轴,AC ∥y 轴;
(1)当点P 横坐标为6,求直线AO 的表达式; (2)联结BO ,当AB BO =时,求点A 坐标; (3)联结BP 、CP ,试猜想:ABP
ACP
S S ∆∆的值是否随a 的变化而变化?如果不变,求出
ABP
ACP
S S ∆∆的值;如果变化,请说明理由;
25. 如图,Rt △ABC 中,90C ∠=︒,30A ∠=︒,2BC =,CD 是斜边AB 上的高,点E 为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G ; (1)求线段CD 、AD 的长;
(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域; (3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长;
2015年黄浦区初三二模数学参考答案
一. 选择题
1. C ;
2. C ;
3. B ;
4. D ;
5. B ;
6. D ; 二. 填空题
7. 4
a ; 8. 2
2(2)x -; 9. 221
1
x x +-; 10. 3x =; 11. 2a <; 12. 40%;
13.
1
4
; 14. 3; 15. 16.
1123a b -; 17. 15︒; 18. 三. 解答题
19. 解:原式
12131)11
=+=-=; 20. 解:由②得:1x y =+,代入①得:22(1)22y y +-=-,即2230y y --=, ∴(1)(3)0y y +-=,∴11y =-,23y =,∴10x =,24x =,
∴方程组的解为01x y =⎧⎨=-⎩或4
3x y =⎧⎨=⎩

21. 解:设y kx b =+,代入(0,32)和(35,95),即032
3595
b k b +=⎧⎨+=⎩,
∴32b =,95k =
,∴9
325
y x =+, 当5x =-时,93223y =-+=;
22. 解:(1)Rt ABC 中,4
cot 3
BC ACB AB ∠=
=,设4BC k =,3AB k =, ∴11
()(24)3922
ABCD S AD BC AB k k =⋅+⋅=+⋅=,∴1k =或32k =-(舍),
∴3AB =,4BC =,5AC =;
(2)作DH AC ⊥,∵AD ∥BC ,∴DAH ACB ∠=∠,
∴Rt ADH ∽Rt CAB ,∴
2
5
DH AD AH AB AC BC ===, ∴65DH =,85AH =,∴17
5
CH AC AH =-=,
∴6
tan 17
DH ACD CH ∠=
=; 23. 解:(1)∵DE DG =,∴DEG DGE ∠=∠,∴AED CGD ∠=∠, 又∵AD CD =,45DAC DCA ∠=∠=︒,∴△ADE ≌△CDG , ∴AE CG =
(2)∵BC CD =,CE CE =,45BCE DCE ∠=∠=︒, ∴△BCE ≌△DCE ,∴BEC DEC DGE ∠=∠=∠, ∴BE ∥DF ;
24. 解:(1)当6x =时,2y =,∴(6,2)P ,设:OA l y kx =,
代入(6,2)P 得13k =,∴1
:3
OA l y x =;
(2)当3y =时,4x =,∴(4,3)B ,∵AB BO =, ∴54a =-,即9a =,∴(9,3)A (3)3:OA l y x a =
,联立12y x =
,得P ,
作PM AB ⊥,PN AC ⊥,
当x a =时,12y a =
,即12
(,)C a a
,当3y =时,4x =,即(4,3)B ,
∴1(4)(32ABP S a =-
,112()2ACP S a a =--,
∴3121ABP ACP a S S -
-==; 25. 解:(1)CD =,3AD =;
(2)∵90CDE BFC DCF ∠=∠=︒-∠,60ECD B ∠=∠=︒,
∴△CDE ∽△BFC ,∴CE CD BC BF =,即
2x =,
∴1y =
-,x ≤< (3)90EGF CGD ∠=∠=︒
① △EGF ∽△DGC 时,GEF GDC ∠=∠,∴EF ∥DC ,
∴CE DF AC AD =
1
33y x ==
,解得x =; ② △EGF ∽△CGD 时,∴GEF GCD GDF ∠=∠=∠,
∴EF DF =,又∵CF DE ⊥,∴EG DG =
,∴CD CE ==
综上,CE =。

相关文档
最新文档