建筑材料材料的基本性质
建筑材料的基本性质
建筑材料的基本性质第⼀章建筑材料的基本性质1.建筑材料的基本物理性质密度:材料在绝对密实状态下单位体积的质量。
表观密度:材料在⾃然状态下单位体积的质量堆积密度:散粒或粉状材料,如砂、⽯⼦、⽔泥等,在⾃然堆积状态下单位体积的质量。
孔隙率:在材料⾃然体积内孔隙体积所占的⽐例。
空隙率:散粒材料⾃然堆积体积中颗粒之间的空隙体积所占的⽐例。
空隙率的⼤⼩反映了散粒材料的颗粒互相填充的致密程度。
材料的压实度:散粒堆积材料被碾压或振压等压实的程度。
相对密度:散粒材料压实程度的另⼀种表⽰⽅法。
2.材料与⽔有关的性质①亲⽔性:材料能被⽔润湿的性质(亲⽔性材料与⽔分⼦的亲和⼒⼤于⽔分⼦⾃⾝的内聚⼒)憎⽔性:材料不能被⽔润湿的性质。
②吸⽔性:材料浸⼊⽔中吸收⽔的能⼒(材料吸⽔率是固定的)吸湿性:材料在潮湿空⽓中吸收⽔分的性质。
【平衡含⽔率】:在⼀定温度和湿度条件下,材料与空⽓湿度达到平衡时的含⽔率。
③耐⽔性:材料长期在⽔作⽤下不破坏,且其强度也不显著降低的性质。
④抗渗性:材料抵抗压⼒⽔渗透的性质。
⑤抗冻性:材料在吸⽔饱和状态下,能经受多次冻融作⽤⽽不破坏,且强度和质量⽆显著降低的性质。
3.①材料的强度:材料在外⼒作⽤下抵抗破坏的能⼒。
影响材料强度的因素:孔隙率低,强度⾼温度⾼含⽔率⾼,强度低②材料的⽐强度:是材料的强度与其表观密度的⽐值③材料的理论强度:指结构完整的理想固体从材料结构的理论上分析,材料所能承受的最⼤应⼒。
4.弹性:材料在外⼒作⽤下产⽣变形,当外⼒除去后,变形能完全恢复的性质。
塑性:材料在外⼒作⽤下产⽣变形,外⼒除去后,仍保持变形后的形状,并不破坏的性质5.耐久性:材料在所处环境下,抵抗所受破坏作⽤,在规定的时间内,不变质、不损坏,保持其原有性能的性质。
6.材料(微观结构):晶体、玻璃体、胶体晶体类型:原⼦晶体,离⼦晶体,分⼦晶体,⾦属晶体第三章⽓硬性胶凝材料1.胶凝材料:在⼀定条件下,通过⾃⾝的⼀系列变化⽽把其他材料胶结成具有强度的整体的材料①有机胶凝材料:以天然或⼈⼯合成的⾼分⼦化合物为主要成分的胶凝材料。
建筑材料-第二章 建筑材料的基本性质
建筑材料-第二章建筑材料的基本性质建筑材料第二章建筑材料的基本性质建筑材料是构成建筑物的物质基础,其性能的优劣直接影响着建筑物的质量、耐久性和使用功能。
在建筑工程中,了解建筑材料的基本性质是至关重要的,这有助于我们合理选择和使用材料,确保建筑的安全、舒适和经济。
一、物理性质(一)密度密度是指材料在绝对密实状态下单位体积的质量。
对于大多数固体材料而言,绝对密实状态是指不含任何孔隙的状态。
但在实际情况中,完全不含孔隙的材料几乎不存在,因此在测定密度时,通常会将材料磨成细粉,然后用李氏瓶等方法测定其体积,从而计算出密度。
(二)表观密度表观密度是指材料在自然状态下单位体积的质量。
这里的自然状态包括材料内部存在的孔隙。
例如,对于块状材料,在计算表观密度时,其体积是指材料的整体体积,包括内部孔隙。
(三)堆积密度堆积密度是指粉状或粒状材料在堆积状态下单位体积的质量。
堆积状态下的体积不仅包括材料颗粒的体积,还包括颗粒之间的空隙体积。
(四)孔隙率孔隙率是指材料内部孔隙的体积占材料总体积的百分比。
孔隙的存在会对材料的性能产生重要影响,例如,孔隙率较大的材料通常保温隔热性能较好,但强度可能相对较低。
(五)空隙率空隙率是指散粒状材料在堆积体积中,颗粒之间的空隙体积占堆积体积的百分比。
空隙率的大小反映了材料颗粒之间的填充程度,对材料的堆积密度和施工性能有重要意义。
(六)吸水性吸水性是指材料在水中吸收水分的能力。
通常用吸水率来表示,吸水率又分为质量吸水率和体积吸水率。
质量吸水率是指材料吸水饱和时所吸收水分的质量占材料干燥质量的百分比;体积吸水率是指材料吸水饱和时所吸收水分的体积占材料自然体积的百分比。
(七)吸湿性吸湿性是指材料在潮湿空气中吸收水分的性质。
吸湿性的大小用含水率表示,即材料中所含水分的质量占材料干燥质量的百分比。
(八)耐水性耐水性是指材料长期在水的作用下不破坏,其强度也不显著降低的性质。
通常用软化系数来表示,软化系数越大,说明材料的耐水性越好。
建筑材料的基本性质
θ
γSL
(a)
γL
(b)
材料的润湿示意图 a亲水性材料;b憎水性材料
二 材料的吸水性与吸湿性
1.吸水性Water Absorption
材料在水中能吸收水分的性质称吸水性.材料的吸水
性用吸水率Ratio of Water Absorption表示,
有质量吸水率与体积吸水率两种表示
方法.
1质量吸水率
二、 材料的孔隙率与空隙率
1. 密实度Dense 密实度是指材料的固体物质部分的体积占总体积的比例,
说明材料体积内被固体物质所充填的程度,即反映了材料 的致密程度,按下式计算:
DV V0
2.孔隙率Porosity
孔隙率材料内部孔隙的体积占材料总体积的百分率,称
为材料的孔隙率P.可用下式表示:
PV0 V V0
第二章 建筑材料的基本性质
建筑材料在建筑物的各个部位的功能不同,均要承受 各种不同的作用,因而要求建筑材料必须具有相应的基本 性质.
基本性质主要包括物理性质、力学性质、耐久性、 装饰性、防火性、防放射性等 物理性质包括密度、密实性、空隙率计算材料用量、 构件自重、配料计算、确定堆放空间 力学性质包括强度、弹性、塑脆韧性、硬度.
如混凝土抗冻等级F15是指所能承受的最大冻融次数是15次在15℃的温度冻结后,再在20 ℃的水中融化,为一次冻融循环,这时 强度损失率不超过25%,质量损失不超过5%.
五材料的抗冻性Frost Resistance
• 材料的抗冻性与材料的强度、孔结构、耐水性和吸水饱 和程度有关. • 材料抗冻等级的选择,是根据结构物的种类、使用条件、气 候条件等来决定的.
Wv Wm0
材料的吸水性与其亲水性、疏水性、孔隙率大小、孔隙特征有关.
建筑材料的基本性质
3)影响材料吸湿性的因素: (1)与吸水性相同。 材料的亲、憎水性 材料的孔隙率
材料的孔隙特征
(2)周围环境条件的影响,空气的湿度大、温度低时,材 料的吸湿性大,反之则小。
4)材料吸水与吸湿后对其性质的影响:会产生不利的影响, 如材料吸水或吸湿后,使其质量增加,体积膨胀,导热性增 大,强度和耐久性下降。
有一块砖重2625g,其含水率为5% ,该湿砖所含水
量为多少? 解:
(二)材料的吸水性与吸湿性 1、 吸水性:
1)概念:材料在水中能吸收水的性质。 2)指标:吸水率为材料浸水后在规定时间内吸入水的 质量(或体积)占材料干燥质量(或干燥时体积)的百分比。
质量吸水率:材料吸水饱和状态,所吸水分质量占干质量的百分率 体积吸水率:材料吸水饱和状态,所吸收水分体积占干体积百分率 材料吸水饱和
开口细微连通且孔隙率大,吸水性强。
·
2.吸湿性:
1)概念:材料在潮湿空气中吸收水分的性质
2)指标
含水率:自然状态, 材料所含水的质量占材料干
燥质量的百分比。
m含 m干 mw W含 100 % 100 % m干 m干
材料的含水率随温度和空气湿度的变化而变 化。当材料中的湿度与空气湿度达到平衡时的 含水率称为平衡含水率。
与质量有关的性质
第一章 建筑材料的基本性质
耐久性是一个综合性性能
耐久性主要包括:
耐水性 抗渗性 抗冻性 抗腐蚀性
耐水性
抗渗 性 抗老化性
耐久性
耐磨性
抗冻性
抗老化性
耐磨性
抗腐蚀性
42
建筑材料
1. 耐水性
广义定义:材料抵抗水破坏作用的能力。 狭义定义:材料浸水饱和后不被破坏,强度也不显著 降低的性质。 指标:软化系数KR 材料吸水饱和时的抗压强度,MPa
ε
B
A
混凝土的弹塑性变形曲线图
33
建筑材料
三、材料的脆性与韧性
脆性:材料在外力作用下突然破坏,无明显塑性变形。
韧性:冲击、振动荷载下,能吸收较大的能量,产生一定
变形不破坏。
脆性材料:石、砖、砼、陶瓷、玻璃、铸铁等 韧性材料:低碳钢、木材、玻璃钢等。
34
建筑材料
案例分析
1. 铸铁造桥酿成灾祸 概况:1876年6月,英国人用铸铁在北海的Tay湾上建造了全长
加气混凝土砌块虽多孔,但其气孔大多数为“墨水瓶”
结构,肚大口小,毛细管作用差,只有少数孔是水分蒸发 形成的毛细孔。故吸水及导湿均缓慢,材料的吸水性不仅 要看孔数量多少,还需看孔的结构。
11
建筑材料
五、材料的热工性质
导热性 热容量
12
建筑材料
(一) 导热性
定义:材料传导热量的能力。 指标:导热系数λ
温隔热性↑ ; P ↑ ,连通孔、粗孔↑ (孔隙粗大或贯通,空气对流
孔隙率和孔隙特征
作用加强),λ↑,导热性↑,保温隔热性↓ 。
15
建筑材料
影响导热性的因素:
棉袄浸水后保暖 性变差?
建筑材料 基本性质
胶体是建筑材料中常见的一种微观结构形式,通常是由极细微的固体颗粒均匀分 布在液体中所形成。胶体与晶体和玻璃体最大的不同是可呈分散相和网状结构两种结 构形式,分别祢为溶胶和凝胶。溶胶失水后成为具有一定强度的凝胶结构,可以把材 料中的晶体或其他固体颗粒粘结为整体,如气硬性胶凝材料水玻璃和硅酸盐水泥石中 的水化硅酸钙和水化铁酸钙都呈胶体结构。
(2)体积密度 也称容重,是指材料在自然状态下,单位体积所具有的质量,按下式计算
材料在自然状态下的体积是指包含材料内部孔隙在内的体积。 当材料含有水分时,其质量和体积就均有所变化。故测定体积密度时,须注明 含水情况。 在烘干状态下的体积密度,称为干体积密度。
(3)堆积密度 堆积密度是指粉状、颗粒或纤维材料在自然堆积状态下,单位体积(包含颗粒
材料的含水率大小,除与材料本身的特性有关外,还与周围环境的温度、湿度 有关。气温越低、相对湿度越大,材料的含水率也就越大。材料堆放在工地现场, 不断向空气中挥发水分,又同时从空气中吸收水分,其稳定的含水率是达到挥发与 吸收动态平衡时的一种状态。在混凝土施工配合比设计中要考虑砂、石料含水率的 影响。
材料含水或吸水对材料的影响:会使材料的表观胀,木材腐朽等结果。
5.层状构造 该种构造形式最适合于制造复合材料,可以综合各层材料的性能优势, 其性能往往呈各向异性。胶合板、复合木地板、纸面石膏板、夹层玻璃都 是层状构造。
2.1.4 建筑材料的孔隙
材料实体内部和实体间常常部分被空气所占据,一般称材料实体内部 被空气所占据的空间为孔隙,而材料实体之间被空气所占据的空间称为空 隙。孔隙状况对建筑各种基本性质具有重要的影响。
建筑材料 第一章 建筑材料的基本性质
解: 孔隙率
P V0 V 100% V0
1
0
100%
ρ0=m/V0=2420/(24×11.5×5.3)=1.65g/cm3
ρ=m/V=50/19.2=2.60g/cm3
P
1
1.65 2.6
100%
36.5%
§1.2 材料的力学性质
一、材料的强度
材料在外力作用下抵抗破坏的能力称为材料 的强度,以材料受外力破坏时单位面积上所承受 的外力表示。材料在建筑物上所承受的外力主要 有拉力、压力、剪力和弯力,材料抵抗这些外力 破坏的能力,分别称为抗拉、抗压、抗剪和抗弯 强度。
§1.3 材料与水有关的性质
建筑物中的材料在使用过程中经常会直接或 间接与水接触,如水坝、桥墩、屋顶等,为防 止建筑物受到水的侵蚀而影响使用性能,有必 要研究材料与水接触后的有关性质。
§1.3 材料与水有关的性质
(一)材料的亲水性与憎水性 材料容易被水润湿的性质称为亲水性。具有
这种性质的材料称为亲水性材料,如砖、石、 木材、混凝土等。
§1.2 材料的力学性质
课堂练习: 3、已知甲材料在绝对密实状态下的体积为40cm3,
在自然状态下体积为160 cm3;乙材料的密实度为 80%,求甲、乙两材料的孔隙率,并判断哪种材料 较宜做保温材料?
解:(1)甲材料的孔隙率
P甲=(V0-V)/V0×100%=(160-40)/160×100% =75%
§1.1 材料的基本物理性质
(一)密度 钢材、玻璃等少数密实材料可根据外形尺
寸求得体积。
大多数有孔隙的材料,在测 定材料的密度时,应把材料磨成 细粉,干燥后用李氏瓶测定其体 积(排液法)。材料磨的越细, 测得的密度数值就越精确。砖、 石等材料的密度即用此法测得。
1建筑材料的基本性质
例如:硅酸盐水泥熟料中,铝酸三钙、硅酸三钙、 硅酸二钙和铁铝酸四钙的性能都是不同的;
3. 相组成
系统:把一种或一组从周围环境中被想象 地孤 立起来的物质称为系统。 相:把系统中一切具有相同组成、相同物理性 质和化学性质的均匀部分的总和称为相。 材料内部,特别是固体相和结构特征直接决定 材料的力学性能。
4. 耐燃性
耐燃性是指材料能够经受火焰和高温的作用而 不破坏,强度也不显著降低的性能,是影响建 筑物防火、结构耐火等级的重要因素。 根据材料的耐燃性可分为四类: (1)不燃材料,混凝土,石材等 (2)难燃材料,沥青混凝土 (3)可燃材料,木材,沥青等 (4)易燃材料,纤维植物
5. 温度变形 温度变形是指材料在温度变化时产生体积变
Qa
AZ(t2 t1)
显然,导热系数越小,材料的隔热性能越好。
材料的导热系数决定于: (1)材料的化学组成、结构、构造; (2)孔隙率与孔隙特征、含水状况导热时的温度。
2. 热容量 材料加热时吸收热量,冷却时放出热量的性质称 为热容量。 热容量的大小用比热容来表示。 比热容在数值上等于1g材料,温度升高或降低 1K时所吸收或放出的能量Q。
化,多数的材料在温度升高时体积膨胀,温度 下降时体积收缩。用线膨胀系数α来表示
L
(t2 t1)L
第二节 材料的力学性质
材料的力学性质,主要是指在外力(荷载)作用 下抵抗破坏的能力和变形的有关性质。
一、理论强度 二、强度、比强度 三、材料的变形性质
一、理论强度
➢固体材料的强度主要取决于结构质点间的相互 作用力。 ➢理论上来说,材料受外力作用后破坏主要是由于 拉力造成质点间的断裂,或者是剪力造成质点间 的滑移。 ➢材料的理论强度一般都远远大于实际强度。
建筑材料的基本性质
建筑材料的基本性质1.力学性能:建筑材料的力学性能包括强度、刚度和韧性等。
强度是材料抵抗外部负荷的能力,是材料在拉伸、压缩、剪切和弯曲等力学行为中所表现出的性能。
刚度是材料对外部力反应的刚性程度,反映了材料在受力时的变形能力。
韧性是材料在受力过程中的延展能力,表征了材料在受到剪切力或冲击力时的抵抗能力。
2.耐久性:建筑材料的耐久性是指材料在使用环境中长期抵抗自然环境和人为因素的侵蚀能力。
材料的耐久性直接影响建筑物的使用寿命和维护成本。
主要影响材料耐久性的因素包括水分、温度、紫外线、化学腐蚀、微生物和物理破坏等。
3.热学性能:建筑材料的热学性能包括导热性、热膨胀性和隔热性等。
导热性是指材料传导热量的能力,是设计建筑物保温节能的重要指标。
热膨胀性是指材料在受热后体积变化的能力,影响着建筑物在温差变化时的变形和破坏。
隔热性是指材料对热量传递的阻止作用,是建筑物保温隔热的基础。
4.声学性能:建筑材料的声学性能包括隔声性和吸声性。
隔声性是指材料抵制声音传导的能力,是建筑物降低室内外噪音干扰的重要指标。
吸声性是指材料对声音能量的吸收能力,用于调节建筑内部声学环境。
5.光学性能:建筑材料的光学性能包括透光性、反射性和折射性等。
透光性是指材料对光的透过能力,影响建筑物室内外的采光和景观观赏效果。
反射性是指材料对光的反射作用,决定了建筑表面的光亮度和光线分布。
折射性是指材料对光的弯曲偏折作用,影响着建筑物玻璃幕墙和光学设备的使用效果。
6.造型性能:建筑材料的造型性能是指材料在加工和施工过程中的可塑性和可加工性。
可塑性是指材料在受力后的变形能力,影响着建筑结构设计和装饰效果。
可加工性是指材料在加工过程中的易加工性和加工效果,影响着建筑物施工工艺和表面质量。
总的来说,建筑材料的基本性质是多方面的,涵盖了力学、耐久、热学、声学、光学和造型等各方面。
这些性质的综合考虑对建筑设计和施工起着决定性的作用,能够保证建筑物的结构稳定、功能合理和寿命长久。
第一章 建筑材料的基本性质
第一章 建筑材料的基本性质 土木工程材料的基本性质,是指材料处于不同的使用条件和使用环境时,通常必须考虑的最基本的、共有的性质。
(1)材料的基本物理性质 1 密度材料在绝对密实状态下单位体积的质量用ρ表示。
按下式计算:V m=ρ材料的绝对密实体积是指不包括材料孔隙在内的体积。
钢材、玻璃等少数密实材料可根据外形尺寸求得体积。
大多数有孔隙的材料,在测定材料的密度时,应把材料磨成细粉,干燥后用李氏瓶测定其体积。
材料磨得越细,测得的密度数值就越精确。
2 表观密度材料在自然状态下单位体积的质量称为表观密度,用ρ 表示。
按下式计算:00V m=ρ材料在自然状态下的体积是指包含材料内部孔隙的体积。
当材料孔隙内含有水分时,其质量和体积(可以忽略)均有所变化,故测定表观密度时,须注明其含水情况。
按照含水状态分为:干表观密度、气干表观密度和饱和表观密度。
孔隙的分类 ①按尺寸大小:微细孔隙(D <0.01mm)细小孔隙( 0.01mm < D < 1mm)粗大孔隙(D>1mm)②孔隙的构造:开口孔隙 闭口孔隙干表观密度(干燥状态) 气干表观密度 (与空气湿度有关 平衡时的状态)00V m =ρoV m m 水+=0ρ 饱和表观密度(吸水饱和状态)饱和表观密度(吸水饱和状态)0V m m 饱和水+=ρ3 孔隙率在材料自然体积内孔隙体积所占的比例,称为材料的孔隙率,用Ρ表示。
按下式计算:%100)1(1%1000000⨯-=-=⨯-=ρρV V V V V P bk p p p +=孔隙率=开口孔隙率+闭口孔隙率开口孔隙率Pk=%1000⨯V V 开口孔隙闭口孔隙率Pb=%1000⨯V V 闭口孔隙4堆积密度散粒或粉状材料,如砂、石子、水泥等,在自然堆积状态下单位体积的质量称为堆积密度,用ρ' 表示。
按下式计算:00V m '='ρ由于散粒材料堆积的紧密程度不同,堆积密度可分为疏松堆积密度、振实堆积密度和紧密堆积密度。
建筑材料的基本性质
混凝土强度等级:C30、C35等 硅酸盐水泥强度等级:42.5级、52.5级等
强度值与强度等级不能混淆,强度 值是表示材料力学性质的指标,强度等 级是根据强度值划分的级别。
(3)比强度
思考:不同的材料如何比较强度?
比强度是衡量材料轻质高强的一个 指标,材料的强度与其表观密度之比,即:
比强度 f
0
几种主要材料的比强度值
材料
低碳钢 烧结普通砖
松木 普通混凝土
表观密度
' 0
(kg/m3)
7850
1700
500
2400
强度f (MPa)
420 10 100 40
比强度(f/ρo)
0.054 0.006 0.200 0.017
1.2.2 弹性和塑性
材料在外力作用下产生变形,外力撤 掉后变形能完全恢复的性质,称为弹性。 相应的变形称为弹性变形。
V0
0
2)空隙率
指散粒材料在其堆积体积中,颗粒之 间空隙体积占材料堆积体积的百分率 。
P ' V0 V0 100% (1 0 ) 100% 1 D
V0
0
P’+D’=1
1.1.2 材料与水有关的性质
思考:水滴在粘土砖表面和塑料表面有什 么不同?
材料在与水接触时,不同材料遇水后 和水的互相作用情况是不一样的,根据材 料表面被水润湿的情况,分为亲水性材料 和憎水性材料。
W含
m含 - m干 m干
100%
影响吸湿性的因素:
材料本身的性质,如亲水性或憎水性; 孔隙大小及孔隙特征等; 周围空气的温度和湿度 。 平衡含水率:与空气湿度相平衡时的含水率。
例:有100g湿砂,含水率为10%, 请问干砂有多少?
建筑材料的基本性质有哪些
建筑材料的基本性质有哪些1.力学性能:建筑材料需要具备一定的强度和刚度,以承受荷载并保持结构的稳定性。
强度指材料抗拉、抗压和抗弯的能力,刚度指材料在受力下变形的能力。
2.耐久性:建筑材料需要耐久,即在长期使用和环境影响下仍能保持其性能和功能。
耐久性受到材料的化学稳定性、耐热性、耐候性和耐腐蚀性等因素的影响。
3.导热性和隔热性:建筑材料需要具备良好的导热性和隔热性能。
导热性指材料传导热量的能力,隔热性指材料阻止热量传导的能力。
合适的导热性和隔热性能可以节约能源,并提高建筑的舒适度。
4.导电性:对于一些特殊需求,如电气工程中,材料的导电性成为一个重要的性能指标。
导电性指材料能否传导电流的能力。
5.透明性:建筑材料的透明性是指材料对可见光的透过能力。
对于建筑物中的窗户和立面材料,透明性是重要的设计和功能要求。
6.阻燃性:建筑材料需要具备一定的阻燃性能,以保证建筑物在火灾发生时不易燃烧及蔓延,并提供逃生通道和安全时间。
7.声学性能:建筑材料对声音的传播和吸收具有不同的性能。
声学性能的好坏直接影响建筑物的声学环境。
8.环境友好性:建筑材料的环境友好性包括对环境的污染程度、可再生性和回收利用率等方面。
环境友好的材料可减少对环境的影响,并推动可持续发展。
9.施工性能:建筑材料需要具备良好的施工性能,方便加工、搬运、安装和连接。
施工性能可以影响工程进度和质量。
10.经济性:建筑材料的经济性是指材料的成本效益和使用寿命之间的关系。
材料的经济性需要综合考虑材料的性能、价格和维护等因素。
综上所述,建筑材料的基本性质涉及了力学性能、耐久性、导热性和隔热性、导电性、透明性、阻燃性、声学性能、环境友好性、施工性能和经济性等方面。
在选择和使用建筑材料时,需要综合考虑这些性质的要求,并根据具体的工程需求做出合适的选择。
建筑材料的基本性质
1.1 基本物理性质
含孔材料的体积组成示意图如图1-1所示。从图-1可知,含孔材料 的体积可用以下三种方式表示。
(1)材料绝对密实体积。用V表示,是指材料在绝对密实状态下的体
积。
(2)材料的孔体积。用VP 表示,指材料所含孔隙的体积,分为开口 孔体积(记为VK)和闭口孔体积(记为VB )。
材料的堆积密度定义中亦未注明材料的含水状态。根据散粒材料的 堆积状态,堆积体积分为自然堆积体积和紧密堆积体积(人工捣实后)。 由紧密堆积测得的堆积密度称为紧密堆积密度。
常用建筑材料的密度、表观密度和堆积密度如表1-1所示。
三、密实度与孔隙率、填充率与空隙率
1.密实度
密实度是指材料体积内被固体物质所充实的程度,即材料的绝对密 实体积与总体积之比。可按材料的密度与表观密度计算如下:
2.孔隙率
孔隙率是指材料内部孔隙(开口的和封闭的)体积所占总体积的比例 ,按下式计算:
上一页
下一页 返回
1.1 基本物理性质
P V0 V 1 V 1 0 1 D
V0
V0
式中 P —— 材料的孔隙率,常以(%)表示。
材料的孔隙率与密实度是从两个不同方面反映材料的同一个性质。 通常采用孔隙率表示,孔隙率可分为开口孔隙率和闭口孔隙率。
V 0 = V0+ Vj = V + VP +Vj;
上一页
下一页 返回
1.1 基本物理性质
二、材料的密度、表观密度和堆积密度 1.密度 密度是指多孔固体材料在绝对密实状态下,单位体积的质量(俗称 比重)。用下式计算:
m
V
式中 ρ—— 材料的密度(g/cm3或kg/m3)
m —— 材料的质量(干燥至恒重)(g或kg)
建筑材料的基本性质10
图1.1 材料润湿边角
❖
润湿角90°<θ<180°[图
1.1(b)],这种材料称为憎水性材料
孔隙率(%)
2.60~2.80 1800~2600
__
__
2.60~2.90 2500~2800
__
0.5~3.0
2.60~2.80
__
1400~1700
__
2.60
__
1450~1650
__
2.60
__
1600~1800
__
2.50 1600~1800
__
20~40
材料
粘土空心 砖 水泥
普通混凝 土 木材
脆性材料:在常温、静荷载下具有脆性的 材料。
❖ 韧性:在冲击、振动荷载作用下,材料能 够吸收较大的能量,同时也能产生一定 的变形而不致破坏的性质.
1.2.4 硬度和耐磨性
❖ 硬度:材料表面抵抗其他物质压入或刻划的能 力.
耐磨性:材料表面抵抗磨损的能力.材料的耐磨 性用磨损率表示:
N m1 m2 A
1.1.2.4 耐水性
❖ 材料在长期饱和水作用下不被破坏,其 强度也不显著降低的性质称为耐水性。 材料的耐水性用软化系数表示。
❖ 计算式为:
K软
f饱 f干
❖ 某石材在气干、绝干、水 饱和情况下测得的抗压强度 分 别 为 174MPa 、 178MPa 、 165MPa , 求 该 石 材 的 软 化 系 数,并判断该石材可否用于 水下工程。
2 建筑材料的基本性质
1.2 材料与水有关的性质
(四)材料的抗渗性(不透水性) 抗渗性(不透水性) 抗渗性
抗渗性是材料在压力水作用下抵抗水渗透的性能.用渗 透系数或抗渗等级表示.
(1)渗透系数 材料的渗透系数K可通过下式计算:
Wd K= AtH
式中:K——渗透系数,(cm / h); W——渗水量, (cm3 ); A——渗水面积,(cm2 ); H——材料两侧的水压差,(cm); d——试件厚度 (cm);t——渗水时间 (h).
1.1 建筑材料的物理性质
(二)材料的孔隙率 空隙率 孔隙率与空隙率 孔隙率
2. 材料的空隙率 . 材料的空隙率 材料的空隙率是散粒材料在其堆集体积中, 颗粒之间的空隙体积 空隙率是 空隙率 所占的比例.按下式计算: .
′ V0′ V0 V0 ρ0 P′ = = 1 = 1 V0′ V′ ρ0
式中: 式中: ρ0—材料的表观密度;ρ0,—材料的堆积密度 ρ 空隙率的大小反映了散粒材料的颗粒互相填充的致密程度.空隙率 可作为控制混凝土骨料级配与计算含砂率的依据.
1 建筑材料的基本性质
西南民族大学化学与环境学院
建筑材料的基本性质
建筑材料基本性质是指材料处于不同的使用条 建筑材料基本性质 材料处于不同的使用条 件和使用环境时,通常必须考虑的最基本的, 件和使用环境时,通常必须考虑的最基本的, 共有的性质.因为建筑材料所处建( 共有的性质.因为建筑材料所处建(构)筑物 的部位不同,使用环境不同, 的部位不同,使用环境不同,人们对材料的使 用功能要求不同,所起的作用就不同, 用功能要求不同,所起的作用就不同,要求的 性质也就有所不同. 性质也就有所不同. 因此在工程设计和施工中必须充分了解和 掌握各种材料的性质和特点,才能正确选择和 合理使用材料.
建筑材料复习资料
建筑材料复习资料1/2/3/4页第一章建筑材料的基本性质1.名词解释1.密度:密度是指材料在绝对密实状态下单位体积的质量。
2.表观密度:材料在自然状态下(包含孔隙)单位体积的质量。
3.堆积密度:材料在自然堆放状态下单位体积的质量。
4.规整度:指材料的液态物质部分的体积占到总体积的比例。
5.孔隙率:指材料中孔隙体积占到总体积的百分率。
6.空隙率:空隙率是指散粒材料在某容器的堆积体积中,颗粒之间的空隙体积占堆积体内积的百分率。
7.湿润角:用以表示材料能被润湿的性能。
8.亲水性材料:液态材料在空气中与水碰触时,极易被水湿润的材料。
9.不责水性材料:液态材料在空气中与水碰触时,难于被水湿润的材料。
10.含水率:土中水的质量与材料颗粒的质量之比。
11.吸水性:材料稀释水分的性质称作吸水性。
12.吸水率:材料吸水达到饱和状态时的含水率,称为材料的吸水率。
13.吸湿性:材料因吸收水分而逐渐变湿的性质。
14.耐水性:材料钢键的促进作用后不损毁,其强度也不明显减少的性质。
15.软化系数:材料在水饱和状态下的抗压强度与材料在干燥状态下抗压强度之比。
16.抗渗性:材料抵抗压力水渗透的性质。
17.强度:材料抵抗外力荷载促进作用引发的毁坏的能力。
18.弹性材料:在受到外力作用时会变形,在力的作用结束后恢复到原来的状态的材料。
19.塑性材料:在规定的温度,湿度及加荷方式条件下,对标准尺寸的试件施加荷载,若材可望毁坏时整体表现为塑性毁坏的材料。
20.脆性:材料在外力作用下(如拉伸、冲击等)仅产生很小的变形(或破坏前无显著塑性变形)即为脱落毁坏的性质。
21.韧性:材料的断裂前吸收能量和进行塑性变形的能力。
与脆性相反。
22.耐久性:耐久性就是材料抵抗自身和自然环境双重因素长期毁坏促进作用的能力。
2.判断题1.含水率为4%的湿砂重100g,其中水的重量为4g.(3)2.热容量小的材料导热性小,外界气温影响室内温度变化比较慢。
(3)3.材料的孔隙率相同时,相连细孔者比半封闭微孔者的热传导系数小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1 材料的组成结构与构造 §2 ★材料的密度、表观密度和孔隙率 §3 材料的力学性质 §4 ★材料与水有关的性质 §5 ★材料的耐久性 §6 材料与热有关的性质
§1 材料的组成、结构与构造
材料的组成、结构与构造是决定材料性能 的内部因素。
一、材料的组成
材料的组成包括化学组成和矿物组成。
一)化学组成
三)链节 合成高分子材料常以其链节表示,链节是一种或几
种低分子化合物按特定结构构成的单元。如聚乙烯的 链节是C2H4等。 四)组成与材料性能的关系
组成决定性能→高铝水泥与硅酸盐水泥。
组成相同时,结构决定性能→金刚石与石墨的成分均 为C,但由于C原子排列不同,前者为无色极坚硬的晶 体,后者为黑色光滑的无定型粉末。
一、密度
一)定义 材料在绝对密实状态下单位体积的质量。
二)公式 ρ=m / V ρ—g/cm3,密度 m—g,绝对密实状态下的质量 V—cm3 ,绝对密实状态下的体积
三)注意 必须强调材料绝对密实状态的概念 必须强调密度是材料自身固有的性质,与外 界条件变化与否无关
二、表观密度
一)定义 在自然状态下(包含孔隙)单位体积的质量。
非金属→元素氧化物含量,如水泥的SiO2、Al2O3含 量。
有机高分子材料→低分子化合物,如乙烯。
二)矿物组成
指组成材料的矿物种类和数量,矿物是具有一定化 学成分和一定结构及物理力学性质的物质和单质的总 称,是构成岩石和无机非金属材料的基本单元。例如 硅酸盐水泥熟料的矿物组成:C3S、C2S、C3A、C4AF。
二)公式 γ=m / V0 γ—g/cm3 (kg/m3 ),表观密度 m —g(kg),材料自然状态下的质量 V0 —cm3 (m3 ),材料自然状态下的体积
三)注意 必须强调材料自然状态的概念 自然状态包括孔隙、含水状态等,如干燥状 态下的表观密度,或某种含水状态下的表观 密度
三、密实度与孔隙率
✓ 孔隙结构(孔隙分布) 含有大量分散不连通孔隙的材料具有良好的保温隔热 性能。含有大量与外界连通的微孔或气泡的材料具有 良好的吸声隔音性能。 ✓ 孔隙形状(开口与闭口孔) 闭口孔隙,不易被水分及溶液侵入,对材料的抗渗、 抗冻及抗侵蚀性能的影响较小。
§2 材料的密度、 表观密度和孔隙率
是本章的重点 要求掌握基本概念、计算等内容 主要讲解块状材料与散体材料的: 密度ρ与视密度ρ’ 表观密度γ与堆积密度γ’ 密实度D、孔隙率P与空隙率P’
键结合)
铝及其合金 密度大
实际材料中的晶体,都有各种晶格缺陷,主 要有点缺陷、线缺陷和面缺陷,这些缺陷会显 著改变晶体材料的性质。此外,材料的性质还 与晶粒的大小和分布状态有关。
2)非晶体 无定形结构或玻璃体结构。它是一种不稳定
的结构,具有较高的化学活性,如硅酸盐水泥 熟料。
二)显微结构 指用光学显微镜可以观察到的材料组成及
一)孔隙率
材料中孔隙体积与总体积的百分比 P=(V0-V) / V0 =(1 - γ/ ρ)×100% 二)密实度
D = V / V0 ×100% P=1-D 三)注意
孔隙率与密度及表观密度的关系 孔隙率与密实度的关系 几种常用材料的密度、表观密度及孔隙率(P8 表1-1)
结构,其尺度范围在0.001~1mm,对材料性 质有重要影响。例如水泥混凝土材料可分为水 泥基相、集料分散相、界面过渡区及孔隙等, 它们的状态、数量及性质将决定水泥混凝土的 物理力学性能。钢材的晶粒尺寸直接影响钢材 的强度。 对于土木工程材料而言,从显微结构层次上研 究并改善材料的性能十分重要。
三)微粉、超微颗粒及胶体 1)微粉 粒径在0.0001~0.1mm间的各种矿物或金属粉末。 2)超微颗粒(纳米微粒) 粒径在10-6~10-4 mm间的各种微粒。 由于纳米微粒有小尺寸效应、表面界面效应等 基本特性,使由纳米微粒组成的纳米材料具有 许多奇异的物理化学性能,在土木工程中也得 到了应用。例如磁性液体、纳米涂料等。
材料的微观结构 常见材料
主要特性
原子晶体(以共价 金刚石、石英、强度、硬度、熔点均
键结合)
刚玉
高,密度较小
离子晶体(以离子 氧化钠、石膏、强度、硬,但波动大,部分
可溶,密度中等
分子晶体(以分子 蜡及有机化合 强度、硬度、熔点较
键结合)
物晶体
低,大部分可溶,密
度小
金属晶体(以金属 铁、钢、铜、 强度,硬度变化大,
材料的孔 多孔材料的性质除与材料孔隙率的大小有关外,还与孔 隙的构造特征有关。
孔特征参数
✓ 孔隙多少(孔隙率P) 随着孔隙率的增大,材料表观密度减小,强度下降。 ✓ 孔隙大小(孔半径r) 对于开口孔隙,粗大孔隙易于水分透过,但不易被水 充满;极细孔隙,水分易被吸入,但不易在其中流动; 介于两者之间的毛细孔隙,既易被水充满,水分又易 在其中渗透,对材料的抗渗性、抗冻性及抗侵蚀性能 不利。
3)胶体 超微颗粒在介质中形成的分散体系。按其物理 力学性质取决于介质还是微粒,将胶体分为溶 胶和凝胶。 溶胶—凝胶互变的性质称为触变性。
三、材料的构造
指材料的宏观组织状况,材料的性质与其构造有密切 联系。
构造致密的材料强度高→如钢材;疏松多孔的材料密 度和强度低→如无机非金属材料;层状或纤维状的材料 各项异性→木材。
1)定义
组成材料的化学元素种类和数量,直接影响材料的 化学性质,也是决定材料物理力学性质的重要因素。 土木工程材料的诸多性质都与其化学成分有关,如水 泥中CaO、MgO含量影响着水泥的安定性。
2)表示方法
金属→化学元素的含量来表示,如碳素钢以碳元素 含量来划分:25Mn(平均含C=0.25%、含Mn0.7%-1.2% 的镇静钢)。
二、材料的结构
材料的结构是指材料的微观组织状况,可分为 微观结构和显微结构。
一)微观结构 能用显微镜观察到的组成材料的原子、分子
的排列方式、结合状况等。材料的微观结构可 分为晶体、非晶体。
1)晶体 晶体是质点(原子、分子、离子)在三维空间作
有规律的周期性重复排列(远程有序)而形成 的固体。 按晶体质点间键能的大小以及结合键的特性, 可将晶体分为:原子晶体、离子晶体、金属晶 体、分子晶体。其性能如下表 :