第13章-热力学基础习题及答案
大学物理第十三章(热力学基础)部分习题及答案
第十三章热力学基础一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;4、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
5、什么是熵增加原理?答:一切不可逆绝热过程中的熵总是增加的,可逆绝热过程中的熵是不变的。
把这两种情况合并在一起就得到一个利用熵来判别过程是可逆还是不可逆的判据——熵增加原理。
6、什么是卡诺循环? 简述卡诺定理?答案:卡诺循环有4个准静态过程组成,其中两个是等温线,两个是绝热线。
卡诺提出在稳度为T1的热源和稳度为T2的热源之间工作的机器,遵守两条一下结论:(1)在相同的高温热源和低温热源之间工作的任意工作物质的可逆机,都具有相同的效率。
(2)工作在相同的高温热源和低温热源之间的一切不可逆机的效率都不可能大于可逆机的效率。
7、可逆过程必须同时满足哪些条件?答:系统的状态变化是无限缓慢进行的准静态过程,而且在过程进行中没有能量耗散效应。
二、选择题1、对于理想气体的内能,下列说法中正确的是( B ):( A ) 理想气体的内能可以直接测量的。
(B) 理想气体处于一定的状态,就有一定的内能。
大学物理热力学基础习题与解答
1T2 T1
[D]
p a
b b
T1
d c c T2 V
填空题
1. 要使一热力学系统的内能增加,可以通过 做功 或 传热 两种方式,或者两种
方式兼用来完成。理想气体的状态发生变 化时,其内能的增量只决定于
温度的变化 ,而与 过程 无关。
2 .一气缸内储有 10 mol 单原子分子理想气体,
在压缩过程中,外力做功 209 J,气体温度升高 1
大学物理
热力学基础
选择题
1. 有两个相同的容器,容积不变,一个盛有氦气, 另一个盛有氢气(均可看成刚性分子),它们的压 强和温度都相等。现将5J 的热量传给氢气,使氢
气温度升高,如果使氦气也升高同样的温度,则 应向氦气传递的热量是
(A) 6 J (C) 3 J
(B) 5 J (D) 2 J
[C]
ΔQ M mCvΔT
3. 对于室温下的双原子分子理想气体,在等压
膨胀的情况下,系统对外所作的功与从外
界吸收的热量之比W / Q 等于:
(A)1 / 3
(B)1 / 4
(C)2 / 5
(D)2 / 7
(D )
WpΔVmRΔT M
QΔEWm5ΔTmRΔT7mRΔT
M2 M
2M
4.热力学第一定律表明: (A)系统对外所作的功小于吸收的热量; (B)系统内能的增量小于吸收的热量; (C)热机的效率小于1; (D)第一类永动机是不可能实现的。
(P1,V1)开始,经过一个等容过程达到压强为 P1/4 的 b 态,再经过一个等压过程达到状态 c , 最后经过等温过程而完成一个循环。求该循环
过程中系统对外做的功 A 和吸收的热量 Q .
解:设状态 c 的体积为V2 , 由于a , c 两状态的温度相同
第13章 热力学基础习题及答案
第十三章习题热力学第一定律及其应用1、关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程.(2) 准静态过程一定是可逆过程.(3) 不可逆过程就是不能向相反方向进行的过程.(4) 凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是。
2、如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程。
3、一定量的理想气体,分别经历如图(1) 所示的abc过程,(图中虚线ac为等温线),和图(2) 所示的def过程(图中虚线df为绝热线).判断这两种过程是吸热还是放热.abc过程热,def过程热.4、如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是。
(=γC p/C V)5、一定量理想气体,从同一状态开始使其体积由V1膨胀到2V1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.VV答案1、(1)(4)是正确的。
2、是A-B 吸热最多。
3、abc 过程吸热,def 过程放热。
4、P 0/2。
5、等压, 等压, 等压理想气体的功、内能、热量1、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氨气传递热量是 。
2、 一定量的理想气体经历acb 过程时吸热500 J .则经历acbda 过程时,吸热为 。
3、一气缸内贮有10 mol 的单原子分子理想气体,在压缩过程中外界作功209J ,气体升温1 K ,此过程中气体内能增量为 _____ ,外界传给气体的热量为___________________. (普适气体常量 R = 8.31 J/mol· K)4、一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J.p (×105 Pa)3 m 3)5、 1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求:(1) 气体的内能增量. (2) 气体对外界所作的功. (3) 气体吸收的热量. (4) 此过程的摩尔热容.(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)答案1、3J2、-700J3、124.7 J ,-84.3 J4、500J ;700J5、解:)(25)(112212V p V p T T C E V -=-=∆ (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ).(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R .p p p 12循环过程1、 如图表示的两个卡诺循环,第一个沿ABCDA 进行,第二个沿A D C AB ''进行,这两个循环的效率1η和2η的关系及这两个循环所作的净功W 1和W 2的关系是 η1 η2 ,W 1 W 22、 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:3、一卡诺热机(可逆的),低温热源的温度为27℃,热机效率为40%,其高温热源温度为_______ K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加________ K .4、如图,温度为T 0,2 T 0,3 T 0三条等温线与两条绝热线围成三个卡诺循环:(1) abcda ,(2) dcefd ,(3) abefa ,其效率分别为η1_________,η2__________,η 3 __________.5、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求: (1) 第二个循环的热机效率; (2) 第二个循环的高温热源的温度.6、 1 mol 单原子分子理想气体的循环过程如T -V 图所示,其中c 点的温度为T c =600 K .试求:(1) ab 、bc 、c a 各个过程系统吸收的热量; (2) 经一循环系统所作的净功; (3) 循环的效率. BAC DC 'D 'p p-3m 3)p O 3T 0 2T 0 T 0fad b c e(注:循环效率η=W /Q 1,W 为循环过程系统对外作的净功,Q 1为循环过程系统从外界吸收的热量ln2=0.693)答案 1、=;<2、S 1 = S 2.3、500 ; 1004、33.3% ; 50%; 66.7%5、解:(1) 1211211T T T Q Q Q Q W -=-==η 2111T T T W Q -= 且 1212T TQ Q =∴ Q 2 = T 2 Q 1 /T 1即 212122112T T T W T T T T T Q -=⋅-==24000 J 由于第二循环吸热 221Q W Q W Q +'='+'=' ( ∵ 22Q Q =') =''='1/Q W η29.4% (2) ='-='η121T T 425 K6、解:单原子分子的自由度i =3.从图可知,ab 是等压过程,V a /T a = V b /T b ,T a =T c =600 KT b = (V b /V a )T a =300 K (1) )()12()(c b c b p ab T T R i T T C Q -+=-= =-6.23×103 J (放热) )(2)(b c b c V bc T T R iT T C Q -=-= =3.74×103 J (吸热) Q ca =RT c ln(V a /V c ) =3.46×103 J (吸热) (2) W =( Q bc +Q ca )-|Q ab |=0.97×103 J (3) Q 1=Q bc +Q ca , η=W / Q 1=13.4%热力学第二定律1、根据热力学第二定律判断下列说法的正误: (A) 功可以全部转换为热,但热不能全部转换为功. ( ) (B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体 ( )(C) 不可逆过程就是不能向相反方向进行的过程.()(D) 一切自发过程都是不可逆的.()2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了___________________________的过程是不可逆的,而克劳修斯表述指出了________________的过程是不可逆的.3、所谓第二类永动机是指________________________________________,它不可能制成是因为违背了________________________________________.答案1、⨯,⨯,⨯,√2、功变热;热传导3、从单一热源吸热,在循环中不断对外作功的热机;热力学第二定律。
《大学物理学》热力学基础练习题
合肥学院《大学物理Ⅰ》自主学习材料《大学物理学》热力学基础一、选择题13-1.如图所示,bca 为理想气体的绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是( )pa2(A)b1a 过程放热、作负功,b2a 过程放热、作负功;c(B)b1a 过程吸热、作负功,b2a 过程放热、作负功;1b(C)b1a 过程吸热、作正功,b2a 过程吸热、作负功;VO (D)b1a 过程放热、作正功,b2a 过程吸热、作正功。
【提示:体积压缩,气体作负功;三个过程中 a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b1a 过程作的负功比b2a 过程作的负功多,由Q W E 知b2a 过程放热,b1a 过程吸热】13-2.如图,一定量的理想气体,由平衡态 A 变到平衡态B,且他们的压强相等,即P P 。
A B问在状态 A 和状态 B 之间,气体无论经过的是什么过程,气体必然( )p (A)对外作正功;(B)内能增加;(C)从外界吸热;(D)向外界放热。
AB【提示:由于T T ,必有A B E E ;而功、热量是A BV 过程量,与过程有关】O13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气( 均视为刚性理想气体) ,开始时它们的压强和温度都相同,现将 3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为( )(A) 6 J ;(B)3 J ;(C)5 J ;(D)10 J 。
【提示:等体过程不做功,有Q E ,而M iE R TM 2mol,所以需传 5 J 】13-4.有人想象了如图所示的四个理想气体的循环过程,则在理论上可以实现的是()pp绝热等温绝热等体等温绝热Op 等()AV Op()B等压V 绝热绝热体等温绝热OOVV ()C()D【提示:(A) 绝热线应该比等温线陡,(B)和(C)两条绝热线不能相交】热力学基础-1合肥学院《大学物理Ⅰ》自主学习材料13-5.一台工作于温度分别为327℃和27℃的高温热源与低温热源之间的卡诺热机,每经历一个循环吸热2000J,则对外做功()(A)2000 J ;(B)1000 J ;(C)4000 J ;(D)500 J 。
《热学》期末复习用 各章习题+参考答案
(
29 × 10 3
)
485������
(4) 空气分子的碰撞频率为
√2������ ������
√2
6 02 × 10 × 22 4 × 10
3 3
×
(3
7 × 10−10)
× 485
(5) 空气分子的平均自由程为
7 9 × 109
������
485 7 9 × 109
6 1 × 10 8������
(������ + ������ )������������ ������ ������������ + ������ ������������
(4)
联立方程(1)(2)(3)(4)解得
������ + ������
������
2
������ ������ ������ (������ ������ + ������ ������ ) (������ + ������ )
������ (������ + ∆������) ������
������
������
(������ + ∆������) ������
������
ln
������������ ������
ln ������
������ + ∆������
ln
Hale Waihona Puke 133 101000ln
2
2
+
20 400
269
因此经过 69 × 60 40 后才能使容器内的压强由 0.101MPa 降为 133Pa.
1-7 (秦允豪 1.3.6) 一抽气机转速������ 400������ ∙ ������������������ ,抽气机每分钟能抽出气体20������.设 容器的容积������ 2 0������,问经过多长时间后才能使容器内的压强由 0.101MPa 降为 133Pa.设抽 气过程中温度始终不变.
热力学基础练习题答案版
热⼒学基础练习题答案版热⼒学基础练习题1、热⼒学第⼀定律ΔU=Q+W 只适⽤于( D )(A) 单纯状态变化 (B) 相变化(C) 化学变化 (D) 封闭物系的任何变化2、关于焓的性质, 下列说法中正确的是( D )(A) 焓是系统内含的热能, 所以常称它为热焓(B) 焓是能量, 它遵守热⼒学第⼀定律(C) 系统的焓值等于内能加体积功(D) 焓的增量只与系统的始末态有关3、第⼀类永动机不能制造成功的原因是( A )(A) 能量不能创造也不能消灭(B) 实际过程中功的损失⽆法避免(C) 能量传递的形式只有热和功(D) 热不能全部转换成功4、下列叙述中不具状态函数特征的是( D )A.系统状态确定后,状态函数的值也确定B.系统变化时,状态函数的改变值只由系统的初终态决定C.经循环过程,状态函数的值不变D.状态函数均有加和性5、下列叙述中,不具可逆过程特征的是( C )A.过程的每⼀步都接近平衡态,故进⾏得⽆限缓慢B.沿原途径反向进⾏时,每⼀⼩步系统与环境均能复原C.过程的初态与终态必定相同D.过程中,若做功则做最⼤功,若耗功则耗最⼩功6、在下列关于焓的描述中,正确的是( C )A.因为ΔH=Q,所以焓是恒压热PB.⽓体的焓只是温度的函数C.⽓体在节流膨胀中,它的焓不改变D.因为ΔH=ΔU+Δ(PV),所以任何过程都有ΔH>0的结论7、下⾯关于标准摩尔⽣成焓的描述中,不正确的是( C )C.⽣成反应的温度必须是298.15KD.⽣成反应中各物质所达到的压⼒必须是100KPa8、选出下列性质参数中属于容量性质的量 ( C )A.温度TB.浓度cC.体积VD.压⼒p9、关于节流膨胀, 下列说法正确的是( B )(A) 节流膨胀是绝热可逆过程 (B) 节流膨胀中系统的内能变化(C) 节流膨胀中系统的焓值改变(D) 节流过程中多孔塞两边的压⼒不断变化10、如图,在绝热盛⽔容器中,浸⼊电阻丝,通电⼀段时间,通电后⽔及电阻丝的温度均略有升⾼,今以电阻丝为体系有:( B )(A) W =0,Q <0,U <0 (B). W>0,Q <0,U >0(C) W <0,Q <0,U >0 (D). W <0,Q =0,U >011、若将⼈作为⼀个体系,则该体系为 ( C )A.孤⽴体系B.封闭体系C.敞开体系D.⽆法确定12、刚性绝热箱内发⽣⼀化学反应,则反应体系为 ( A )A.孤⽴体系B.敞开体系C.封闭体系D.绝热体系13、下列性质属于强度性质的是 ( D )A.内能和焓B.压⼒与恒压热容C.温度与体积差A.状态⼀定,值⼀定B.在数学上有全微分性质C.其循环积分等于零D.所有状态函数的绝对值都⽆法确定15、关于等压摩尔热容和等容摩尔热容,下⾯的说法中不正确的是 ( B )A.Cp,m 与Cv,m不相等,因等压过程⽐等容过程系统多作体积功B.Cp,m –Cv,m=R既适⽤于理想⽓体体系,也适⽤于实际⽓体体系C.Cv,m=3/2R适⽤于单原⼦理想⽓体混合物D.在可逆相变中Cp,m 和Cv,m都为⽆限⼤16、对于理想⽓体,⽤等压热容Cp计算ΔH的适⽤范围为 ( C )A.只适⽤于⽆相变,⽆化学变化的等压变温过程B.只适⽤于⽆相变,⽆化学变化的等容变温过程C.适⽤于⽆相变,⽆化学变化的任意过程D.以上答案均不正确17、H=Q p此式适⽤于哪⼀个过程:( B )(A)理想⽓体从101325Pa反抗恒定的10132.5Pa膨胀到10132.5Pa (B)在0℃、101325Pa下,冰融化成⽔(C)电解CuSO4的⽔溶液(D)⽓体从(298K,101325Pa)可逆变化到(373K,10132.5Pa )2=2NH3的反应进度ξ=1mol时,它表⽰系统中 ( A )A.有1molN2和3molH2变成了2molNH3B.反应已进⾏完全,系统中只有⽣成物存在C.有1molN2和3molH2参加了反应D.有2molNH3参加了反应19、对于化学反应进度,下⾯表述中正确的是 ( B )A.化学反应进度之值,与反应完成的程度⽆关B.化学反应进度之值,与反应式写法有关C.对于指定反应,化学反应进度之值与物质的选择有关D.反应进度之值与平衡转化率有关20、对于化学反应进度,下⾯表述中不正确的是 ( B )A.化学反应进度随着反应进⾏⽽变化,其值越⼤,反应完成的程度越⼤B.化学反应进度之值与反应式写法⽆关C.对于指定的反应,反应进度之值与物质的选择⽆关D.化学反应进度与物质的量具有相同的量纲21、欲测定有机物的燃烧热Q p ,⼀般使反应在氧弹中进⾏,实测得热效为Q V。
物理化学第二版习题答案
物理化学第二版习题答案物理化学是研究物质的物理性质和化学性质以及它们之间的相互关系的一门学科。
对于学习物理化学的学生来说,习题是巩固知识、提高能力的重要途径之一。
下面将为大家提供物理化学第二版习题的答案,希望对广大学生有所帮助。
第一章:热力学基础1. 答案:热力学是研究物质在能量转化过程中的规律的科学。
它主要研究能量的转化和守恒规律,以及物质在这个过程中的性质变化。
2. 答案:热力学第一定律是能量守恒定律,即能量可以从一种形式转化为另一种形式,但总能量守恒不变。
3. 答案:热力学第二定律是能量转化过程中的不可逆性原理,即自发过程的方向是从有序向无序的方向进行。
第二章:热力学函数1. 答案:热力学函数是描述物质性质和状态的函数,如内能、焓、自由能等。
2. 答案:内能是系统所拥有的全部能量的总和,包括系统的动能和势能。
3. 答案:焓是系统的内能和对外界做的功之和,常用符号表示为H。
第三章:热力学第一定律的应用1. 答案:热容量是物质吸收或释放热量时的温度变化与热量变化之比。
2. 答案:绝热过程是指在过程中系统与外界没有热交换,即系统的热容量为零。
3. 答案:等温过程是指在过程中系统的温度保持不变,即系统与外界的热交换量为零。
第四章:热力学第二定律的应用1. 答案:熵是描述系统无序程度的物理量,表示系统的混乱程度。
2. 答案:熵增原理是热力学第二定律的数学表达式,它指出孤立系统的熵总是增加的。
3. 答案:卡诺循环是一种理想的热机循环,它由等温膨胀、绝热膨胀、等温压缩和绝热压缩四个过程组成。
第五章:相变和化学平衡1. 答案:相变是指物质由一种相转变为另一种相的过程,如固态到液态、液态到气态等。
2. 答案:平衡态是指系统各种性质的变化不再随时间变化,达到动态平衡的状态。
3. 答案:化学平衡是指在封闭容器中,反应物和生成物浓度达到一定比例时,反应速率前后保持不变的状态。
第六章:化学动力学1. 答案:化学动力学是研究化学反应速率和反应机理的学科。
热力学基础-练习题及参考答案
热力学基础练习1一、选择题1. 在下列各种说法:(1) 准静态过程就是无摩擦力作用的过程;(2) 准静态过程一定是可逆过程;(3) 准静态过程是无限多个连续变化的平衡态的连接;(4) 准静态过程在p-V图上可用一连续曲线表示。
中,正确的是( )A. (1)、(2);B. (3)、(4);C. (2)、(3)、(4);D. (1)、(2)、(3)、(4)。
2. 气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程( )A. 一定都是准静态过程;B. 不一定是准静态过程;C. 前者是准静态过程,后者不是准静态过程;D. 后者是准静态过程,前者不是准静态过程。
3. 质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍.那么气体温度的改变(绝对值)在( )A. 绝热过程中最大,等压过程中最小;B. 绝热过程中最大,等温过程中最小;C. 等压过程中最大,绝热过程中最小;D. 等压过程中最大,等温过程中最小。
4. 如图所示,一定量的理想气体,沿着图中直线从状态a( 压强p1=4atm,体积V1=2L)变到状态b( 压强p2=2atm,体积V2=4L).则在此过程中( )A. 气体对外作正功,向外界放出热量;B. 气体对外作正功,从外界吸热;C. 气体对外作负功,向外界放出热量;D. 气体对外作正功,内能减少。
二、填空题1. 不规则地搅拌盛于绝热容器中的液体,液体温度在升高,若将液体看作系统,则:(1) 外界传给系统的热量零;(2) 外界对系统作的功________零;(3) 系统的内能的增量_________零(填大于、等于、小于)。
2. 某理想气体等温压缩到给定体积时外界对气体作功|W1|,又经绝热膨胀返回原来体积时气体对外作功|W2|,则整个过程中气体(1) 从外界吸收的热量Q=________________;(2) 内能增加了∆E=______________________。
马文蔚《物理学》(第6版)(下册)配套题库【名校考研真题+课后习题+章..
目 录第一部分 名校考研真题第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第二部分 课后习题第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第三部分 章节题库第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第四部分 模拟试题马文蔚等《物理学》配套模拟试题及详解第一部分 名校考研真题第9章 振 动一、选择题一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时开始计时,则其振动方程为( ).[电子科技大学2007研]A.B .C .D.E.二、填空题一物体作简谐振动,其振动方程为(国际单位制).则此简谐振动的周期为______;当t =0.6s 时,物体的速度为______.[南京航空航天大学2008研]三、计算题1.考虑n =2摩尔的理想气体氦气,置于一垂直放置的圆柱体所缸中,如图9-1所示.水平放置的活塞可以在气缸中无摩擦上下运动.活塞质量为,气缸截面积为.活塞被一无质量的弹簧与气缸上端连接,活塞向下运动时将氦气向下压缩,活塞上方为真空.系统开始阶段活塞与氦气处于平衡状态时,弹簧处于未形变状态,氦气压强为B【答案】1.2s ;-20.9cm/s【答案】、温度为、体积为.假定弹簧弹性常数,气体常数,对于单原子氦气,热容比.活塞在平衡位置作小幅谐振动,计算其谐振频率f.[南京大学2006研]图9-1解:对弹簧,由牛顿第二定律可得: ①由于振动很快,系统来不及与外界发生热量交换,视为绝热过程,因此有:由于活塞在平衡位置作小幅谐振动,因此V0与V之间的变化很小,利用泰勒展开得: ②将②式代入①式有: ③初始时活塞处于平衡状态,有: ④将④代入③有: 整理得: 解得振动频率为: 2.质量分别为和的两个物体A、B,固定在倔强系数为的弹簧两端,竖直地放在水平桌面上,如图9-2所示.用一力垂直地压在A上,并使其静止不动.然后突然撤去,问欲使B离开桌面至少应多大?[中科院–中科大2007研]图9-2解:欲使B刚好弹起,则A到达最高点时弹簧的伸长量至少应为.假设力F作用下弹簧的压缩量为(初始位置),弹簧无变形时A的坐标为0(平衡位置).运动方程为: 当时,,则方程的解为:利用对称性,在最高点有.整理可得:又,于是:3.如图9-3所示,已知轻弹簧的劲度系数为k,定滑轮可看作质量为M,半径为R的均质圆盘,物体的质量为m,试求:(1)系统的振动周期;(2)当将m托至弹簧原长并释放时,求m的运动方程(以向下为正方向).[南京理工大学2005研]图9-3 图9-4解:(1)受力分析如图9-4所示,设平衡位置为原点,向下为正,则将物体拉至处时:对m:对: (为角加速度)解得:即: 则系统振动圆频率: 振动周期: (2)设振动方程,其中,.初始条件,当时: 解得: 求得m的运动方程为: 第10章 波 动一、选择题一平面简谐波沿x 轴正方向传播,振幅为A ,频率为.设时刻的波形曲线如图10-1所示,则x=0处质点的振动方程为( ).[电子科技大学2006研]图10-1A.B .C .D.二、填空题1.一质点沿x 轴作简谐振动,它的振幅为A ,周期为T .时,质点位于x 轴负向离平衡最大位移的一半处且向负方向运动,则质点的振动方程为x =______.在一周期内质点从初始位置运动到正方向离平衡位置为最大位移的一半处的时间为______.[南京航空航天大学2007研]2.一平面简谐机械波在弹性媒质中传播,一媒质质元在通过平衡位置时,其振动动能与弹性势能______(填相同或不同).[湖南大学2007研]B 【答案】【答案】相同【答案】3.以波速u 向x 正方向传播的平面简谐波,振幅为A ,圆频率为,设位于坐标处的质点,t =0时,位移,且向y 负方向运动,则该质点的振动方程为______,该平面简谐波的波动方程(波函数)为______.[南京理工大学2005研]三、计算题1.火车以匀速行驶而过,铁路边探测器所测得的火车汽笛最高和最低频率分别为和,设声速为,求火车的行驶速度.[南京大学2006研]解:由多普勒效应可得: ① ②①、②两式相除,得:解得火车车速为:2.一列平面简谐纵波在均匀各向同性弹性介质中传播,求单位体积介质所具有的能量?(自设相关物理量).[北京师范大学2008研]解:波动方程:振动速度: 设介质的密度为,用dV 表示体元体积,则该体积元动能:体积应变: 则势能: 因为,所以: 则有: 所以,单位体积介质所具有的能量为:【答案】3.已知一平面简谐波的表达式为y=0.25cos(125t-0.37x)(SI).(1)分别求x1=10m,x2=25m两点处质点的振动方程.(2)求x1、x2两点间的振动相位差.(3)求x1点在t=4s时的振动位移.[浙江大学2008研]解:(1),(2)由,可得: 所以: (3)时的振动位移为:4.甲火车以43.2千米/小时的速度行驶,其上一乘客听到对面驶来的乙火车鸣笛声的频率为v1=512赫兹;当这一火车过后,听其鸣笛声的频率为v2=428赫兹.求乙火车上的人听到乙火车鸣笛的频率v0和乙火车对于地面的速度u.设空气中声波的速度为340米/秒.[中科院—中科大2009研]解:由题可得: 其中,v=340m/s,v0=43.2km/h=12m/s.解得:v0=468Hz,u=18.4m/s=66.3km/h5.如图10-2所示,一平面简谐波沿x轴正方向传播,已知振幅为A,频率为,波速为u.(1)若t=0时,原点O处质元正好由平衡位置向位移正方向运动,写出此波的波函数.(2)若该波在离原点处被竖直的墙面反射,欲使坐标原点处为波节,求满足的条件(设反射时无能量损失).[厦门大学2006研]图10-2解:(1)t=0时,y0=0,u0>0,所以初始相位,故波动方程为:(2)欲使波在x0处反射后到达y0处与原行波叠加产生波节,则原点O处两振动必须反相.即:所以有: ,k=0,1,2,…6.已知一平面余弦波振幅A=0.03m,波速u=1ms-1,波长,若以坐标原点O处质点恰好在平衡位置且向负方向运动时作为计时起点,求:(1)O点振动方程.(2)波动方程.(3)与原点相距处,t=1秒时,质点的位移、速度;(4)和两点间的相位差.[南京航空航天大学2006研]解:(1)设O点振动方程为:.其中,,由题意知:.于是: (2)波动方程为:.得:(3)与原点相距处,波动方程:得质点速度: 当t=1秒时: (4)相位差: 7.设入射波的表达式为,在处发生反射,反射点为一固定端,设反射时无能量损失,求:(1)反射波的表达式.(2)合成的驻波的表达式.(3)波腹和波节的位置.[湖南大学2007研]解:(1)反射波的表达式为: (2)驻波的表达式为:(3)由,可得波腹位置为:由,可得波节位置为:,8.图10-3所示为一沿x轴正方向传播的平面余弦行波在t=2s时刻的波形曲线,波速u=0.5m/s,求:(1)原点o的振动方程;(2)波动方程.[电子科技大学2007研]图10-3解:(1)由已知得:.可得振动方程:(2)波动方程为: 9.一横波沿绳子传播,其波的表达式为.(1)求此波的振幅、波速、频率和波长.(2)求绳子上各质点的最大振动速度和最大振动加速度.(3)求处和处二质点振动的相位差.[宁波大学2009研]解:(1)将波的表达式与标准形式比较,得:,(2) (3),二振动反相.第11章 光 学一、选择题1.在迈克耳孙干涉仪的一条光路中,放入一折射率为n 厚度为d 的透明介质片后,两光路光程差的改变量为( ).[暨南大学2010研]A.B.C.D.【解析】迈克尔孙干涉仪的原理为光的干涉,两束光进过G1平面镜被分为两束光,这两束光发生干涉.当在其中一条光路中放入折射率为n 的厚透明介质时,被放入介质的那条光路光程将发生变化,由于需要两次穿过新加入的透明介质,故光程差的改变量为:.2.自然光从空气入射到某介质表面上,当折射角为30°时,反射光是完全偏振光,则此介质的折射率为( ).[暨南大学2010研]A.B.C.D.3.若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹( ).[暨南大学2010研]C【答案】B【答案】当折射光线与反射光线垂直时反射完全偏振光,由折射公式得.【解析】A .中心暗斑变成亮斑B .间距不变C .变疏D .变密【解析】设牛顿环中某处的空气薄层厚度为e ,互相干涉的两束反射光的光程差为,若n 增大,则每个位置处的光程差增大,形成更大级数的干涉条纹,所以条纹变密.4.根据惠更斯——菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( ).[暨南大学2010研]A .振动的相干叠加B .振动振幅之和C .光强之和D .振动振幅平方之和5.在单缝夫琅和费衍射实验中,波长为l 的单色光垂直入射在宽度为a=4l 的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为( ).[暨南大学2010研]A .2个B .6个C .4个D .8个D【答案】A【答案】由惠更斯—菲涅耳原理,统一波阵面各点发出的子波,经传播而在空间某点相遇,发生的是相干叠加.【解析】C【答案】可近似将单缝所在平面看作波阵面,则每一半波带都沿单缝方向,设总半波带【解析】得N=4.6.一束白光垂直入射在光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是( ).[暨南大学2010研]A .紫光B .黄光C .红光D .绿光【解析】根据光栅公式,同一级条纹满足,可见光中红光波长最长,故偏离中央明纹最远.7.光强为I 0的自然光依次垂直通过两个偏振片,且此两偏振片的偏振化方向夹角a=45°,若不考虑偏振片的反射和吸收,则透射偏振光的强度I 是( ).[暨南大学2010研]A.B.C.D.由此可得,8.一光波分别通过两种不同介质的光程相同,则( ).[暨南大学2011研]数为N ,则C【答案】A【答案】自然光经过任一偏振片后光强减半,再经过另一个偏振片,根据马吕斯定律【解析】A .光波通过这两种介质的时间不相同B .光波通过这两种介质的时间相同C .光波通过这两种介质后的位相不相同D .光波通过这两种介质后的位相相同9.在迈克耳孙干涉仪的一臂中放入一折射率为厚度为的透明介质片,同时在另一臂中放入一折射率为厚度为的透明介质片,设没有放两透明介质片时两臂的光程差为 则放入两透明介质片后两臂的光程差为( ).[暨南大学2011研]A.;B .C.D.10.关于光学仪器的分辨本领,下述表述错误的是( ).[暨南大学2011研]A .分辨本领受到衍射极限的限制B .分辨本领和光学仪器的通光口径有关C .分辨本领和照明光的波长有关D .分辨本领和照明光的强度有关B【答案】光程差公式为 L =nd ,在不同介质中光速不同,v =c/n,故传播时间为 t =d/v =L/c ,对不同的介质相同.出射光的位相与入射光有关,故不能确定.【解析】B【答案】放入介质片后,相应光路中的光两次经过此介质,光程变化为2nd ,所以放入两个介质片后,两臂的光程差变化为2(n2-n1)d【解析】D【答案】光学仪器的分辨率,与由衍射导致的像点的展宽有关,而衍射条纹与通光孔径【解析】11.自然光从空气入射到某透明介质表面上,则( ).[暨南大学2011研]A .反射光一定是完全偏振光B .反射光一定是部分偏振光C .折射光一定是部分偏振光D .折射光一定是完全偏振光12.眼镜片上的增透膜是根据光的以下什么现象做成的( ).[暨南大学2011研]A .光的干涉B .光的衍射C .光的布儒斯特定律D .光的马吕斯定律13.光强度( ).[暨南大学2011研]A .和光波的振幅成正比B .和光波的振幅的平方成正比C .和光波的位相成正比D .和光波的位相的平方成正比和波长有关,与光强无关.C【答案】根据菲涅耳反射折射公式,自然光入射产生的反射和折射光都将变成部分偏振光.但当入射角为布鲁斯特角时,反射光为完全偏振光.【解析】A【答案】增透膜的原理是通过在镜片表面镀膜,使得某波长的光在膜前后表面反射光之间光程差是半波长的奇数倍,从而使反射光相干抵消,增加透射.【解析】B【答案】光强度是单位面积单位时间内辐射光的平均能量,此平均能量与电场分量或磁场分量的振幅的平方成正比,而由于是时间平均效果,与位相无关.【解析】14.一束白光垂直入射在单缝上,在第一级夫琅和费衍射明纹中,靠近中央明纹的颜色是( ).[暨南大学2011研]A .紫光B .黄光C .红光D .绿光【解析】单缝衍射明纹满足,故条纹到中央明纹的距离与波长正相关,所以紫光一级明纹最靠近中间.15.光强为I0的自然光依次垂直通过三个偏振片,且第一和第三偏振片的偏振化方向夹角a=90°,第二和第三偏振片的偏振化方向夹角a=45°,若不考虑偏振片的反射和吸收,则从第三偏振片透射出的光强I 是( ).[暨南大学2011研]A.B.C.D.二、填空题1.一个平凸透镜的顶点和一平板玻璃接触,用单设光垂直照射,观察反射光形成的牛顿环,测得中央暗斑外第k 个暗环半径为r 1.现将透镜和玻璃板之间的空气换成某种液体(其折射率小于玻璃的折射率),第k 个暗环的半径变为变为r 2,由此可知该液体的折射率为______.[南京航空航天大学2008研]A【答案】C【答案】自然光经过第一个偏振片,光强减半.第一偏振片的偏振方向与第二个,第二个与第三个,夹角都是45°,根据马吕斯定律,【解析】2.自然光入射到空气和某玻璃的分界面上,当入射角为60°时,反射光为完全偏振光,则该玻璃的折射率为______;一束强度为的自然光垂直入射于两种平行放置且透光轴方向夹角为60°的偏振片上,则透射光强度为______.[南京理工大学2005研]三、计算题1.一平凸透镜置于一平板玻璃上,波长为6700Å的红光垂直从上方入射,由透镜凸表面和平板玻璃表面反射的光形成牛顿环干涉条纹.透镜和平玻璃的接触点处为暗纹,测得第12条暗纹的半径为11mm ,求透镜的曲率半径R .[暨南大学2010研]解:牛顿环上r半径处空气层的厚度为第12条暗纹处与第一条暗纹处光程差相差11个波长,可得透镜的曲率半径为 2.(5分)将麦克耳孙干涉仪的一臂稍微调长(移动镜面),观察到有150条暗纹移过视场.若所用光的波长为480nm ,求镜面移动的距离.[暨南大学2010研]解:在迈克尔孙干涉仪中,沿两条光路的光发生干涉,它们之间光程差每变化一个波长,则有一条暗纹移过视场.设镜面移动距离为d,则得.3.在杨氏双缝实验中,两缝相距2mm ,用l =750nm 和l¢=900nm 的混合光照明,若屏幕到缝的距离为2m ,问两种波长的光的干涉明纹重合的位置到中央明纹中线的最小距离为多少?[暨南大学2010研]解:双缝干涉第k级干涉明纹满足,【答案】【答案】要想使不同波长的两束光条纹重合,需要某级条纹距离相同,即可得,k最小值为6,故4.如何利用偏振片和波晶片(1/4波片、半波片等)将一束自然光转化为圆偏振光?又如何利用波晶片将一线偏振光的偏振方向旋转90度?[暨南大学2010研]解:(1)首先将自然光通过偏振片,变成线偏光.然后使线偏光通过1/4波片,保证线偏振方向与波片光轴方向呈45°角,从而出射的o光和e光方向相同,振幅相等,相位差,从而变成圆偏振光.(2)首先将线偏光通过一个1/4波片,变成圆偏光,再经过一个与原偏振方向垂直的偏振片,变成新方向的线偏光.5.白光垂直照射到一厚度为370nm的肥皂膜(膜的两侧都为空气)上,设肥皂的折射率为1.32,试问该膜的正面呈现什么颜色?[暨南大学2011研]解:肥皂膜前后表面反射光的光程差为青色光的波长范围是476-495 nm,所以L正好是青色光波长的二倍;红色光的波长范围是 620-750 nm,所以L正好是红色光波长的3/2倍.所以前后表面反射的红光相干相消,青光相干相长,所以呈青色.6.用波长500nm的单色光垂直照射到宽0.5mm的单缝上,在缝后置一焦距为0.5m的凸透镜,用一屏来观察夫琅和费衍射条纹,求在屏上中央明纹的宽度和第一级明纹的宽度?并定性解释级次越高,明纹的强度越低的原因.[暨南大学2011研]解:(1)单缝夫琅禾费衍射产生暗纹条件为中央和第一级明纹处衍射角很小,可以近似.所以各暗纹距离中央的位置为所以中央明纹和第一级明纹的宽度分别为(2)明纹级次越高,说明单缝两个位置单色光距明纹处的光程差越大,相位差越大.根据光振幅矢量性,相同幅值的相干光相位差越大,合成振幅越小,从而光强越低.7.请解释为什么劈尖干涉条纹是等间距的直条纹而牛顿环是非等间距的圆条纹?如果看到牛顿环的中央是暗纹,解释之?[暨南大学2011研]解:(1)根据干涉原理,不论是劈尖干涉条纹还是牛顿环条纹,相邻条纹处干涉光光程差的差为.因为劈尖上到顶点的距离和厚度成正比,而厚度和光程差成正比,所以会形成等间距的直条纹;而牛顿环空气层厚度与光程差成正比,但由于棱镜下表面是球形,使得厚度与到中心的水平距离不成正比,所以形成非等间距的圆条纹.(2)中央处空气层厚度为0,棱镜底面与平面玻璃表面发射光的光程差为0.但光由光疏介质(空气)进入光密介质(平面玻璃)进行反射时会产生半波损失,使得两束相干光完全相消,出现中央暗纹.8.杨氏双缝实验中,在两缝S1和S2前分别放置两偏振片P1和P2,在两缝S1和S2后放置一偏振片P3,如图11-1所示,照明光为一自然光.问 (1) 当P1和P2偏振化方向相同,P1和P3偏振片的偏振化方向夹角为45°,屏上是否会出现干涉条纹?为什么?(2)当P1和P2偏振化方向垂直,P1和P3偏振片的偏振化方向夹角为45°,屏上是否会出现干涉条纹?为什么?[暨南大学2011研]图11-1解:(1)会出现干涉条纹.因为经过两个偏振片的光具有相同的偏振方向,都沿P3的方向偏振,所以同频率的光会产生相干叠加,出现干涉条纹.(2)会出现干涉条纹.因为虽然经过第一个偏振片的两束光具有垂直的偏振方向,但由于两束光的偏振方向都与P3偏振化方向呈45°角,根据马吕斯定律,经过P3后的两束光偏振方向相同,且振幅相等.所以依然会产生干涉条纹.9.(1)迈克尔逊干涉仪的M2镜前,当插入一薄玻璃片时,可以观察到有150条干涉条纹向一方移过.若玻璃片的折射率为n=1.632,所用单色光的波长为500nm,试求玻璃片的厚度.(2)用钠光灯(,)照明迈克尔逊干涉仪,首先调整干涉仪得到最清晰的干涉条纹,然后移动M1,干涉图样逐渐变得模糊,到第一次干涉现象消失时,M1由原来位置移动了多少距离?[南京大学2006研]解:(1)插入玻璃片后,光程差改变量为,则:解得玻璃片厚度: (2)干涉条纹消失,即、两个波长照射下的亮纹和暗纹重合,即:解得: 10.试按下列要求设计光栅:当白光垂直照射时,在30°衍射方向上观察到波长为600nm 的第二级主极大,且能分辨Δλ=0.05nm的两条谱线,同时该处不出现其他谱线的主极大.[浙江大学2008研]解:由光栅方程: .则:当时,可得: 当,.因为时,主极大,即缺级,因此有:所以有: 11.如图11-2所示,有一缝宽分别为a和2a、两缝中心相距为d的双缝衍射屏,今在缝宽为2a的左半缝前覆盖一个宽度为a的相移片.导出正入射时其夫琅禾费衍射强度分布公式.[山东大学1997研]图11-2解:x方向振幅: y方向振幅: 光强: 12.如图11-3所示,在偏振化方向夹角为60°的两偏振片和之间插入一个四分之一波片C,其光轴与两偏振片偏振化方向的夹角均为30°.一强度为的自然光先后通过偏振片、四分之一波片C和偏振片,求出射的光强度.[厦门大学2006研]图11-3解:经过P1后: ,经过四分之一波片后: ,得出射光振幅: 出射光光强: 第12章 气体动理论一、选择题若为气体分子速率分布函数,则的物理意义是( ).[电子科技大学2005研]A .速率区间内的分子数B .分子的平均速率C .速率区间内的分子数占总分子数的百分比D .速率分布在附近的单位速率区间中的分子数二、填空题1.三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而最概然速率之比为,则单位体积内的内能之比为______.[南京航空航天大学2007研]2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为______.[北京工业大学2004研]3.由绝热材料包围的窗口被隔板隔为两半,左边是理想气体,右边真空,如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度______(填升高、降低或不变),气体的熵______(填增加、减小或不变).[湖南大学2007研]4.27℃的1mol 氧气分子的最概然速率为______,其物理意义为______,分子的平均平动动能为______,1mol 理想氧气的内能为______.[南京理工大学2005研]三、计算题B【答案】1∶4∶9【答案】【答案】不变;增加【答案】【答案】1.设气体分子的速率分布满足麦克斯韦分布律.(1)求气体分子速率与最可几速率相差不超过0.5%的分子占全部分子的百分之几?(2)设氦气的温度为300K,求速率在3000~3010m/s之间的分子数与速率在1500~1510m/s之间的分子数之比.(3)某种气体的温度为100K和400K时的最可几速率分别为和.在100K时与相差不超过1m/s的分子数为总数的a%,求400K时与相差不超过1m/s的分子数占总数的百分比.[南京大学2006研]解:(1)设气体分子速率与最可几速率相差不超过0.5%的分子数为,全部分子数为,则:(2)设速率在3000~3010m/s之间的分子数为,速率在1500~1510m/s之间的分子数为,则:(3)2.1摩尔双原子理想气体的某一过程的摩尔热容量,其中为定容摩尔热容量,R 为气体的普适恒量.(1)导出此过程的过程方程;(2)设初态为(,),求沿此过程膨胀到时气体的内能变化,对外做功及吸热(或放热).[北京师范大学2006研]解:(1)理想气体的状态方程为,其微分形式为:由热力学第一定律,则:由上述两式消去,得: 则由的积分可得:上式即为双原子分子理想气体的过程方程.(2)初态,其中;末态.由过程方程,可知:所以,末态为.①气体内能的变化:②对外做功: ③吸收的热量:负号表示与题设相反,即此过程向外放热 .3.0.2g氢气盛于3.0 L的容器中,测得压强为8.31×104Pa,则分子的最概然速率、平均速率和方均根速率各为多大?[浙江大学2008研]解:气体状态方程: 最概然速率:平均速率:方均根速率: 4.设有N个气体分子组成的系统,每个分子质量为m,分子的速率分布函数为求:(1)常数a.(2)分子的平均速率.(3)若分子只有平动,且忽略分子间的相互作用力,求系统的内能E.[厦门大学2006研]解:(1)由归一化条件可得:解得: (2)N个分子的平均速度:=(3)由,得:5.许多星球的温度达到108K,在这温度下原子已经不存在了,而氢核(质子)是存在的,若把氢核视为理想气体,求:(1)氢核的方均根速率是多少?(2)氢核的平均平均平动动能是多少电子伏特?[宁波大学2009研](普适气体常量,玻尔兹曼常量)解:(1)由于,而氢核,所以有:(2)第13章 热力学基础一、选择题在一定量的理想气体向真空作绝热自由膨胀,体积由增至,在此过程中气体的( ).[电子科技大学2007研]A.内能不变,熵增加B.内能不变,熵减少C.内能不变,熵不变D.内能增加,熵增加二、填空题热力学第二定律表明在自然界中与热现象有关的实际宏观过程都是不可逆的.开尔文表述指出了______的过程是不可逆的,而克劳修斯表述指出了______的过程是不可逆的.[北京工业大学2004研]三、计算题1.假设地球大气为干燥空气,导热性能不好.气流上升缓慢,可以视为准静态过程.试导出大气的垂直温度梯度dT/dz,并估算其量值的大小.[南京大学2005研]解:对于绝热过程有: 对上式两边同时求导,得:于是有: 对于大气层,气压强变化满足,再结合理想气体状态方程,得:A【答案】功变热;热传导【答案】。
热力学基础习题
第六章 热力学基础习题(一)教材外习题1.在下列各种说法中,哪些是正确的? (1)热平衡过程就是无摩擦的、平衡力作用的过程(2)热平衡过程一定是可逆过程(3)热平衡过程是无限多个连续变化的平衡态的连接 (4)热平衡过程是在p -V 图上可用一连续曲线表示 (A )(1)、(2) (B )(3)、(4) (C )(2)、(3)、(4) (D )(1)、(2)、(3)、(4)( ) 2.对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作的功三者均为负值?(A )等容降压过程 (B )等温膨胀过程 (C )绝热膨胀过程 (D )等压压缩过程( )3.如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为Pa ,右边为真空。
今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是(A )P 0 (B )P 0/2 (C )2γ P 0 (γ = C P / C V ) (D )P 0/2γ( )4.一定量的理想气体分别由初态a 经①过程a b 和由初态a ' 经②过程a 'cb 到达相同的终态b ,如p — T 图所示,则两个过程中气体从外界吸收的热量Q 1,Q 2的关系为:(A )Q 1<0, Q 1>Q 2(B )Q 1>0, Q 1>Q 2(C )Q 1<0, Q 1>Q 2 (D )Q 1>0, Q 1<Q 2( )5.根据热力学第二定律可知:(A )功可以全部转换为热,但热不能全部转换为功。
(B )热可以从高温物体传到低温物体,但不能从低温物体传到高温物体 (C )不可逆过程就是不能向相反方向进行的过程 (D )一切自发过程都是不可逆的( )pT二、填空题:1.一定量的理想气体,从p —V 图上状态出发,分别经历等压、等温、绝热三种过程由体积V 1膨胀到体积V 2,试画出这三种过程的p —V 图曲线。
大学物理热力学基础知识点及试题带答案
热力学基础一、基本要求1. 理解功、热量及准静态过程的概念。
2. 掌握热力学第一定律,能分析计算理想气体等容、等压、等温过程和绝热过程中的功、热量、内能改变量;理解循环过程概念及卡诺循环的特征,并能计算效率和致冷系数。
3. 了解可逆过程、不可逆过程及卡诺定理。
4. 了解热力学第二定律及其统计意义。
二、主要内容1. 准静态过程:过程进行的每一时刻,系统的状态都无限接近平衡态。
准静态过程可以用状态图上的曲线表示。
2. 热力学第一定律(1) 热力学第一定律的数学表达式Q=E 2 - E 1 +W对微分过程为dQ=dE +d W热力学第一定律的实质是能量守恒与转换定律在热现象中的应用,其内容表示系统吸收的热量一部分转换为系统的内能,一部分对外做功。
(2) 准静态过程系统对外做功:d W=pd V ,W=⎰12V V pd V(3) 热量:系统和外界之间或两个物体之间由于温度不同而交换的热运动量,热量也是过程量。
一定摩尔的某种物质,在某一过程中吸收的热量,)(C m12m c,T T M Q -=(4) 摩尔热容:1mo1物质温度变化1K 所吸收或放出的热量,定义式为 dTQd m,=m c C 其中m 为1mo1 物质吸热。
摩尔定容热容:CV , m =摩尔定压热容:Cp, m =理想气体的摩尔热容:CV, m =,Cp, m =Cp, m =CV, m + 摩尔热容比:=3. 热力学第一定律对理想气体等值过程和绝热过程的应用,详见表1 表1 d =0 =恒量=恒量p =恒量mmmM m T1nMm T1nCV, m =Cp, m =4. 循环过程(1)循环过程的特征是E =0热循环:系统从高温热源吸热,对外做功,向低温热源放热,致效率为== 1—致冷循环:系统从低温热源吸热,接受外界做功,向高温热源放热,致冷系数为==(2)卡诺循环:系统只和两个恒温热源进行热交换的准静态循环过程。
卡诺热机的效率为= 1—卡诺致冷机的致冷系数为三、习题与解答1、 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.解 S ABCD =1/2(BC +AD)×CD 故 W =150 J2、 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3倍,求空气膨胀时所作的功. 解 根据物态方程11RT pV v =, 则作功为()J 1097.92231112⨯===-=RT pv V V p W v3、64g 氧气(可看成刚性双原子分子理想气体)的温度由0℃升至50℃,〔1〕保持体积不变;(2)保持压强不变。
大学物理气体动理论热力学基础复习题及答案详解
第12章 气体动理论一、填空题:1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×.则在温度变为37℃,轮胎内空气510pa 的压强是。
(设内胎容积不变)2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为的空气泡升到水面上来,若湖面的531.010m -⨯温度为17.0℃,则气泡到达湖面的体积是 。
(取大气压强为)50 1.01310ppa =⨯3、一容器内储有氧气,其压强为,温度为27.0℃,则气体分子的数密度为50 1.0110p pa =⨯;氧气的密度为 ;分子的平均平动动能为 ;分子间的平均距离为。
(设分子均匀等距排列)4、星际空间温度可达2.7k ,则氢分子的平均速率为 ,方均根速率为,最概然速率为。
5、在压强为下,氮气分子的平均自由程为,当温度不变时,压强为51.0110pa ⨯66.010cm -⨯,则其平均自由程为1.0mm 。
6、若氖气分子的有效直径为,则在温度为600k ,压强为时,氖分子1s 内的82.5910cm -⨯21.3310pa ⨯平均碰撞次数为。
7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的某种理想气体不同温度下的速率分布曲线,对应温度高的曲线是 .若图中两条曲线定性的表示相同温度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的是 .8、试说明下列各量的物理物理意义:(1), (2),12kT 32kT (3), (4),2ikT 2iRT (5),(6)。
32RT 2M iRT Mmol 参考答案:1、 2、54.4310pa ⨯536.1110m -⨯3、25332192.4410 1.30 6.2110 3.4510m kg m J m----⨯⋅⨯⨯4、2121121.69101.8310 1.5010m s m s m s ---⨯⋅⨯⋅⨯⋅图12-15、 6、 7、(2) ,(2)6.06pa 613.8110s -⨯8、略二、选择题:教材习题12-1,12-2,12-3,12-4. (见课本p207~208)参考答案:12-1~12-4 C, C, B, B.第十三章热力学基础一、选择题1、有两个相同的容器,容积不变,一个盛有氦气,另一个盛有氢气(均可看成刚性分子)它们的压强和温度都相等,现将 5 J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递的热量是( )(A ) 6 J(B ) 5 J(C ) 3 J(D ) 2 J2、一定量理想气体,经历某过程后,它的温度升高了,则根据热力学定理可以断定:(1)该理想气体系统在此过程中作了功;(2)在此过程中外界对该理想气体系统作了正功;(3)该理想气体系统的内能增加了;(4)在此过程中理想气体系统既从外界吸了热,又对外作了正功。
热力学基础计算题 答案
热力学基础计算题答案热力学基础计算题-答案《热力学基础》计算题答案全1.温度为25℃、应力为1atm的1mol刚性双原子分子理想气体,经等温过程体积收缩至原来的3倍.(普适气体常量r=8.31j?mol?k,ln3=1.0986)(1)计算这个过程中气体对外所作的功.(2)假若气体经绝热过程体积收缩为原来的3倍,那么气体对外并作的功又就是多少?求解:(1)等温过程气体对外作功为3v03v0?1?1w?v0?pdv?v0?rtdv?rtln32分v=8.31×298×1.0986j=2.72×103j2分(2)绝热过程气体对外作功为3v03v0w?v0?pdv?pv?v00v0dv3111?31p0v0?rt2分后11=2.20×103j2分2.一定量的单原子分子理想气体,从初态a启程,p(105pa)沿图示直线过程变到另一状态b,又经过等容、等压两过程回到状态a.b(1)谋a→b,b→c,c→a各过程中系统对3外所写的功w,内能的增量?e以及所稀释的热2量q.(2)整个循环过程中系统对外所作的总功以ac1及从外界吸收的总热量(过程吸热的代数和).3?3v(10m)解:(1)a→b:o1w1?(pb?pa)(vb?va)=200j.212δe1=??cv(tb-ta)=3(pbvb-pava)/2=750jq=w1+δe1=950j.3分后b→c:w2=0δe2=??cv(tc-tb)=3(pcvc-pbvb)/2=-600j.q2=w2+δe2=-600j.2分c→a:w3=pa(va-vc)=-100j.e3cv(tatc)3(pavapcvc)150j.2q3=w3+δe3=-250j3分(2)w=w1+w2+w3=100j.q=q1+q2+q3=100j2分3.0.02kg的氦气(视作理想气体),温度由17℃晋升为27℃.若在高涨过程中,(1)体积维持维持不变;(2)应力维持维持不变;(3)不与外界互换热量;先行分别谋弗勒利歇尔体内能够的发生改变、稀释的热量、外界对气体所作的功.(普适气体常量r=8.31j?molk)求解:氦气为单原子分子理想气体,i?3(1)等体过程,v=常量,w=0据q=?e+w可知q??e??1?1mcv(t2?t1)=623j3分后mmol(2)定压过程,p=常量,q?mcp(t2?t1)=1.04×103jmmol?e与(1)相同.w=qe=417j4分(3)q=0,?e与(1)同w=??e=?623j(负号表示外界作功)3分4.一定量的某单原子分子理想气体上装在半封闭的汽缸里.此汽缸存有可以活动的活塞(活塞与气缸壁之间并无摩擦且并无漏气).未知气体的初应力p1=1atm,体积v1=1l,现将该气体在等温下冷却直至体积为原来的两倍,然后在等体积下冷却直至应力为原来的2倍,最后作绝热膨胀,直至温度上升到初梅年才,(1)在p-v图上将整个过程则表示出.(2)试求在整个过程中气体内能的改变.(3)试求在整个过程中气体所稀释的热量.(1atm=1.013×105pa)(4)试求在整个过程中气体所作的功.解:(1)p-v图如右图.2分p(atm)(2)t4=t1?e=02分(3)(4)w=q=5.6×102j2分o15.1mol双原子分子理想气体从状态a(p1,v1)沿p?v图所p而立直线变化至状态b(p2,v2),试求:(1)气体的内能增量.(2)气体对外界所作的功.(3)气体稀释的热量.(4)此过程的摩尔热容.(摩尔热容c=?q/?t,其中?q则表示1mol物质在过程中增高温度?t时所稀释的热量.)mmcp(t2?t1)?cv(t3?t2)mmolmmol53?p1(2v1?v1)?[2v1(2p1?p1)]2211p1v1=5.6×102j4分?2q?21t1t3t2t4v(l)2p2p1oabv1v2v解:(1)?e?cv(t2?t1)?(2)w?5(p2v2?p1v1)2分21(p1?p2)(v2?v1),21(p2v2?p1v1).3分2w为梯形面积,根据相似三角形有p1v2=p2v1,则w?(3)q=δe+w=3(p2v2-p1v1).2分后(4)以上计算对于a→b过程中任一微小状态变化均成立,故过程中δq=3δ(pv).由状态方程得δ(pv)=rδt,故δq=3rδt,摩尔热容c=δq/δt=3r.3分6.存有1mol刚性多原子分子的理想气体,原来的应力为1.0atm,温度为27℃,若经过一绝热过程,并使其应力减少至16atm.试求:(1)气体内能的增量;(2)在该过程中气体所作的功;(3)终态时,气体的分子数密度.(1atm=1.013×105pa,玻尔兹曼常量k=1.38×10-23jk-1,普适气体常量r=8.31jmol-1k-1)解:(1)∵刚性多原子分子i=6,??i?2?4/31分i??1?∴t2?t1(p2/p1)e(m/mmol)600k2分后(2)∵绝热w=-δe=-7.48×103j(外界对气体作功)2分(3)∵p2=nkt2∴n=p2/(kt2)=1.96×1026个/m33分1ir(t2?t1)?7.48?103j2分后27.如果一定量的理想气体,其体积和压强依照v?a/p的规律变化,其中a为已知常量.试求:(1)气体从体积v1膨胀到v2所作的功;(2)气体体积为v1时的温度t1与体积为v2时的温度t2之比.求解:(1)dw=pdv=(a2/v2)dvw?dwv2v1(a2/v2)dv?a2(11?)2分v1v2(2)∵p1v1/t1=p2v2/t2∴t1/t2=p1v1/(p2v2)由v1?a/p1,v2?a/p2得p1/p2=(v2/v1)2∴t1/t2=(v2/v1)2(v1/v2)=v2/v13分后8.汽缸内有一种刚性双原子分子的理想气体,若经过准静态绝热膨胀后气体的压强减少了一半,则变化前后气体的内能之比e1∶e2=?1)irt,pv?(m/mmol)rt2分后mol21得e?ipv211变化前e1?ip1v1,变化后e2?ip2v22分22绝热过程p1v1??p2v2?解:据e?(m/m即题设p2?(v/v)?12?p2/p13分11p1,则(v1/v2)??2211/?即v1/v2?()2∴1?1111/?e1/e2?ip1v1/(ip2v2)?2?()?2??1.223分后22219.2mol氢气(视作理想气体)已经开始时处在标准状态,后经等温过程从外界汲取了400j的热量,达至末态.谋末态的应力.(普适气体常量r=8.31jmol-2k-1)求解:在等温过程中,δt=0q=(m/mmol)rtln(v2/v1)得lnvv2?1q?0.0882(m/mmol)rt即v2/v1=1.093分末态应力p2=(v1/v2)p1=0.92atm2分后10.为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2j,必须传给气体多少热量?求解:等压过程w=pδv=(m/mmol)rδt1分后11ir?t?iw1分22双原子分子i?51分1∴q??e?w?iw?w?7j2分后2?e?(m/mmal)11.两端半封闭的水平气缸,被一连动活塞平分成左右两室,每室体积均为v0,其中器皿温度相同、应力均为p0的同种理想气体.现维持气体温度维持不变,用外力缓慢移动活塞(忽略摩擦),并使左室气体的体积收缩为右室的2倍,问外力必须并作多少功?为了并使刚性双原子分子理想气体在等温收缩过程中对外作功2j,必须托付给气体多少热量?外力解:设左、右两室中气体在等温过程中对外作功分别用w1、w2表示,外力作功用w′表示.由题知气缸总体积为2v0,左右两室气体初态体积均为v0,末态体积各为4v0/3和2v0/3.1分后据等温过程理想气体做功:w=(m/mmol)rtln(v2/v1)得w1?p0v0ln4v04?p0v0ln3v032v2得w2?p0v0ln0?p0v0ln2分3v03429?ln)?p0v0ln2分后338现活塞缓慢移动,促进作用于活塞两边的力应成正比,则w’+w1=-w2ww1?w2??p0v0(ln12.一定量的理想气体,从a态出发,经p-v图中所示的过p(105pa)程抵达b态,试求在这过程中,该气体稀释的热量..ac42db1解:由图可得o258v(m3)5a态:pava?8×10jb态:pbvb?8×105j∵pava?pbvb,根据理想气体状态方程所述ta?tb?e=03分根据热力学第一定律得:q?w?pa(vc?va)?pb(vb?vd)?1.5?10j2分13.如图,体积为30l的圆柱形容器内,有一能上下自由滑动6的活塞(活塞的质量和厚度可以忽略),容器内盛存有1摩尔、温度为127℃的单原子分子理想气体.若容器外大气压黎允文1标准大气压,气温为27℃,求当容器内气体与周围达至均衡时需向外吸热多少?(普适气体常量r=8.31jmol-1k-1)-3活塞解:开始时气体体积与温度分别为v1=30×103m,t1=127+273=400k∴气体的应力为p1=rt1/v1=1.108×105pa大气压p0=1.013×105pa,p1>p0可见,气体的降温过程分为两个阶段:第一个阶段等体降温,直至气体压强p2=p0,此时温德博瓦桑县t2,吸热q1;第二个阶段等温降温,直到温度t3=t0=27+273=300k,吸热q2(1)q1?cv(t1?t2)?3r(t1?t2)2t2?(p2/p1)t1?365.7k∴q1=428j5分(2)q2?cp(t2?t3)?∴总计放热q=q1+q2=1.79×103j5分后5r(t2?t3)=1365j2。
第十三章 热力学基础 习题解答
§13.1~13. 213.1 如图所示,当气缸中的活塞迅速向外移动从而使气体膨胀时,气体所经历的过程【C 】(A) 是准静态过程,它能用p ─V 图上的一条曲线表示(B) 不是准静态过程,但它能用p ─V 图上的一条曲线表示(C) 不是准静态过程,它不能用p ─V 图上的一条曲线表示(D) 是准静态过程,但它不能用p ─V 图上的一条曲线表示分析:从一个平衡态到另一平衡态所经过的每一中间状态均可近似当作平衡态(无限缓慢)的过程叫做准静态过程,此过程在p-V 图上表示一条曲线。
题目中活塞迅速移动,变换时间非常短,系统来不及恢复平衡,因此不是准静态过程,自然不能用p -V 图上的一条曲线表示。
13.2 设单原子理想气体由平衡状态A ,经一平衡过程变化到状态B ,如果变化过程不知道,但A 、B 两状态的压强,体积和温度都已知,那么就可以求出:【B 】(A ) 体膨胀所做的功; (B ) 气体内能的变化;(C ) 气体传递的热量; (D ) 气体的总质量。
分析:功、热量都是过程量,除了与系统的始末状态有关外,还跟做功或热传递的方式有关;而内能是状态量,只与始末状态有关,且是温度的单值函数。
因此在只知道始末两个状态的情况下,只能求出内能的变化。
对于答案D 而言,由物态方程RT PV ν=可以计算气体的物质的量,但是由于不知道气体的种类,所以无法计算气体总质量。
13.3 一定量的理想气体P 1、V 1、T 1,后为P 2、V 2、T 2, 已知V 2>V 1, T 2<T 1,以下说法哪种正确?【D 】(A ) 不论经历什么过程,气体对外净作功一定为正值;(B ) 不论经历什么过程,气体对外界净吸热一定为正值;(C ) 若是等压过程,气体吸的热量最少;(D ) 若不知什么过程,则W 、Q 的正负无法判断。
分析:功和热量都是过程量,他们除了与系统的始末状态有关外,还跟经历的过程方式有关,所以A 、B 选项不正确。
《大学物理学》热力学基础练习题
《大学物理学》热力学基础练习题《大学物理学》热力学基础一、选择题13-1.如图所示,bcab 1a 和b 2a 功与吸收热量的情况是( )(A )b 1a 过程放热、作负功,b 2a 过程放热、作负功;(B )b 1a 过程吸热、作负功,b 2a 过程放热、作负功;(C )b 1a 过程吸热、作正功,b 2a 过程吸热、作负功;(D )b 1a 过程放热、作正功,b 2a 过程吸热、作正功。
【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b 1a 过程作的负功比b 2a 过程作的负功多,由Q W E =+∆知b 2a 过程放热,b 1a 过程吸热】13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B 状态A 和状态B 过程,气体必然 ( )(A )对外作正功;(B )内能增加; (C )从外界吸热;(D )向外界放热。
【提示:由于A B T T <,必有A B E E <;而功、热量是 过程量,与过程有关】13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为 ( ) (A )6J ; (B )3J ; (C )5J ; (D )10J 。
【提示:等体过程不做功,有Q E =∆,而2mol M iE R T M ∆=∆,所以需传5J 】13-4.有人想象了如图所示的四个理想气体的循)A ()B ()【提示:(A) 绝热线应该比等温线陡,(B )和(C )两条绝热线不能相交】13-5.一台工作于温度分别为327℃和27℃的高温热源与低温热源之间的卡诺热机,每经历一个循环吸热2000J ,则对外做功( ) (A )2000J ; (B )1000J ; (C )4000J ; (D )500J。
大学物理题库-第13章 热力学基础
热力学基础一 选择题01功、热量、内能,热力学第一定律及其对典型的热力学过程的应用,绝热过程1. 对于理想气体系统来说,在下列过程中的哪个过程,所吸收的热量、内能的增量和对外作功三者均为负值: [ ](A )等体降压过程(B )等温膨胀过程(C )绝热膨胀过程 (D )等压压缩过程答案:D2.一定量的理想气体,经历某过程后,温度升高了.则根据热力学定律可以断定:(1) 该理想气体系统在此过程中吸了热.(2) 在此过程中外界对该理想气体系统作了正功.(3) 该理想气体系统的内能增加了.(4) 在此过程中理想气体系统既从外界吸了热,又对外作了正功.以上正确的断言是:(A) (1)、(3). (B) (2)、(3).(C) (3). (D) (3)、(4).(E) (4). [ ]答案:C(060101104)3. 如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A) 是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。
[ ]答案:C(060101106)4. 如图所示,一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分,两边分别装入质量相等、温度相同的2H 和2O 。
开始时绝热板P 固定。
然后释放之,板P 将发生移动(绝热板与容器壁之间不漏气,且摩擦可以忽略不计),在达到新的平衡位置后,若比较两边温度的高低,则结果是:[ ](A ) 2H 比2O 温度高;(B ) 2O 比2H 温度高;(C ) 两边温度相等且等于原来的温度;(D ) 两边温度相等但比原来的温度降低了。
答案:DV5. 如图,bca 为理想气体绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是: (A) b 1a 过程放热,作负功;b 2a 过程放热,作负功. (B) b 1a 过程吸热,作负功;b 2a 过程放热,作负功. (C) b 1a 过程吸热,作正功;b 2a 过程吸热,作负功.(D) b 1a 过程放热,作正功;b 2a 过程吸热,作正功. [ ] 答案:B6. 如图所示,一定量的理想气体,沿着图中直线从状态a ( 压强p 1 = 4 atm ,体积V 1 =2 L )变到状态b ( 压强p 2 =2 atm ,体积V 2 =4 L ).则在此过程中:(A) 气体对外作正功,向外界放出热量. (B) 气体对外作正功,从外界吸热.(C) 气体对外作负功,向外界放出热量. (D) 气体对外作正功,内能减少. [ ] 答案:B7. 一定量的理想气体,其状态改变在p -T 图上沿着一条直线从平衡态a 到平衡态b (如图).(A) 这是一个膨胀过程. (B) 这是一个等体过程. (C) 这是一个压缩过程. (D) 数据不足,不能判断这是那种过程. [ ] 答案:C8. 一定量的理想气体分别由初态a 经①过程ab 和由初态a ′经②过程a′cb 到达相同的终态b ,如p -T 图所示,则两个过程中气体从外界吸收的热量 Q 1,Q 2的关系为: (A) Q 1<0,Q 1> Q 2. (B) Q 1>0,Q 1> Q 2.(C) Q 1<0,Q 1< Q 2. (D) Q 1>0,Q 1< Q 2. [ ]答案:B 02 理想气体的定容摩尔热容,定压摩尔热容,迈耶公式和比热比1、在等压、等容、等温、绝热四种过程中,某单原子分子理想气体的摩尔热容依次应该是:[ ] 、[ ] 、[ ] 、[ ](A ) 0 (B ) 3R /2 (C ) 5R /2 () ∞答案:C ;B ;D ;A03循环过程,卡诺循环,热机效率,制冷系数1、一条等温线和一条绝热线不能组成循环过程的原因是:[ ](A ) 违背了热力学第一定律p OV b 1 2 a c 123412 p(B)违背了热力学第二定律(C)一条等温和一条绝热线不能相交两次(D)一个循环过程至少应由三条曲线组成答案:BC2、两个卡诺热机的循环曲线如图所示,一个工作在温度为T1 与T3的两个热源之间,另一个工作在温度为T2与T3的两个热源之间,已知这两个循环曲线所包围的面积相等.由此可知:(A)两个热机的效率一定相等.(B)两个热机从高温热源所吸收的热量一定相等.(C)两个热机向低温热源所放出的热量一定相等.(D)两个热机吸收的热量与放出的热量(绝对值)的差值一定相等.[ ]答案:D3、一定量的某种理想气体起始温度为T,体积为V,该气体在下面循环过程中经过三个平衡过程:(1) 绝热膨胀到体积为2V,(2)等体变化使温度恢复为T,(3) 等温压缩到原来体积V,则此整个循环过程中(A) 气体向外界放热(B) 气体对外界作正功(C) 气体内能增加(D) 气体内能减少[]答案:A4、一定量的理想气体,起始温度为T,体积为V0.后经历绝热过程,体积变为2 V0.再经过等压过程,温度回升到起始温度.最后再经过等温过程,回到起始状态.则在此循环过程中(A) 气体从外界净吸的热量为负值.(B) 气体对外界净作的功为正值.(C) 气体从外界净吸的热量为正值.(D) 气体内能减少.[]答案:A5、一定质量的理想气体完成一循环过程.此过程在V-T图中用图线1→2→3→1描写.该气体在循Array环过程中吸热、放热的情况是(A) 在1→2,3→1过程吸热;在2→3过程放热.(B) 在2→3过程吸热;在1→2,3→1过程放热.(C) 在1→2过程吸热;在2→3,3→1过程放热.(D) 在2→3,3→1过程吸热;在1→2过程放热.[]答案: C6、理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:(A) S 1 > S 2. (B) S 1 = S 2.(C) S 1 < S 2. (D) 无法确定. [ ]答案:B7、一定量某理想气体所经历的循环过程是:从初态(V 0,T 0)开始,先经绝热膨胀使其体积增大1倍,再经等体升温回复到初态温度T 0,最后经等温过程使其体积回复为V 0,则气体在此循环过程中. (A) 对外作的净功为正值. (B) 对外作的净功为负值.(C) 内能增加了. (D) 从外界净吸的热量为正值. [ ]答案:B8、如图所示,工作物质进行a Ⅰb Ⅱa 可逆循环过程,已知在过程a Ⅰb 中,它从外界净吸收的热量为Q ,而它放出的热量总和的绝对值为Q 2,过程b Ⅱa 为绝热过程;循环闭曲线所包围的面积为A .该循环的效率为(A) Q A =η . (B) Q A >η. (C) 2Q Q A +=η. (D) 121T T -=η. [ ] (式中T 1、T 2为a 、b 两点的温度)答案:C04可逆过程,不可逆过程,卡诺定理,热力学第二定律得两种表述1、 “理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功.”对此说法,有如下几种评论,哪种是正确的?(A) 不违反热力学第一定律,但违反热力学第二定律.(B) 不违反热力学第二定律,但违反热力学第一定律.(C) 不违反热力学第一定律,也不违反热力学第二定律.(D) 违反热力学第一定律,也违反热力学第二定律. [ ]答案:C2、根据热力学第二定律可知:(A) 功可以全部转换为热,但热不能全部转换为功.(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体(C) 不可逆过程就是不能向相反方向进行的过程.(D) 一切自发过程都是不可逆的. [ ]答案:D3、关于在相同的高温恒温热源和相同的低温恒温热源之间工作的各种热机的效率,以及它们在每一循环中对外所作的净功,有以下几种说法,其中正确的一种说法是:(A)这些热机的效率相等,它们在每一循环中对外作的净功也相等.(B)不可逆热机的效率一定小于可逆热机的效率,不可逆热机在每一循环中对外所作的净功一定小于可逆热机在每一循环中对外所作的净功.p V O a (T 1)b (T 2)ⅠⅡ(C)各种可逆热机的效率相等,但各种可逆热机在每一循环中对外所作的净功不一定相等.(E) 这些热机的效率及它们在每一循环中对外所作的净功大小关系都无法断定. [ ]答案:C05热力学第二定律的统计意义,熵的概念和熵增原理。
13工程热力学第十三章 化学热力学基础
Sorry, no copy!
过量空气量比较少时, 常发生不完全燃烧. 过量空气量比较少时 , 常发生不完全燃烧 . 如过量空气量为 10%,5%的碳生成一氧化碳,则甲烷燃烧时的化学反应方程式为 的碳生成一氧化碳,
CH 4 + 1.1 × 2O 2 + 1.1 × 2 × 3.76 N 2 = 0.95CO 2 + 0.05CO + 2H 2 O + 0.225O 2 + 8.27 N 2
13-3 理论燃烧温度 在定压或定容条件下,燃料在给定的过量空气中绝热 绝热完全燃烧 在定压或定容条件下,燃料在给定的过量空气中绝热完全燃烧 生成物所达到的温度,称为给定条件下的理论燃烧温度 理论燃烧温度. 时,生成物所达到的温度,称为给定条件下的理论燃烧温度. 对定压绝热燃烧过程,按定压燃烧的能量转换关系, 对定压绝热燃烧过程,按定压燃烧的能量转换关系,有 Qp= HP-HR 所以: 因为绝热过程Qp=0,所以:HP = HR 在绝热条件下进行定压燃烧时, 即,在绝热条件下进行定压燃烧时,反应物的焓全部转变成生成物 的焓.根据焓和温度的关系,可按照生成物的焓值,确定定压燃烧 的焓.根据焓和温度的关系,可按照生成物的焓值,确定定压燃烧 系统的理论燃烧温度. 系统的理论燃烧温度. 对容压绝热燃烧过程,按容压燃烧的能量转换关系, 对容压绝热燃烧过程,按容压燃烧的能量转换关系,有 QV=UP-UR 即可得到: 考虑到QV=0,即可得到: UP =UR 在绝热条件下进行定容燃烧时, 即,在绝热条件下进行定容燃烧时,反应物的热力学能全部转变成 生成物的热力学能.根据热力学能和温度的关系, 生成物的热力学能.根据热力学能和温度的关系,可按照生成物的 热力学能的数值,确定定容燃烧系统的理论燃烧温度 定容燃烧系统的理论燃烧温度. 热力学能的数值,确定定容燃烧系统的理论燃烧温度.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章习题 热力学第一定律及其应用
1、关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是 。
2、如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程 。
3、一定量的理想气体,分别经历如图(1) 所示的abc 过程,(图中虚线ac 为等温线),和图(2) 所示的def 过程(图中虚线df 为绝热线).判断
这两种过程是吸热还是放热.
abc 过程 热,def 过程 热.
4、如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 。
(=γ
C p /C V )
5、一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下 三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程
气体对外作功最多;____________过程气体能增加最多;__________过程气体吸收的热量最多.
V
V
答案
1、(1)(4)是正确的。
2、是A-B 吸热最多。
3、abc 过程吸热,def 过程放热。
4、P 0/2。
5、等压, 等压, 等压
理想气体的功、能、热量
1、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氨气传递热量是 。
2、 一定量的理想气体经历acb 过程时吸热500 J .则
经历acbda 过程时,吸热为 。
3、一气缸贮有10 mol 的单原子分子理想气体,在压缩
过程中外界作功209J ,
气体升温1 K ,此过程中气体能增量为 _____ ,外界传给气体的热量为___________________. (普适气体常量 R = 8.31 J/mol · K)
4、一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J.
p (×105 Pa)
3 m 3)
5、 1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p V 图
所示直线变化到状态B (p 2,V 2),试求:
(1) 气体的能增量. (2) 气体对外界所作的功. (3) 气体吸收的热量. (4) 此过程的摩尔热容.
(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)
答案
1、3J
2、-700J
3、124.7 J ,84.3 J
4、500J ;700J
5、解:(1) )(2
5
)(112212V p V p T T C E V -=
-=∆
(2) ))((2
1
1221V V p p W -+=
, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则
)(2
1
1122V p V p W -=
. (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ).
(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中
ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,
摩尔热容 C =ΔQ /ΔT =3R .
B
A
O
V
p p 2p V 1V 2
循环过程
1、 如图表示的两个卡诺循环,第一个沿ABCDA 进行,第二个沿A D C AB ''进行,这两个循环的效率1η和2η的关
系及这两个循环所作的净功W 1和W 2的关系是
,W 1 W 2
2、 理想气体卡诺循环过程的两条绝热线下的面积大小
(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:
3、一卡诺热机(可逆的),低温热源的温度为27℃,热机效率为40%,其高温热源温度为_______ K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加________ K .
4、如图,温度为T 0,2 T 0,3 T 0三条等温线与两条绝热线围成三个卡诺循环:(1) abcda ,(2) dcefd ,(3) abefa ,
其效率分别为 η1_________,η2__________,η3 __________.
5、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求: (1) 第二个循环的热机效率; (2) 第二个循环的高温热源的温度.
6、 1 mol 单原子分子理想气体的循环过程如T -V 图
所示,其中c 点的温度为T c =600 K .试求: (1) ab 、bc 、c a 各个过程系统吸收的热量;
(2) 经一循环系统所作的净功; B
A
C D
C '
D '
V
p
V
p
S 1
S 2
V (10-3m 3)
O
1 2
a
b c
p O V 3T 0 2T 0
T 0
f
a
d
b c e
(3) 循环的效率.
(注:循环效率η=W /Q 1,W 为循环过程系统对外作的净功,Q 1为循环过程系统从外界吸收的热量ln2=0.693)
答案 1、=;<
2、S 1 = S 2.
3、500 ; 100
4、33.3% ; 50%; 66.7%
5、解:(1) 1
2
11211T T T Q Q Q Q W -=-==η 2111T T T W
Q -= 且 1
212T T
Q Q =
∴ Q 2 = T 2 Q 1 /T 1
即 212
122112T T T W T T T T T Q -=⋅-=
=24000 J
由于第二循环吸热
221
Q W Q W Q +'='+'=' ( ∵ 22Q Q =') =''='1
/Q W η29.4% (2) ='
-=
'η12
1T T 425 K 6、解:单原子分子的自由度i =3.从图可知,ab 是等压过程, V a /T a = V b /T b ,T a =T c =600 K
T b = (V b /V a )T a =300 K (1) )()12
()(c b c b p ab T T R i T T C Q -+=-= =-6.23×103
J (放热)
)(2
)(b c b c V bc T T R i
T T C Q -=
-= =3.74×103 J (吸热) Q ca =RT c ln(V a /V c ) =3.46×103
J (吸热)
(2) W =( Q bc +Q ca )-|Q ab |=0.97×103
J (3) Q 1=Q bc +Q ca , η=W / Q 1=13.4%
热力学第二定律
1、根据热力学第二定律判断下列说法的正误:
(A) 功可以全部转换为热,但热不能全部转换为功.()
(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体()
(C) 不可逆过程就是不能向相反方向进行的过程.()
(D) 一切自发过程都是不可逆的.()
2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了___________________________的过程是不可逆的,而克劳修斯表述指出了________________的过程是不可逆的.
3、所谓第二类永动机是指________________________________________,
它不可能制成是因为违背了________________________________________.
答案
1、⨯,⨯,⨯,√
2、功变热;热传导
3、从单一热源吸热,在循环中不断对外作功的热机;
热力学第二定律。