第六章液压控制阀

合集下载

第六章 液压传动系统的速度调节

第六章 液压传动系统的速度调节

节流调速回路--出口节流调速回路
③功率特性与回路效率
泵的输出功率为
Pp p pQp
(6-27)
执行元件的有效功率为 P p pQ1 p2Q2 1 F ( p1 A 1 p2 A 2)
功率损失为
P Pp P 1 p p Qp p p Q1 p2 Q2 p p Q1 Qy p p Q1 p2Q2 p y p j p p Qy p2Q2 p p Qy p jQ 2
按式(6-32)、(6-33)及图6-7可知:
a.随着负载的增加,运动速度下降很快,其速度-负载特性
比进、出口节流调速回路更软;
节流调速回路--旁路节流调速回路
b.在节流阀通流截面积一定时,负载愈大速度刚性愈大;
c.负载一定时,节流阀通流面积愈小,速度刚性愈好;
d.增大执行元件有效工作面积,减小节流阀指数,可以提高速 度刚性;
节流调速回路--出口节流调速回路
执行元件的运动速度,由通过节流阀从执行元 件回油腔排出的流量Q2决定,即
Q2 CA j p2 CA j p p A1 F 1 A2 A2 A2

(6-24)
节流调速回路--出口节流调速回路
②速度-负载特性 由式(6-24)可求得出口节流调速回路的速度刚性为
节流调速回路--进口节流调速回路
速度-负载特性可用速度刚性这一指标来评定,
其定义为曲线上某一点处切线斜率的倒数,表示意义 为:负载变化时,系统抗阻速度变化的能力。即
F A1 1 kv CA j p p A1 F 1
(6-10)

A1 F kv pp A1

液压课后答案第六章

液压课后答案第六章

6-1 如图6-1所示的进油节流调速回路,已知液压泵的供油流量q p min L/6=,溢流阀调定压力p p MPa 0.3=,液压缸无杆腔面积241m 1020-⨯=A ,负载N 4000=F ,节流阀为薄壁孔口,开口面积为24T m 1001.0-⨯=A ,C d 62.0=,3m /kg 900=ρ。

试求:(1)活塞的运动速度v 。

(2)溢流阀的溢流量和回路的效率。

(3)当节流阀开口面积增大到A T124m 1003.0-⨯=和A T224m 1005.0-⨯=时,分别计算液压缸的运动速度和溢流阀的溢流量。

解:(1)由11P A F ⋅= 得4114000020102P F A MPa -=/=/⨯=1321p P P P MPa ∆=-=-=1464320.620.01102100.29210d T q C A P m s--=⋅∆/ρ=⨯⨯⨯⨯/900=⨯/ 44110.2910100.0146v q A m s--=/=⨯/20⨯=/(2)441431100.292100.70810p q q q m s---∆=-=⨯-⨯=⨯/64400000.014619.5310110c p p F v p q -⋅⨯η===%⋅⨯⨯⨯ (3)114330.87610T T q q m s -==⨯/1330.01460.0438s T v v m ==⨯=/144431100.876100.12410p T q q q m s---∆=-=⨯-⨯=⨯/因为225T T p q q q =>所以243110T p q q m s -==⨯/244111020100.05T p v q A m s --=/=⨯/⨯=/6-2 如图6-2所示的回油节流调速回路,已知液压泵的供油流a )b )图6-1 进油节流调速回路量q p min L/20=,负载N 40000=F ,溢流阀调定压力p p 5.4MPa =,液压缸无杆腔面积A 124m 1080-⨯=,有杆腔面积A 224m 1040-⨯=,液压缸工作速度min /m 18.0=v ,不考虑管路损失和液压缸的摩擦损失,试计算:(1)液压缸工作时液压系统的效率。

液压传动与控制第6-7章

液压传动与控制第6-7章

一、换向基本回路 换向问路是用来使执行元件换向和起停。它主要由各种换 向阀等组成。 1滑阀换向的基本回路
A B
P o
2为采用变量泵进行换向的回路
3行程换向阀控制的换向回路
4行程开关控制的换向回路
A B P o
二、顺序动作基本回路 实现顺序动作。 1.压力控制的 利用油路本身压力的变化, 使执行元件动作,发出讯号, 使执行元件顺序动作。
1
( p3 0)
F p泵 A1 F T回=- v v
2)回油节流调速回路的特性 ①速度负载特性
②功率特性和回路效率(规律和进油一样)
功率损失: ΔP= P泵-P缸= P泵ΔQ + p2Q2 可见,有两部分组成: ΔP= P泵ΔQ——溢流损失
ΔP= p2Q2 ——节流损失
回路效率
5.尽量按装在靠近液压系统有冲击、脉动的地方
6.安装于管路上的,作用着一个相当于它人口面积和 管道油压相乘的作用力,因此必须用支持板和托架牢 固地将其主体固定。 7.在正常工作情况下,每隔六个月要检查一次充气压 力,使之经常保持所定的预压力。 8.在搬运、安装、拆卸之前,应预先把内部的气体及 液压油完全放掉。
1. 简述蓄能器的作用,在使用蓄能器时应注意哪些问题? 2.简述滤油器的作用,举出几种滤油器的安装方式。
第七章液压基本回路 一个复杂的液压系统都是有一些基本的液压回路组成的。 所谓基本回路是液压元件组成,以完成特定功能的油路结构。 第一节方向控制回路 方向控制基本回路用来控制液压系统中油路的接通、切 断、和换向,从而使执行元件实现起动、停止和换向。这一 类换向回路常用的有换向、顺序、同步、自锁等基本回路。
回油节流调速回路中液压缸回油腔的压力p2有时比进油腔的 压力p1还要高得多。由缸的力平衡方程可得p2=(p1A1-F),当负 载F=0、A1/A2=2(即差动缸)时,p2=2p1。这样就会增加密封摩 擦、降低密封件的寿命,引起泄漏增加,效率降低。

单向阀和液控单向阀教程文件

单向阀和液控单向阀教程文件

开环形槽的效果
开有均压槽的部位,四周都有相等或接近相等的 压力油,可显著减少液压卡紧力。阀芯倾斜时开 环槽的效果可从下图看出:
图6-12 阀芯倾斜时开环形槽的效果
五、操纵方式
1、手动换向阀 2、机动换向阀 (1)二位二通电磁阀
(2)三位四通电磁阀
3、电磁换向阀
(3)交流和直流电磁铁
4、液动换向阀 (4)干式和湿式电磁铁 5、电液动换向阀
二、滑阀式换向阀的结构
下图是三槽二台肩换向阀的换向原理。当换向 阀芯处于左位时图a,P与A通,B与T通;当阀芯处 于右位时图b,P与B通,A与T通。这种阀的长度 较短,但回油压力直接作用于阀芯两端,对密封 装置有较高的要求。
图为滑阀和阀芯的实际结构
三、滑阀机能
多位阀处于不同位置时,其各油口连通情况不 同,这种不同的连通方式体现了换向阀的各种控制 机能,称为滑阀机能。下图是三位四通阀中位机能。
箱。于是主阀切换到左位,主

路P与B通、A与
T通。当2DT
通电、
1DT断电时,则有
P与A通、B与T通。
图6-20 电液动换向阀
下图所示也是一种电液换向阀,不过这种阀不是
为了解决大规格问题,而是为了减小控制功率而设
计的,称为低功率电磁阀。图中主阀两端面与T’
相通,在对中弹簧作用下,主阀处于中位。当左端
压力有了这一结构,液控单向阀
便可控制较高的油压而不需增加
控制活塞的直径合和使用过高的
图 6-2 液 控 单 向 阀
控制油压。
5-弹 簧 6-卸 荷 阀 芯
具有漏油油口的结构
三、双向液压锁
如图所示,使两个液控单向阀共用一个阀体1
和一个控制活塞2,而顶杆3分别置于控制活塞两

液压传动第六章

液压传动第六章

6.1.2 液压阀的分类 单向阀和换向阀
利用通流通道的更换来 溢流阀、减压阀、顺序 方向阀 阀和压力继电器 控制油液的流动方向
液 压 阀
压力阀 流量阀
节流阀、调速阀、 溢流节流阀
利用通流截面的节流作用 来控制系统的压力和流量
6.1.3 对液压阀的基本要求
液压系统中所使用的液压阀均应满足以下基本要求: (1)动作灵敏,使用可靠,工作时冲击和振动小。
4)液动换向阀 液动换向阀是利用控制油路的压力油来改变阀芯 位置的换向阀。
当K1通压力油,K2通回油时,阀芯 右移,P与A通,B与T通;当K2通压 力油,K1通回油时,阀芯左移,P与 B通,A与T通;当K1和K2都不通压 力油时,阀芯在两端对中弹簧的 作用下处于中位。
三位四通液动换向阀
5)电液换向阀 电液换向阀是由电磁阀和液动阀结合在一起构成 的一种组合式换向阀。
A B
油路,防止油路间的互相干扰。
单向阀要以和其他阀组成组合阀,例如 单向顺序阀、单向节流阀等。
单向阀的职能符号
2.液控单向阀
当控制口K处无压力油 通入时,它的工作机制 和普通单向阀一样:压 力油只能从通口P1流向 通口P2,不能反向倒流; 当控制口K有控制压力 油时,活塞1右移,推动顶杆2顶开阀芯,使油口P1和P2接通,油液 就可在两个方向自由通流。此时液控单向阀相当于一条通路。
①缸的两腔被封闭,活塞在任一位置均可停住,且能承受一 定的正向负载和反向负载。 ②因P口封闭,泵不能卸荷,泵排出的压力油只能从溢流阀排 回油箱。 ③可用于多个换向阀并联的系统。当一个分支中的换向阀处 于中位时,仍可保持系统压力,不致影响其它分支的正常工 作。
AB
H型机能
P T
2)H型机能 阀芯处于中位时, P,A,B,T四个油口互通,特点如下: ①虽然阀芯已除于中位,但缸的活塞无法停住。中位时油缸不 能承受负载; ②不管活塞原来是左行还是右行,缸的各腔均无压力冲击,也 不会出现负压。换向平稳无冲击,换向时无精度可言;

第六章液压基本回路

第六章液压基本回路

速度控制回路
速度控制回路是讨论液压执行元件速度的调节和变换的 问题。
1、调速回路 调节执行元件运动速度的回路。
定量泵供油系统的节流调速回路 变量泵(变量马达)的容积调速回路 容积节流调速回路
2、快速回路 使执行元件快速运动的回路。 3、速度换接回路 变换执行元件运动速度的回路。
第六章液压基本回路
▪ 采用液控单向阀的保压回路
适用于保压时间短、对保压稳定
性要求不高的场合。
▪ 液压泵自动补油的保压回
路采用液控单向阀、电接触式
压力表发讯使泵自动补油。
第六章液压基本回路
泄压回路
功用 使执行元件高压腔中的压力缓慢地释放,以免泄压过快引
起剧烈的冲击和振动。
▪ 延缓换向阀切换时间的泄压回
▪ 用顺序阀控制的泄压回路
定量泵节流调速回路
回路组成:定量泵,流量控制阀(节流阀、调速阀等), 溢流阀,执行元件。其中流量控制阀起流量调节作用,溢 流阀起压力补偿或安全作用。
▪ 按流量控制阀安放位置的不同分: 进油节流调速回路 将流量控制阀串联在液压泵与液 压缸之间。 回油节流调速回路 将流量控制阀串联在液压缸与油 箱之间。 旁路节流调速回路 将流量控制阀安装在液压缸并联 的支路上。 下面分析节流调速回路的速度负载特性、功率特性。分析
在工作过程不同阶段实现多级压力变换。一般用溢流阀来实现这 一功能。
▪ 单级调压回路
▪ 系统中有节流阀。当执行
元件工作时溢流阀始终开 启,使系统压力稳定在调 定压力附近,溢流阀作定 压阀用。
▪ 系统中无节流阀。当
系统工作压力达到或超 过溢流阀调定压力时, 溢流阀才开启,对系统 起安全保护作用。
▪ 利用先导型溢流阀遥
控口远程调压时,主溢 流阀的调定压力必须大 于远程调压阀的调定压 力。

第六章 液压基本回路

第六章 液压基本回路
P A1 P2 A2 1 P2 A1P 1 A
图6-10 增压回路
图6-10所示,原理:在图示位置,油泵输出的低压油进入增压 器大缸的左腔,推动活塞右移,使增压器小缸右腔输出高压油,进 入工作液压缸。换向后,换向阀的阀心移到右端,油泵输出的压力 油进入增压器大缸的活塞杆腔,使活塞右移推回,工作液压缸的活 塞在弹簧的作用下返回。油箱中的油液可通过单向阀进入增压器小 缸右腔,以补充这部分管路的泄露。
图6-9 减压回路
第六章 液压基本回路
三、增压回路
增压回路是使系统中某一部分具有较 高的稳定压力。它能使系统中的局部压力 原高于液压泵的输出压力。 在某些机械的液压系统中,有时需要 使局部油路或某个液压缸获得比油泵供给 压力高得多,但流量不大的压力油时,就 可采用增压回路。增压器利用有杆腔的油 压高,即:
图6-6 旁路节流调速回路
图6-7 双压力回路
第六章 液压基本回路
4. 远程调压回路
它是用远程调压阀或小流量溢流阀 接在先导式溢流阀的遥控口上进行远程 控制回路。能供给系统三种压力。给系 统的压力由先导式溢流阀调定压力决定; 当电磁换向阀2通电时溢流阀1的遥控口 和远程调压阀4相通,这时油泵的供油压 力由远程调压阀4的调定压力决定;2和3 通电,由5决定。利用电磁换向阀是否与 先导式溢流阀遥控口相同,进行远程遥 控。注意,远程调压阀的调定压力应小 于先导式溢流阀所调定压力。 要求负载和泵后压力基本一致,减少系 统的功率消耗。
图6-15 平衡回路
第六章 液压基本回路
七、释压回路
为使高压大容量液压缸中存储的能 量缓慢释放,以免在突然释放时产生很大 的液压冲击,可采用释压回路。一般在液 压缸的直径较大、压力较高时,其高压油 缸在排油前就需释压,如压力机液压系统。 左图为使用节流阀的释压回路。由图 可见,液压缸上腔的高压油在换向阀处于 中立时通过节流阀、单向阀和换向阀释压, 释压快慢由节流阀调节。当上腔的压力降 至压力继电器的调定压力时,换向阀切换 至左位,液控单向阀打开,使液压缸上腔 的液体通过该阀排到液压缸顶部的副油箱。

液压第六章4流量控制阀.答案

液压第六章4流量控制阀.答案

综上所述,无论是分流阀还是集流阀,
保证两油口流量不受出口压力(或进口压
力)变化的影响,始终保证流量相等或成
一定比例是依靠阀芯的位移改变可变节
流口的开口面积进行压力补偿的。
(一)调速阀
1.调速阀的工作原理
调速阀是由节流阀与定差减压阀串联组成。 若定差减压阀阀芯受力平衡处于某一位置时,节流阀 进出口压力差Δp=p2-p3=Ft/A为一确定值, 定差减压阀的阀口开度一定,使压力p1减至p2,因此 流经调速阀,即节流阀流量与节流阀的开口面积成正 比。 调速阀工作原理图、调速阀动画原理图 调速阀产品照片
四、分流集流阀
有些液压系统由一台液压泵同时向几个执行元件 供油,要求不论各执行元件的负载如何变化,执 行元件能够保持相同(一定比例)的运动速度, 即速度同步。分流集流阀就是用来保证多个执行 元件速度同步的流量控制阀,又称为同步阀。 分流集流阀是利用负载压力反馈的原理来补偿因 负载变化引起流量变化的一种流量控制阀。它只 能控制流量的分配,不能控制流量的大小。
分流集流阀包括分流阀、集流阀和分流集流阀三种不同控制 类型。分流阀安装在执行元件的进口,集流阀安装在执行 元件的回油路。 分流阀和集流阀只能 保证执行元件单方向 的同步运动,而要求
执行元件双向同步则
可以采用分流集流阀。
1.分流阀的工作原理与基本结构 图所示为分流阀的结构原理图。分流阀动画图、分流集流阀 装配动画图
2.集流阀的工作原理与基本结构

保证两执行元件的回油流量相等或为一定比例,并汇集两 股回油在一起的流量控制阀,叫集流阀。它的工作原理与分 流阀相同,但在结构上把固定节流孔布置在集油口的一边, 而且,阀芯两端控制腔和
同端的可变节流口的油腔 相通。 集流阀动画图

液压传动与气动技术课程教案-液压控制阀

液压传动与气动技术课程教案-液压控制阀

液压传动与气动技术课程教案-液压控制阀第一章:液压控制阀概述1.1 教学目标1. 了解液压控制阀的基本概念和作用2. 掌握液压控制阀的分类和基本结构3. 理解液压控制阀的工作原理1.2 教学内容1. 液压控制阀的定义和作用2. 液压控制阀的分类2.1 方向控制阀2.2 压力控制阀2.3 流量控制阀3. 液压控制阀的基本结构3.1 滑阀3.2 球阀3.3 锥阀4. 液压控制阀的工作原理1.3 教学方法1. 采用PPT讲解液压控制阀的基本概念、分类和结构2. 通过实物展示和示意图解释液压控制阀的工作原理3. 进行课堂讨论,解答学生疑问1.4 教学评估1. 课堂问答2. 课后作业第二章:液压控制阀的性能参数2.1 教学目标1. 掌握液压控制阀的主要性能参数2. 理解液压控制阀的选型依据2.2 教学内容1. 液压控制阀的主要性能参数1.1 流量1.2 压力1.3 方向2. 液压控制阀的选型依据2.1 系统压力2.2 系统流量2.3 控制精度2.3 教学方法1. 采用PPT讲解液压控制阀的性能参数和选型依据2. 分析实际案例,解释选型过程2.4 教学评估1. 课堂问答2. 课后作业第三章:液压控制阀的设计与计算1. 掌握液压控制阀的设计原则2. 学会液压控制阀的计算方法3.2 教学内容1. 液压控制阀的设计原则1.1 结构设计1.2 材料选择1.3 制造工艺2. 液压控制阀的计算方法2.1 流量计算2.2 压力计算2.3 功率计算3.3 教学方法1. 采用PPT讲解液压控制阀的设计原则和计算方法2. 分析实际案例,演示计算过程3.4 教学评估1. 课堂问答2. 课后作业第四章:液压控制阀的应用与维护4.1 教学目标1. 学会液压控制阀的应用方法2. 了解液压控制阀的维护保养知识1. 液压控制阀的应用方法1.1 安装与调试2.1 使用与维护2. 液压控制阀的维护保养知识2.1 清洁2.2 检查2.3 更换密封件4.3 教学方法1. 采用PPT讲解液压控制阀的应用方法和维护保养知识2. 观看实际操作视频,了解操作细节4.4 教学评估1. 课堂问答2. 课后作业第五章:液压控制阀的故障诊断与维修5.1 教学目标1. 学会液压控制阀的故障诊断方法2. 掌握液压控制阀的维修技巧5.2 教学内容1. 液压控制阀的故障诊断方法1.1 外观检查1.2 性能测试2. 液压控制阀的维修技巧2.1 维修工具与设备2.2 维修步骤与注意事项5.3 教学方法1. 采用PPT讲解液压控制阀的故障诊断方法和维修技巧2. 分析实际案例,演示维修过程5.4 教学评估1. 课堂问答2. 课后作业第六章:典型液压控制阀的分析与应用6.1 教学目标1. 熟悉典型液压控制阀的结构与工作原理2. 掌握典型液压控制阀的应用案例6.2 教学内容1. 方向控制阀的分析与应用1.1 单向阀1.2 换向阀2. 压力控制阀的分析与应用2.1 溢流阀2.2 减压阀3. 流量控制阀的分析与应用3.1 节流阀3.2 调速阀6.3 教学方法1. 采用PPT讲解典型液压控制阀的结构、工作原理和应用案例2. 分析实际案例,解释应用过程6.4 教学评估1. 课堂问答2. 课后作业第七章:液压控制阀的现代设计方法7.1 教学目标1. 了解液压控制阀的现代设计方法2. 学会运用计算机辅助设计(CAD)进行液压控制阀设计7.2 教学内容1. 液压控制阀的现代设计方法1.1 有限元分析1.2 计算机辅助设计(CAD)2. 运用CAD进行液压控制阀设计的过程2.1 建立三维模型2.2 进行强度与稳定性分析3. 确定设计参数与优化方案7.3 教学方法1. 采用PPT讲解液压控制阀的现代设计方法和CAD应用过程2. 实际操作演示,让学生了解设计过程7.4 教学评估1. 课堂问答2. 课后作业第八章:液压控制阀的仿真与实验8.1 教学目标1. 学会使用液压控制阀仿真软件2. 了解液压控制阀的实验方法8.2 教学内容1. 液压控制阀仿真软件的使用1.1 软件介绍与操作界面1.2 建立仿真模型2. 液压控制阀的实验方法2.1 实验设备与仪器2.2 实验步骤与数据处理8.3 教学方法1. 采用PPT讲解液压控制阀仿真软件的使用和实验方法2. 实际操作演示,让学生熟悉实验过程8.4 教学评估1. 课堂问答2. 课后作业第九章:液压控制阀在工程应用中的案例分析9.1 教学目标1. 熟悉液压控制阀在工程应用中的实际案例2. 学会分析液压控制阀在工程应用中的优缺点9.2 教学内容1. 液压控制阀在工程机械中的应用案例1.1 挖掘机2.1 装载机2. 液压控制阀在航空航天中的应用案例2.1 飞行器控制系统3. 液压控制阀在工业自动化中的应用案例3.19.3 教学方法1. 采用PPT讲解液压控制阀在工程应用中的实际案例2. 分析案例中液压控制阀的优缺点,进行讨论9.4 教学评估1. 课堂问答2. 课后作业第十章:液压控制阀的发展趋势与展望10.1 教学目标1. 了解液压控制阀的发展趋势2. 展望液压控制阀的未来发展前景10.2 教学内容1. 液压控制阀的发展趋势1.1 微型化2.1 智能化3. 环保型2. 液压控制阀的未来发展前景2.1 新材料的应用2.2 新型控制技术的融合10.3 教学方法1. 采用PPT讲解液压控制阀的发展趋势和未来发展前景2. 进行课堂讨论,激发学生的创新思维10.4 教学评估1. 课堂问答2. 课后作业重点和难点解析一、教案结构的完整性确保教案包含课程概述、教学目标、教学内容、教学方法、教学评估等基本部分,以保证教学的系统性和连贯性。

液压维修第6章 液压阀的故障与维修

液压维修第6章  液压阀的故障与维修

第6章液压阀的故障排除与维修6.1 液压阀的概述液压控制阀是液压系统的控制元件,其作用是控制和调节液压系统中液体流动的方向、压力的高低和流量的大小,以满足执行元件的工作要求。

6.1.1 液压阀的分类1.按结构形式划分(1)滑阀滑阀的阀芯为圆柱形,阀芯上有台肩,阀芯台肩的大小直径分别为D和d;与进出油口对应的阀体上开有沉割槽,一般为全圆周;阀芯在阀体孔内中做相对运动,开启或关闭阀口。

如图6—1(a)所示。

(2)锥阀锥阀阀芯半锥角α一般为12°~20°,有时为45°。

阀口关闭时为线密封,不仅密封性好,而且开启阀口时无死区,阀芯稍有位移即开启,动作很灵敏。

如图6—1(b)所示。

(3)球阀球阀的性能与锥阀相同。

如图6—1(c)所示。

(a)滑阀(b)锥阀(c)球阀图6—1阀的结构型式2.按用途划分液压阀可分为方向控制阀、压力控制阀和流量控制阀。

(1)压力控制阀压力控制是用来控制或调节液压系统液流压力,以及利用压力作为信号控制其他元件的阀。

如溢流阀、减压阀、顺序阀等都是压力控制阀。

(2)流量控制阀流量控制阀是用来控制或调节液压系统液流流量的阀。

如节流阀、调速阀、二通比例流量阀、溢流节阀等都是流量控制阀。

(3)方向控制阀方向控制阀是用来控制和改变液压系统中液流方向的阀。

如单向阀、液控单向换向阀等都是方向控制阀。

3.按控制原理划分液压阀可分为开关阀、比例阀、伺服阀和数字阀。

开关阀是指被控制量为定值或阀口启闭控制液流通路的阀类,包括普通控制阀、插装阀、叠加阀。

本章重点介绍这一使用最为普遍的阀类。

比例阀和伺服阀能根据输入信号连续或按比例地控制系统的参数,数字阀则用数字信息直接控制阀的动作。

4.按安装连接形式划分(1)管式连接管式连接又称为螺纹连接,阀体进出油口由螺纹或法兰直接与油管连接,安装方式简单,但元件布置较为分散,对这种连接的装卸与维修不太方便。

(2)板式连接板式连接的阀各油口均布置在同一安装面上,且为光孔。

液压技术第四版教学课件第六章 液压基本回路

液压技术第四版教学课件第六章  液压基本回路

为较高的压力进入液压缸左腔。
(2)当三位四通换向阀在右位工作时,活塞
作空行程返回,油泵的出口油液压力由溢流阀3调
定为较低压力进入液压缸右腔。
(3)活塞退到终点后,油泵在低压下卸荷。
中国劳动社会保障出版社
§6-2
压力控制回路
4.支路减压回路
系统工作压力由溢流阀2调定,在
液压缸6的进油路上串联单向减压阀5。
路、卸荷回路、平衡回路和保压回路等。
一、调压回路
控制系统的工作压力,使其不超过某一预先调定好的数值,或者
使工作机构在运动过程的各个阶段具有不同压力的回路称为调压回路。
中国劳动社会保障出版社
§6-2
压力控制回路
1.二级调压回路
(1)电磁换向阀3断电时,先导式溢流阀4
工作,系统压力由阀4的先导阀控制,系统在较
当压力超过溢流阀5的调定值时,溢流5溢流,
液压缸左腔通过单向阀6从油箱补油。
(2)活塞向左运动突然切换换向阀至中位时,
溢流阀4起缓冲作用,单向阀7从油箱补油。
中国劳动社会保障出版社
第六章 液压基本回路
§6-2
压力控制回路
利用压力控制阀来调节系统或其中某一
部分压力的回路称为压力控制回路。
压力控制回路主要有调压回路、增压回
§6-2
压力控制回路
油泵继续供油,压力上升,电接
点压力表的控制系统使电磁铁CB1断电,
换向阀处于中位,液压泵卸荷。液压
缸由液控单向阀保压。
当液压缸上腔的压力降到电接触
式压力表的下限值时,压力表发出信
号,使电磁铁CB1通电,液压泵再次向
系统供油,使系统压力升高。
中国劳动社会保障出版社
第六章 液压基本回路

液压传动 第六章

液压传动  第六章
Vw V1 V2 7.5 L 5 L 2.5 L
图 气囊式蓄能器压力与容积的关系图
3. 蓄能器的总容积V0 的计算
V0
p0.715 0
Vw
0.715
1
p1
1 p2
0.715
(6-4)
6.1.4 其他情况下蓄能器总容积V0的计算
表 其他情况下蓄能器总容积
6.1.5 蓄能器的安装
对于液压缸
n
Vw Vi K i 1
Qpt 60
(6-2)
n
式中, Vi i 1
量总和;
——最大耗油量处各执行元件耗油
Vi Aili 103 式中, Ai ——液压缸工
K ——系统泄漏系数,一般取 K = 1.2 ; 作腔有效面积(m2);
ΣQp ——泵站总供油量; t ——泵的工作时间。
li ——液压缸的 行程(m)。
平均流量,即
Qm
60K T
n
Qiti
i 1
(6-1)
n
Qiti
i 1
图 蓄能器流量—时间关系图
图 蓄能器流量—时间关系图
2. 有效容积 Vw (即有效排油量)的计算
根据各液压机构的工作情况制定出耗油量与时间关系的工作周期表,比较出最 大耗油量的区间。
(1)对于作为辅助动力源的蓄能器,可按下式粗算
6.1.2 蓄能器的分类和选用
(a)活塞式
1—活塞;2—缸筒; 3—充气阀;4—壳体;
5—气囊;6—限位阀 图 充气式蓄能器
(b)气囊式
1 . 活塞式蓄能器
活塞式蓄能器
2 . 气囊式蓄能器
气囊式蓄能器
6.1.3 蓄能用蓄能器的参数计算
蓄能用蓄能器在实际使用中的功能可细分为“作 辅助动力源”“补偿泄漏保持恒压”“改善频率特 性”“作应急动力源”“作液压空气弹簧”等。

液压系统比例阀控制器

液压系统比例阀控制器

第六章液壓系統比例閥控制器6.1 前言比例控制閥主要用於開迴路控制(open loop control);比例控制閥的輸出量與輸入信號成比例關係,且比例控制閥內電磁線圈所產生的磁力大小與電流成正比。

在傳統型式的液壓控制閥中,只能對液壓進行定值控制,例如:壓力閥在某個設定壓力下作動,流量閥保持通過所設定的流量,方向閥對於液流方向通/斷的切換。

因此這些控制閥組成的系統功能都受到一些限制,隨著技術的進步,許多液壓系統要求流量和壓力能連續或按比例地隨控制閥輸入信號的改變而變化(圖6-1.1)。

液壓伺服系統雖能滿足其要求,而且精度很高,但對於大部分的工業來說,他們並不要求系統有如此高的品質,而希望在保證一定控制性能的條件下,同時價格低廉,工作可靠,維護簡單,所以比例控制閥就是在這種背景下發展起來的。

比例控制閥可分為壓力控制閥,流量控制及方向控制閥三類(如圖6-1.2所示)。

1.壓力控制閥:用比例電磁閥取代引導式溢流閥的手調裝置便成為引導式比例溢流閥,其輸出的液壓壓力由輸入信號連續或按比例控制。

2.流量控制閥:用比例電磁閥取代節流閥或調速閥的手調裝置而以輸入信號控制節流閥或調速閥之節流口開度,可連續或按比例地控制其輸出流量。

故節流口的開度便可由輸入信號的電壓大小決定。

3.方向控制閥:比例電磁閥取代方向閥的一般電磁閥構成直動式比例方向閥,其滑軸不但可以換位,而且換位的行程可以連續或按比例地變化,因而連通油口間的通油面積也可以連續或按比例地變化,所以比例方向控制閥不但能控制執行元件的運動方向外,還能控制其速度。

237以上各種比例閥所作動的液壓元件為液壓缸或液壓馬達。

6.2 比例閥控制器內部方塊之意義與功能比例閥控制器內部包含各種電路模組,每一個模組有其特定功能及用途並以符號來代表,此處就每一個模組的功能及原理來說明之。

1.斜坡產生器(Ramp Generator)圖6-2.1為斜坡產生器之符號圖,斜坡產生器(Ramp Generator)主要是將瞬間的電壓變化量轉換成帶有時間延遲的電壓變化,也就是說當輸入電壓改變時,斜坡產生器會將原先的階梯式電壓變化量緩慢地改變到改變後之電壓,而在原先電壓與改變後電壓之間就會得到一隨時間上升或下降的斜坡(Ramp),所以Ramp Generator斜坡產生的原理跟積分器作用的原理是一樣的。

第6章 液压基本回路

第6章 液压基本回路

1、液压缸差动连接快速 运动回路油快速运动回路
1、换向阀处于中位时, 泵1通过单向阀3,供油至 蓄能器。储存 2、压力升至顺序阀2控制 压力,油泵卸荷。单向阀 3控制油液不回流。 3、换向阀5换向时,油泵 1与蓄能器4同时为液压缸 6供油。
4.增速缸的快速运动回路
现以YT4543型液压动力滑台为例,分析其工作原理和特点。 该滑台最大进给力为45KN,快速速度约为6.5m/min,进 给速度范围为6.6~600mm/min,完成的典型工作循环为:快 进→一工进→二工进→死挡铁停留→快退→原位停止。
YT4543型动力滑台液压系统的工作原理
电磁铁和行程阀的动作顺序表
元件 1YA 工况 快进
2YA
3YA
行程阀
一工进 二工进 死挡铁 停留 快退 原位停 止
三、增压回路
增压回路可以提高系统中某一支路的工作压力(需要压力较高、流量不 大的场合),以满足局部工作机构的需要。 采用了增压回路,系统的整体工作压力仍能较低,这样可以降低能源消 耗。增压回路中提高压力的主要元件是增压缸或增压器。
1、利用增压缸的单作用增压回路 2、采用双作用增压缸的增压回路
四、卸荷回路
第二节 速度控制回路
速度控制回路的功用是使执行元件获得能满足工作需求的 运动速度。它包括调速回路、快速回路、速度换接回路等。

qV A
n
qV VM
一、调速回路
液压系统的调速方法可分为节流调速、容积调速和容积节流 调速三种形式。 1)节流调速回路:由定量泵供油,用流量阀调节进入或流 出执行机构的流量来实现调速; 2)容积调速回路:通过调节变量泵或变量马达的排量来调 速; 3)容积节流调速回路:利用改变变量泵排量和调节调速阀 的流量配合工作来调节速度的回路。

第六章 压力控制阀

第六章  压力控制阀
结构:出油口接二次油路,有单独泄油口。 工作原理:p < ps ,进出口不通; p > ps ,接通。 特点:内部控制, 外部泄油。 职能符号:
注意:当进口压力超过调定压力时,阀口的开启状 态分两种情况:
1) 当负载压力大于调定压力时,阀口全开;此时
p1 p2 pL
2) 当负载压力小于调定压力时,阀口小开口,此时
图中pc为开启压 力, pn为调定压 力(全流压力)
由溢流阀的启闭特性可以看出:
1)对同一个溢流阀,其开启特性总是优于闭合特性。 2)先导式溢流阀的启闭特性优于直动式溢流阀。
静态调压偏差:调定压力与开启压力之差。 Δp n = pn - pc 开启比:开启压力与调定压力之比。 δ =pc/ pT 溢流阀的开启比越大,静态调压偏差就越小, 它所控制的系统压力就越稳定。
ห้องสมุดไป่ตู้
二、先导型顺序阀
先导级设计为: 1)导阀的测压面与主油路 进口一次压力相通,由先导 阀的调压弹簧直接与之相比 较; 2)导阀阀口回油接出口二 次压力,这样可不致产生大 量外泄油量; 3)导阀弹簧腔接外泄口, 使导阀芯弹簧侧不形成背压; 4)先导级仍采用带进有固定节流口的半桥回路,固 定节流口的进油压力为p1,先导阀阀口仍然作为先导 级的回油阀口,但回油油压为p2 。

K s xs 0 xs p2 (xs≈0) As K s xs 0 常数 p2 As
令主阀的指令力 F调 p2 A2
F F调 p1 A1 p2 A2 P A1 K x0 x 1
0

K s xs 0 A2 F指 A2 常数 F调 p2 A2 p1 A A s 1 As A1 A1 A1

第六章 液压阀精品PPT课件

第六章 液压阀精品PPT课件
南昌大学科技学院
2020/10/6
第二节 液压阀上的共性问题
四、阀的泄漏特性
➢ 滑阀内泄漏的影响因素 (1)油液的粘度,工作温度; (2)阀芯与阀孔的间隙、密封带长度、密封形式; (3)阀中油路内的压力分布; (4)滑阀中位机能; (5)材料强度,安装变形。
滑阀在某一位置停留时,通过缝隙的泄漏量一般会减小,但有时也会 出现相反的现象。
Fddtvudv
d
Ft
dt
vudv
分析: (1)当液体从阀口流出时,瞬态液动力方向与阀芯移动方向相反(不论
阀口开度变大还是变小),阻止阀芯移动,为正阻尼; (2)当液体从阀口流入时,瞬态液动力方向与阀芯移动方向相同(不论
阀口开度变大还是变小),加助阀芯移动,为负阻尼; (3)正阻尼使阀工作趋于稳定,负阻尼使阀工作不稳定。
南昌大学科技学院
2020/10/6
第三节 方向控制阀
➢ 单向阀、换向阀
一、单向阀
➢ 普通单向阀、液控单向阀
1、普通单向阀
(1)作用 使油液只能沿一个方向流动,不能反向流动;
方向控制阀(方向阀):控制液流方向; 压力控制阀(压力阀):调节压力; 流量控制阀(流量阀):流量大小。 (2)按结构进行分类 滑阀(或转阀)类、锥阀类、球阀类。此外,还有喷嘴挡板阀类和射流管 阀。 主要学习: 单向阀、液控单向阀、换向阀——方向阀; 溢流阀、减压阀、顺序阀——压力阀; 节流阀、调速阀——流量阀。
第六章 液压阀
第一节 概述 第二节 液压阀上的共性问题 第三节 方向控制阀 第四节 压力控制阀 第五节 流量控制阀
南昌大学科技学院
2020/10/6
第一节 概述
一、液压阀的作用
液压控制阀(简称液压阀)是液压系统中的控制元件,用来控制液压系统 中流体的压力、流量及流动方向,以满足液压缸、液压马达等执行元件不 同的动作要求,它是直接影响液压系统工作过程和工作特性的重要元器件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流量时大时小甚至断流。 措施:加大水利半径、选择稳定性好的油液、
精心过滤。 薄壁孔不易附着、阻塞。
结论:薄壁式节流口流量特性好。
2. 最小稳定流量和流量调节范围
最小稳定流量 qmin= 0.05 L/min
流量调节范围:
RT
qm ax qm in
结构图
2. 机动
两位两通机动换向阀
挡块操纵,弹簧复位。
{ 常开
两位两通 常闭
靠弹簧的方格表示常态 应用:行程控制的场合。(又叫行程阀)
用行程阀速度换接
3. 电磁
两位三通电磁换向阀
电磁铁操纵,弹簧复位。 优点:易于实现自动化。 应用:小流量的场合。(q≤63 L/min )
实物
4. 液动
H型 P型 Y型
K型
手动 机动 电磁 液动 电液
§6-3 压力控制阀
§6-3 压力控制阀
分类 按用途: 溢流阀 减压阀 顺序阀 平衡阀 卸荷阀
按阀芯结构:滑阀 球阀 锥阀
按工作原理:直动式 先导式
§6-3.1 溢流阀
作用:防止系统过载,保持系统压力恒定。 一、工作原理 1. 直动式溢流阀
结构: 工作原理:p < ps ,阀口不开; p > ps ,溢流。 ps — 弹簧力
调定压力(全流压力):
pT
k ( xC xR max)
A 2CdW xR max cos
调压偏差: p pT pc
q Cd A0
2p
A0 W xR
q CdWxR
2p
pA Fs Fbs
pA k(xc xR ) 2CdW xR p cos kxc kxR 2CdW xR p cos pc A kxR 2CdW xR p cos
第六章 液压控制阀
液压控制阀作用
控制液流的方向、压力和流量。
§6-1 概述
一、分类 按用途: 方向阀 压力阀 流量阀
按控制方式:开关(定值) 比例 伺服(随动) 数字
按结构形式:滑阀、锥阀、球阀等。
一、分类
按连接方式:螺纹连接阀 法兰连接阀 板式连接阀 集成连接阀
按操纵方式:手动、机动、电动、液动和 电液动
先导式溢流阀
二、静态特性
1.直动式
溢流时阀芯受力方程: pA Fs Fg Fbs Ff
Fbs 2CdCvW Cr2 xR2 p cos 2CdW xR p cos
Cr 0 , Cv 1 , p p 0 p
pA Fs 2CdW xR p cos
p
Fs
k (xc xR )
换向阀(按通路分:二、三、四、五通) 按工位数目分:二、三、四位,按控制方式分:
电磁、液控,按操纵方式分:手动、气动、 机动)
一、单向阀
1、普通单向阀
结构:阀体、阀芯、弹簧等
单向阀原理
单向阀工作原理 单向阀工作原理
作用:只许油液单向流动,反向不通。 要求:正向流动阻力小,反向不通,密封好。
开启压力:0.03~0.05 MPa 背压阀:(单向阀的变形) 弹簧较硬
工作原理:节流口产生压降Δp p2 = p1 -Δp , p1一定,Δp ↑ , p2↓。
● p1< ps ,处于非工作状态, 不起减压作用;
● p1 > ps ,减压、稳压。
稳压原理
● p2 ↑→阀芯上移→阀口减小→ Δp ↑, p2= p1 -Δp , p1一定,Δp ↑ , p2↓;
● p2 ↓ →阀芯下移→阀口开大→ Δp ↓, Δp↓, p2↑= ps 。
液压锁
二、换向阀
作用:利用阀芯在阀体内的相对运动 改变油液流动方向,接通或关闭油路, 从而使液压执行元件启动、停止或变 换运动方向。
要求:
1)动作灵敏,使用可靠,工作时冲击和振 动小;
2)油液流过时的压力损失小; 3)密封性能好;即泄露量要小; 4)结构紧凑,安装、调整、使用、维护方
便,通用性强。
二、液压控制阀的结构特点及要求
1.结构特点 液压控制阀装在泵与执行元件之间,不
做功,只对执行元件起控制作用。 组成:阀体、阀芯、操纵机构。 共同点:都是通过阀芯的移动或控制油
口开闭或限制、改变油液的流动来工作 的,且液过阀孔都会产生压力降及温升。
2.对液压控制阀的要求
1、性能良好,既阀的工作灵敏,工作可 靠,无冲击振动现象;
p’ — 主阀芯上端的压力
特点:反应慢,稳定性好,波动小。
三、应用
1.作安全阀(常闭) 作用:防止系统过载。
2. 作溢流阀(常开)
作用:保持系统压力恒定
3.卸荷或远程调压
卸荷
远程调压
4.作背压阀
放在系统回油路上
§6-3.2 减压阀
作用:减低系统压力,并有稳压作用。
特点:出口压力控制阀芯动作, 有单独泄油口
主体部分组成
1) 两位两通
职能符号:
A
P
作用:控制油路的通与断
2)两位三通
职能符号:
作用:控制液流方向
AP
B
3)两位四通
职能符号:
P — 压力油口 O — 回油口 A、B — 分别接执行元件的两腔
作用:控制执行元件换向
4)三位四通
职能符号:
作用:换向、停止。
APB O
5)两位五通
职能符号:
2.压力损失
通过的流量影响压力损失; 3.内泄漏量
影响系统效率,使油液升温; 4.换向、复位时间
按系统要求合理选用; 5.换向频率
单位时间内的换向次数。(电磁阀:60次/min)
换向阀小结
职能符号:
位: 阀芯的工作位置;
AB
通: 阀体上油路的通道数;
PO
机能: 中位时油路的连通方式。
O型 控制方式:
控制液压缸动作顺序
2. 外控顺序阀
结构:控制油口。 工作原理:pK < ps ,不通;
pK > ps ,进出口接通。 特点:外部控制,
外部泄油。
职能符号:
§6-3.4 平衡阀
作用:放在执行元件的回油路上,平衡重物。 与顺序阀区别:没有单独的泄油口,弹簧较硬。 1. 内控平衡阀 特点:内部控制,
内部泄油。
开启压力:0.2~0.6 MPa 背压:执行元件回油腔的压力。
职能符号:
应用:
锁紧油缸,避免向油泵倒灌。 平衡重物
2、液控单向阀
组成:普通单向阀+小活塞缸
特点:a. 无控制油时,与普通单向阀一样,
b. 通控制油时,正反向都可以流动。
K
职能符号:
P1
P2
液控单向阀
液控单向阀工作原理
应用:
锁紧油缸,避免倒灌。 控制重物下放速度。
2、密封性能良好,能承受高于额定工作 压力的实验压力;
3、液流通过阀口时,压力损失要小; 4、结构简单,便于安装和制造,体积小、
价格便宜; 5、要求系列化、标准化、通用化。
§6-2 方向控制阀
§6-2 方向控制阀
定义:在液压系统中,用来控制工作液体流 动方向的阀。 作用:控制液流方向,从而改变执行元件的 运动方向。 分类:单向阀(普通、液控)
压力阀小结
作用:控制液压系统中的压力。 共性:利用液压力和弹簧力比较,控制阀口的
开与关;或控制开口大小。 溢流阀:控制进口压力 减压阀:控制出口压力 顺序阀:控制阀口通与不通,进而控制执行元件的
动作顺序。 平衡阀:装在执行元件的回油路上,平衡重物。 卸荷阀:使油泵卸荷。 要求:掌握各种阀的工作原理及应用场合。
AT 一定时 ,q变。
F
1) 压差对流量稳定性的影响
B
p pA pB
pA一定,当F变时,pB变。 A
q CAT p
即当F变时, Δp变,q变。
同样Δp下,对薄壁孔的流量影响小。
2) 温度对流量稳定性的影响
T变,η变,q变。 薄壁孔不受温度变化影响。
3) 节流口的阻塞 阻塞现象: 当Δp一定, AT 较小时 ,
O1 A P B O2
作用:换向、两种回油方式。
6)三位五通
职能符号:
O1 A P B O2
作用:换向、停止、回油不同。
两种回油方式
工进:有背压运动平稳 退回:快速畅通
二、操纵定位装置
作用:移动阀芯并使其保持在工作位置上。 1.手动
三位四通手动换向阀
a.手柄控制,弹簧复位。 b.手柄控制,钢球定位。 应用:小流量,需徒手操作的场合。
职能符号:
DBD型直动式溢流阀
实物
2. 先导式溢流阀
阻尼孔 调压弹簧
先导阀
平衡弹簧
主阀
结构:先导阀 主阀
阻尼孔、压差Δp
远程控制口K : 实现远程调压。 K口打开,p 由控制油压决定; K口堵上,p 由先导阀ps 决定。
先导式溢流阀
先导式溢流阀工作原理
职能符号
新符号
旧符号
实物
先导式溢流阀
A 2CdW xR p cos A 2CdW xR p cos
式中: k — 弹簧刚度
xC — 弹簧的预压缩量 xR — 阀口开度(阀芯位移,即增加的压缩量)
p
k (xc xR )
A 2CdW xR p cos
xR 0 (阀口将开未开)
开启压力: pc
k xC A
xR xR max —通过额定流量时阀芯的位移
职能符号:
应用:
工作缸
夹紧缸
使夹紧缸获得稳定的低压。
§6-3.3 顺序阀
作用:控制多个执行元件动作顺序。 1.内控顺序阀
结构:出油口接二次油路,有单独泄油口。 工作原理:p < ps ,进出口不通;
p > ps ,接通。 特点:内部控制,
相关文档
最新文档