12 核苷酸代谢 PPT课件
合集下载
核苷酸的代谢医学课件
饮食治疗
对于嘌呤核苷酸代谢紊乱的患者, 应采用低嘌呤饮食,限制高嘌呤食 物的摄入,如动物内脏、海鲜等。
药物治疗
对于高尿酸血症和痛风患者,可以 使用抑制尿酸合成的药物,如别嘌 呤醇、丙磺舒等。
酶抑制治疗
对于嘌呤核苷酸分解代谢紊乱的患 者,可以使用酶抑制药物,如环孢 素、他克莫司等。
细胞移植治疗
对于嘌呤核苷酸合成途径受阻的患 者,可以考虑进行造血干细胞移植 治疗。
核苷酸代谢在医学中有重要的应用价值,如治疗疾病 和进行生物医学研究。
核苷酸代谢是生物体内一个重要的生化过程,包括合 成和降解两个主要途径。
核苷酸代谢物和相关酶在代谢调控中具有重要作用, 可以影响细胞生长、分化、凋亡等生物学过程。
下一步研究方向
深入研究核苷酸代谢及相关酶的分子机制和调节 作用,探讨其在医学中的应用价值。
背景
核苷酸是核酸的基本组成单位,而核酸是生命活动中至关重 要的物质之一。核苷酸代谢是生物体内维持生命活动所必需 的基本过程之一,涉及到许多医学领域,如遗传学、分子生 物学、肿瘤学、药物学等。
核苷酸代谢在医学中的重要性
遗传性疾病
许多遗传性疾病是由于核苷酸代谢中的基因突变 或缺陷所引起的,如嘌呤、嘧啶代谢障碍等。
THANKS
嘌呤核苷酸合成是细胞生存和增殖的基本条件,如果合成减少,会导致细胞生长和代谢异常。
嘌呤核苷酸分解代谢紊乱
由于嘌呤核苷酸分解代谢紊乱,会产生过多的尿酸,引起高尿酸血症和痛风等疾病。
嘌呤核苷酸合成途径受阻
由于嘌呤核苷酸合成途径受阻,会导致细胞内DNA和RNA合成受阻,影响细胞的正常分裂和增殖。
核苷酸代谢紊乱的医学治疗
03
核苷酸代谢与医学
核苷酸代谢与能量代谢
对于嘌呤核苷酸代谢紊乱的患者, 应采用低嘌呤饮食,限制高嘌呤食 物的摄入,如动物内脏、海鲜等。
药物治疗
对于高尿酸血症和痛风患者,可以 使用抑制尿酸合成的药物,如别嘌 呤醇、丙磺舒等。
酶抑制治疗
对于嘌呤核苷酸分解代谢紊乱的患 者,可以使用酶抑制药物,如环孢 素、他克莫司等。
细胞移植治疗
对于嘌呤核苷酸合成途径受阻的患 者,可以考虑进行造血干细胞移植 治疗。
核苷酸代谢在医学中有重要的应用价值,如治疗疾病 和进行生物医学研究。
核苷酸代谢是生物体内一个重要的生化过程,包括合 成和降解两个主要途径。
核苷酸代谢物和相关酶在代谢调控中具有重要作用, 可以影响细胞生长、分化、凋亡等生物学过程。
下一步研究方向
深入研究核苷酸代谢及相关酶的分子机制和调节 作用,探讨其在医学中的应用价值。
背景
核苷酸是核酸的基本组成单位,而核酸是生命活动中至关重 要的物质之一。核苷酸代谢是生物体内维持生命活动所必需 的基本过程之一,涉及到许多医学领域,如遗传学、分子生 物学、肿瘤学、药物学等。
核苷酸代谢在医学中的重要性
遗传性疾病
许多遗传性疾病是由于核苷酸代谢中的基因突变 或缺陷所引起的,如嘌呤、嘧啶代谢障碍等。
THANKS
嘌呤核苷酸合成是细胞生存和增殖的基本条件,如果合成减少,会导致细胞生长和代谢异常。
嘌呤核苷酸分解代谢紊乱
由于嘌呤核苷酸分解代谢紊乱,会产生过多的尿酸,引起高尿酸血症和痛风等疾病。
嘌呤核苷酸合成途径受阻
由于嘌呤核苷酸合成途径受阻,会导致细胞内DNA和RNA合成受阻,影响细胞的正常分裂和增殖。
核苷酸代谢紊乱的医学治疗
03
核苷酸代谢与医学
核苷酸代谢与能量代谢
生物化学-核苷酸代谢(共41张PPT)
尿嘧啶磷酸核糖转移酶
尿嘧啶+PRPP
UMP+PPi
1-磷酸核糖
Pi
尿嘧啶核苷
尿苷激酶 Mg2+
UMP
ATP
ADP
胸苷激酶 脱氧胸苷
Mg2+
dTMP
ATP
ADP
x-染色体连锁隐性遗传 缺乏的酶:次黄嘌呤鸟嘌呤磷酸核糖基转移酶(HGPRT) 免疫缺陷症,
(ribonucleotide) ADA缺乏症患者体内腺苷酸分解代谢严重障碍,T、B淋巴细胞受损,引起反复感染等症状。
痛 风(GOUT)
痛风原因:高嘌呤饮食、体内核 酸分解增强、肾脏疾病
表现:尿酸盐沉积造成损害
别嘌呤醇治疗痛风:机制是别嘌 呤醇在结构上与次黄嘌呤相似 ,抑制黄嘌呤氧化酶
腺苷脱氨酶(ADA)基因位于20q13-qter,编码一条含363个氨 基酸残基的多肽链。
腺苷脱氨酶(ADA)缺乏引起重症免疫缺陷症,即ADA缺乏症。ADA缺乏 症患者体内腺苷酸分解代谢严重障碍,T、B淋巴细胞受损,引起反 复感染等症状。
硫氧还蛋白
S S
谷氧还蛋白还原酶
硫氧还蛋白还原酶
G SSG
2G SH
谷胱甘肽还原酶
NADPH +H +
N A D P+
FAD
FA D H 2
硫氧还蛋白还原酶
NADPH +H +
NADP+
脱氧胸苷酸(dTMP)的生成
尿苷一磷酸激酶
尿苷二磷酸激酶
UMP
UDP
UTP
ATP合酶
CTP
ATP
ADP
ATP
ADP 谷氨酰胺
鸟苷一磷酸 (GMP) 鸟苷二磷酸 (GDP) 鸟苷三磷酸 (GTP)
核苷酸的生物学功能12核苷酸代谢培训课件
ATCase
CPS-II
嘧啶核苷酸的补救合成
尿嘧啶 + PRPP 尿嘧啶磷酸核糖转移酶 UMP + PPi
尿嘧啶+ 1-磷酸核糖 尿苷磷酸化酶 尿嘧啶核苷 +Pi 尿嘧啶核苷 + ATP 尿苷激酶 UMP +ADP
胞嘧啶核苷 + ATP 胸腺嘧啶核苷 + ATP
尿苷激酶 胸苷激酶
CMP +ADP TMP +ADP
AICAR转 甲酰基酶
5-氨基咪唑-4-氨甲酰核苷 酸(AICAR)
C-2 5-甲酰胺基咪唑-4-甲酰胺核
苷酸(FAICAR)
IMP环 水解酶
5-甲酰胺基咪唑-4-甲酰 胺核苷酸(FAICAR)
Байду номын сангаас
次黄嘌呤核苷酸 (IMP)
②AMP和GMP的生成 延胡索酸
腺苷酸 琥珀酸
腺苷酸 代琥珀 酸裂解
酶
N 7
参与NDP 还原作用的 两种氧还体 系
NDP还原酶
NDP还原 酶
谷氧还原酶
谷氧还原酶 硫氧还原蛋白 硫氧还原蛋白
谷胱甘肽 还原酶
硫氧还 蛋白还 原酶
谷
胱
甘
肽
的
结
谷胱甘肽还原酶
构
脱氨酶
脱氧胸苷酸(dTMP)的合成
胸苷酸合成酶
N-7
(GAR)
GAR转甲 酰基酶
甘氨酰胺核苷酸 (GAR)
C-8 甲酰甘氨酰胺核苷酸
(FGAR)
甲酰甘氨酰胺核 苷酸(FGAR)
FGAM 合成酶
N-3 甲酰甘氨脒核苷
酸(FGAM)
AIR合成酶
甲酰甘氨脒核苷酸 (FGAM)
CPS-II
嘧啶核苷酸的补救合成
尿嘧啶 + PRPP 尿嘧啶磷酸核糖转移酶 UMP + PPi
尿嘧啶+ 1-磷酸核糖 尿苷磷酸化酶 尿嘧啶核苷 +Pi 尿嘧啶核苷 + ATP 尿苷激酶 UMP +ADP
胞嘧啶核苷 + ATP 胸腺嘧啶核苷 + ATP
尿苷激酶 胸苷激酶
CMP +ADP TMP +ADP
AICAR转 甲酰基酶
5-氨基咪唑-4-氨甲酰核苷 酸(AICAR)
C-2 5-甲酰胺基咪唑-4-甲酰胺核
苷酸(FAICAR)
IMP环 水解酶
5-甲酰胺基咪唑-4-甲酰 胺核苷酸(FAICAR)
Байду номын сангаас
次黄嘌呤核苷酸 (IMP)
②AMP和GMP的生成 延胡索酸
腺苷酸 琥珀酸
腺苷酸 代琥珀 酸裂解
酶
N 7
参与NDP 还原作用的 两种氧还体 系
NDP还原酶
NDP还原 酶
谷氧还原酶
谷氧还原酶 硫氧还原蛋白 硫氧还原蛋白
谷胱甘肽 还原酶
硫氧还 蛋白还 原酶
谷
胱
甘
肽
的
结
谷胱甘肽还原酶
构
脱氨酶
脱氧胸苷酸(dTMP)的合成
胸苷酸合成酶
N-7
(GAR)
GAR转甲 酰基酶
甘氨酰胺核苷酸 (GAR)
C-8 甲酰甘氨酰胺核苷酸
(FGAR)
甲酰甘氨酰胺核 苷酸(FGAR)
FGAM 合成酶
N-3 甲酰甘氨脒核苷
酸(FGAM)
AIR合成酶
甲酰甘氨脒核苷酸 (FGAM)
《核苷酸代谢》PPT课件 (2)
3’
5’
5’
3’
OH P
➢拓扑异构酶(旋转酶)
消除DNA 的超螺旋,根据作用方式不同而分为两种: 旋转酶Ⅰ
旋转酶Ⅱ
✓旋转酶І:使DNA一条链发生断裂(切口反应) 和再连接(封口反应)。作用是松解负超螺旋,
不需要能量。
✓旋转酶Π:使DNA两条链发生断裂和再连 接。可以形成负超螺旋,需要由ATP或GTP提 供能量.
✓ 限制性核酸内切酶:在细菌细胞内存在的一类能 识别并水解外源双链DNA的核酸内切酶,可用于 特异切割DNA,常作为基因工程工具酶。
牛脾磷酸二酯酶 从5’端3-核苷酸
பைடு நூலகம்
蛇毒磷酸二酯酶 从3’端移去5-核苷酸
嘌呤的降解:
腺嘌呤
鸟嘌呤
H2O
H2O
腺嘌呤脱氨酶
NH3
NH3 鸟嘌呤脱氨酶
次黄嘌呤 黄嘌呤氧化酶 黄嘌呤
二氢尿嘧啶脱氢酶
胸腺嘧啶
二氢胸腺嘧啶
NAD(P)H+H+ NAD(P)+
H2O
二氢嘧啶酶
NH3+CO2 +β-氨基异丁酸
脲基丙酸酶 β-脲基异丁酸
H2O
第二节 核苷酸的生物合成
嘌呤核苷酸的合成 嘧啶核苷酸的合成
核苷酸的合成有2条途径:
从头合成:利用CO2、NH3、某些氨基酸、磷酸核糖
等简单物质为原料,经过一系列酶促反应
排泄动物 人类、灵长类动物、鸟类、昆虫 除灵长类外其它哺乳类动物 某些硬骨鱼类 大多数鱼类、两栖类动物 甲壳类动物、软体动物
嘧啶的降解:
胞嘧啶
胞嘧啶脱氨酶 尿嘧啶
二氢尿嘧啶脱氢酶
二氢尿嘧啶
H2O NH3
高中生物核苷酸代谢精品PPT课件
从头合成
ATP
(CO2/NH3/AA/戊糖)
核苷酸Βιβλιοθήκη 半合成(补救合成)分解的现成嘌呤、嘧啶
dNDP
二. 嘌呤核苷酸的合成
(一). 嘌呤环各原子的来源
CO2 甘氨酸
Asp 一碳单位
6
N
15
7
8C
24
3
9
N
一碳单位
N5,N10-次甲基四氢叶酸 Gln
(二).嘌呤核苷酸的合成
1.从头合成 (脑,骨髓缺乏有关的酶)
起始物:5‘-磷酸核糖-1-焦磷酸(pRpp) 在起始物上合成嘌呤环(10步)
终产物:次黄嘌呤核苷酸(IMP)
2.补救途径
HGPRT
次黄嘌呤 + PRPP
IMP + PPi
腺嘌呤/鸟嘌呤 + PRPP
AMP/GMP + PPi
腺嘌呤/鸟嘌呤 + 1-P-核糖
A/G
AMP/GMP
Pi
基因缺陷导致HGPRT缺失而表现为Lesch-Nyhan综合症(自毁容貌综合症)
Lesch-Nyhan综合症
三. 嘧啶核苷酸的合成
(一). 嘧啶环各原子的来源 Gln
CO2
Asp
(二). 嘧啶核苷酸的合成
1.从头合成 起始物:以CO2,Glu等为原料直接合成嘧啶环(4步) 终产物:乳清酸
乳清酸 + PRPP 乳清酸核苷酸(OMP)
2.补救途径
尿嘧啶 + PRPP
UMP + PPi
核苷酸代谢
•核苷酸的分解代谢 •核苷酸的生物合成
第一节、核苷酸的分解代谢
不同动物嘌呤碱的分解的终产物
动物类型
《核苷酸代谢 》课件
要点二
脱氧核糖一磷酸与脱氧核糖一磷 酸一腺苷的相互转化
在细胞内,脱氧核糖一磷酸可被转化为脱氧核糖一磷酸一 腺苷,反之亦然。这种转化对于DNA的合成和修复同样具 有重要意义。
04 嘌呤核苷酸代谢
嘌呤核苷酸的合成
总结词
描述嘌呤核苷酸合成的起始物质、关键酶、合成途径 和调节机制。
详细描述
嘌呤核苷酸的合成是从磷酸戊糖开始,经过一系列酶 促反应,最终生成腺嘌呤核苷酸和鸟嘌呤核苷酸。合 成过程中需要磷酸戊糖、谷氨酰胺等物质作为起始物 质,同时需要多种酶的参与,如氨基甲酰磷酸合成酶 、天冬氨酸氨基转移酶等。合成途径分为两条,一是 从头合成,二是补救合成。合成过程受到多种因素的 调节,如磷酸戊糖的浓度、谷氨酰胺的供应等。
核糖核苷酸的分解是核苷酸代谢的重要环节,涉及到多种酶的参与和能量的释放。
详细描述
核糖核苷酸的分解首先从特定的核糖核苷酸开始,经过水解、氧化、磷酸化等反应,最终形成磷酸、 糖类、氨基酸等物质。这个过程中需要特定的酶来催化每一步反应,同时伴随着能量的释放。分解产 生的物质可以用于合成其他重要的生物分子。
详细描述
核苷酸的合成主要通过磷酸戊糖途径、糖酵解途径和三羧酸循环等途径,从简单的原料合成核苷一磷酸,再合成 核苷二磷酸和核苷三磷酸。核苷酸的降解主要通过核苷酶和核苷酸酶的作用,将核苷一磷酸、核苷二磷酸和核苷 三磷酸分别降解为相应的单磷酸、二磷酸和三磷酸核苷。
02 核糖核苷酸代谢
核糖核苷酸的合成
总结词
核苷酸代谢的重要性
总结词
核苷酸代谢对于维持生物体的正常生理功能至关重要。
详细描述
核苷酸是细胞内重要的生物分子,参与DNA和RNA的合成与修复,影响基因的 表达和遗传信息的传递。核苷酸代谢的异常会导致一系列疾病,如代谢性疾病 、癌症等。
第十二章核酸降解与核苷酸代谢ppt课件
(2)磷酸单酯酶与核苷酸酶催化核苷酸水 解,生成磷酸和核苷。
(3)核苷经核苷酸水解生成碱基和戊糖
二、碱基的代谢 1、嘌
呤 的 分 解
2、嘧 啶 的 分 解
第二节 核苷酸合成
一、从头合成 1、嘌呤核苷酸合成 (1)嘌呤环各元素来源
(2) 合 成 途 径
(3)合成特点
a、先经合成氨甲酸磷酸,再与天冬氨酸硫含 生成乳清酸,再被转移至SPRPP的CI’上生 成乳清酸核苷酸。
b、乳清酸核苷酸经脱羧及转氨基因生成尿苷 酸、胞苷酸。
二、补救合成途径
由磷酸核糖转移酶催化将未合成或代谢中 产生的碱基转移至磷酸核糖的C1‘羟基上而 形成核苷酸。
三、脱氧核苷酸的合成
DNA中所含脱氧核苷酸由核糖核苷二磷 酸水平还原而成
四、DNA胸苷酸合成
1、由dump经胸苷酸合成酶还原并从亚甲 基四氢叶酸转甲基而生成dtmp
第十二章 核酸降解与核苷酸代谢 第一节 核酸降解
一、核酸的降解 1、核酸的分解过程
核苷酸 核苷酸酶 H2O
核苷+Pi
核苷磷酸化酶
核苷+Pi
嘌呤碱或嘧啶碱+戊糖-1-磷酸
核苷+H2O 核苷水解酶 嘌呤碱或嘧啶碱+戊糖
2、核酸的降解
(1)水解核苷酸之间连接的3‘,5’磷酸二 脂键,生成多核苷酸电离或单核苷酸催化 水解的酶为核酸酶,水解核酸分子内的磷 酸二酯键的核酸酶为内环酶,从核酸-端逐 个水解核苷酸的酶为外 氧胸苷,过后经胸苷酸酶催化与ATP反应 生成胸苷酸。
(3)核苷经核苷酸水解生成碱基和戊糖
二、碱基的代谢 1、嘌
呤 的 分 解
2、嘧 啶 的 分 解
第二节 核苷酸合成
一、从头合成 1、嘌呤核苷酸合成 (1)嘌呤环各元素来源
(2) 合 成 途 径
(3)合成特点
a、先经合成氨甲酸磷酸,再与天冬氨酸硫含 生成乳清酸,再被转移至SPRPP的CI’上生 成乳清酸核苷酸。
b、乳清酸核苷酸经脱羧及转氨基因生成尿苷 酸、胞苷酸。
二、补救合成途径
由磷酸核糖转移酶催化将未合成或代谢中 产生的碱基转移至磷酸核糖的C1‘羟基上而 形成核苷酸。
三、脱氧核苷酸的合成
DNA中所含脱氧核苷酸由核糖核苷二磷 酸水平还原而成
四、DNA胸苷酸合成
1、由dump经胸苷酸合成酶还原并从亚甲 基四氢叶酸转甲基而生成dtmp
第十二章 核酸降解与核苷酸代谢 第一节 核酸降解
一、核酸的降解 1、核酸的分解过程
核苷酸 核苷酸酶 H2O
核苷+Pi
核苷磷酸化酶
核苷+Pi
嘌呤碱或嘧啶碱+戊糖-1-磷酸
核苷+H2O 核苷水解酶 嘌呤碱或嘧啶碱+戊糖
2、核酸的降解
(1)水解核苷酸之间连接的3‘,5’磷酸二 脂键,生成多核苷酸电离或单核苷酸催化 水解的酶为核酸酶,水解核酸分子内的磷 酸二酯键的核酸酶为内环酶,从核酸-端逐 个水解核苷酸的酶为外 氧胸苷,过后经胸苷酸酶催化与ATP反应 生成胸苷酸。
第十二章-核苷酸代谢PPT课件
.
39
(二) 脱氧胸苷酸(dTMP)的合成
.
40
脱氧核苷酸合成(小结 )
1) NDP
脱氧还原
dNDP
2) DP
N5, N10 - CH2 - FH4
dUMP
dTMP
3) dNDP / dTMP
ATP
磷酸化
dNTP / dTTP
作为DNA合成原料
.
41
(三) 嘧啶核苷酸的抗代谢物
1. 嘧啶类似物 5-氟尿嘧啶(5-FU)
乳清酸
(嘧啶环)
PRPP
PPi
UMP
ATP
ATP
Gln
2) UMP → UDP → UTP → CTP
3) UTP、CTP
作为RNA合成原料
.
36
(二) 嘧啶核苷酸的补救合成
嘧啶磷酸核糖转移酶
嘧啶 + PRPP
嘧啶核苷酸 + PPi
嘧啶核苷 + ATP
嘧啶核苷激酶
嘧啶核苷酸 + ADP
脱氧胸苷 + ATP
2. 叶酸类似物 氨基喋呤、氨甲喋呤(MTX)
3. 阿糖胞苷(Ara-C)
.
42
胸腺嘧啶(T)
5-氟尿嘧啶(5-FU)
5-FU
FdUMP, 其结构与dUMP类似
FdUMP与dUMP相互竞争,抑制胸苷酸合酶活
性,进而阻断dTMP乃至DNA的合成。
.
43
OH N
N
H2N
N
N
CH2
N H
O COOH C-NH-CH-CH2-CH2-COOH
R-5-P
aa、“-C”、CO2等
核苷酸
核苷酸代谢
CO 2
6
甘氨酸
7 5 4
天冬 氨 酸 一碳 单 位
1
N N
3
N
8
一 碳单 位
2
N
9
谷 氨 酰胺 图 12-2 嘌呤环的原子来源
合成过程: 合成过程: 首先合成肌苷酸(IMP)。 1、首先合成肌苷酸(IMP)。 5-P-R 应结合而成IMP 应结合而成IMP 。 IMP转变成AMP与GMP。 转变成AMP 2、由IMP转变成AMP与GMP。 PRPP(磷酸核糖焦磷酸) PRPP(磷酸核糖焦磷酸) 以PRPP为基础,将以上各原料逐步连续反 PRPP为基础, 为基础
一、嘌呤核苷酸的从头合成
主要特点: 主要特点:
合成部位: 主要)、小肠粘膜、 )、小肠粘膜 合成部位:肝(主要)、小肠粘膜、胸腺的胞 液中。 液中。 原 磷酸核糖;嘌呤碱环上9 料:5-磷酸核糖;嘌呤碱环上9个原子 各来自一碳单位与CO 天冬氨酸、 各来自一碳单位与CO2、天冬氨酸、 甘氨酸、 甘氨酸、谷氨酰胺 。
பைடு நூலகம்磷酸 碱基
核苷 磷酸戊糖
核苷磷酸化酶
合成代谢
从头合成途径 补救合成途径
从头合成途径:机体利用氨基酸、CO2、一碳单位 从头合成途径:机体利用氨基酸、 (肝) 及5-磷酸核糖等小分子物质经过 连续酶促反应合成核苷酸的过 程。 补救合成途径:直接利用现成的碱基, 补救合成途径:直接利用现成的碱基,经简单反 应 骨髓) 合成核苷酸的过程。 (脑、骨髓) 合成核苷酸的过程。
胞嘧啶
胸腺嘧啶
NH3 NH3
CO2
β -丙氨酸
CO2
β-氨基异丁酸
抗代谢物(antimetabolite)是指在化学结 抗代谢物(antimetabolite)是指在化学结 构上与正常代谢物结构相似, 构上与正常代谢物结构相似,具有竞争性拮抗正 常代谢的物质。 常代谢的物质。