已知函数的单调性求参数的取值范围

合集下载

分式函数单调性求参数范围

分式函数单调性求参数范围

分式函数单调性求参数范围凡是分式函数单调性求参数范围,是数学知识中一个重要的课题。

那么什么是分式函数单调性?其实这个是指某一个实数集合上存在一个复合函数,它可以将输入变量转化成一组实数集。

即,它可以将被调节变量X转换成Y,并且使x值从小到大变化,将对应的Y值从小到大变化,这个过程就叫做分式函数单调性。

很容易理解,分式函数单调性是指在函数的某一参数的增加或减少,函数的运行结果也会增加或减少的情况,而且增加与减少的变化也是单调的。

借助这一特性,就可以确定函数的参数范围。

换句话说,只要确定函数增加或减少的单调性,即可确定函数的参数范围。

一般来说,确定分式函数参数范围的基本方法有三种,即极值法,反函数法和求导法。

首先,极值法指的是通过求解函数关于变量x的极值,以获取有效参数范围。

例如,假设函数f (x) = 1/x ,通过对f (x)求偏导数,就可以求得x= 0时的极值,此时可以得出x的有效取值范围在(−∞,0)(不含0)和(0,+ ∞)之间。

其次,反函数法是从反函数出发,利用函数可逆性,从x= f -1(y)出发,求解y 的有效范围,以获取x的参数范围。

例如,f (x) = sin (x),那么可以直接求解x = arcsin(y),得出y的有效范围为[- π /2,π /2],那么x的有效范围就是[- π /2,π /2]。

最后,求导法是通过求解x的一阶导数,结合函数的单调性,从而确定参数范围。

例如,f (x) = x3 + x + 1,求解得f ' (x) =3x2 + 1,那么f ' (x) > 0时f (x)为增函数,即x取负值时,f (x)下降;x取正值时,f (x)上升;可知x的有效范围为(-∞~+ ∞)。

总而言之,通过极值法、反函数法和求导法,我们可以轻松求解出分式函数参数范围。

只要采用正确的方法,便可以清楚准确地确定函数参数范围,从而获益良多。

已知函数单调性求参数取值范围

已知函数单调性求参数取值范围

技法点拨已知函数单调性求参数取值范围■欧阳丽丽摘要:利用导数根据函数单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考点,下面将这类问题举例分析。

关键词:导数;单调性;参数取值范围一、转化为不等式的恒成立问题求参数取值范围若函数f (x )在(a ,b )上单调递增,则f′(x )≥0;若函数f (x )在(a ,b )上单调递减,则f′(x )≤0,将问题转化为函数最值问题求解。

一般地,分离变量后,若得到a ≥h (x ),则只需a ≥h (x )max ;若得到a ≤h (x ),则只需a ≤h (x )min 。

注意:f (x )在(a ,b )上为增函数(减函数)的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0(f′(x )≤0)且在(a ,b )内的任一非空子区间上f′(x )≠0。

例1,已知函数f (x )=ln x -12ax 2-2x (a ≠0)在[1,]4上单调递减,求a 的取值范围。

解:因为f (x )在[1,]4上单调递减,所以当x ∈[1,]4时,f′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立。

设h (x )=1x2-2x ,x ∈[1,]4所以只要a ≥h (x )max 。

而h′(x )=2(x +1)(x +1)x 4。

当x ∈[1,]4,h′(x )>0,所以h (x )在[1,]4上单调递增。

所以当h (x )max =h (4)=-716,所以a ≥-716,即a 的取值范围是éëêöø÷-716,+∞。

评析:由f (x )在[1,]4上单调递增,得到f′(x )≤0,进而分离参数a ,构造新的函数h (x ),本题转化为求h (x )max 。

例2,已知函数f (x )=ax +1x +2在(-2,+)∞内单调递减,求实数a 的取值范围。

利用函数的单调性求参数的取值范围(使用)

利用函数的单调性求参数的取值范围(使用)

例1:已知函数f (x) x3 ax2 3x 1在[2,4]上是单调递增函数, 求参数a的取值范围.
解 f '(x) 3x2 2ax 3, x [2,4]
: 则f '(x) 0在[2,4]上恒成立
即3x2 2ax 3 0,恒成立x [2,4]
方法:(分离参数)2ax 3x2 3恒成立
f '(x) ax (2a 1) 2 (ax 1)(x 2)
x
x
(1)当a 0时,f '(x) 2 x x
所以f (x)在(0,2)上递增,在(2, )上递减。
(2)当a
0时,令f
'(x)
0,
得x1
1 a
0.x2
2
结合二次函数图象知 f (x)在(0,2)上递增;
在(2, )递减。
(3)当a
即3x2 a 3 0,恒成立x [0,)
方法:(分离参数)
a 3x2 3恒成立
a (3x2 3)min a 3
练习 若函数f (x) x3 ax2 1在(0,2)内单调递减, 2: 求实数a的取值范围.
解析: f '(x) 3x2 2ax, x (0,2)
则f '(x) 0在(0,2)上恒成立
利用函数单调性求参数的 取值范围
复习
1 用导数判断函数单调性法则:

如果在(a,b)内,f
(x)>0,则f
(x)在此区间是增函数;
如果在(a,b)内,f (x)<0,则f (x)在此区间是减函数。
2、求函数单调区间的一般步骤 是
1、求定义 域2、求导
f'(x) 3、令f'(x)>0,求出增区间,令f'(x)<0, 求出减区间。

专题15 已知函数的单调区间求参数的范围(解析版)

专题15 已知函数的单调区间求参数的范围(解析版)

专题15已知函数的单调区间求参数的范一、单选题■1.若函数/(])=空山在区间(0,工)上单调递增,则实数。

的取值范围是()cosx 2A.a<-\B.a<2C.a>-\D.a<\【答案】C【分析】利用导函数研究原函数的单调性,利用单调性求解实数。

的取值范围.【详解】解:函数/(1)="*COSXnJ”、cosx>cos x+sinx(sin x+a)则/M=;-----cos^xTT•••X£(0,一)上,2/.cos2x>0.要使函数/(幻=吧*在区间(0,工)上单调递增,cosx 271、、二cos2x+sin2x+asinxN0在x G(0,—)上恒成立,2T[即:asinx+120在x£(0,一)上恒成立,2TT•/xe(0,—)±,2sin XG(0,1)故选:C.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.已知函数/a)=Lf+s—a)x+(a-l)lnx,(a>l),函数y=2用的图象过定点(0,1),对于任意玉,七£(0,+8),西>々,有/(%)一/(工2)>工2一不,则实数。

的范围为()B.2<a<5C.2<a<5D.3<a<5【答案】A【分析】 由图象过定点可得人=0,设/(x)=〃x)+x,结合已知条件可得F(x)在(0,+8)递增,求尸(X )的导数,令g(x)=%2一(〃-1)工+。

一1,由二次函数的性质可得g 【详解】解:因为>=2'+〃的图象过定点(0,1),所以2人=1,解得6=0,所以一方+(。

-1)1仪(。

>1),因为对于任意X],W^(0,-KO ),X]>x 2,有/(%)一/(无2)>W 一%,则/(%)+%>%+/(七),设/(%)=f(x)+x ,即F (x)=/(%)+%=—x 2-ar+(^-l)lri¥+x=—x 2-(6f-l)x+(^-l)lri¥,所以F(x)=x-(〃-1)+0「2—令且(1)=工2—(。

利用函数的单调性求参数的取值范围

利用函数的单调性求参数的取值范围

利用函数的单调性求参数的取值范围函数的单调性是指在一定范围内,函数的增减性质的统一性。

对于有单调性的函数,可以通过研究函数的导数来判断参数的取值范围。

首先,我们来回顾一下导数的定义和性质。

对于函数f(x),其导数可以表示为f'(x),导数表示函数在其中一点的变化率。

导数的正负号可以告诉我们函数的单调性。

1.若在[a,b]上f'(x)≥0,则函数在[a,b]上为单调递增函数。

2.若在[a,b]上f'(x)≤0,则函数在[a,b]上为单调递减函数。

3.若在[a,b]上f'(x)>0,则函数在[a,b]上为严格递增函数。

4.若在[a,b]上f'(x)<0,则函数在[a,b]上为严格递减函数。

步骤1:确定函数的定义域,即参数的取值范围。

步骤2:求出函数的导函数。

步骤3:利用导函数的性质来判断函数的单调性。

步骤4:结合定义域和单调性判断,确定参数的取值范围。

步骤5:验证参数的取值范围是否符合要求。

下面我们通过具体例子来说明求解参数取值范围的方法。

例子:求函数f(x) = ax^2 + bx + c 在定义域上的参数a、b、c的取值范围。

步骤1:确定函数的定义域。

对于二次函数,其定义域是整个实数集R。

步骤2:求出函数的导函数。

对f(x)求导得到f'(x) = 2ax + b。

步骤3:利用f'(x)的性质来判断函数的单调性。

-若2a>0,则函数在整个定义域上递增。

-若2a<0,则函数在整个定义域上递减。

步骤4:结合定义域和单调性判断,确定参数的取值范围。

-若2a>0,则函数在整个定义域上递增,所以a>0。

-若2a<0,则函数在整个定义域上递减,所以a<0。

然后,我们可以根据b和c的取值范围来进一步限定a的取值范围。

当a>0时:根据二次函数的几何性质,对于抛物线开口朝上的情况,函数的最小值出现在顶点处,顶点的x坐标为 -b/2a,对应的y坐标为 c - b^2/4a。

已知函数单调递增递减区间求参数的取值范围

已知函数单调递增递减区间求参数的取值范围

已知函数单调递增递减区间求参数的取值范围在数学中,函数是指一种映射关系,即根据给定的自变量,得到相应的因变量。

而单调性则是指函数随着自变量的增加或减少,函数值是单调递增还是单调递减的特性。

在求函数参数的取值范围时,我们需要分别考虑函数的单调递增和单调递减区间,并利用这些信息来确定参数的取值范围。

步骤一:确定函数的单调性首先,我们需要确定已知函数的单调性。

对于单调递增函数,我们可以通过求导数的方式来确定函数在哪些区间内单调递增。

对于单调递减函数,则需要求导数,并将导函数的取值范围确定在负数区间内。

步骤二:确定参数的取值范围对于已知单调递增函数,我们需要确定函数在单调递增的区间内的值,以及函数在单调递减的区间内的值。

然后,我们可以根据约束条件来确定参数的取值范围。

例如,如果我们需要求函数在一个区间内的最大值或最小值,那么我们需要将约束条件加入方程中,并用求导数的方式来确定该值在何处达到最大或最小值。

对于已知单调递减函数,我们需要确定函数在单调递减的区间内的值,以及在单调递增的区间内的值。

然后,我们同样可以根据约束条件来确定参数的取值范围。

例如,如果我们需要求使函数在一个区间内的最大值或最小值最小的参数,那么我们需要将约束条件加入方程中,并用求导数的方式来确定该值在何处达到最大或最小值。

步骤三:检验所得的结果是否正确在确定参数的取值范围后,我们需要检验所得的结果是否符合实际情况。

例如,我们可以将所得的参数代入原函数,检验该函数是否在所有定义域内都满足所要求的单调性特征。

如果不满足,我们需要重新修改参数的取值范围,直到满足所要求的单调性特征为止。

综上所述,围绕已知函数单调递增递减区间求参数的取值范围,我们需要先确定函数的单调性,然后根据约束条件确定参数的取值范围,并最终检验结果是否正确。

这种方法不仅可以帮助我们计算出函数中的重要参数,还可以用来解决各种最优化问题,从而提高工程和科学计算的效率和精度。

专题8 导数中已知单调性求参数的范围经典例题与练习(解析版)-2021年高考数学导数中必考知识专练

专题8 导数中已知单调性求参数的范围经典例题与练习(解析版)-2021年高考数学导数中必考知识专练

专题8:导数中已知单调性求参数的范围经典例题与练习(解析版)已知函数在某个区间上的单调性求参数的范围解法1:转化为0)(0)(''≤≥x f x f 或在给定区间上恒成立, 回归基础题型 解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;做题时一定要看清楚“在(m,n )上是减函数”与“函数的单调减区间是(a,b )”,要弄清楚两句话的区别:前者是后者的子集例1:已知R a ∈,函数x a x a x x f )14(21121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值; (Ⅱ)如果函数)(x f 是),(∞+-∞上的单调函数,求a 的取值范围.解:)14()1(41)(2++++='a x a x x f . (Ⅰ)∵()f x '是偶函数,∴ 1-=a . 此时x x x f 3121)(3-=,341)(2-='x x f , 令0)(='x f ,解得:32±=x .列表如下:可知:()f x 的极大值为34)32(=-f , ()f x 的极小值为34)32(-=f .(Ⅱ)∵函数)(x f 是),(∞+-∞上的单调函数,∴21()(1)(41)04f x x a x a '=++++≥,在给定区间R 上恒成立判别式法 则221(1)4(41)204a a a a ∆=+-⋅⋅+=-≤, 解得:02a ≤≤.综上,a 的取值范围是}20{≤≤a a .例2、已知函数3211()(2)(1)(0).32f x x a x a x a =+-+-≥ (I )求()f x 的单调区间;(II )若()f x 在[0,1]上单调递增,求a 的取值范围。

子集思想(I )2()(2)1(1)(1).f x x a x a x x a '=+-+-=++-1、20,()(1)0,a f x x '==+≥当时恒成立当且仅当1x =-时取“=”号,()(,)f x -∞+∞在单调递增。

已知函数的单调性求参数的范围

已知函数的单调性求参数的范围

已知函数的单调性求参数的范围若函数y =f x 在D 上单调递增,则f x ≥0在D 上恒成立若函数y =f x 在D 上单调递减,则f x ≤0在D 上恒成立 若a ≥g x 恒成立,则a ≥g x max 若a ≤g x 恒成立,则a ≤g x min 1.若函数f x =3a -1 x +1在R 上单调递增,求实数a 的取值范围解:3a -1>0⇒a >132.若函数f x =-x 2+21-m x +3在-3,+∞ 上单调递减,求实数a 的取值范围解:对称轴x =1-m ≤-3⇒m ≥43.若函数f x =2x +a 在3,+∞ 上单调递增,求实数a 的取值范围解:f x =2x +a x ≥-a 2 -2x -a x <-a 2⇒f x 在-∞,-a 2 上单调递减,在-a 2,+∞ 上单调递增所以-a 2≤3⇒a ≥-64.若函数f x =ax +1x +2在-2,+∞ 上单调递增,求实数a 的取值范围解:由f x =a x +2 +1-2a x +2=a +1-2a x +2在-2,+∞ 上递增所以反比例函数y =1-2a t在t ∈0,+∞ 上单调递增所以1-2a<0⇒a>1 25.若函数f x =x2-mx在1,+∞上单调递增,求实数m的取值范围解:函数y=x2-mx的零点为0和m所以m要和0比较大小0和m的中点为m2所以m2要和 1比较大小也即m要和0,2比较大小下面讨论①当m≤0时x≥1⇒f x =x2-mx=x2-mx 又f x 在1,+∞上单调递增所以对称轴x=m2≥1⇒m≥2,这不可能,舍去.②当0<m<2时f x =x2-mx=x2-mx x≥m-x2+mx0<x<m所以f x 在m2,m上递减因为m2<1⇒1,m⊊m2,m所以f x 在1,m上递减,矛盾,舍去③当m≥2时f x =x2-mx=x2-mx x≥m-x2+mx0<x<m所以f x 在m,+∞上递增因为m2≥1⇒1,+∞⊆m,+∞所以f x 在1,+∞ 上单调递增,合题意。

新高考方案二轮-数学(新高考版)大题专攻(一) 利用导数研究函数的单调性、极值与最值

新高考方案二轮-数学(新高考版)大题专攻(一) 利用导数研究函数的单调性、极值与最值

而 f(1)=ln 1+a-(2a+1)<0,所以 f(e)=ln e+ae2-(2a+1)e=1, 解得 a=e-1 2,与 1<21a<e 矛盾. ④当21a≥e 时,f(x)在(0,1)上单调递增,在(1,e]上单调递减, 所以最大值 1 在 x=1 处取得, 而 f(1)=ln 1+a-(2a+1)<0,不符合题意. 综上所述,a=e-1 2或 a=-2.
所以 f(x)的单调递增区间为0,12,(1,+∞),单调递减区间为12,1. (2)f′(x)=2ax2-2ax+1x+1=2ax-1xx-1, 令 f′(x)=0,得 x′1=1,x′2=21a, 因为 f(x)在 x=1 处取得极值,所以 x′2=21a≠x′1=1, ①当21a<0 时,f(x)在(0,1)上单调递增,在(1,e]上单调递减, 所以 f(x)在(0,e]上的最大值为 f(1),令 f(1)=1,解得 a=-2.
①当 a≤0 时,g′(x)=ex-a>0 在 R 上恒成立,
∴g(x)=f′(x)在(-∞,+∞)上递增; ②当 a>0 时,令 g′(x)>0 得 x>ln a,令 g′(x)<0 得 x<ln a, ∴g(x)=f′(x)在(-∞,ln a)上递减,在(ln a,+∞)上递增.
综上所述:当 a≤0 时,y=f′(x)是(-∞,+∞)上的增函数; 当 a>0 时,y=f′(x)在(-∞,ln a)上是减函数,在(ln a,+∞)上是增函数. (2)由(1)知,①当 a≤0 时,f′(x)=ex-ax-1 在(-1,+∞)上递增,又 f′(0) =0,∴-1<x<0 时,f′(x)<0;x>0 时,f′(x)>0, 则 f(x)在(-1,0)上递减,在(0,+∞)上递增,∴f(x)min=f(0)=1; ②当 0<a≤1e时,ln a≤-1,由(1)知 f′(x)在(-1,+∞)上递增,又 f′(0)=0, 则 f(x)在(-1,0)上递减,在(0,+∞)上递增,∴f(x)min=f(0)=1;

2022届高中数学导数通关练习专题03 利用函数的单调性求参数取值范围(解析版)

2022届高中数学导数通关练习专题03 利用函数的单调性求参数取值范围(解析版)

6.函数 f x 1 x3 ax2 2x 1 在 x 1, 2 内不单调,则( )
3
A. 1 a 1
2
2
B. 1 a 1
2
2
C. a 1 或 a 1
2
2
D. a 1 或 a 1
2
2
【解析】由题设, f (x) x2 2ax 2 ,∴ f (1) 2a 1 , f (2) 2 4a ,∵在 x 1, 2 内不单调,
x
a
1
ln
x
,若对任意
x1
,
x2
(0,
2]
,且
x1
x2 ,都有
f
x2 f x1
x2 x1
1,则实数 a 的取
值范围是( )
A.
,
27 4
B. (, 2]
C.
,
27 2
D. ,8
学科 网(北 京)股 份有限 公司
二、多选题
9.若函数 f (x) 1 x 2 9 ln x ,在区间m 1,m 1 上单调,则实数 m 的取值范围可以是(
20.已知函数 f (x) 1 x 4 x 3 9 x 2 cx 1 有三个极值点.
4
2
(1)求 c 的取值范围;
(2)若存在 c 27 ,使函数 f (x) 在区间[a, a 2]上单调递减,求 a 的取值范围.
21.已知函数 f x 2ln x 1 ax2 2a 1 x
2
(1)若 f x 在 2, 上单调,求 a 的取值范围; (2)若 f x 在 2, 上有极小值 g a ,求证: g a 4 ln 2 4 .
f (x) 1 1
1 x
(x
a 1)2

已知函数的单调性,怎样求参数的取值范围

已知函数的单调性,怎样求参数的取值范围

难 点 剖 析
已 矢 啮数 的 单 调 性, 怎 样 求 参 数 的 取 值 范
一 刘朝 辉
函数的单调性是 函数的重要性质 ,在每年的高 考 中常考不衰 ,对于 函数的单调性我们除了要掌握 如何判断并证 明函数的单调性 、求 函数的单调区间 以外 ,还要会逆 向思考掌握应用 函数单调性求参数 的取值范围问题 的解题策略。处理该问题的关键是 使用转化与化归思想 , 将未知转化为已知 , 将 复杂转 化为简单 ,从 而建立关于参数的不 等关系使问题 得 解 。下面通过实例说 明几种基本的求解方法 。
V 3
变式 : 如果 函数 ) = 2 x 2 — 1 眦在定义域 的一个 子 区间( k - 1 , k + 1 ) 上不是单调 函数 , 则 实数k 的取值 范
围是
, ( ) 在( O , 1 ) 上是增函数, Na 的取值范围是— —
解题关键分析 : 由导数知识可知, , ( ) > O H - , j , 函数

上恒成立 ,  ̄ P a I3 > x Z : ( i 4 . ( 0 , 1 ) 上 恒成立 , 而3 x 2 < 3 , 所 以
0≥ 3。
变式: 若函数 ) - l 。
, ( , 且n ≠1 ) 在( 一 ,
0 ) 内单调递增 , 则。 的取值范围— — 。 解: 当a > l 时, 知t = , 一 似为单调递增 的 函数才能 满足题意 , 但此 时在 ( 一 , 0 ) 上真数小于0 , 所 以
若已知函数 的单调区间容易求得 ,此时可先解 出单调区间 , 然后利用所给区间是单调 区间 的子集 , 根据集合之 间的包含关系建立不等式组解 得参 数的 取值范围即可 。 例3 已知函娄 ) = 似, 其中n ∈ R, 若函数 ) 在( 0 , 1 ) 上是增函数 , 则。 的取值范 围是— — 。 解题关键分析 : 此 函数是高次 函数 , 因为导数形 式简单 , 所 以利用导数很容易解出单调增区间 , 即所 得结果 , 只需( 0 , 1 ) 是解出单调增 区间的子集 即可 。

已知函数的单调性求参数的取值范围

已知函数的单调性求参数的取值范围
故f '(x) (0 或f '(x) 0)是f (x)单调 递增(或递减)的 __充__分__不___必__要_____
条件
由这个结论,本题也可以
这样解答:
Q f '(x) 3x2 6x 9且要使f (x)在区间(a,a 1)上单调递减。
f '(x) 3x2 6x 9 0在区间(a,a 1)内恒成立,
“若函数f (x)在(a,b)上单调递减,则f (x) 0在区间(a,b)上恒成立” “若函数f (x)在(a,b)上单调递增,则f (x) 0在区间(a,b)上恒成立”
它们不是充要条件
变式:若函数f (x)=lnx-ax(a 0)的单调增区间为(0,1), 则实数a的取值范围为 _________。
则(2a,a+1)(0,e)
2a 0 即a 1 e 0 a 1
2a a 1
故实数a的取值范围为0,1
总结 : 1:若函数f(x)(不含参数)在(a,b)(含参数) 上单调递增(递减),则可解出函数f(x)的单调(递减) 区间是(c,d),则(a,b)(c,d)(注意a b)
(二)、参数放在函数表达式 上:
课堂练习: 1.已知函数f (x) x2(x a),若f (x)在(2,3)上单调,则实数a的取值范围为_________。
2.设函数f (x) x2 ax ln x(aR),若函数f (x)在区间0,1上是减函数,
求实数a的取值范围。
答案:(1)a 3或a 9 (2)a 1
2
课后作业:课时作业

f f
'(a) 0 '(a 1)
0
1 2
a a
3 2
1
a

专题03 利用函数的单调性求参数取值范围(解析版)

专题03 利用函数的单调性求参数取值范围(解析版)

专题03利用函数的单调性求参数取值范围一、单选题1.已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为()A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【解析】()232f x x x a '=+-,因为()f x 在R 上为单调递增函数,故()0f x ¢³在R 上恒成立,所以4120a ∆=+≤即13a ≤-,故选:A.2.若函数ln y x a x =+在区间[)1,+∞内单调递增,则a 的取值范围是()A .(),2-∞-B .(),1-∞-C .[)2,-+∞D .[)1,-+∞【解析】由ln 1a y x a x y x'=+⇒=+,因为函数ln y x a x =+在区间[)1,+∞内单调递增,所以有0y '≥在[)1,+∞上恒成立,即10a x +≥在[)1,+∞上恒成立,因为[)1,x ∞∈+,所以由100a x a a x x +≥⇒+≥⇒≥-,因为[)1,x ∞∈+,所以(,x -∈-∞-,于是有1a ≥-,故选:D3.若函数()cos f x ax x =+在(),-∞+∞上单调递增,则实数a 的取值范围是()A .(-1,1)B .[)1,+∞C .(-1,+∞)D .(-1,0)【解析】()sin f x a x '=-,由题意得:()sin 0f x a x '=-≥,即sin a x ≥在(),-∞+∞上恒成立,因为[]sin 1,1y x =∈-,所以1a ≥恒成立,故实数a 的取值范围是[)1,+∞.故选:B4.若函数()2sin f x bx x =+在ππ,42x ⎡⎤∈⎢⎣⎦上单调递增,则实数b 的取值范围是()A .0b ≥B .0b >C .b ≥D .b >【解析】由题意()2cos 0f x b x '=+≥在ππ,42⎡⎤⎢⎣⎦上恒成立,2cos b x ≥-,ππ,42x ⎡⎤∈⎢⎥⎣⎦时,2cos y x =-是增函数,max 0y =(π2x =时取得),所以0b ≥.故选:A .5.若函数2()ln 2f x x ax =+-在区间1,14⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是()A .(,2)-∞-B .1,8⎛⎫-+∞ ⎪⎝⎭C .(2,)-+∞D .(8,)-+∞【解析】由2()ln 2f x x ax =+-可得:1()2f x ax x'=+.因为函数2()ln 2f x x ax =+-在区间1,14⎛⎫⎪⎝⎭内存在单调递增区间,所以()0f x '>在1,14x ⎛⎫∈ ⎪⎝⎭上有解,即212a x >-在1,14x ⎛⎫∈ ⎪⎝⎭上有解.设()21,1124,g x x x ⎛⎫∈-⎝=⎪⎭,由()30g x x -'=>在1,14x ⎛⎫∈ ⎪⎝⎭上恒成立,所以()g x 在1,14x ⎛⎫∈ ⎪⎝⎭单调递增,所以()()114g g x g ⎛⎫<< ⎪⎝⎭.所以184a g ⎛⎫>=- ⎪⎝⎭.故选:D 6.已知函数32()132x ax f x ax =+++存在三个单调区间,则实数a 的取值范围是()A .(0,4)B .[0,4]C .(,0)(4,)-∞+∞ D .(,0][4,)-∞+∞ 【解析】由题意,函数32()132x ax f x ax =+++,可得2()f x x ax a '=++,因为函数()f x 存在三个单调区间,可得()'f x 有两个不相等的实数根,则满足240a a ∆=->,解得0a <或4a >,即实数a 的取值范围是(,0)(4,)-∞+∞ .故选:C.7.若函数()219ln 2f x x x =-在区间[]1,a a -上单调递减,则实数a 的取值范围是()A .13a <£B .4a ≥C .23a -≤≤D .14a <≤【解析】函数()219ln 2f x x x =-,()0x >.则()299x f x x x x-'=-=,因为()f x 在区间[1]a a -,上单调递减,则()0f x '≤在区间[1]a a -,上恒成立,即290x -≤,所以03x <≤在区间[1]a a -,上恒成立,所以103a a ->⎧⎨≤⎩,解得13a <£,故选:A.8.已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为()A .0a ≥B .22a -≤≤C .2a ≥-D .0a ≥或2a ≤-【解析】因为函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,所以()cos 2sin 0f x a x x '=-≥在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上恒成立,即2tan a x ≥在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上恒成立,由2tan y x =在π(,0)2-上单调递增知,max π2tan()24y =-=-,所以2a ≥-,故选:C9.若()1sin 2cos 24x f x a x x ⎛⎫=--+ ⎪⎝⎭是R 上的减函数,则实数a 的取值范围是()A .5,4⎡⎫+∞⎪⎢⎣⎭B .(],1-∞-C .5,4⎛⎤-∞ ⎝⎦D .[)1,+∞【解析】由1sin 2()()cos 24x f x a x x =--+,得1cos 2()sin 22xf x a x '=---,因为()1sin 2cos 24x f x a x x ⎛⎫=--+ ⎪⎝⎭是R 上的减函数,所以1cos 2()sin 022x f x a x '=---≤在R 上恒成立,即221cos2sin cos sin 1sin sin 22x a x x x x x ≤++=+=-+=215(sin )24x --+在R 上恒成立,由于1sin 1x -≤≤,所以215(1124a ---+=-≤.故选:B.10.若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在区间7,24ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为()A .10,7⎡⎤⎢⎥⎣⎦B .16,09⎡⎤-⎢⎥⎣⎦C .1,7⎛⎤-∞ ⎥⎝⎦D .(],0-∞【解析】函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-()()1cos 23sin cos 412x a x x a x =+-+-()()()()2'sin 23cos sin 41cos sin 3cos sin 40f x x a x x a x x a x x a ∴=-+++-=-++++≤,对7π,2π4x ⎡⎤⎢⎥⎣⎦∈恒成立.πcos sin sin 4x x x ⎛⎫ ⎪⎝++⎭ ,∴当7π,2π4x ⎡⎤⎢⎥⎣⎦∈时,0cos sin 1x ≤+≤.令()()23401g t t at a t =-++≤≤,欲使()0g t ≤恒成立,只需满足231t a t ≤+,当01t ≤≤时,恒成立,即2min31t a t ⎛⎫≤ ⎪+⎝⎭,设[]311,4t m +=∈,13m t -=,222112203199999t m m m t m m -+==+-≥=+,当199m m =时,等号成立,即0a ≤.故选:D 11.若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【解析】由函数()()()1cos 23sin cos 212f x x a x x a x =+++-,且f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,∴在区间0,2π⎡⎤⎢⎥⎣⎦上,f ′(x )=−sin 2x +3a (cosx −sinx )+2a −1≤0恒成立,∵设4t cosx sinx x π=⎛⎫ ⎪⎝=-⎭-,∴当x ∈0,2π⎡⎤⎢⎥⎣⎦时,444x πππ-⎥∈-⎡⎤⎢⎣⎦,,t ∈[−1,1],即−1≤cosx −sinx ≤1,令t ∈[−1,1],sin 2x =1−t 2∈[0,1],原式等价于t 2+3at +2a −2≤0,当t ∈[−1,1]时恒成立,令g (t )=t 2+3at +2a −2,只需满足312(1)510a g a ⎧-≤-⎪⎨⎪=-≤⎩或312(1)10ag a ⎧-≥⎪⎨⎪-=--≤⎩或3112(1)510(1)10a g a g a ⎧-<-<⎪⎪=-≤⎨⎪-=--≤⎪⎩,解得∅或213a -≤≤-或2135a -<≤,综上,可得实数a 的取值范围是11,5⎡⎤-⎢⎥⎣⎦,故选:A .二、多选题12.若函数21()9ln 2f x x x =-,在区间[]1,1m m -+上单调,则实数m 的取值范围可以是()A .4m =B .2m ≤C .12m <≤D .03m <≤【解析】定义域为()0,∞+,299()x f x x x x'-=-=;由()0f x '≥得函数()f x 的增区间为[)3,+∞;由()0f x '≤得函数()f x 的减区间为(]0,3;因为()f x 在区间[]1,1m m -+上单调,所以1013m m ->⎧⎨+≤⎩或13m -≥解得12m <≤或4m ≥;结合选项可得A,C 正确.故选:AC.三、填空题13.若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【解析】()'2f x x a =-+,由于函数()313f x x ax =-+有三个单调区间,所以()'20f x x a =-+=有两个不相等的实数根,所以0a >.故答案为:()0,∞+14.已知函数322()3(1)1(0)f x kx k x k k =+--+>,若()f x 的单调递减区间是(0,4),则实数k 的值为________.【解析】由322()3(1)1(0)f x kx k x k k =+--+>,得'2()36(1)f x kx k x =+-,因为()f x 的单调递减区间是(0,4),所以'()0f x <的解集为(0,4),所以4x =是方程236(1)0kx k x +-=的一个根,所以126(1)0k k +-=,解得13k =15.若函数()2sin x f x e mx x =+-在[)0,∞+单调递增,则实数m 的取值范围为________.【解析】由()2sin x f x e mx x =+-,得()'2cos xf x e mx x =+-,若函数()2sin x f x e mx x =+-在[)0,∞+单调递增,则()'2cos 0xf x e mx x =+-在[)0,∞+上恒成立,令()2cos xg x e mx x =+-,0x,则()'2sin x g x e m x =++,再令()2sin xh x e m x =++,0x,则()'cos x h x e x =+,因为0x ,所以01x e e = ,所以()'cos 0xh x e x =+在[)0,∞+上恒成立,则()h x 在[)0,∞+上单调递增,故()min ()012h x h m ==+;当120m +时,得12m - ,此时()()'0g x h x = ,则()g x 在[)0,∞+上单调递增,则()()00g x g =,此时符合()'2cos 0x f x e mx x =+- 在[)0,∞+上恒成立;当120m +<时,得12m <-,()00,x ∃∈+∞,使得0()0h x =,故[)00,x x ∈时,()0h x <,即()'0g x <,()0,x x ∈+∞时,()0h x >,即()'0g x >,故()g x 在[)00,x 上单调递减,则当[)00,x x ∈时,()()00g x g =,此时()'2cos 0x f x e mx x =+- ,不合题意;综上,实数m 的取值范围为12m - .16.已知函数1()2ln f x x x x=--,21()(1)2x g x x e ax =--,R a ∈.对于任意12,(1,)x x ∈+∞,且12x x ≠,必有()()()()12120f x f x g x g x ->-,则a 的取值范围是___________.【解析】()f x 定义城为(0,)+∞.22212(1)()10x f x x x x-'=+-=≥.故()f x 在(1,)+∞内单调递增.对于任意12,(1,)x x ∈+∞,不妨设12x x <,则()()120f x f x -<.故()()120g x g x -<,()()12g x g x <,()g x 在(1,)+∞内单调递增.故()()0x xg x xe ax a e x '=-=-≥在(1,)+∞恒成立,即x a e ≤恒成立,可知a e ≤.∴a 的取值范围为(,]e -∞.17.已知函数32()23f x x kx x =-+-在R 上不单调,则k 的取值范围是______.【解析】22()341f x x kx '=-+,因为函数32()23f x x kx x =-+-在R 上不单调,所以223410x kx -+=必有解,当223410x kx -+=只有一个解时,22()3410f x x kx '=-+≥得出函数()f x 在R 上单调递增,与题干矛盾,故223410x kx -+=必有两个不等实根则()2044310k ∆>⇒--⨯⨯>,解得k <或k >18.若实数()0,2a ∈,()0,2b ∈,则函数()232211432f x a x b x x =+-在区间()1,+∞单调递增的概率为___________.【解析】由题意222()40f x a x b x ¢=+-³在(1,)+∞上恒成立,二次函数的对称轴是2202bx a=-<,因此()'f x 在(1,)+∞上单调递增,所以22(1)40f a b ¢=+-³,易知满足02,02a b <<<<的点(,)a b 据区域为图中正方形OABC ,面积为224⨯=,又满足2240a b +-³的(,)a b 在正方形OABC 在圆224x y +=外部的部分,面积为214244p p -´=-,所以概率为44P π-=.19.若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.【解析】 函数()324132x af x x x =-++,'2()4f x x ax ∴=-+,若函数()f x 在区间(1,4)上不单调,则()'240f x x ax =-+=在(1,4)上存在变号零点,由240x ax -+=得4a x x =+,令4()g x x x =+,(1,4)x ∈,'2(2)(2)()x x g x x +-=,()g x ∴在()1,2递减,在()2,4递增,而()422+42g ==,()411+51g ==,()444+54g ==,所以45a <<.故答案为:()45,.四、解答题20.已知函数()31f x x ax =--.(1)若()f x 在区间(1,)+∞上为增函数,求a 的取值范围.(2)若()f x 的单调递减区间为(1,1)-,求a 的值.【解析】(1)因为()23f x x a '=-,且()f x 在区间(1,)+∞上为增函数,所以()0f x '≥在(1,)+∞上恒成立,即230x a -≥在(1,+∞)上恒成立,所以23a x ≤在(1,)+∞上恒成立,所以3a ≤,即a 的取值范围是(],3-∞(2)由题意知0a >.因为()31f x x ax =--,所以()23f x x a '=-.由()0f x '<,得x <()f x 的单调递减区间为(,又已知()f x 的单调递减区间为(1,1)-,所以(=(1,1)-1=,即3a =.21.已知函数()ln af x x x=-.(1)若3a =-,求函数()f x 的极值;(2)若函数()f x 在3,e e ⎡⎤⎣⎦上单调递增,求a 的取值范围.【解析】(1)当3a =-时,3()ln (0)f x x x x =+>,则'22133()x f x x x x-=-=,令'()0f x =,得3x =,x ,'()f x 和()f x 的变化情况如下表x(0,3)3(3,)+∞'()f x -0+()f x 递减极小值递增所以当3x =时,()f x 取得极小值(3)ln 31f =+,无极大值(2)由()ln a f x x x =-(0x >),得()'221a x a f x x x x+=+=(0x >),当0a ≥时,'()0f x >,所以()f x 在(0,)+∞上单调递增,所以()f x 在3,e e ⎡⎤⎣⎦上单调递增,当0a <时,由'()0f x =,得x a =-,x ,'()f x 和()f x 的变化情况如下表x (0,)a -a-(,)a -+∞'()f x -0+()f x 递减极小值递增因为()f x 在3,e e ⎡⎤⎣⎦上单调递增,所以a e -≤,得0e a -≤<,综上,a 的取值范围为[,)e -+∞22.已知a R ∈,函数2()()e (xf x x ax x R =-+∈,e 为自然对数的底数).(1)当2a =时,求函数()f x 的单调递增区间;(2)若函数()f x 在(1,1)-上单调递增,求a 的取值范围;【解析】(1)当2a =时,2()(2)e x f x x x =-+,2()(2)e x f x x '=--令()0f x '>,得220x -<,∴x <()f x ∴的单调递增区间是(;(2)2()[(2)]e x f x x a x a '=-+-+,若()f x 在(1,1)-内单调递增,即当11x -<<时,()0f x ',即2(2)0x a x a -+-+对(1,1)x ∈-恒成立,即111a x x +-+ 对(1,1)x ∈-恒成立,令111y x x =+-+,则2110(1)y x '=+>+,111y x x ∴=+-+在(1,1)-上单调递增,1311112y ∴<+-=+,32a ∴ ,当32a =时,当且仅当0x =时,()0f x '=,a ∴的取值范围是3,2⎡⎫+∞⎪⎢⎣⎭.23.已知函数1()xxf x ax e +=-.(1)若曲线()y f x =在点(0,(0))f 处的切线方程为y x b =+,求实数a ,b 的值;(2)若函数()f x 在区间(0,2)上存在..单调增区间,求实数a 的取值范围;(3)若()f x 在区间(0,2)上存在极大值,求实数a 的取值范围(直接写出结果).【解析】(1)因为1(1)()x x x xf x a a e e'-+=-=+,所以(0)f a '=,因为曲线()y f x =在点(0,(0))f 处的切线方程为y x b =+,所以切线斜率为1,即1a =,(0)1f b =-=,所以1,1a b ==-.(2)因为函数()f x 在区间(0,2)上存在单调增区间,所以()0x xf x a e='+>在(0,2)上有解,即只需()'f x 在(0,2)上的最大值大于0即可.令1()(),()x x x xh x f x a h x e e-==+='',当(0,1)x ∈时,()0,()h x h x '>为增函数,当(1,2)x ∈时,()0,()h x h x '<为减函数,所以,当1x =时,()h x 取最大值1a e +,故只需10a e +>,即1a e >-.所以实数a 的取值范围是1,e ⎛⎫-+∞ ⎪⎝⎭.(3)212,⎛⎫-- ⎪⎝⎭e e 24.1.已知函数()()31R f x x ax a =--∈.(1)若函数()f x 在R 上单调递增,求实数a 的取值范围;(2)若函数()f x 的单调递减区间是)-,求实数a 的值;(3)若函数()f x 在区间()1,1-上单调递减,求实数a 的取值范围.【解析】(1)易知()23f x x a '=-.因为()f x 在R 上单调递增,所以()0f x '≥恒成立,即23a x ≤恒成立,故()2min30a x≤=.经检验,当0a =时,符合题意,故实数a 的取值范围是(],0-∞.(2)由(1),得()23f x x a '=-.因为()f x 的单调递减区间是()1,1-,所以不等式230x a -<的解集为()1,1-,所以-1和1是方程230x a -=的两个实根,所以3a =.(3)由(1),得()23f x x a '=-.因为函数()f x 在区间()1,1-上单调递减,所以()0f x '≤在()1,1x ∈-上恒成立,即23a x ≥在()1,1x ∈-上恒成立.又函数23y x =在()1,1-上的值域为[)0,3,所以3a ≥.故实数a 的取值范围是[)3,+∞.25.已知函数22()ln ()f x x a x ax a R =-+∈.(1)当1a =时,求函数()f x 的最值(2)若函数()f x 在区间[1,)+∞上是减函数,求实数a 的取值范围.【解析】(1)当1a =时,2()ln f x x x x =-+,则()()2211121()21x x x x f x x x x x+---'=-+=-=-,当01x <<时,()0f x '>,当1x >时,()0f x '<,所以当1x =时,()f x 有最大值0,无最小值;(2)21()2f x a x a x-'=+,因为函数()f x 在区间[1,)+∞上是减函数,所以21()20f x a x a x=-+≤'在区间[1,)+∞上恒成立,令()212g x a x a x =-+,则()22120g x a x'=--<,所以()g x 在区间[1,)+∞上递减,所以()()2max 121g x g a a ==-++,则2210a a -++≤,即2210≥--a a ,即()()2110a a +-≥,解得12a ≤-或1a ≥,所以实数a 的取值范围1(,[1,)2-∞-⋃+∞.26.已知函数()22f x x a x x =⋅-+.(1)当1a =时,求曲线()y f x =在点()()22f ,处的切线方程;(2)若()22f x x a x x =⋅-+在区间[0,1]上单调递增,求实数a 的取值范围.【解析】(1)当1a =时,()22·21||()1f x x x x x x =+=--,则2()341'=-+f x x x ,所以()(252,2)f f '==,所以,所求切线方程为25(2)y x -=-,即580x y --=.(2)设()()2201g x x x a x =+≤≤-,则()2(1)0g x x '=-≤,所以()g x 在[]0,1上单调递减,从而()()()10g g x g ≤≤,即()1a g x a ≤≤-.(i )当1a ≥时,()10g x a ≥≥-,则()22()f x x x x a -=+,则2()34f x x x a '=-+,若()f x 在[]0,1上单调递增,则2()340f x x x a '=-+≥对于任意的[]0,1x ∈恒成立,即234a x x ≥-+.因为2224343(33x x x -+=--+,所以当23x =时,2434()3max x x +=-,所以43a ≥,又1a ≥,此时a 的取值范围为4,3⎡⎫+∞⎪⎢⎣⎭(ii )当0a ≤时,()0g x ≤,则()2()2f x x x x a =-+-,则2()34f x x x a '=-+-,若()f x 在[]0,1上单调递增,则2()340f x x x a '=-+-≥对于任意的[]0,1x ∈恒成立,即234a x x ≤-+.因为2224343(33x x x -+=--+,所以当0x =时,2min 340()x x +=-,所以0a ≤,此时a 的取值范围为(,0]-∞.(iii )当01a <<时,则存在唯一的()00,1x ∈,使得()00g x =.当()100,x x ∈时,()10g x >,即存在()010,1x x ∈,且10x x <,使得()()10g x g x >,从而()()1100x g x x g x >,即()()10f x f x >,这与“()f x 在[]0,1上为增函数”矛盾,此时不合题意.综上,实数a 的取值范围(]4,0,3⎡⎫-∞+∞⎪⎢⎣⎭27.已知函数()ln f x ax x =-,()e 2ax g x x =+,其中a ∈R .(1)当2a =时,求函数()f x 的极值;(2)若存在区间(0,)D ⊆+∞,使得()f x 与()g x 在区间D 上具有相同的单调性,求实数a 的取值范围.【解析】(1)当2a =时,()2ln f x x x =-,定义域为(0,)+∞,则1()2f x x'=-,故当10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 单调递增.所以()f x 在12x =处取得极小值,且11ln 22f ⎛⎫=+ ⎪⎝⎭,无极大值.(2)由题意知,1()f x a x'=-,()e 2ax g x a '=+.当0a >时,()0g x '>,即()g x 在R 上单调递增,而()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,故必存在区间(0,)D ⊆+∞,使得()f x 与()g x 在区间D 上单调递增;当0a =时,1()0f x x '=-<,故()f x 在(0,)+∞上单调递减,而()g x 在(0,)+∞上单调递增,故不存在满足条件的区间D ;当0a <时,1()0f x a x '=-<,即()f x 在(0,)+∞上单调递减,而()g x 在12,ln a a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭上单调递减,在12ln ,a a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,若存在区间(0,)D ⊆+∞,使得()f x 与()g x 在区间D 上有相同的单调性,则有12ln 0a a ⎛⎫-> ⎪⎝⎭,解得2a <-.综上可知,a 的取值范围为(,2)(0,)-∞-+∞ .。

利用函数的单调性求参数的取值范围使用

利用函数的单调性求参数的取值范围使用

利用函数的单调性求参数的取值范围使用在数学中,单调性指的是函数图像在定义域内的增减趋势是否保持一致。

具体而言,如果函数f(x)在一些区间上是递增的,则称它在该区间上是单调递增的;如果函数f(x)在一些区间上是递减的,则称它在该区间上是单调递减的。

假设我们面对的问题为求使函数f(x)大于等于一些给定值的参数x 的取值范围。

我们可以通过以下步骤来解决这个问题:1.首先,我们需要确定函数f(x)的单调性。

可以通过函数的导数来判断函数的增减性。

如果f'(x)大于零,那么函数f(x)在该区间上是单调递增的;如果f'(x)小于零,那么函数f(x)在该区间上是单调递减的。

2.其次,我们可以将函数f(x)大于等于给定值转化为不等式f(x)-C>=0的形式,其中C表示给定值。

例如,如果我们需要求函数f(x)大于等于0的参数x的取值范围,可以将不等式f(x)>=0转化为f(x)-0>=0。

3.接下来,我们可以利用不等式的性质来求解参数的取值范围。

对于单调递增的函数,我们可以将不等式f(x)-C>=0转化为x>=g(C)的形式,其中g(C)表示函数f(x)-C=0的解。

对于单调递减的函数,我们可以将不等式f(x)-C>=0转化为x<=g(C)的形式。

4.最后,我们可以利用函数f(x)的定义域来进一步限制参数x的取值范围。

函数f(x)的定义域表示函数f(x)的取值范围,此范围也是参数x的取值范围的一部分。

因此,我们需要将函数f(x)的定义域与参数x的取值范围进行交集运算,以得到最终的参数取值范围。

需要注意的是,在利用函数的单调性求参数的取值范围时,我们需要确保函数f(x)存在单调性。

如果函数f(x)在一些区间上既不是递增的也不是递减的,那么我们无法利用单调性来求解参数的取值范围。

举例说明:假设我们需要求函数f(x)=x^2+3x+2大于等于5的参数x的取值范围。

利用函数的单调性求参数范围

利用函数的单调性求参数范围

利用函数的单调性求参数范围王冠中已知函数的单调性,求参变量的取值范围,实质上是含参不等式恒成立的一种重要题型。

本文将举例说明此类问题的求解策略。

例1 已知在上单调递减,求实数a的取值范围。

分析:令,由为减函数知应为增函数,设,则只需恒成立,所以。

另一方面,,即恒成立,因,故,从而。

综上所述,。

评注:本题常因没有考虑对数函数的定义域而产生错误。

例2 已知函数。

(1)若在上是增函数,求a的取值范围;(2)求在上的最大值。

分析:(1)设,则恒成立,又,只需,即。

(3)若,则当时,;若,则,当且仅当时,。

评注:本题若没有第一小题为铺垫,第二小题的解决会显得很困难。

例3 已知函数在区间(0,1)上是单调递增函数。

(1)求实数a的取值范围;(2)当取a最小值时,定义数列,,若,求证:;(3)在(2)的条件下,是否存在正实数p,使得,对一切整数都成立?若存在则求出的取值范围,若不存在试说明理由。

分析:本题脱胎于2003年石家庄市高三复习教学质量检测题,与2002年全国高考理科压轴题类似。

(1)要使在(0,1)上增函数,必须(0,1),只需,即。

(2)本小题在时,由导出,容易想到数学归纳法。

假设,由(1)结论可知,从而。

或证,当且仅当时取等号,由知(0,1)。

(3)因为,假设存在正实数满足题设条件,只需恒成立,因故数列为递增数列,只需,即。

评注:本题3个小题的考查目的各有侧重,第(1)小题逆向考查了函数的单调性,并为第(2)小题的解决埋下了伏笔;第(2)小题比较隐蔽地考查了数学归纳法,这是目前高考命题的一个方向,借助函数单调性或基本不等式加以证明,颇有特色;第(2)小题为存在型探索题,由,要求考生自觉地探求数列的单调性,匠心独具,令人耳目一新,掩卷沉思,使人回味无穷。

专题12 导数与函数的单调性--《2023年高考数学命题热点聚焦与扩展》【解析版】

专题12  导数与函数的单调性--《2023年高考数学命题热点聚焦与扩展》【解析版】

【热点聚焦】单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具.在高考导数的综合题中,所给函数往往是一个含参数的函数,且导函数含有参数,在分析函数单调性时面临分类讨论.从高考命题看,对函数单调性的考查主要有:利用导数求函数的单调区间、判断单调性、已知单调性,求参数等.【重点知识回眸】(一)函数的单调性与导数的关系 条件 结论函数y =f (x )在区间(a ,b )上可导f ′(x )>0 f (x )在(a ,b )内单调递增 f ′(x )<0 f (x )在(a ,b )内单调递减 f ′(x )=0f (x )在(a ,b )内是常数函数优先”原则. (二)常用结论1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. 2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零. (三)常见问题解题方法1.导数求单调区间的步骤:利用导数求函数单调区间的方法,大致步骤可应用到解含参函数的单调区间.即确定定义域→求出导函数→令()'0f x >解不等式→得到递增区间后取定义域的补集(减区间)→单调性列出表格.2.求含参函数单调区间的实质——解含参不等式,而定义域对x 的限制有时会简化含参不等式的求解3.求单调区间首先确定定义域,并根据定义域将导数不等式中恒正恒负的项处理掉,以简化讨论的不等式4.含参数问题分类讨论的时机分类时机:并不是所有含参问题均需要分类讨论,当参数的不同取值对下一步的结果影响不相同时,就是分类讨论开始的时机.【典型考题解析】热点一 不含参数的函数的单调性【典例1】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)- B .(0,1)C .(1,)+∞D .(0,2)【答案】B【分析】求导,解不等式()0f x '<可得. 【详解】()f x 的定义域为(0,)+∞ 解不等式1(1)(1)()0x x f x x x x-+'=-=<,可得01x <<, 故函数21()ln 2f x x x =-的递减区间为(0,1). 故选:B .【典例2】(广东·高考真题(文))函数的单调递增区间是 ( )A .B .(0,3)C .(1,4)D .【答案】D 【解析】 【详解】试题分析:由题意得,()()(3)(3)(2)x x x f x x e x e x e '=-+-=-'',令()0f x '>,解得2x >,所以函数()f x 的单调递增区间为,故选D .【典例3】(2023·全国·高三专题练习)已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为________. 【答案】(0,)6π,5(,)6ππ【分析】对()f x 求导,令f ′(x )=0,得x =6π或x =56π,求出()0f x '> 的解即可求出答案. 【详解】f ′(x )=1-2sin x ,x ∈(0,π).令f ′(x )=0,得x =6π或x =56π, 当0<x <6π时,f ′(x )>0, 当6π<x <56π时,f ′(x )<0,当56π<x <π时,f ′(x )>0, ∴f (x )在(0,)6π和5(,)6ππ上单调递增,在5(,)66ππ上单调递减.故答案为:(0,)6π,5(,)6ππ.【典例4】(2023·全国·高三专题练习)已知函数211,0()2,0x f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 【答案】20,2⎛⎫ ⎪ ⎪⎝⎭,[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<,所以当1≥x 时,12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增,当01x <<时,21122()loglog g x x x =-+,则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=,由()0g x '>,得1212log 0x -<,解得202x <<, 所以()g x 在20,2⎛⎫ ⎪ ⎪⎝⎭上递增, 综上得函数()g x 的单调递增区间为20,2⎛⎫⎪ ⎪⎝⎭,[1,)+∞. 故答案为:20,2⎛⎫⎪ ⎪⎝⎭,[1,)+∞. (1)函数的一阶导数可以用来研究函数图象的上升与下降,函数的二阶导数可以用来研究函数图象的陡峭及平缓程度,也可用来研究导函数图象的上升与下降. (2)求函数的单调区间时,一定要先确定函数的定义域,否则极易出错. 热点二 含参数的函数的单调性【典例5】(2021·全国·高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >.【解析】 【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【详解】(1)函数的定义域为()0,∞+, 又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a<<时,()0f x '<;当1x a >时,()0f x '>;所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭,故33ln 0a +>即1a e>.【典例6】(2023·全国·高三专题练习)已知函数()ln R kf x x k k x=--∈,,讨论函数()f x 在区间(1,e)内的单调性. 【答案】见解析 【分析】先求出2()x kf x x +'=-,然后分k -与(1,e)的关系进行分类讨论,从而得出答案. 【详解】由()ln kf x x k k R x=--∈,,(1,e)x ∈ 221()k x k f x x x x+'∴=--=- ①当1k -≤,即1k ≥-时,10x k x +≥->, ()0f x '∴< ,()f x ∴在(1,e)单调递减;②当e k -≥,即e k ≤-时,e 0x k x +≤-<, ()0f x '∴> ,()f x ∴在(1,e)单调递增;③当1e k <-<,即e 1k -<<-时,当1x k <<-时,()0f x '>,()f x 单调递增; 当e k x -<<时,()0f x '<,()f x 单调递减; 综上所述,当1k ≥-时,()f x 在(1,e)单调递减 当e k ≤-时,()f x 在(1,e)单调递增当e 1k -<<-时,()f x 在(1,)k -单调递增,在(,e)k -单调递减.【方法总结】解决含参数的函数的单调性问题应注意两点(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.热点三 已知函数的单调性求参数的取值范围【典例7】(全国·高考真题(文))若函数()ln f x kx x =-在区间()1,+∞上单调递增,则实数k 的取值范围是( ) A .(],2-∞- B .(],1-∞- C .[)2,+∞ D .[)1,+∞【答案】D 【解析】 【详解】 试题分析:,∵函数()ln f x kx x =-在区间()1,+∞单调递增,∴在区间()1,+∞上恒成立.∴,而在区间()1,+∞上单调递减,∴.∴的取值范围是[)1,+∞.故选D .【典例8】(全国·高考真题(理))若函数()cos 2sin f x x a x =+在区间(,)62ππ内是减函数,则实数a 的取值范围是_______. 【答案】2a ≤ 【解析】 【详解】试题分析:()()2sin 2cos 4sin cos cos cos 4sin .,62f x x a x x x a x x x a x ππ⎛⎫=-+=-+=-+∈ ⎪⎝'⎭时,()f x 是减函数,又cos 0x >,∴由()0f x '≤得4sin 0,4sin x a a x -+≤∴≤在,62ππ⎛⎫⎪⎝⎭上恒成立,()min 4sin ,,262a x x a ππ⎛⎫⎛⎫∴≤∈∴≤ ⎪ ⎪⎝⎭⎝⎭.【典例9】(2019·北京·高考真题(理))设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】 -1; (],0-∞. 【解析】 【分析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用导函数的解析式可得a 的取值范围. 【详解】若函数()x xf x e ae -=+为奇函数,则()()(),x x x x f x f x e ae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()x x f x e ae -=+是R 上的增函数,则()' 0x xf x e ae -=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞ 【规律方法】由函数的单调性求参数的取值范围的方法(1)可导函数在区间D 上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,从而构建不等式,求出参数的取值范围,要注意“=”是否可以取到.(2)可导函数在区间D 上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x )在区间D 上的单调性,区间端点含有参数时,可先求出f (x )的单调区间,令D 是其单调区间的子集,从而求出参数的取值范围. 热点四 函数单调性与函数图像【典例10】(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .【答案】B 【解析】 【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>,所以舍去C ;因此选B.【典例11】(2023·全国·高三专题练习)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是( )A .B .C .D .【答案】D【分析】根据导函数的图象判断原函数的单调性,即可判断选项.【详解】原函数先减再增,再减再增,且0x =位于增区间内.符合条件的只有D. 故选:D【典例12】(2021·浙江·高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D 【解析】 【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解. 【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,221202164y ππ⎛⎫'=+> ⎪⎝⎭,与图象不符,排除C. 故选:D. 【规律方法】有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 热点五 函数单调性与比较大小、解不等式 【典例13】(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A 【解析】 【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解. 【详解】 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭ 所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞, ()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->, 所以b a >,所以c b a >>, 故选:A【典例14】(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当021x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,211x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当021x <<时,()0h x <,所以当021x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.【典例15】(2022·重庆南开中学高三阶段练习)已知函数()()3log 912xf x x =+-+,则不等式()()21f x f x -<的解集为( ) A .()1,3 B .(),1-∞ C .[)1,+∞D .1,13⎛⎫⎪⎝⎭【答案】D【分析】根据导数判断出函数的单调性,根据解析式可判断函数为偶函数,从而可求不等式的解.【详解】函数的定义域为R ,()()()9ln 92991119191ln 391x x x x x x f x ⋅-'=-=-=+++,当0x <时,0f x ;当0x >时,0f x ,故()f x 在(),0-∞上为减函数,在()0,+∞上为增函数. 又()()3391log 912log 29x xx f x x x -+-=+++=++()()3log 9122x x x f x =+-++=,故()f x 为R 上的偶函数,故()()21f x f x -<等价于()()21f x f x -<, 即21x x -<,两边平方得23410x x -+<,故1,13x ⎛⎫∈ ⎪⎝⎭.故选:D.'()f x 当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)C .(,1)(1,0)-∞--D .(0,1)(1,)⋃+∞【答案】A 【解析】 【详解】构造新函数()()f x g x x=,()()()2'xf x f x g x x -=',当0x >时()'0g x <. 所以在()0,∞+上()()f xg x x=单减,又()10f =,即()10g =. 所以()()0f x g x x=>可得01x <<,此时()0f x >, 又()f x 为奇函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为:()(),10,1-∞-⋃. 故选A.【典例17】(2021·山东·临沂市兰山区教学研究室高三开学考试)已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()20f x x xf '+>,则不等式()()()220212021420x f x f +++-<的解集为( )A .()2019,+∞B .()2021,2019--C .(),2019-∞-D .()2019,0-【答案】C【分析】根据已知条件构造函数2()()g x x f x =,可得()g x 在(0,)+∞上为增函数,且()g x 为奇函数,然后将()()()220212021420x f x f +++-<可转化为(2021)(2)g x g +<,从而可求出不等式的解集.【详解】令2()()g x x f x =,则2()2()()[2()()]g x xf x x f x x f x xf x '=+''=+, 因为当0x >时,有()()20f x x xf '+>, 所以当0x >时,()0g x '>, 所以()g x 在(0,)+∞上为增函数,因为()f x 为奇函数,所以()()f x f x -=-, 所以22()()()()()g x x f x x f x g x -=--=-=-, 所以()g x 为R 上的奇函数, 所以()g x 在R 上为增函数,由()()()220212021420x f x f +++-<,得()()()22021202142x f x f ++<--, ()()()2220212021(2)2x f x f ++<---,所以(2021)(2)g x g +<--,因为()g x 为奇函数,所以(2021)(2)g x g +<, 所以20212x +<,得2019x <-,所以不等式的解集为(),2019-∞-, 故选:C【典例18】(2022·湖北·襄阳五中高三阶段练习)设11166,2ln sin cos ,ln 5101055a b c ⎛⎫==+= ⎪⎝⎭,则,,a b c 的大小关系是___________. 【答案】.b a c <<【分析】利用导数研究函数()sin f x x x =-,()ln(1)g x x x =-+,6()ln(1)5h x x x =-+在(0,1)上的单调性,利用函数的单调性可比较,,a b c 的大小.【详解】由已知可得2111112ln sin cos ln sin cos ln(1sin )101010105b ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭,设()sin f x x x =-,(0,1)x ∈,则()1cos 0f x x '=->, 所以()sin f x x x =-在(0,1)上单调递增,所以1(0)05f f ⎛⎫>= ⎪⎝⎭,即11sin 55>,所以11ln 1sin ln 155b ⎛⎫⎛⎫=+<+ ⎪ ⎪⎝⎭⎝⎭,设()ln(1)g x x x =-+,(0,1)x ∈,则1()1011x g x x x '=-=>++, 所以()ln(1)g x x x =-+在(0,1)上单调递增,所以1(0)05g g ⎛⎫>= ⎪⎝⎭,即111ln 1ln 1sin 555⎛⎫⎛⎫>+>+ ⎪ ⎪⎝⎭⎝⎭,所以a b >,设6()ln(1)5h x x x =-+,(0,1)x ∈,则651()1551x h x x x -'=-=++,当105x ⎛⎫∈ ⎪⎝⎭,时,()0h x '<,当1,15x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,所以6()ln(1)5h x x x =-+在105⎛⎫⎪⎝⎭,上单调递减,在1,15⎛⎫ ⎪⎝⎭上单调递增,所以1(0)05h h ⎛⎫<= ⎪⎝⎭,即16166ln 1ln 55555⎛⎫<+= ⎪⎝⎭,所以a c <,所以.b a c << 故答案为:.b a c <<. 构造函数解不等式或比较大小一般地,在不等式中若同时含有f (x )与f ′(x ),常需要通过构造含f (x )与另一函数的和、差、积、商的新函数,再借助导数探索新函数的性质,进而求出结果. 常见构造的辅助函数形式有: (1)f (x )>g (x )→F (x )=f (x )-g (x );(2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→()[]'f x x; (4)f ′(x )+f (x )→[e x f (x )]′;(5)f ′(x )-f (x )→()[]'x f x e′.(6)()()f x f x '<→()()x f x g x e = (7)()()xf x f x '<→()()f x g x x=(8)()()0xf x f x '+<→()()g x xf x =.【精选精练】一、单选题1.(2022·全国·高三专题练习)函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,图像如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≥的解集为( )A .[)1,12,33⎡⎤-⎢⎥⎣⎦B .1481,,233⎡⎤⎡⎤-⋃⎢⎥⎢⎥⎣⎦⎣⎦C .[]31,1,223⎛⎤--⋃ ⎥⎝⎦D .3148,,2333⎛⎤⎡⎤--⋃ ⎥⎢⎥⎝⎦⎣⎦【答案】C【分析】()0f x '≥的解集即为()y f x =单调递增区间,结合图像理解判断. 【详解】()0f x '≥的解集即为()y f x =单调递增区间 结合图像可得()y f x =单调递增区间为[]31,,1,223⎛⎤-- ⎥⎝⎦则()0f x '≥的解集为[]31,1,223⎛⎤--⋃ ⎥⎝⎦故选:C .2.(2023·全国·高三专题练习)已知函数()f x 的导函数()f x '的图像如图所示,则下列判断正确的是( )A .在区间()1,1-上,()f x 是增函数B .在区间()3,2--上,()f x 是减函数C .2-为()f x 的极小值点D .2为()f x 的极大值点【答案】D【分析】利用函数与导函数的关系及其极值的定义即可求解. 【详解】由导函数()f x '的图像可知,在区间()1,0-上为单调递减,在区间()0,1上为单调递增,则选项A 不正确; 在区间()3,2--上,()0f x '>,则()f x 是增函数,则选项B 不正确;由图像可知()20f '-=,且()3,2--为单调递增区间,()2,0-为单调递减区间,则2-为()f x 的极大值点,则选项C 不正确;由图像可知()20f '=,且()1,2为单调递增区间,()2,3为单调递减区间,则2为()f x 的极大值点,则选项D 正确; 故选:D.3.(2023·全国·高三专题练习)函数()3221343f x x ax a x =---在()3,+∞上是增函数,则实数a 的取值范围是( ) A .0a ≥ B .1a ≥ C .3a ≤-或1a ≥ D .31a -≤≤【答案】D【分析】结合函数单调性得到()22230f x x ax a -'=-≥在()3,+∞上恒成立,分0a =,0a >和0a <三种情况,数形结合列出不等式,求出实数a 的取值范围. 【详解】∵函数()3221343f x x ax a x =---在()3,+∞上是增函数,∴()22230f x x ax a -'=-≥在()3,+∞上恒成立, ∵()()()22233f x x ax a x a x a =--=-+',∴当0a =时,()20f x x '=≥恒成立,满足题意;当0a >时,()0f x '>在()(),3,a a ∞∞--⋃+上恒成立,()0f x '<在(),3a a -上恒成立,故只需33a ≤,解得:1a ≤,故可得:(]0,1a ∈ 当0a <时,()0f x '>在()(),3,a a ∞∞-⋃-+上恒成立,()0f x '<在()3,a a -上恒成立,故只需3a -≤,解得:3a ≥-,故可得:[)3,0a ∈- 综上可得:实数a 的取值范围是[]3,1-, 故选:D .4.(2022·全国·长垣市第一中学高三开学考试(理))已知函数()12ln f x x x x=+-,则不等式()()211f x f x -<-的解集为( ) A .20,3⎛⎫ ⎪⎝⎭B .2,13⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .12,23⎛⎫ ⎪⎝⎭【答案】B【分析】利用导数说明函数的单调性,再根据函数的单调性及定义域将函数不等式转化为自变量的不等式,解得即可.【详解】解:由题意可知,函数()12ln f x x x x=+-的定义域为()0,∞+. 因为()22211110f x x x x ⎛⎫'=--=--≤ ⎪⎝⎭恒成立,所以()f x 在()0,∞+上单调递减.则由()()211f x f x -<-可得21010211x x x x->⎧⎪->⎨⎪->-⎩,解得213x <<,即原不等式的解集为2,13⎛⎫⎪⎝⎭.故选:B.a A .ln ln ab a b -<-e e B .ln ln b a a b < C .e a b ba-> D .sin sin 1a ba b-<-【答案】D【分析】由题设有0a b >>,分别构造e ln x y x =-、ln xy x=、e x y x =、sin y x x =-,利用导数研究在,()0x ∈+∞上的单调性,进而判断各项的正误. 【详解】由221a b >>,即0a b >>,A :若e ln x y x =-且,()0x ∈+∞,则1e x y x'=-,故12|e 20x y ='=-<,1|e 10x y ='=->,即y '在1(,1)2上存在零点且y '在(0,)+∞上递增,所以y 在(0,)+∞上不单调,则e ln e ln a b a b -<-不一定成立,排除; B :若ln x y x =且,()0x ∈+∞,则21ln xy x -'=, 所以(0,e)上0y '>,y 递增;(e,)+∞上0y '<,y 递减; 故y 在(0,)+∞上不单调,则ln ln a ba b<不一定成立,排除; C :若e x y x =且,()0x ∈+∞,则e (1)0x y x '=+>,即y 在(0,)+∞上递增, 所以e e a b a b >,即e a b ba-<,排除; D :若sin y x x =-且,()0x ∈+∞,则1cos 0y x '=-≥,即y 在(0,)+∞上递增, 所以sin sin a a b b ->-,即sin sin 1a ba b-<-,正确.故选:D6.(2022·四川成都·高三期末(理))若函数()在区间()上单调递增,则实数k 的取值范围是( ) A .[)1,+∞ B .[)2,+∞ C .(]0,1 D .(]0,2【答案】B【分析】根据已知条件等价为()20f x k x =-≥'在()1,+∞上恒成立,即2k x≥在()1,+∞上恒成立,求解()()21g x x x=>的取值情况即可得出结果. 【详解】()2ln f x kx x =-由题意,已知条件等价为()20f x k x=-≥'在()1,+∞上恒成立, 即2k x≥在()1,+∞上恒成立, 令()()21g x x x=>, ()g x 在()1,+∞上单调递减,()2g x ∴<,2k ∴≥,k ∴的取值范围是[)2,+∞.故选:B.7.(2023·全国·高三专题练习)已知函数()3ln 3f x x x ax =--在()2,+∞上单调递增,则实数a 的取值范围为( )A .72a >-B .72a ≥-C .72a <D .72a ≤【答案】D【分析】由已知可得()210f x x a x '=--≥在()2,+∞恒成立,从而进行参变分离求最值即可.【详解】解:()210f x x a x'=--≥,因为函数()31ln 3f x x x ax =--在()2,+∞上单调递增,所以()210f x x a x '=--≥在()2,+∞恒成立,即21a x x≤-在()2,+∞恒成立,令()()212g x x x x =->,则()2120g x x x '=+>在()2,+∞恒成立, 故()g x 在()2,+∞单调递增,所以()()722g x g >=, 故a 的取值范围是72⎛⎤-∞ ⎥⎝⎦,,故选:D .8.(2023·全国·高三专题练习)已知R α∈,则函数()ex x f x =的图象不可能是( )A .B .C .D .【答案】C【分析】令12α=、2α=、1α=-,结合导数研究()f x 的单调性及值域判断可能的图象,即可得答案.【详解】当12α=时,()e x xf x =且0x ≥,则12()e x x f x x-'=,所以1(0,)2上 ()0f x '>,()f x 递增;1(,)2+∞上 ()0f x '<,()f x 递减,且(0)0f =,所以A 图象可能;当2α=时,2()0ex x f x =≥且R x ∈,则(2)()e x x x f x '-=,所以(,0)-∞上()0f x '<,()f x 递减,(0,2)上 ()0f x '>,()f x 递增,(2,)+∞上 ()0f x '<,()f x 递减,所以B 图象可能; 当1α=-时,1()e x f x x =且0x ≠,则21()e xxf x x +'=-,所以(,1)-∞-上()0f x '>,()f x 递增,(1,0)-上 ()0f x '<,()f x 递减,(0,)+∞上 ()0f x '>,()f x 递增,又0x <时()0f x <,而0x >时()0f x >, 所以D 图象可能; 综上,排除A 、B 、D. 故选:C3232b b =,03c <<且33c c =,则( )A .a b c <<B .c b a <<C .b a c <<D .a c b <<【答案】A【分析】构造函数()ln xf x x=,求导,根据函数的单调性比大小即可. 【详解】由88a a =,两边同时以e 为底取对数得ln ln 88a a =, 同理可得ln ln 3232b b =,ln ln33c c =, 设()ln xf x x=,0x >,则()()8f a f =,()()32f b f =,()()3f c f =, ()21ln xf x x -'=,令()0f x '=,解得e x =,当()0,e x ∈时,()0f x '>,函数()f x 单调递增, 当()e,x ∈+∞时,()0f x '<,函数()f x 单调递减, 则(),,0,e a b c ∈,且()()()3832f f f >>, 所以()()()f c f a f b >>, 故c a b >>, 故选:A.10.(2022·江苏·扬中市第二高级中学高三开学考试)已知()f x '是函数()f x 的导数,且()()f x f x -=,当0x ≥时,()3f x x '>,则不等式3()(1)32f x f x x --<-的解集是( ) A .1(,0)2-B .1(,)2-∞-C .1(,)2+∞D .1(,)2-∞【答案】D【分析】构造函数23()()2g x f x x =-,根据导数判断单调性,再利用奇偶性求出解集.【详解】设23()()2g x f x x =-,则()()3g x f x x '='-,因为当0x ≥时,()3f x x '>,所以当0x ≥时,()0g x '>, 即()g x 在[0,)+∞上单调递增,因为()()f x f x -=,所以()f x 为偶函数,则()g x 也是偶函数,所以()g x 在(,0]-∞上单调递减. 因为3()(1)32f x f x x --<-,所以2233()(1)(1)22f x x f x x -<---, 即()(1)g x g x <-, 则1x x <-,解得12x <, 故选:D.b a b =下列正确的是( ) A .1ab >B .1(1)b a a b +<+C .11a b a b a a b b ++->-D .52+>a b 【答案】B【分析】利用指对数互化及对数的运算性质可得1b a =,进而可得1121a b b<=<<+,然后构造函数,利用函数的单调性即得. 【详解】由log b a a b =,可得1log log log b a b a b a==,所以log 1b a =,或log 1b a =-, ∴b a =(舍去),或1b a=,即1ab =,故A 错误; 又02b a b <<<,故120a a a<<<, ∴12a <<,对于函数()112y x x x=+<<, 则2221110x y x x-'=-=>,函数()112y x x x =+<<单调递增,∴1322,2a b a a ⎛⎫+=+∈ ⎪ ⎪⎝⎭,故D 错误; ∵02b a b <<<,112a b<=<, ∴1212a b b <<<+<, 令()()ln 12x g x x x=<<,则()21ln 0xg x x -'=>,∴函数()()ln 12xg x x x=<<单调递增, ∴()ln 1ln 1b a a b +<+,即()()1ln ln 1b a a b +<+, ∴()1ln ln 1ab a b +<+,即1(1)b a a b +<+,故B 正确; ∵011b a b <<<<+,∴函数,x x y a y b ==-单调递增,故函数x x y a b =-单调递增, ∴11a a b b a b a b ++-<-,即11a b a b a a b b ++-<-,故C 错误. 故选:B. 12.(2023·全国·高三专题练习)已知0a <,函数322()2f x x ax a x =+-+的单调递减区间是________ . 【答案】,3a a ⎛⎫- ⎪⎝⎭【分析】求出函数导数,由()0f x '<即可求出单调递减区间. 【详解】22()32(3)()f x x ax a x a x a '=+-=-+,令()0f x '<,解得3ax a <<- , 所以()f x 的单调递减区间为,3a a ⎛⎫- ⎪⎝⎭.故答案为:,3a a ⎛⎫- ⎪⎝⎭.13.(2021·河南宋基信阳实验中学高三开学考试(文))若函数4y x x=+在()0,a 上为单调减函数,则实数a 的取值范围是_________. 【答案】(]0,2【分析】由题可得函数4y x x=+在区间(0,2]上是减函数,结合条件即得. 【详解】对于函数4y x x=+,0x >, ∴()()222222441x x x y x x x+--'=-==,0x >, 由0y '<,可得02x <<, 因为函数4y x x=+在()0,a 上为单调减函数, 所以02a <≤,即实数a 的取值范围是(]0,2. 故答案为:(]0,2.14.(2022·江苏·扬中市第二高级中学高三开学考试)函数()2x x f x =的单调递增区间为__________. 【答案】2(0,)ln 2【分析】先求得导函数,并令'0f x ,再判断导函数的符号,由此可得函数的单调递增区间.【详解】函数2()2x xf x =,则()()()2'22ln 2ln 222222x x xxx fx x x x -⋅-⋅⋅⋅==,令()0f x '=解得20,ln 2x x ==, 当(),0x ∈-∞时,()0f x '<,函数()f x 单调递减,当20,ln 2x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,函数()f x 单调递增,当2,ln 2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,函数()f x 单调递减, 故答案为:2(0,)ln 2. 15.(2023·全国·高三专题练习)()3211232f x x x ax =-++,若()f x 在,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______【答案】1,9⎛⎫-+∞ ⎪⎝⎭【分析】分析可知,2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()212a x x >-,求出函数()212y x x =-在2,3⎛⎫+∞ ⎪⎝⎭上的值域,可得出实数a 的取值范围.【详解】因为()3211232f x x x ax =-++,则()22f x x x a '=-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()0f x '>,即()212a x x >-,当()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-.故答案为:1,9⎛⎫-+∞ ⎪⎝⎭.16.(2022·重庆巴蜀中学高三阶段练习)已知奇函数()的定义域为R ,当0x >讨,()()20f x f x '+>,且()20f =,则不等式()0f x >的解集为___________.【答案】()(2,02,)-⋃+∞【分析】构造函数2()e ()=x g x f x ,利用导函数判断出当x >0时, ()g x 单调递增,得到当x >2时()0g x >,从而()0f x >;当02x <<时,()0g x <,从而()0f x <.由()f x 为奇函数得到不等式()0f x >的解集.【详解】构造函数2()e ()=x g x f x ,则当0x >时,[]2()e 2()()0xg x f x f x ''=+>,所以当x >0时()g x 单调递增.因为f (2)=0,所以()()42e 20g f ==,所以当x >2时()0g x >,从而()0f x >.当02x <<时,()0g x <,从而()0f x <.又奇函数()f x 的图像关于原点中心对称,所以()0f x >的解集为()(2,02,)-⋃+∞. 故答案为: ()(2,02,)-⋃+∞. 三、解答题17.(2022·四川成都·高三期末(理))设函数()()321113f x x x a x =-++--,其中a ∈R .若函数()f x 的图象在0x =处的切线与x 轴平行. (1)求a 的值;(2)求函数()f x 的单调区间. 【答案】(1)1a =(2)单调递增区间为()0,2;单调递减区间为(),0∞-,()2,+∞【分析】(1)根据导数的几何意义求解即可;(2)由(1)得()32113f x x x =-+-,再求导分析函数的单调区间即可(1)()221f x x x a '=-++-.∵函数()f x 的图象在0x =处的切线与x 轴平行,∴()010f a =-=',解得1a =.此时()010f =-≠,满足题意.∴1a =. (2)由(1)得()32113f x x x =-+-,故()()222f x x x x x '=-+=--.令()0f x '=,解得0x =或2x =.当x 变化时,()f x ',()f x 的变化情况如下表:x(),0∞-0 ()0,22 ()2,+∞()f x ' - 0 +0 -()f x单调递减1- 单调递增13单调递减∴函数()的单调递增区间为();单调递减区间为(),().18.(2023·全国·高三专题练习)已知函数()22ln x f x x a =-(a ∈R 且0a ≠).(1)2a =,求函数()f x 在()()22f ,处的切线方程. (2)讨论函数()f x 的单调性; 【答案】(1)2ln 2y x =- (2)答案见解析【分析】(1)求得函数的导数,根据导数的几何意义即可求得切线方程;(2)求出函数的导数,分类讨论a 的取值,判断导数的正负,从而确定函数的单调性. (1)当2a =时,()22ln 2x f x x =-,所以()22n2l 2f =-,()2f x x x'=-,所以()22212f '=-=,所以函数()f x 在()()22f ,处的切线方程为()22ln 22y x --=-,即2ln 2y x =-. (2)()f x 的定义域为(0)+∞,, 22()x f x a x'=-,当0a <时, ()0f x '<恒成立,所以()f x 在(0)+∞,上单调递减; 当0a > 时, ()()222()x f x x a x a a x ax'=-=+-,在()0,a 上,()0f x '<,所以()f x 单调递减;在(),a +∞上,()0f x '>,所以()f x 单调递增.。

函数的单调区间求解参数取值范围

函数的单调区间求解参数取值范围

函数的单调区间求解参数取值范围首先,我们需要明确函数的定义域以及对应的表达式。

假设函数为f(x),则定义域为D={x∈R},表达式为f(x)=...要求函数的单调区间,即需要找到函数在哪些区间上是单调递增或单调递减的。

我们可以通过求解函数的导数来得到单调区间。

导数反映了函数的变化率,当导数大于0时,函数是递增的;当导数小于0时,函数是递减的。

首先,我们需要求解函数的导数。

假设函数的导数为f'(x)。

根据函数的定义,我们可以通过求导的方式得到导数表达式。

接下来,我们需要找到函数的驻点(导数为0的点)以及可能的不连续点。

这些点可能是函数的极值点或断点,需要考虑在求解单调区间时。

然后,我们可以根据求解出的导数表达式,找到导数为正(大于0)或导数为负(小于0)的区间。

这些区间即为函数的单调递增区间或单调递减区间。

最后,我们可以根据单调性的定义来求解参数的取值范围。

例如,如果需要函数在整个定义域上是单调递增的,则需要将函数的导数始终大于0,即找出使得导数大于0的参数取值范围。

举例说明:假设我们要求解函数f(x)=ax^2+bx+c的单调区间,其中a、b、c为实数且a不等于0。

首先,我们求解函数的导数f'(x)=2ax+b。

然后,我们要找出使得导数大于0的参数范围。

当a>0时,导数f'(x)为一元二次函数开口向上的抛物线,该抛物线在开口向上的区间上是递增的。

因此,参数a大于0时,函数f(x)在整个定义域上是单调递增的。

当a<0时,导数f'(x)为一元二次函数开口向下的抛物线,该抛物线在开口向下的区间上是递减的。

因此,参数a小于0时,函数f(x)在整个定义域上是单调递减的。

综上所述,参数a的取值范围为a>0或a<0。

这是使得函数f(x)=ax^2+bx+c单调递增或单调递减的参数取值范围。

在实际问题中,求解函数的单调区间是一个重要的数学问题,可应用于经济学、物理学、工程学等领域。

由单调性求参数范围的几种方法

由单调性求参数范围的几种方法

由单调性求参数范围的几种方法1、定义法:①任取x1、x2∈d,且x1<x2;②作差f(x1)-f(x2),并适度变形(“水解因式”、配方Z917号项的和等);③依据差式的符号确定其增减性。

2、导数法:设函数y=f(x)在某区间d内可导。

如果f′(x)>0,则f(x)在区间d内为增函数;如果f′(x)<0,则f(x)在区间d内为减函数。

特别注意:(补足)(1)若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间d内为增函数;如果f′(x) ≤0,则f(x)在区间d内为减函数。

定义法及导数法、图象法、复合函数的单调性(同增异减)、(补足)单调性的有关结论1、若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为减(减至)函数。

2、若f(x)为增(减)函数,则-f(x)为减至(减)函数,如果同时存有f(x)>0,则为减至(减)函数,为增(减)函数3、互为反函数的两个函数存有相同的单调性。

4、y=f[g(x)]是定义在m上的函数,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性恰好相反,则其复合函数f[g(x)]为减函数。

简称”同增异减”5. 奇函数在关于原点等距的.两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反。

(1)谋某些函数的值域或最值。

(2)比较函数值或自变量值的大小。

(3)求解、证不等式。

(4)求参数的取值范围或值。

(5)并作函数图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故f '(x) ( 0 或f '(x) 0)是f (x)单调 递增(或递减)的 __充_分__不__必__要_条__件____
由这个结论,本题也可以这样解答:
Q f '(x) 3x2 6x 9且要使f (x)在区间(a, a 1)上单调递减。
f '(x) 3x2 6x 9 0在区间(a, a 1)内恒成立,
所以,要使f(x)在(2a,a+1)上单调递增
则(2a,a+1) (0,e)
2a 0 即 a 1 e 0 a 1
2a a 1
故实数a的取值范围为 0,1
总结 :1:若函数f(x)(不含参数)在(a,b)(含参数) 上单调递增(递减),则可解出函数f(x)的单调(递减) 区间是(c,d),则(a,b)(c,d)(注意a b)
课堂练习: 1.已知函数f (x) x2(x a),若f (x)在(2,3)上单调,则实数a的取值范围为 _________。
2.设函数f (x) x2 ax ln x(a R),若函数f (x)在区间0,1上是减函数,
求实数a的取值范围。
答案:(1)a 3或a 9 (2)a 1
例1:已知函数f (x)=x3-3x2 -9x在区间(a,a+1)上单调递减, 求实数a的取值范围。 例2:若函数f (x) x3 ax2 1在(0, 2)内单调递减, 求实数a的取值范围。
例题1与例题2有什么相同点?
已知函数单调性 求参数的取值范围
武胜中学校 李开勇
题1:已知函数f (x)=x3-3x2 -9x在区间(a,a+1)上单调递减, 求实数a的取值范围。 题2:若函数f (x) x3 ax2 1在(0, 2)内单调递减, 求实数a的取值范围。
即aa
1 1
3

1

a

2
故实数a的取值范围为-1, 2
函数y f (x)为可导函数:
1.如果在(a,b)内,f (x)>0 f(x)在此区间是增函数; 如果在(a,b)内,f (x) 0 f(x)在此区间是减函数。
2.若函数f (x)在(a,b)上单调递增, 则f (x) 0在区间(a,b)上恒成立 若函数f (x)在(a,b)上单调递减, 则f (x) 0在区间(a,b)上恒成立
2
课后作业:课时作业
3
2
2
g(2) 3 g(x)
a 3
故实数a的取值范围为3,+故实数a的取值范围为3,+
“若函数f (x)在(a,b)上单调递减, 则f (x) 0在区间(a,b)上恒成立” “若函数f (x)在(a,b)上单调递增, 则f (x) 0在区间(a,b)上恒成立”
令g(x) 3x2 2ax,
由3x2 2ax 0在(0, 2)上恒成立
要使g(x) 0在(0, 2)恒成立
转化为a 3x 在(0, 2)上恒成立 2
由根的分布,可得
令g(x) 3x , 且g(x) 3x 在(0,2)上单增

g(0) g(2)

0 0

a



f f
'(a) 0 '(a 1)
0

1 2

a a

3 2

1

a

2
故实数a的取值范围为-1, 2
变式:已知函数f (x) ln x 在区间(2a,a+1)上单调递增, x
求实数a的取值范围。
解:由已知得f
'( x)

1 ln x2
x
令f '( x) 0 f ( x)的单调递增区间为(0,e)
(二)、参数放在函数表达式上:
例2:若函数f (x) x3 ax2 1在(0, 2)内单调递减, 求实数a的取值范围。
(2)解:Q f (x) x3 ax2 1在(0, 2)内单调递减,
f '(x) 3x2 2ax 0在(0, 2)上恒成立。
解法一:根的分布
解法二:分离参数法,构造新函数
那有什么不同点呢?
典例分析 (一)、参数放在区间上:
例1.已知函数f (x)=x3-3x2-9x在区间(a,a+1)上单调递减,
求实数a的取值范ቤተ መጻሕፍቲ ባይዱ。
解:其实函数f (x) x3 3x2 9x的单调减区间可以直接求出,
Q f '(x) 3x2 6x 9 0 1 x 3 f (x)的单调递减区间为(-1,3) 要使函数f (x)在(a,a+1)内单调递减 (a,a+1)(-1,3)
a
三、课时总结:(本节课主要介绍了已知函数单调性来利用导数求参数范围.) 1、函数在某个区间单调递增(或递减),可转化为函数的导数在这个区间上 f (x) 0(或f (x) 0)恒成立的问题 2、解题方法: 1)、利用方程根的分布求参数取值范围 2)、利用集合性质求参数的取值范围 3)、分离参数法求参数范围 4)、构造新函数求参数范围 5)、分类讨论求参数范围 3、数学思想:分类讨论、数形结合、化归
它们不是充要条件
变式:若函数f (x)=lnx-ax(a 0)的单调增区间为(0,1), 则实数a的取值范围为 _________。
解:Q f '(x) 1 ax x 0
x 令f '(x) 0 0 x 1
a 而f (x)的单调增区间是(0,1), 故而需要 1 1,得a 1
相关文档
最新文档