2021年新高考数学总复习第7讲:函数的奇偶性与周期性
函数的奇偶性与周期性高频考点+重点题型
专题07函数的奇偶性和周期性--2022年(新高考)数学高频考点+重点题型一、关键能力在学习函数基本性质的过程中,学生能理解数学知识之间的联系,建构知识框架,形成有论据、有条理、合乎逻辑的思维品质,增强数学交流能力。
能够进一步提高数学运算能力,能有效借助运算方法解决实际问题,能够通过运算促进数学思维发展,养成程序化思考问题的习惯,形成一丝不苟、严谨求实的科学精神,在此过程中提高逻辑推理和数学运算能力。
二、教学建议教学中,要结合231,,,y x y x y x yx====等函数,了解函数奇偶性的概念、图象和性质,并能判断一些简单函数的奇偶性(对一般函数的奇偶性,不要做深入讨论)。
函数各种性质的综合常常是命制高考数学试题的重要出发点和落脚点,在复习函数性质时应注意到数形结合思想、分类讨论、由特殊到一般(由一般到特殊)等数学思想方法的灵活运用。
三、自主梳理1.函数的奇偶性2.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.3.奇偶性常见结论(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).(3)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.4.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).5.对称性的三个常用结论(1)若函数y =f (x +a )是偶函数,则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b ,0)中心对称. 四、真题感悟1.(2021新高考1卷) 已知函数()()322x xx a f x -=⋅-是偶函数,则a =______.2.(2021全国乙卷理)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A. ()11f x -- B. ()11f x -+ C. ()11f x +- D. ()11f x ++ 3.(2021全国甲卷理) 设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( ) A. 94-B. 32-C.74 D.524(2021浙江卷). 已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A. 1()()4y f x g x =+- B. 1()()4y f x g x =-- C. ()()y f x g x =D. ()()g x y f x =5.(2020山东8)若定义在R 上的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -≥的x 的取值范围是 ( )A .[][)1,13,-+∞B .[][]3,10,1--C .[][)1,01,-+∞D .[][]1,01,3-6.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x . 若(1)2=f ,则(1)(2)(3)(50)++++=…f f f fA .50-B .0C .2D .50五、高频考点+重点题型 考点一、奇偶性的判定例1.下列四个函数中既是奇函数,又是增函数的是( ) A .()ln xf x x=B .32()f x x x =+C .()||f x x x =-D .)()lgf x x =-对点训练1.(2021·四川成都市·石室中学高二期中(理))已知函数()2xxf x e ex -=--,若不等式()()2120f ax f ax +-≥对x R ∀∈恒成立,则实数a 的取值范围是( )A .(]0,eB .[]0,eC .(]0,1D .[]0,1对点训练2.【2020年高考浙江】函数y =x cos x +sin x 在区间[–π,π]上的图象可能是对点训练3.(2021·湖北省丹江口市一中模拟)设f (x )=e x +e -x ,g (x )=e x -e -x ,f (x ),g (x )的定义域均为R ,下列结论错误的是( )A .|g (x )|是偶函数B .f (x )g (x )是奇函数C .f (x )|g (x )|是偶函数D .f (x )+g (x )是奇函数4.【2020·全国Ⅱ卷】设函数()ln |21|ln |21|f x x x =+--,则f (x ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减 C .是偶函数,且在1(,)2-∞-单调递增 D .是奇函数,且在1(,)2-∞-单调递减考点二、利用奇偶性求解析式例2.(1)(2019·全国卷Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=( )A .e -x -1 B .e -x +1 C .-e -x -1 D .-e -x +1(2)(2019·北京高考真题(理))设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则f (x )=________对点训练1.设()f x 为定义在R 上的奇函数,当0x ≥时,22()log (1)1f x x ax a =++-+(a 为常数),则不等式(35)2f x +>-的解集为( ) A .(),1-∞-B .()1,+-∞C .(),2-∞-D .()2,+-∞对点训练2.设奇函数()f x 在(0,)+∞上为增函数,且f (1)0=,则不等式()()f x f x x--<的解集为( )A .(1-,0)(1⋃,)+∞B .(-∞,1)(0-⋃,1)C .(-∞,1)(1-⋃,)+∞D .(1-,0)(0⋃,1)考点三、利用奇偶性画函数图像例3. 已知函数f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x 2-5x ,则不等式f (x -1)>f (x )的解集为________.对点训练1.(2019·全国高考真题(理))函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .对点训练2.(2021·安徽池州市·池州一中高三其他模拟(理))若定义在R 上的奇函数()f x 在()0,∞+上单调递增,且()20f =,则不等式()10xf x -≤的解集为( )A .(][),13,-∞-+∞B .(][],11,3-∞-C .[][]1,01,3-D .[][)1,03,-+∞考点四、周期性判定与作用 例4.(1)已知定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且当x ∈(2,4)时,f (x )=x 3-3x ,则f (2 021)等于( )A. 2B. -18C. 18D. -2(2)设f (x )是定义在R 上以2为周期的偶函数,当x ∈[0,1]时,f (x )=log 2(x +1),则当x ∈[1,2]时,f (x )=________. 对点训练1.已知函数()f x 是定义在R 上的偶函数,满足()()2f x f x +=,当[]0,1x ∈时,()πcos2f x x =,则函数()y f x x =-的零点个数是( ) A .2B .3C .4D .5对点训练2.已知定义域为R 的函数()f x 满足:①图象关于原点对称;②3()2f x f x ⎛⎫=-⎪⎝⎭;③当30,4x ⎛⎫∈ ⎪⎝⎭时,2()log (1)f x x m =++.若2(2020)log 3f =,则m =( ) A .1-B .1C .2-D .2对点训练3.(2021·江苏南通市·高三一模)已知()f x 是定义在R 上的函数,()22f =,且对任意的x ∈R ,都有()()33f x f x +≥+,()()11f x f x +≤+,若()()1g x f x x =+-,则()2020g =( )A .2020B .3C .2D .1考点五、函数的奇偶性、周期性、单调性综合应用例5(1)定义在R 上的函数f (x )满足f (x )=f (-x ),且f (x )=f (x +6),当x ∈[0,3]时,f (x )单调递增,则f (x )在下列哪个区间上单调递减( )A .[3,7]B .[4,5]C .[5,8]D .[6,10] (2)已知函数f (x )=e x -1-e -x +1,则下列说法正确的是( )A .函数f (x )的最小正周期是1B .函数f (x )是单调递减函数C .函数f (x )的图象关于直线x =1轴对称D .函数f (x )的图象关于(1,0)中心对称 对点训练1.(多选题)(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题:A 、f (x )的图象关于y 轴对称.B 、f (x )的图象关于原点对称.C 、f (x )的图象关于直线x =2π对称. D 、f (x )的最小值为2. 其中所有真命题的是( ).对点训练2.函数()2cos x x xf x -=的部分图象大致为( )A .B .C .D .对点训练3.(2021·河北模拟)定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且在[-1,0]上单调递减.设a =f (-2.8),b =f (-1.6),c =f (0.5),则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .b >c >aD .a >c >b 巩固训练一、单项选择题1.下列函数中,既不是奇函数,也不是偶函数的是( )A .y =1+x 2B .y =x +1xC .y =2x +12x D .y =x +e x .2.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4) 的值是( ) A. 1- B. 0 C. 1 D. 3.3.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A. 1- B.13C. 0D. 3. 4.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于________. 5.已知函数f (x )=x |x |-2x ,则下列结论正确的是( )A .f (x )是偶函数,递增区间是(0,+∞)B .f (x )是偶函数,递减区间是(-∞,1)C .f (x )是奇函数,递减区间是(-1,1)D .f (x )是奇函数,递增区间是(-∞,0) 6.设定义在R 上的函数f (x )满足f (x )·f (x +2)=13,若f (1)=2,则f (99)=________. A. 1 B. 2 C. 0 D. 132. 二、多项选择题7.已知定义在R 上的函数y =f (x )满足条件f ⎝⎛⎭⎫x +32=-f (x ),且函数y =f ⎝⎛⎭⎫x -34为奇函数,则以下结论正确的是( )A .函数f (x )是周期函数;B .函数f (x )的图象关于点⎝⎛⎭⎫-34,0对称; C .函数f (x )为R 上的偶函数; D .函数f (x )为R 上的单调函数.8.已知f (x )是定义域为R 的奇函数,且函数f (x +2)为偶函数,则下列结论正确的是( ) A .函数y =f (x )的图象关于直线x =1对称 B .f (4)=0C .f (x +8)=f (x )D .若f (-5)=-1,则f (2019)=-1 三、填空题9.设奇函数f (x )的定义域为R ,最小正周期T =3,若f (1)≥1,f (2)=2a -3a +1,则a 的取值范围是________.10.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________. 四、解答题11.设f (x )=e x +a e -x (a ∈R ,x ∈R ). (1)讨论函数g (x )=xf (x )的奇偶性;(2)若g (x )是偶函数,解不等式f (x 2-2)≤f (x ).12.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.专题07函数的奇偶性和周期性--2022年(新高考)数学高频考点+重点题型解析 四、真题感悟1.(2021新高考1卷) 已知函数()()322x xx a f x -=⋅-是偶函数,则a =______.【答案】1 【解析】【分析】利用偶函数的定义可求参数a 的值.【详解】因为()()322x x x a f x -=⋅-,故()()322x x f x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=, 时()()332222xx x x xa x a --⋅-=-⋅-,整理得到()()12+2=0x x a --,故1a =, 故答案为:12.(2021全国乙卷理)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A. ()11f x -- B. ()11f x -+ C. ()11f x +- D. ()11f x ++ 【答案】B【解析】由题意可得12()111x f x x x-==-+++, 对于A ,()2112f x x--=-不是奇函数; 对于B ,()211f x x-=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数;对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数. 故选:B3.(2021全国甲卷理) 设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( ) A. 94-B. 32-C.74 D.52【答案】D 【解析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【详解】因为()1f x +是奇函数,所以()()11f x f x -+=-+Ⅱ;因为()2f x +是偶函数,所以()()22f x f x +=-+Ⅱ.令1x =,由Ⅱ得:()()()024f f a b =-=-+,由Ⅱ得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由Ⅱ得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T=.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D .4(2021浙江卷). 已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A. 1()()4y f x g x =+- B. 1()()4y f x g x =-- C. ()()y f x g x = D. ()()g x y f x =【答案】D 【解析】【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解. 【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ;对于C ,()()21sin 4y f x g x x x ⎛⎫==+⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,2102164y ππ⎛⎫'=++> ⎪⎝⎭,与图象不符,排除C. 故选:D.5.(2020山东8)若定义在R 上的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -≥的x 的取值范围是( )A .[][)1,13,-+∞B .[][]3,10,1--C .[][)1,01,-+∞D .[][]1,01,3-【答案】D【解析】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =, 所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x x >⎧⎨≤-≤-≤-⎩或或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[][]1,01,3-,故选D .6.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x . 若(1)2=f ,则(1)(2)(3)(50)++++=…f f f fA .50-B .0C .2D .50【答案】C【解析】∵()f x 是定义域为(,)-∞+∞的奇函数,()()-=-f x f x .且(0)0=f .∵(1)(1)-=+f x f x ,∴()(2)=-f x f x ,()(2)-=+f x f x ,∴(2)()+=-f x f x ,∴(4)(2)()+=-+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=-==f f f f ,(3)(12)f f =+ =(12)(1)2f f -=-=-,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f ,故选C .五、高频考点+重点题型 考点一、奇偶性的判定例1.下列四个函数中既是奇函数,又是增函数的是( ) A .()ln xf x x=B .32()f x x x =+C .()||f x x x =-D .)()lgf x x =-【答案】D 【详解】对于A ,定义域为()0,∞+,不关于原点对称,所以不具奇偶性,故A 错误; 对于B ,因为()12f =,()10f -=,所以()f x 为非奇非偶函数,故B 错误; 对于C ,因为()11f =-,()11f -=,所以()f x 不是增函数,故C 错误;对于D ,定义域为R , 因为()))()lglg lg f x x x f x ⎛⎫-===--=,所以()f x 是奇函数,))()lglgf x x x =-=,令x μ=为增函数,lg y μ=也是增函数,所以)()lg f x x =-是增函数.故D 正确. 故选:D.对点训练1.(2021·四川成都市·石室中学高二期中(理))已知函数()2xxf x e ex -=--,若不等式()()2120f ax f ax +-≥对x R ∀∈恒成立,则实数a 的取值范围是( )A .(]0,eB .[]0,eC .(]0,1D .[]0,1答案:D 解:()2x x f x e e x -=--的定义域为R 关于原点对称,且()()2xx f x e e x f x --=-+=-,()f x ∴为R 上的奇函数,又()12x xf x e e '=+-,而12x x e e +≥, 当且仅当1xx e e =,即0x =时等号成立, 故()120xx f x e e'=+-≥恒成立,故()f x 为R 上的增函数,不等式()()2120f ax f ax +-≥对x R ∀∈恒成立,即()()212f ax f ax ≥--对x R ∀∈恒成立, 即()()221f ax f ax ≥-对x R ∀∈恒成立,即221ax ax ≥-对x R ∀∈恒成立, 即2210ax ax -+≥对x R ∀∈恒成立, 当0a =时,不等式恒成立,当0a ≠时,则()20240a a a >⎧⎪⎨∆=--≤⎪⎩ , 解得:01a <≤, 综上所述:[]0,1a ∈. 故选:D.对点训练2.【2020年高考浙江】函数y =x cos x +sin x 在区间[–π,π]上的图象可能是【答案】A【解析】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误,故选A 。
2024年高考数学总复习第二章《函数与基本初等函数》函数的奇偶性与周期性
2024年高考数学总复习第二章《函数与基本初等函数》§2.3函数的奇偶性与周期性最新考纲1.结合具体函数,了解函数奇偶性的含义.2.学会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.1.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数关于y 轴对称奇函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.概念方法微思考1.如果已知函数f (x ),g (x )的奇偶性,那么函数f (x )±g (x ),f (x )·g (x )的奇偶性有什么结论?提示在函数f (x ),g (x )公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.已知函数f (x )满足下列条件,你能得到什么结论?(1)f (x +a )=-f (x )(a ≠0);(2)f (x +a )=1f (x )(a ≠0);(3)f (x +a )=f (x +b )(a ≠b ).提示(1)T =2|a |(2)T =2|a |(3)T =|a -b |题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =x 2,x ∈(0,+∞)是偶函数.(×)(2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×)(3)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√)题组二教材改编2.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x (1+x ),则f (-1)=________.答案-2解析f (1)=1×2=2,又f (x )为奇函数,∴f (-1)=-f (1)=-2.3.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )-4x 2+2,-1≤x <0,x ,0≤x <1,则f 32______.答案1解析f 32=f -124×-122+2=1.4.设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为________.答案(-2,0)∪(2,5]解析由图象可知,当0<x <2时,f (x )>0;当2<x ≤5时,f (x )<0,又f (x )是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].题组三易错自纠5.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是()A .-13 B.13C.12D .-12答案B 解析∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.6.偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)=________.答案3解析∵f (x )为偶函数,∴f (-1)=f (1).又f (x )的图象关于直线x =2对称,∴f (1)=f (3).∴f (-1)=3.题型一函数奇偶性的判断例1判断下列函数的奇偶性:(1)f (x )=36-x 2+x 2-36;(2)f (x )=ln (1-x 2)|x -2|-2;(3)f (x )2+x ,x <0,x 2+x ,x >0.解(1)-x 2≥0,2-36≥0,得x 2=36,解得x =±6,即函数f (x )的定义域为{-6,6},关于原点对称,∴f (x )=36-x 2+x 2-36=0.∴f (-x )=-f (x )且f (-x )=f (x ),∴函数f (x )既是奇函数又是偶函数.(2)-x 2>0,-2|≠2,得定义域为(-1,0)∪(0,1),关于原点对称.∴x -2<0,∴|x -2|-2=-x ,∴f (x )=ln (1-x 2)-x.又∵f (-x )=ln[1-(-x )2]x =ln (1-x 2)x =-f (x ),∴函数f (x )为奇函数.(3)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称.∵当x <0时,-x >0,则f (-x )=-(-x )2-x =-x 2-x =-f (x );当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知,对于定义域内的任意x ,总有f (-x )=-f (x ),∴函数f (x )为奇函数.思维升华判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.跟踪训练1(1)下列函数中,既不是奇函数也不是偶函数的是()A .f (x )=x +sin 2xB .f (x )=x 2-cos xC .f (x )=3x -13xD .f (x )=x 2+tan x答案D解析对于选项A ,函数的定义域为R ,f (-x )=-x +sin 2(-x )=-(x +sin 2x )=-f (x ),所以f (x )=x +sin 2x 为奇函数;对于选项B ,函数的定义域为R ,f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),所以f (x )=x 2-cos x 为偶函数;对于选项C ,函数的定义域为R ,f (-x )=3-x-13-x =-x f (x ),所以f (x )=3x -13x 为奇函数;只有f (x )=x 2+tan x 既不是奇函数也不是偶函数.故选D.(2)(2018·石景山模拟)下列函数中既是奇函数,又在区间(0,+∞)上单调递减的函数为()A .y =xB .y =-x 3C .y =12log xD .y =x +1x答案B解析由题意得,对于函数y =x 和函数y =12log x 都是非奇非偶函数,排除A ,C.又函数y=x +1x 在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,排除D ,故选B.题型二函数的周期性及其应用1.(2018·抚顺模拟)已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=________.答案-2解析f (7)=f (-1)=-f (1)=-2.2.已知定义在R上的函数f(x)满足f(2)=2-3,且对任意的x都有f(x+2)=1-f(x),则f(2020)=________.答案-2-3解析由f(x+2)=1-f(x),得f(x+4)=1-f(x+2)=f(x),所以函数f(x)的周期为4,所以f(2020)=f(4).因为f(2+2)=1-f(2),所以f(4)=-1f(2)=-12-3=-2- 3.故f(2020)=-2- 3.3.(2017·山东)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.答案6解析∵f(x+4)=f(x-2),∴f((x+2)+4)=f((x+2)-2),即f(x+6)=f(x),∴f(x)是周期为6的周期函数,∴f(919)=f(153×6+1)=f(1).又f(x)是定义在R上的偶函数,∴f(1)=f(-1)=6,即f(919)=6.4.设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x<1时,f(x)=2x-1,则f(1)+f(2)+________.答案2-1解析依题意知:函数f(x)为奇函数且周期为2,则f(1)+f(-1)=0,f(-1)=f(1),即f(1)=0.∴f(1)+f(2)+=0+f(0)+=f(0)+=f(0)=122-1+20-1=2-1.思维升华利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.题型三函数性质的综合应用命题点1求函数值或函数解析式例2(1)设f (x )是定义在R 上周期为4的奇函数,若在区间[-2,0)∪(0,2]上,f (x )=ax +b ,-2≤x <0,ax -1,0<x ≤2,则f (2021)=________.答案-12解析设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .因为f (x )是定义在R 上周期为4的奇函数,所以f (-x )=-f (x )=-ax +1=-ax +b ,所以b =1.而f (-2)=f (-2+4)=f (2),所以-2a +b =2a -1,解得a =12,所以f (2021)=f (1)=12×1-1=-12.(2)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则f (x )=________.答案e-x -1-x ,x ≤0,e x -1+x ,x >0解析∵当x >0时,-x <0,∴f (x )=f (-x )=e x -1+x ,∴f (x )e -x -1-x ,x ≤0,e x -1+x ,x >0.命题点2求参数问题例3(1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =__________.答案1解析∵f (-x )=f (x ),∴-x ln(a +x 2-x )=x ln(x +a +x 2),∴ln[(a +x 2)2-x 2]=0.∴ln a =0,∴a =1.(2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f 12=f 32,则a +3b 的值为________.答案-10解析因为f (x )是定义在R 上且周期为2的函数,所以ff (-1)=f (1),故从而12b +212+1=-12a +1,即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.(3)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=-x 2+ax -1-a ,若函数f (x )为R 上的减函数,则a 的取值范围是____________.答案[-1,0]解析因为函数f (x )是R 上的奇函数,所以f (0)=0,若函数f (x )为R 上的减函数,则满足当x >0时,函数为减函数,且-1-a ≤0-a -2=a 2≤0,1-a ≤0,≤0,≥-1,即-1≤a ≤0.命题点3利用函数的性质解不等式例4(1)(2018·聊城模拟)已知函数f (x )=|x |(10x -10-x ),则不等式f (1-2x )+f (3)>0的解集为()A .(-∞,2)B .(2,+∞)C .(-∞,1)D .(1,+∞)答案A解析由于f (-x )=-f (x ),所以函数为奇函数,且为单调递增函数,故f (1-2x )+f (3)>0等价于f (1-2x )>-f (3)=f (-3),所以1-2x >-3,x <2,故选A.(2)设函数f (x )=ln(1+|x |)-11+x2,解不等式f (x )>f (2x -1).解由已知得函数f (x )为偶函数,所以f (x )=f (|x |),由f (x )>f (2x -1),可得f (|x |)>f (|2x -1|).当x>0时,f(x)=ln(1+x)-11+x2,因为y=ln(1+x)与y=-11+x2在(0,+∞)上都单调递增,所以函数f(x)在(0,+∞)上单调递增.由f(|x|)>f(|2x-1|),可得|x|>|2x-1|,两边平方可得x2>(2x-1)2,整理得3x2-4x+1<0,解得13<x<1.所以符合题意的x思维升华解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.跟踪训练2(1)定义在R上的奇函数f(x)满足f(x),当x ,12时,f(x)=12log(1)x ,则f(x)()A.减函数且f(x)>0B.减函数且f(x)<0 C.增函数且f(x)>0D.增函数且f(x)<0答案D解析当x ,12时,由f(x)=12log(1-x)可知,f(x)单调递增且f(x)>0,又函数f(x)为奇函数,所以在区间-12,f(x)<0.由f(x)知,函数的周期为32,f(x)<0.故选D.(2)(2018·烟台模拟)已知偶函数f(x)在[0,+∞)上单调递增,且f(1)=-1,f(3)=1,则满足-1≤f(x-2)≤1的x的取值范围是()A.[3,5]B.[-1,1]C.[1,3]D.[-1,1]∪[3,5]答案D解析由偶函数f(x)在区间[0,+∞)上单调递增,则在区间(-∞,0)上单调递减,又f(1)=-1,f(3)=1,则f(-1)=-1,f(-3)=1,要使得-1≤f(x-2)≤1,即1≤|x-2|≤3,即1≤x-2≤3或-3≤x-2≤-1,解得-1≤x≤1或3≤x≤5,即不等式的解集为[-1,1]∪[3,5],故选D.(3)已知函数g(x)是R上的奇函数,且当x<0时,g(x)=-ln(1-x),函数f(x)3,x≤0,(x),x>0,解不等式f(6-x2)>f(x).解∵g(x)是奇函数,∴当x>0时,g(x)=-g(-x)=ln(1+x),易知f(x)在R上是增函数,由f(6-x2)>f(x),可得6-x2>x,即x2+x-6<0,∴-3<x<2.函数的性质函数的奇偶性、周期性及单调性是函数的三大性质,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.一、函数性质的判断例1(1)(2017·全国Ⅰ)已知函数f(x)=ln x+ln(2-x),则()A.f(x)在(0,2)上单调递增B.f(x)在(0,2)上单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称答案C解析f(x)的定义域为(0,2).f(x)=ln x+ln(2-x)=ln[x(2-x)]=ln(-x2+2x).设u=-x2+2x,x∈(0,2),则u=-x2+2x在(0,1)上单调递增,在(1,2)上单调递减.又y=ln u在其定义域上单调递增,∴f(x)=ln(-x2+2x)在(0,1)上单调递增,在(1,2)上单调递减.∴选项A,B错误;∵f(x)=ln x+ln(2-x)=f(2-x),∴f(x)的图象关于直线x=1对称,∴选项C正确;∵f(2-x)+f(x)=[ln(2-x)+ln x]+[ln x+ln(2-x)]=2[ln x+ln(2-x)],不恒为0,∴f(x)的图象不关于点(1,0)对称,∴选项D错误.故选C.(2)定义在R上的函数f(x)满足f(x)=f(-x),且f(x)=f(x+6),当x∈[0,3]时,f(x)单调递增,则f(x)在下列哪个区间上单调递减()A.[3,7]B.[4,5]C.[5,8]D.[6,10]答案B解析依题意知,f(x)是偶函数,且是以6为周期的周期函数.因为当x∈[0,3]时,f(x)单调递增,所以f(x)在[-3,0]上单调递减.根据函数周期性知,函数f(x)在[3,6]上单调递减.又因为[4,5]⊆[3,6],所以函数f(x)在[4,5]上单调递减.(3)定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4-x)=f(x).现有以下三个命题:①8是函数f(x)的一个周期;②f(x)的图象关于直线x=2对称;③f(x)是偶函数.其中正确命题的序号是________.答案①②③解析由f(x)+f(x+2)=0可得f(x+4)=-f(x+2)=f(x),∴函数f(x)的最小正周期是4,①对;由f(4-x)=f(x),可得f(2+x)=f(2-x),f(x)的图象关于直线x=2对称,②对;f(4-x)=f(-x)且f(4-x)=f(x),∴f(-x)=f(x),f(x)为偶函数,③对.二、函数性质的综合应用例2(1)(2018·全国Ⅱ)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)等于()A.-50B.0C.2D.50答案C解析∵f(x)是奇函数,∴f(-x)=-f(x),∴f(1-x)=-f(x-1).∵f(1-x)=f(1+x),∴-f(x-1)=f(x+1),∴f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴函数f(x)是周期为4的周期函数.由f(x)为奇函数且定义域为R得f(0)=0,又∵f(1-x)=f(1+x),∴f(x)的图象关于直线x=1对称,∴f(2)=f(0)=0,∴f(-2)=0.又f(1)=2,∴f(-1)=-2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2.故选C.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则()A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)答案D解析因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).(3)设偶函数f (x )满足f (x )=2x -4(x ≥0),则满足f (a -2)>0的实数a 的取值范围为__________.答案{a |a >4或a <0}解析∵偶函数f (x )满足f (x )=2x -4(x ≥0),∴函数f (x )在[0,+∞)上为增函数,f (2)=0,∴不等式f (a -2)>0等价于f (|a -2|)>f (2),即|a -2|>2,即a -2>2或a -2<-2,解得a >4或a <0.1.下列函数中,既是偶函数又在区间(1,2)内单调递减的是()A .f (x )=xB .f (x )=1x 2C .f (x )=2x +2-xD .f (x )=-cos x答案B解析函数f (x )=1x2是偶函数,且在(1,2)内单调递减,符合题意.2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)等于()A .-3B .-54C.54D .3答案A 解析由f (x )为R 上的奇函数,知f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是()①y =f (|x |);②y =f (-x );③y =xf (x );④y =f (x )+x .A .①③B .②③C .①④D .②④答案D解析由奇函数的定义f (-x )=-f (x )验证,①f (|-x |)=f (|x |),为偶函数;②f (-(-x ))=f (x )=-f (-x ),为奇函数;③-xf (-x )=-x ·[-f (x )]=xf (x ),为偶函数;④f (-x )+(-x )=-[f (x )+x ],为奇函数.可知②④正确,故选D.4.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f (1)等于()A .-2B .0C .2D .1答案A解析∵函数f (x )为定义在R 上的奇函数,且周期为2,∴f (1)=-f (-1)=-f (-1+2)=-f (1),∴f (1)=0,124=-2,∴f (1)=-2.5.(2018·惠州调研)已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为()A .(2,+∞)(2,+∞)(2,+∞)D .(2,+∞)答案B解析f (x )是R 上的偶函数,且在(-∞,0]上是减函数,所以f (x )在[0,+∞)上是增函数,所以f (log 2x )>2=f (1)⇔f (|log 2x |)>f (1)⇔|log 2x |>1⇔log 2x >1或log 2x <-1⇔x >2或0<x <12.6.(2018·海南联考)已知函数f (x )是定义在R 上的偶函数,f (x )=f (12-x ),当x ∈[0,6]时,f (x )=log 6(x +1),若f (a )=1(a ∈[0,2020]),则a 的最大值是()A .2018B .2010C .2020D .2011答案D解析由函数f (x )是定义在R 上的偶函数,f (x )=f (12-x ),可得f (-x )=f (12+x ),即f (x )=f (12+x ),故函数的周期为12.令log 6(a +1)=1,解得a =5,∴在[0,12]上f (a )=1的根为5,7;又2020=12×168+4,∴a 的最大值在[2004,2016]上,即2004+7=2011.故选D.7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.答案-32解析函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln 1+e 3x e 3x +e 6x =2ax =ln e 2ax,即1+e 3x e 3x +e 6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0恒成立,所以a =-32.8.已知函数f (x )是奇函数,当x >0时,f (x )=ln x ,则f ________.答案-ln 2解析由已知可得ln 1e2=-2,所以f (-2).又因为f (x )是奇函数,所以f (-2)=-f (2)=-ln 2.9.奇函数f (x )在区间[3,6]上是增函数,且在区间[3,6]上的最大值为8,最小值为-1,则f (6)+f (-3)的值为________.答案9解析由于f (x )在[3,6]上为增函数,所以f (x )的最大值为f (6)=8,f (x )的最小值为f (3)=-1,因为f (x )为奇函数,所以f (-3)=-f (3)=1,所以f (6)+f (-3)=8+1=9.10.若函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是单调递增的.如果实数t 满足f (ln t )+2f (1),那么t 的取值范围是________.答案1e,e 解析由于函数f (x )是定义在R 上的偶函数,所以f (ln t )=由f (ln t )+2f (1),得f (ln t )≤f (1).又函数f (x )在区间[0,+∞)上是单调递增的,所以|ln t |≤1,即-1≤ln t ≤1,故1e≤t ≤e.11.已知函数f (x )x 2+2x ,x >0,,x =0,2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)-2>-1,-2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].12.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式.(1)证明∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.∵f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].13.若定义在R 上的偶函数f (x )满足f (x )>0,f (x +2)=1f (x )对任意x ∈R 恒成立,则f (2023)=________.答案1解析因为f (x )>0,f (x +2)=1f (x ),所以f (x +4)=f [(x +2)+2]=1f (x +2)=11f (x )=f (x ),即函数f (x )的周期是4,所以f (2023)=f (506×4-1)=f (-1).因为函数f (x )为偶函数,所以f (2023)=f (-1)=f (1).当x =-1时,f (-1+2)=1f (-1),得f (1)=1f (1).由f (x )>0,得f (1)=1,所以f (2023)=f (1)=1.14.(2018·天津河西区模拟)设f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=x 2+1,0≤x <1,-2x ,x ≥1,若对任意的x ∈[m ,m +1],不等式f (1-x )≤f (x +m )恒成立,则实数m的最大值是()A .-1B .-13C .-12D.13答案B解析易知函数f (x )在[0,+∞)上单调递减,又函数f (x )是定义在R 上的偶函数,所以函数f (x )在(-∞,0)上单调递增,则由f (1-x )≤f (x +m ),得|1-x |≥|x +m |,即(1-x )2≥(x +m )2,即g (x )=(2m +2)x +m 2-1≤0在x ∈[m ,m +1]上恒成立,当m =-1时,g (x )=0,符合要求,当m ≠-1(m )=(3m -1)(m +1)≤0,(m +1)=(m +1)(3m +1)≤0,解得-1<m ≤-13,所以-1≤m ≤-13,即m 的最大值为-13.15.已知函数f (x )=sin x +x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为______________________________.答案2解析易知f (x )在R 上为单调递增函数,且f (x )为奇函数,故f (mx -2)+f (x )<0等价于f (mx -2)<-f (x )=f (-x ),则mx -2<-x ,即mx +x -2<0对所有m ∈[-2,2]恒成立,令h (m )=mx +x -2,m ∈[-2,2](-2)<0,(2)<0即可,解得-2<x <23.16.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,求f (1)+f (2)+f (3)+f (4)+…+f (2020)的值.解因为f (x )为奇函数,f (x +1)为偶函数,所以f (x +1)=f (-x +1)=-f (x -1),所以f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数f(x)的周期为4,所以f(4)=f(0)=0,f(3)=f(-1)=-f(1).在f(x+1)=f(-x+1)中,令x=1,可得f(2)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)=0.所以f(1)+f(2)+f(3)+f(4)+…+f(2020)=0.。
函数的奇偶性、周期性与对称性-高考数学复习
法二
− −1
因为 f ( x )是偶函数,所以 f (1)- f (-1)= - −
−1
−1
− −1
=
=0,所以 a -1=1,所以 a =2.故选D.
−1
目录
高中总复习·数学
解题技法
利用函数的奇偶性求参数值的解题策略
目录
高中总复习·数学
考向3 利用奇偶性求解析式及函数值
【例3】 (1)已知偶函数 f ( x ),当 x ∈[0,2)时, f ( x )=2
π
sin x ,当 x ∈[2,+∞)时, f ( x )=log2 x ,则 f (- )+ f (4)
3
=(
)
B. 1
D. 3
目录
高中总复习·数学
解析:∵函数 f ( x )是偶函数,当 x ∈[0,2)时, f ( x )=2 sin
所以 f ( x )既是奇函数又是偶函数.
目录
高中总复习·数学
(3) f ( x )=
36− 2
|+3|−3
解:由 f ( x )=
;
36− 2
|+3|−3
,可得
36 − 2 ≥ 0,
−6 ≤ ≤ 6,
⇒ቊ
故函数 f ( x )的定义域为
൝
| + 3| − 3 ≠ 0 ≠ 0且 ≠ −6,
1(符合题意).故选A.
目录
高中总复习·数学
2. (多选)下列函数中为非奇非偶函数的是(
)
A. y = x +e x
目录
高中总复习·数学
解析:
记 f ( x )= x +e x ,则 f (-1)=-1+e-1, f (1)=
高考数学复习考点知识与题型专题讲解6---函数的奇偶性、周期性与对称性
高考数学复习考点知识与题型专题讲解函数的奇偶性、周期性与对称性考试要求1.了解函数奇偶性的含义,结合三角函数,了解周期性与对称性及其几何意义.2.会依据函数的性质进行简单的应用.知识梳理1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=-f(x),那么函数f(x)就叫做奇函数关于原点对称2.周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数y=f(x)就叫做周期函数,非零常数T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.常用结论1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.2.函数周期性常用结论对f (x )定义域内任一自变量的值x :(1)若f (x +a )=-f (x ),则T =2a (a >0).(2)若f (x +a )=1f (x ),则T =2a (a >0). 3.函数对称性常用结论(1)f (a -x )=f (a +x )⇔f (-x )=f (2a +x )⇔f (x )=f (2a -x )⇔f (x )的图象关于直线x =a 对称.(2)f (a +x )=f (b -x )⇔f (x )的图象关于直线x =a +b 2对称.f (a +x )=-f (b -x )⇔f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0对称. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f (x )为奇函数,则f (0)=0.(×)(2)若f (x )为奇函数,g (x )为偶函数,则y =f (x )g (x )为奇函数.(×)(3)若T 是函数f (x )的一个周期,则kT (k ∈N *)也是函数的一个周期.(√)(4)若函数f (x )满足f (2+x )=f (2-x ),则f (x )的图象关于直线x =2对称.(√)教材改编题1.下列函数中为偶函数的是()A.y=x2sin x B.y=x2cos xC.y=|ln x|D.y=2-x答案B解析根据偶函数的定义知偶函数满足f(-x)=f(x)且定义域关于原点对称,A选项为奇函数;B选项为偶函数;C选项定义域为(0,+∞),不具有奇偶性;D选项既不是奇函数,也不是偶函数.2.若f(x)是定义在R上的周期为2的函数,当x∈[0,2)时,f(x)=2-x,则f(2023)=______.答案1 2解析∵f(x)的周期为2,∴f(2023)=f(1)=2-1=1 2.3.设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集为________.答案(-2,0)∪(2,5]解析由图象可知,当0<x<2时,f(x)>0;当2<x≤5时,f(x)<0,又f(x)是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].题型一 函数的奇偶性命题点1判断函数的奇偶性例1判断下列函数的奇偶性:(1)f (x )=3-x 2+x 2-3;(2)f (x )=⎩⎨⎧ x 2+x ,x <0,-x 2+x ,x >0; (3)f (x )=log 2(x +x 2+1).解(1)由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3, 即函数f (x )的定义域为{-3,3},从而f (x )=3-x 2+x 2-3=0.因此f (-x )=-f (x )且f (-x )=f (x ),∴函数f (x )既是奇函数又是偶函数.(2)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称.∵当x <0时,-x >0,则f(-x)=-(-x)2-x=-x2-x=-f(x);当x>0时,-x<0,则f(-x)=(-x)2-x=x2-x=-f(x);综上可知,对于定义域内的任意x,总有f(-x)=-f(x)成立,∴函数f(x)为奇函数.(3)显然函数f(x)的定义域为R,f(-x)=log2[-x+(-x)2+1]=log2(x2+1-x)=log2(x2+1+x)-1=-log2(x2+1+x)=-f(x),故f(x)为奇函数.思维升华判断函数的奇偶性,其中包括两个必备条件(1)定义域关于原点对称,否则即为非奇非偶函数.(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.命题点2函数奇偶性的应用例2(1)(2022·哈尔滨模拟)函数f(x)=x(e x+e-x)+1在区间[-2,2]上的最大值与最小值分别为M,N,则M+N的值为()A.-2B.0C.2D.4答案C解析依题意,令g(x)=x(e x+e-x),显然函数g(x)的定义域为R,则g(-x)=-x(e-x+e x)=-g(x),即函数g(x)是奇函数,因此,函数g(x)在区间[-2,2]上的最大值与最小值的和为0,而f(x)=g(x)+1,则有M=g(x)max+1,N=g(x)min+1,于是得M+N=g(x)max+1+g(x)min+1=2,所以M+N的值为2.(2)(2021·新高考全国Ⅰ)已知函数f(x)=x3(a·2x-2-x)是偶函数,则a=________.答案1解析方法一(定义法)因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-x)=f(x)对任意的x∈R恒成立,所以(-x)3(a·2-x-2x)=x3(a·2x-2-x)对任意的x∈R恒成立,所以x3(a-1)(2x+2-x)=0对任意的x∈R恒成立,所以a=1.方法二(取特殊值检验法)因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-1)=f (1),所以-⎝ ⎛⎭⎪⎫a 2-2=2a -12,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.方法三(转化法)由题意知f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数.设g (x )=x 3,h (x )=a ·2x -2-x ,因为g (x )=x 3为奇函数,所以h (x )=a ·2x -2-x 为奇函数,所以h (0)=a ·20-2-0=0,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.教师备选1.已知函数f (x )=9-x 2|6-x |-6,则函数f (x )() A .既是奇函数也是偶函数B .既不是奇函数也不是偶函数C .是奇函数,但不是偶函数D .是偶函数,但不是奇函数答案C解析由9-x 2≥0且|6-x |-6≠0,解得-3≤x ≤3且x ≠0,可得函数f (x )的定义域为{x |-3≤x ≤3且x ≠0},关于原点对称,所以f (x )=9-x 2|6-x |-6=9-x 26-x -6=9-x 2-x, 又f (-x )=9-(-x )2x =-9-x 2-x =-f (x ), 所以f (x )是奇函数,但不是偶函数.2.若函数f (x )=⎩⎨⎧ g (x ),x <0,2x -3,x >0为奇函数,则f (g (-1))=________. 答案-1解析∵f (x )为奇函数且f (-1)=g (-1),∴f (-1)=-f (1)=-(-1)=1,∴g (-1)=1,∴f (g (-1))=f (1)=-1.思维升华 (1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.跟踪训练1(1)(2021·全国乙卷)设函数f (x )=1-x 1+x ,则下列函数中为奇函数的是() A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+1答案B解析f(x)=1-x1+x=2-(x+1)1+x=21+x-1,为保证函数变换之后为奇函数,需将函数y=f(x)的图象向右平移一个单位长度,再向上平移一个单位长度,得到的图象对应的函数为y =f(x-1)+1.(2)已知函数f(x)是定义在R上的奇函数,当x≥0,f(x)=2x-2x+a,则a=________;当x<0时,f(x)=________.答案-1-2-x-2x+1解析∵f(x)是定义在R上的奇函数,∴f(0)=0,即1+a=0,∴a=-1.∴当x≥0时,f(x)=2x-2x-1,设x<0,则-x>0,∴f(-x)=2-x-2(-x)-1=2-x+2x-1,又f(x)为奇函数,∴f(-x)=-f(x),∴-f(x)=2-x+2x-1,∴f(x)=-2-x-2x+1.题型二函数的周期性例3(1)(2022·重庆质检)已知函数f (x )是定义在R 上的奇函数,对任意的实数x ,f (x -2)=f (x +2),当x ∈(0,2)时,f (x )=x 2,则f ⎝ ⎛⎭⎪⎫132等于() A .-94B .-14C.14D.94答案A解析由f (x -2)=f (x +2),知y =f (x )的周期T =4,又f (x )是定义在R 上的奇函数,∴f ⎝ ⎛⎭⎪⎫132=f ⎝ ⎛⎭⎪⎫8-32 =f ⎝ ⎛⎭⎪⎫-32=-f ⎝ ⎛⎭⎪⎫32=-94. (2)函数f (x )满足f (x )=-f (x +2),且f (1)=2,则f (2023)=________.答案-2解析f (x )=-f (x +2),∴f (x +4)=-f (x +2)=f (x ),∴f (x )的周期为4,∴f (2023)=f (3)=-f (1)=-2.教师备选若函数f (x )=⎩⎨⎧2-x ,x ≤0,f (x -1)-f (x -2),x >0,则f (2023)=________.答案-1解析当x>0时,f(x)=f(x-1)-f(x-2),①∴f(x+1)=f(x)-f(x-1),②①+②得,f(x+1)=-f(x-2),∴f(x)的周期为6,∴f(2023)=f(337×6+1)=f(1)=f(0)-f(-1)=20-21=-1.思维升华(1)求解与函数的周期有关的问题,应根据题目特征及周期定义,求出函数的周期.(2)利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.跟踪训练2(1)(2022·安庆模拟)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2023)等于() A.336B.338C.337D.339答案B解析因为f(x+6)=f(x),所以函数的周期T=6,于是f(1)=1,f(2)=2,f(3)=f(-3)=-(-3+2)2=-1,f(4)=f(-2)=-(-2+2)2=0,f(5)=f(-1)=-1,f(6)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,而2023=6×337+1,所以f(1)+f(2)+f(3)+…+f(2023)=337×1+1=338.(2)函数f(x)满足f(x+1)=f(x-1),且f(x)为定义在R上的奇函数,则f(2021)+f(2022)=________.答案0解析∵f(x+1)=f(x-1),∴f(x)的周期为2,∴f(2021)+f(2022)=f(1)+f(0),又f(x)为定义在R上的奇函数,∴f(0)=0,且f(-1)=-f(1),①又f(x)的周期为2,∴f(-1)=f(1),②由①②得f(1)=0,∴f(2021)+f(2022)=0.题型三函数的对称性例4(1)已知函数f(x)的定义域为R,对任意x都有f(2+x)=f(2-x),且f(-x)=f(x),则下列结论正确的是________.(填序号)①f(x)的图象关于直线x=2对称;②f(x)的图象关于点(2,0)对称;③f(x)的周期为4;④y=f(x+4)为偶函数.答案①③④解析∵f(2+x)=f(2-x),则f(x)的图象关于直线x=2对称,故①正确,②错误;∵函数f(x)的图象关于直线x=2对称,则f(-x)=f(x+4),又f(-x)=f(x),∴f(x+4)=f(x),∴T=4,故③正确;∵T=4且f(x)为偶函数,故y=f(x+4)为偶函数,故④正确.(2)函数f(x)=lg|2x-1|图象的对称轴方程为________.答案x=1 2解析内层函数t=|2x-1|的对称轴是x=12,所以函数f(x)=lg|2x-1|图象的对称轴方程是x =12.教师备选已知函数f (x )=x 3-ax 2+bx +1的图象关于点(0,1)对称,且f ′(1)=4,则a -b =________. 答案-1解析因为f (x )关于点(0,1)对称,所以f (x )+f (-x )=2,故f (1)+f (-1)=2,即1-a +b +1+(-1)-a -b +1=2,解得a =0,所以f (x )=x 3+bx +1,又因为f ′(x )=3x 2+b ,所以f ′(1)=3+b =4,解得b =1,所以a -b =-1.思维升华 (1)求解与函数的对称性有关的问题时,应根据题目特征和对称性的定义,求出函数的对称轴或对称中心.(2)解决函数对称性有关的问题,一般结合函数图象,利用对称性解决求值或参数问题. 跟踪训练3(1)函数f (x )的周期为6,且f (x +2)为偶函数,当x ∈[0,2]时,f (x )=2x -1,则f (2025)=________.答案1解析∵f (x )的周期为6,则f (2025)=f (3),又f (x +2)为偶函数,∴f (x )的图象关于直线x =2对称,∴f (3)=f (1)=1,∴f (2025)=1.(2)关于函数f (x )=sin x +1sin x 有如下四个命题,其中正确的是________.(填序号)①f (x )的图象关于y 轴对称;②f (x )的图象关于原点对称;③f (x )的图象关于直线x =π2对称;④f (x )的图象关于点(π,0)对称.答案②③④解析∵f (x )=sin x +1sin x 的定义域为{x |x ≠k π,k ∈Z },f (-x )=sin(-x )+1sin (-x )=-sin x -1sin x =-f (x ),∴f (x )为奇函数,图象关于原点对称,故①错误,②正确.∵f ⎝ ⎛⎭⎪⎫π2-x =cos x +1cos x , f ⎝ ⎛⎭⎪⎫π2+x =cos x +1cos x ,∴f ⎝ ⎛⎭⎪⎫π2-x =f ⎝ ⎛⎭⎪⎫π2+x , ∴f (x )的图象关于直线x =π2对称,故③正确.又f (x +2π)=sin(x +2π)+1sin (x +2π)=sin x +1sin x ,f (-x )=-sin x -1sin x ,∴f (x +2π)=-f (-x ),∴f (x )的图象关于点(π,0)对称,故④正确.课时精练1.如果奇函数f (x )在[3,7]上单调递增且最小值为5,那么f (x )在区间[-7,-3]上()A .单调递增且最小值为-5B .单调递减且最小值为-5C .单调递增且最大值为-5D .单调递减且最大值为-5答案C解析因为奇函数f (x )在[3,7]上单调递增且最小值为5,而奇函数的图象关于原点对称, 所以f (x )在区间[-7,-3]上单调递增且最大值为-5.2.若函数f (x )=12x -1+a 为奇函数,则a 的值为() A .-2B .-12C.12D .2答案C解析方法一(定义法)∵f (x )为奇函数,∴f (-x )=-f (x ),∴12-x -1+a =-⎝ ⎛⎭⎪⎫12x -1+a , ∴2a =-⎝ ⎛⎭⎪⎫12-x -1+12x -1=1, ∴a =12.方法二(特值法)f (x )为奇函数,且x ≠0,∴f (-1)=-f (1),∴a -2=-(a +1),∴a =12.3.(2022·南昌模拟)函数f (x )=9x +13x 的图象()A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称答案B解析f(x)=32x+13x=3x+3-x,f(-x)=3-x+3x,∴f(-x)=f(x),故f(x)为偶函数,其图象关于y轴对称.4.已知函数f(x)的图象关于原点对称,且周期为4,f(3)=-2,则f(2021)等于()A.2B.0C.-2D.-4答案A解析依题意,函数f(x)的图象关于原点对称,则函数f(x)是奇函数,又f(x)的周期为4,且f(3)=-2,则有f(2021)=f(-3+506×4)=f(-3)=-f(3)=2,所以f(2021)=2.5.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()A.y=f(|x|) B.y=|f(x)|C.y=xf(x) D.y=f(x)+x答案D解析由奇函数的定义f(-x)=-f(x)验证,A项,f(|-x|)=f(|x|),为偶函数;B项,|f(-x)|=|-f(x)|=|f(x)|,为偶函数;C项,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;D项,f(-x)+(-x)=-[f(x)+x],为奇函数.6.(2022·南昌模拟)已知f(x)是定义在R上的奇函数,且对任意的x∈R都有f(x+2)=-f(x),当x∈[0,2]时,f(x)=x2+ax+b,则a+b等于()A.0B.-1C.-2D.2答案C解析因为f(x)是定义在R上的奇函数,且x∈[0,2]时,f(x)=x2+ax+b,所以f(0)=b=0,f(-x)=-f(x),又对任意的x∈R都有f(x+2)=-f(x),所以f(x+2)=f(-x),所以函数图象关于直线x=1对称,所以-a2=1,解得a=-2,所以a+b=-2.7.(2022·湘豫名校联考)已知f(x)=ax2+bx+1是定义在[a-1,2a]上的偶函数,则a+b=________.答案1 3解析因为f(x)=ax2+bx+1是定义在[a-1,2a]上的偶函数,则有(a-1)+2a=3a-1=0,则a=13,同时f(-x)=f(x),即ax2+bx+1=a(-x)2+b(-x)+1,则有bx =0,必有b =0.则a +b =13.8.已知函数f (x )满足对∀x ∈R ,有f (1-x )=f (1+x ),f (x +2)=-f (x ),当x ∈(0,1)时,f (x )=x 2+mx ,若f ⎝ ⎛⎭⎪⎫352=12,则m =______. 答案12解析由f (1-x )=f (1+x ),f (x +2)=-f (x ),知f (x )的图象关于直线x =1对称,f (x )的周期为4,∴f ⎝ ⎛⎭⎪⎫352=f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫12=12, ∴14+12m =12,∴m =12.9.已知函数f (x )=⎩⎨⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值; (2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式.(1)证明∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.∵f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即当x ∈[2,4]时,f (x )=x 2-6x +8.11.(2022·重庆模拟)已知函数f (x )=ax 5+bx 3+2,若f (2)=7,则f (-2)等于()A .-7B .-3C .3D .7答案B解析设g (x )=f (x )-2=ax 5+bx 3,则g (-x )=-ax 5-bx 3=-g (x ),即f (x )-2=-f (-x )+2,故f (-2)=-f (2)+4=-3.12.已知定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=2x +a ,则g (1)等于()A .a +54B.54C.34D .a +34答案C解析依题意⎩⎨⎧ f (1)+g (1)=2+a ①f (-1)+g (-1)=12+a ,②又f (x )为偶函数,g (x )为奇函数,∴②式可化为f (1)-g (1)=12+a ,③由①③可得g (1)=34. 13.已知f (x )为R 上的偶函数,且f (x +2)是奇函数,则下列结论正确的是________.(填序号)①f (x )的图象关于点(2,0)对称;②f (x )的图象关于直线x =2对称;③f (x )的周期为4;④f (x )的周期为8.答案①④解析∵f (x )为偶函数,∴f (x )的图象关于y 轴对称,f (-x )=f (x ),又∵f (x +2)是奇函数,∴f (-x +2)=-f (x +2),∴f (x )的图象关于(2,0)对称,又∵f (x +8)=-f (x +4)=f (x ),∴f (x )为周期函数且周期为8.14.已知函数f (x )对任意实数x 满足f (-x )+f (x )=2,若函数y =f (x )的图象与y =x +1有三个交点(x 1,y 1),(x 2,y 2),(x 3,y 3),则y 1+y 2+y 3=________.答案3解析因为f (-x )+f (x )=2,则f (x )的图象关于点(0,1)对称,又直线y =x +1也关于点(0,1)对称,因为y =f (x )与y =x +1有三个交点,则(0,1)是一个交点,另两个交点关于(0,1)对称,则y 1+y 2+y 3=2+1=3.15.已知函数f (x )=4x 4x +2,则f (x )+f (1-x )=____________,f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=________. 答案11011解析因为f (x )=4x4x +2, 所以f (x )+f (1-x )=4x 4x +2+41-x41-x +2=4x 4x +2+44x 44x +2=4x 4x +2+44x 4+2·4x 4x=4x 4x +2+44+2·4x=2·4x +44+2·4x =1,设f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=m ,① 则f ⎝ ⎛⎭⎪⎫20222023+…+f ⎝ ⎛⎭⎪⎫32023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫12023=m ,② ①+②得2022=2m ,即m =1011,故f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=1011. 16.(2022·北京西城区模拟)设函数f (x )的定义域为R .若存在常数T ,A (T >0,A >0),使得对于任意x ∈R ,f (x +T )=Af (x )成立,则称函数f (x )具有性质P .(1)判断函数y =x 和y =cos x 是否具有性质P ?(结论不要求证明)(2)若函数f (x )具有性质P ,且其对应的T =π,A =2.已知当x ∈(0,π]时,f (x )=sin x ,求函数f (x )在区间[-π,0]上的最大值.解(1)因为函数y =x 是增函数,所以函数y =x 不具有性质P ,当A =1,T =2π时,函数y =cos x 对于任意x ∈R , f (x +T )=Af (x )成立,所以y =cos x 具有性质P .(2)设x ∈(-π,0],则x +π∈(0,π], 由题意得f (x +π)=2f (x )=sin(x +π), 所以f (x )=-12sin x ,x ∈(-π,0],由f (-π+π)=2f (-π),f (0+π)=2f (0), 得f (-π)=14f (π)=0,所以当x ∈[-π,0]时,f (x )=-12sin x ,所以当x =-π2时,f (x )在[-π,0]上有最大值f ⎝ ⎛⎭⎪⎫-π2=12.。
2023年数学高考复习真题演练(全国卷)07 函数的性质-单调性、奇偶性、周期性 (含详解)
专题07函数的性质——单调性、奇偶性、周期性【考点预测】 1.函数的单调性(1)单调函数的定义一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x ,2x 当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是减函数.①属于定义域A 内某个区间上; ②任意两个自变量1x ,2x 且12x x <; ③都有12()()f x f x <或12()()f x f x >;④图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的. (2)单调性与单调区间①单调区间的定义:如果函数()f x 在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数()f x 的单调区间.②函数的单调性是函数在某个区间上的性质. (3)复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数.2.函数的奇偶性函数奇偶性的定义及图象特点判断()f x -与()f x 的关系时,也可以使用如下结论:如果0(())f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果0(())f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称).3.函数的对称性(1)若函数()y f x a =+为偶函数,则函数()y f x =关于x a =对称. (2)若函数()y f x a =+为奇函数,则函数()y f x =关于点(0)a ,对称. (3)若()()2f x f a x =-,则函数()f x 关于x a =对称. (4)若2(2)()f x f a x b -=+,则函数()f x 关于点()a b ,对称. 4.函数的周期性 (1)周期函数:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有(()f x T f x +=),那么就称函数()y f x =为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么称这个最小整数叫做()f x 的最小正周期. 【方法技巧与总结】 1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x <; ②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形; ③定号:判断差的正负或商与1的大小关系; ④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断. ②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x 是增函数,则()f x -为减函数;若()f x 是减函数,则()f x -为增函数;②若()f x 和()g x 均为增(或减)函数,则在()f x 和()g x 的公共定义域上()()f x g x +为增(或减)函数;③若()0f x >且()f x 1()f x 为减函数; ④若()0f x >且()f x1()f x 为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称; 函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称. (3)若奇函数()y f x =在0x =处有意义,则有(0)0f =; 偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶; 奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇. (8)常见奇偶性函数模型奇函数:①函数1()()01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-. ③函数2()log log (1)aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =或函数()log )a f x x =. 注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+. ②函数()log (1)2mx a mxf x a =+-. ③函数(||)f x 类型的一切函数. ④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x af x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-; (2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称. 【题型归纳目录】题型一:函数的单调性及其应用 题型二:复合函数单调性的判断 题型三:利用函数单调性求函数最值 题型四:利用函数单调性求参数的范围题型五:基本初等函数的单调性题型六:函数的奇偶性的判断与证明题型七:已知函数的奇偶性求参数题型八:已知函数的奇偶性求表达式、求值 题型九:已知()f x =奇函数+M 题型十:函数的对称性与周期性 题型十一:类周期函数题型十二:抽象函数的单调性、奇偶性、周期性 题型十三:函数性质的综合 【典例例题】题型一:函数的单调性及其应用例1.(2022·全国·高三专题练习)若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有()-()-f a f b a b>0成立,则必有( ) A .f (x )在R 上是增函数 B .f (x )在R 上是减函数 C .函数f (x )先增后减D .函数f (x )先减后增例2.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且对任意两个不相等的实数a ,b 都有()()()0a b f a f b -->⎡⎤⎣⎦,则不等式()()315f x f x ->+的解集为( ). A .(),3-∞B .()3,+∞C .(),2-∞D .()2,+∞例3.(2022·全国·高三专题练习)()252f x x x =-的单调增区间为( )A .1,5⎛⎫+∞ ⎪⎝⎭B .1,5⎛⎫-∞ ⎪⎝⎭C .1,5⎛⎫-+∞ ⎪⎝⎭D .1,5⎛⎫-∞- ⎪⎝⎭例4.(2022·全国·高三专题练习)已知函数1()22xxf x =-. (1)判断()f x 在其定义域上的单调性,并用单调性的定义证明你的结论; (2)解关于x 的不等式2(log )(1)f x f <.例5.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性. 【方法技巧与总结】函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.题型二:复合函数单调性的判断例6.(2022·全国·高三专题练习(文))函数y = )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 例7.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( )A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-例8.(2022·全国·高三专题练习)函数2231()()2x x f x --=的单调递减区间是( )A .(,)-∞+∞B .(,1)-∞C .(3,)+∞D .(1,)+∞【方法技巧与总结】讨论复合函数[()]y f g x =的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性.一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:1.若()u g x =,()y f u =在所讨论的区间上都是增函数或都是减函数,则[()]y f g x =为增函数; 2.若()u g x =,()y f u =在所讨论的区间上一个是增函数,另一个是减函数,则[()]y f g x =为减函数.列表如下:题型三:利用函数单调性求函数最值例9.(2022·河南·新乡县高中模拟预测(理))在人工智能领域的神经网络中,常用到在定义域I 内单调递增且有界的函数()f x ,即0M ∃>,x I ∀∈,()f x M ≤.则下列函数中,所有符合上述条件的序号是______.①()f x =()21x f x x =+;③()e e e e x xx xf x ---=+;④()11e x f x -=+. 例10.(2022·全国·高三专题练习)定义在()0,∞+上的函数()f x 对于任意的*,x y R ∈,总有()()()f x f y f xy +=,且当1x >时,()0f x <且()1f e =-.(1)求()1f 的值;(2)判断函数在()0,∞+上的单调性,并证明;(3)求函数()f x 在21,e e ⎡⎤⎢⎥⎣⎦上的最大值与最小值.例11.(2022·全国·高三专题练习)已知函数()(0)2axf x a x =≠-. (1)判断函数()f x 在区间()2,2-上的单调性,并用单调性的定义加以证明; (2)若()33f =,求[]1,1x ∈-时函数()f x 的值域.例12.(2022·山西运城·模拟预测(理))已知a b <,函数()f x 的定义域为I ,若存在[,]a b I ⊆,使得()f x 在[,]a b 上的值域为[,]a b ,我们就说()f x 是“类方函数”.下列四个函数中是“类方函数”的是( )①()21f x x =-+;②2()f x x =;③()2f x =;④1()2xf x ⎛⎫= ⎪⎝⎭.A .①②B .②④C .②③D .③④【方法技巧与总结】利用函数单调性求函数最值时应先判断函数的单调性,再求最值.常用到下面的结论:1.如果函数()y f x =在区间(]a b ,上是增函数,在区间[)b c ,上是减函数,则函数()()y f x x a c =∈,在x b =处有最大值()f b .2.如果函数()y f x =在区间(]a b ,上是减函数,在区间[)b c ,上是增函数,则函数()()y f x x a c =∈,在x b =处有最小值()f b .3.若函数()y f x =在[]a b ,上是严格单调函数,则函数()y f x =在[]a b ,上一定有最大、最小值. 4.若函数()y f x =在区间[]a b ,上是单调递增函数,则()y f x =的最大值是()f b ,最小值是()f a . 5.若函数()y f x =在区间[]a b ,上是单调递减函数,则()y f x =的最大值是()f a ,最小值是()f b . 题型四:利用函数单调性求参数的范围例13.(2022·河南濮阳·一模(理))“1b ≤”是“函数()()22,0log 2,20bx x f x x b x +>⎧=⎨++-<≤⎩是在()2,-+∞上的单调函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例14.(2022·全国·江西科技学院附属中学高三阶段练习(理))已知函数()()e 4,0,2log 1,10,xm m x f x x x ⎧+>⎪=⎨-+-<≤⎪⎩若1x ∀,2x ∈R ,()()12120f x f x x x ->-,且()()2g x f x x =--仅有1个零点,则实数m 的取值范围为( )A .11,4e ⎡⎫⎪⎢⎣⎭B .11,4e ⎡⎤⎢⎥⎣⎦C .1,1e ⎡⎫⎪⎢⎣⎭D .1,1e ⎛⎫ ⎪⎝⎭例15.(2022·浙江·高三学业考试)已知函数2()2f x x ax b =-+在区间(-∞,1]是减函数,则实数a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]例16.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( )A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1例17.(2022·全国·高三专题练习)已知函数2axf x a(0a >且1a ≠)在区间[)1,3上单调递增,则实数a 的取值不可能是( )A .13B .12C .23D .56例18.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a的范围是_______.例19.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈ ,则θ的取值范围是___________.例20.(2022·全国·高三专题练习)已知函数()f x 满足()()()()1,f x y f x f y x y R +=+-∈,当0x >时,()1f x >,且()12f =.(1)求()()0,1f f -的值,并判断()f x 的单调性;(2)当[]1,2x ∈时,不等式()()231f ax x f x -+<恒成立,求实数a 的取值范围.【方法技巧与总结】若已知函数的单调性,求参数a 的取值范围问题,可利用函数单调性,先列出关于参数a 的不等式,利用下面的结论求解.1.若()a f x >在[]m n ,上恒成立()a f x ⇔>在[]m n ,上的最大值.2.若()a f x <在[]m n ,上恒成立()a f x ⇔<在[]m n ,上的最小值.题型五:基本初等函数的单调性例21.(2022·全国·高三阶段练习(文))下列函数在()1,3上单调递减的是( ) A .24y x x =- B .12x y -=C .y =D .cos 1y x =+例22.(2022·全国·高三专题练习)下列函数中,定义域是R 且为增函数的是 A .x y e -=B .3y x =C .ln y x =D .y x =例23.(2022·全国·高三专题练习)已知()f x 是奇函数,且()()12120f x f x x x ->-对任意12,x x R ∈且12x x ≠都成立,设32a f ⎛⎫= ⎪⎝⎭, ()3log 7b f =, ()30.8c f =-,则( )A .b a c <<B .c a b <<C .c b a <<D . a c b <<例24.(2022·山东·济南一中模拟预测)设函数()232xf x x ⎛⎫=+ ⎪⎝⎭,若()ln3a f =,()5log 2b f =-,c f =(e 为自然对数的底数),则( ). A .a b c >>B .c b a >>C .c a b >>D .a c b >>【方法技巧与总结】1.比较函数值大小,应将自变量转化到同一个单调区间内,然后利用函数单调性解决.2.求复合函数单调区间的一般步骤为:①求函数定义域;②求简单函数单调区间;③求复合函数单调区间(同增异减).3.利用函数单调性求参数时,通常要把参数视为已知数,依据函数图像或单调性定义,确定函数单调区间,与已知单调区间比较,利用区间端点间关系求参数.同时注意函数定义域的限制,遇到分段函数注意分点左右端点函数值的大小关系.题型六:函数的奇偶性的判断与证明例25.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ( )A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减例26.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是( )A .1y x= B .ln y x x =-- C .3y x x =--D .3=-+y x x 例27.(2022·广东·二模)存在函数()f x 使得对于x R ∀∈都有()()f g x x =,则函数()g x 可能为( )A .()sin g x x =B .()22g x x x =+C .()3g x x x =-D .()()x x g x e e -=+例28.(2022·全国·高三专题练习)判断下列函数的奇偶性:(1)f (x )(2)f (x )=(x +(3)f (x ) (4)f (x )=2221,0,21,0;x x x x x x ⎧-++>⎨+-<⎩例29.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②()g x 为奇函数;③()0,x ∀∈+∞,()0>g x ;④任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)判断并证明函数()f x 的奇偶性; (2)判断并证明函数()f x 在0,上的单调性.【方法技巧与总结】函数单调性与奇偶性结合时,注意函数单调性和奇偶性的定义,以及奇偶函数图像的对称性. 题型七:已知函数的奇偶性求参数例30.(2022·北京海淀·二模)若(),01,0x a x f x bx x +<⎧=⎨->⎩是奇函数,则( )A .1,1a b ==-B .1,1a b =-=C .1,1a b ==D .1,1a b =-=-例31.(2022·河南洛阳·三模(理))若函数()()322x xx a f x -=⋅-是偶函数,则=a ( )A .-1B .0C .1D .±1例32.(2022·江苏南通·模拟预测)若函数()22x x af x a+=-为奇函数,则实数a 的值为( )A .1B .2C .1-D .±1例33.(2022·江西·南昌十中模拟预测(理))已知函数()(1)1x mf x x e=++为偶函数,则m 的值为_________.例34.(2022·全国·高三阶段练习(理))已知函数()()22330xxa a af x -+=-⋅≠为奇函数,则=a ______. 例35.(2022·全国·高三阶段练习(文))已知函数()2221x xa b f x x -+⋅=+为偶函数,则=a ______.例36.(2022·陕西·西安中学模拟预测(文))已知函数)1()e ln e x xf x x ⎛⎫=- ⎪⎝⎭为R 上的偶函数,则实数=a ___________.【方法技巧与总结】利用函数的奇偶性的定义转化为()()f x f x -=±,建立方程,使问题得到解决,但是在解决选择题、填空题时还显得比较麻烦,为了使解题更快,可采用特殊值法求解.题型八:已知函数的奇偶性求表达式、求值例37.(2022·安徽省芜湖市教育局模拟预测(理))设()f x 为奇函数,且0x >时,()e ln xf x x =+,则()1f -=___________.例38.(2022·重庆一中高三阶段练习)已知偶函数()f x ,当0x >时,()()212f x x f x '=-+,则()f x 的图象在点()()2,2f --处的切线的斜率为( )A .3-B .3C .5-D .5例39.(2022·河北衡水·高三阶段练习)已知()f x 是定义在R 上的奇函数,且0x ≤时,()232f x x x m =-+,则()f x 在[]1,2上的最大值为( )A .1B .8C .5-D .16-例40.(2022·江西·模拟预测(理))(),()f x g x 分别是定义在R 上的奇函数和偶函数,且()()2022sin 25+=--x f x g x x x ,则下列说法错误的是( )A .(0)1g =B .()g x 在[]0,1上单调递减C .(1101)-g x 关于直线1101=x 对称D .()g x 的最小值为1例41.(2022·山西吕梁·一模(文))已知函数()f x 为定义在R 上的奇函数,且当0x ≥时,()21x f x x =+-,则当0x <时,()f x =( )A .21x x ---B .21x x -++C .121x ----D .121x --++例42.(2022·北京·高三专题练习)已知定义在R 上的奇函数()f x 满足()()2f x f x =+,且当()0,1x ∈时,()241xxf x =+. (1)求()1f 和()1f -的值; (2)求()f x 在[]1,1-上的解析式.例43.(2022·全国·高三专题练习)若函数()f x 是奇函数,()g x 是偶函数,且其定义域均为{R,1}x x x ∈≠±.若()1()1f xg x x +=-,求()f x ,()g x 的解析式. 【方法技巧与总结】抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的解析式.题型九:已知()f x =奇函数+M例44.(2022·重庆一中高三阶段练习)已知()34f x ax =+(a ,b 为实数),()3lglog 102022f =,则()lglg3f =______.例45.(2022·河南·西平县高级中学模拟预测(理))已知函数()2sin 414x xf x x -=++,且()5f a =,则()f a -=( )A .2B .3C .-2D .-3例46.(2022·福建省福州第一中学高二期末)若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为( )A .4B .8C .12D .16例47.(2022·上海·高一专题练习)若函数()()2221sin 1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 3g x M m x M m x π⎡⎤=+++-⎢⎥⎣⎦图像的对称中心不可能是_______A .4,33ππ⎛⎫ ⎪⎝⎭B .,123ππ⎛⎫ ⎪⎝⎭C .28,33ππ⎛⎫ ⎪⎝⎭D .416,33ππ⎛⎫⎪⎝⎭例48.(2022·河南·温县第一高级中学高三月考(理))若函数()()113esin 1ex x x f x --⋅--=在区间[]3,5-上的最大值、最小值分别为p 、q ,则p q +的值为( ).A .2B .1C .6D .3例49.(2022·黑龙江·哈尔滨三中高三月考(理))函数()()211()2x x f x x x e e x --=--+在区间[1,3]-上的最大值与最小值分别为M ,N ,则M N +的值为( )A .2-B .0C .2D .4例50.(2022·广东潮阳·高一期末)函数())22ln41ax a xf x x a++=++,若()f x 最大值为M ,最小值为N ,[]1,3a ∈,则M N +的取值范围是______.例51.(2022·安徽·合肥市第九中学高三月考(理))已知定义域为R 的函数2222020sin ()2x x e e x xf x x λλμ++=++有最大值和最小值,且最大值和最小值的和为6,则λ-μ=___. 【方法技巧与总结】已知()f x =奇函数+M ,[,]x a a ∈-,则 (1)()()2f x f x M -+= (2)max min ()()2f x f x M += 题型十:函数的对称性与周期性例52.(2022·天津三中二模)设函数()y f x =的定义域为D ,若对任意的12,x x D ∈,且122x x a +=,恒有()()122f x f x b +=,则称函数()f x 具有对称性,其中点(,)a b 为函数()y f x =的对称中心,研究函数1()1tan(1)1f x x x x =+++--的对称中心,求13540432022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2022B .4043C .4044D .8086例53.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()24f x f x +=+,且()1f x +是奇函数,则( )A .()f x 是偶函数B .()f x 的图象关于直线12x =对称 C .()f x 是奇函数D .()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称例54.(2022·全国·模拟预测)已知函数()f x 的定义域为R ,且()()()2220222f x f x f +=-+对任意x ∈R 恒成立,又函数()2021f x +的图象关于点()2021,0-对称,且()12022f =,则()2021f =( )A .2021B .2021-C .2022D .2022-例55.(2022·新疆·三模(文))已知定义在R 上的偶函数()f x 满足()()6f x f x +=,且当[]0,3x ∈时,()e x f x x =,则下面结论正确的是( )A .()()()3ln3e e f f f <<- B .()()()3e ln3ef f f -<< C .()()()3e e ln3f f f <-<D .()()()3ln3e e f f f <-<例56.(2022·山东·肥城市教学研究中心模拟预测)已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f = 则(45)f =( )A .2021B .2021-C .2022D .2022-例57.(2022·广东茂名·模拟预测)已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为( )A .4B .4-C .0D .6-例58.(2022·江西鹰潭·二模(文))已知()f x 是定义在R 上的奇函数,若32f x ⎛⎫+ ⎪⎝⎭为偶函数且()12f =,则()()()202020212022f f f ++=( )A .2-B .4C .4-D .6例59.(2022·江苏·徐州市第七中学高三阶段练习)函数()()()222f x x x x ax b =+++满足:对x R ∀∈,都有()()11f x f x +=-,则函数()f x 的最小值为( )A .-20B .-16C .-15D .0例60.(2022·黑龙江·哈尔滨三中三模(理))定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;②函数()1y f x =+的图象关于y 轴对称;③对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为( )A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>例61.(2022·陕西·榆林市教育科学研究所模拟预测(理))已知函数()f x 满足()()f x f x π-=--,且函数()f x 与()cos 2g x x x π=≠-⎛⎫ ⎪⎝⎭的图象的交点为()11,x y , ()22,x y ,()33,x y ,()44,x y ,则()41i i i x y =+=∑( )A .-4πB .-2πC .2πD .4π【方法技巧与总结】(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-; (2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.题型十一:类周期函数例62.(2022·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是( )A .[]2,3B .[]1,3C .[]1,4D .[]2,4例63.(2022·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18f x t t ≥-恒成立,则实数t 的取值范围是( ) A .(](],10,3-∞-B.((,0,3⎤-∞⎦C .[)[)1,03,-+∞D .))3,⎡⎡+∞⎣⎣例64.(2022山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为( )A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤例65.(2022·湖北·高三月考)已知函数()11,022(2),2x x f x f x x ⎧--≤≤=⎨->⎩,其中R a ∈,给出以下关于函数()f x 的结论:①922f ⎛⎫= ⎪⎝⎭②当[]0,8x ∈时,函数()f x 值域为[]0,8③当4,15k ⎛⎤∈ ⎥⎝⎦时方程()f x kx =恰有四个实根④当[]0,8x ∈时,若()22xf xa +≤恒成立,则1a ≥ )A .1B .2C .3D .4【方法技巧与总结】 1.类周期函数若()y f x =满足:()()f x m kf x +=或()()f x kf x m =-,则()y f x =横坐标每增加m 个单位,则函数值扩大k 倍.此函数称为周期为m 的类周期函数.类周期函数图象倍增函数图象2.倍增函数若函数()y f x =满足()()f mx kf x =或()()xf x kf m=,则()y f x =横坐标每扩大m 倍,则函数值扩大k倍.此函数称为倍增函数.注意当m k =时,构成一系列平行的分段函数,222311()[1)(1)[)()(1)[)(1)[)n n n g x x m g x m x m m f x g x m x m m g x m x m m --∈⎧⎪-+∈⎪⎪=-+∈⎨⎪⎪⎪-+∈⎩,,,,,,,,.题型十二:抽象函数的单调性、奇偶性、周期性例66.(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤--<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为( ) A .()3,1- B .()()3,11,1---C .()(),11,1-∞-- D .()(),31,-∞-⋃+∞例67.(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图象关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =-,12b f ⎛⎫=- ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b <<例68.(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x -=,当01x ≤≤时,()1e 1xf x -=-,则方程()11f x x =-在区间[]3,5-上所有解的和为( )A .8B .7C .6D .5例69.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足: ①()01f =;xx②任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)求()()22f xg x -的值;(2)判断并证明函数()f x 的奇偶性.例70.(2022·上海·高三专题练习)定义在(-1,1)上的函数f (x )满足①对任意x 、y ∈(-1,1),都有f (x )+f (y )=f (1x y xy ++);②当x ∈(-1,0)时,有f (x )>0.求证:21111()()()()511312f f f f n n +++>++.【方法技巧与总结】抽象函数的模特函数通常如下:(1)若()()()f x y f x f y +=+,则()(1)f x xf =(正比例函数) (2)若()()()f x y f x f y +=,则()[(1)]x f x f =(指数函数) (3)若()()()f xy f x f y =+,则()log b f x x =(对数函数) (4)若()()()f xy f x f y =,则()a f x x =(幂函数)(5)若()()()f x y f x f y m +=++,则()(1)f x xf m =-(一次函数)(6)对于抽象函数判断单调性要结合题目已知条件,在所给区间内比较大小,有时需要适当变形. 题型十三:函数性质的综合例71.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos2f x x x x π=---,则关于t 的不等式()()20f t f t +<的解集为( )A .()2,1-B .(-C .()0,1D .(例72.(2022·安徽·六安市裕安区新安中学高三开学考试(文))已知函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上单调递增. 若实数a 满足212(log )(lo )g )2(1f a f f a +≤, 则a 的最小值是( )A .32B .1C .12D .2例73.(2022·河南许昌·高三月考(理))已知函数31()224e e x x f x x x =-++-,其中e 是自然对数的底数,若()2(6)8f a f a -+>,则实数a 的取值范围是( )A .(2,)+∞B .(3,2)-C .(,3)-∞-D .(,3)(2,)-∞-⋃+∞例74.(2022·河南·新蔡县第一高级中学高三月考(文))已知函数()3112e 33e x x f x x x =-+-+,其中e是自然对数的底数,若()2(23)6f a f a -+≥,则实数a 的取值范围是( )A .(,3][1,)-∞-+∞B .(,3]-∞-C .[1,)+∞D .[]3,1-例75.(2022·江苏·南京市中华中学高三月考)定义在R 上的函数()f x 满足()(2)f x f x -=,且当1x ≥时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为( )A .1-B .23-C .13-D .13例76.(2022·内蒙古·赤峰二中高一月考(理))设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,若对任意[]2x a a ∈+,,不等式()()2f x a f x +≥恒成立,则实数a 的取值范围是( )A.)+∞ B.)+∞C .()1-∞,D.⎡⎣例77.(2022·湖南·岳阳一中一模)已知函数221e e ()312x x xf x --=++,若不等式2(4)(2)1f ax f ax -+≤对任意x ∈R 恒成立,则实数a 的取值范围是( )A .[]e,0-B .[]2,0-C .[]4,0-D .2e ,0⎡⎤-⎣⎦例78.(2022·全国·模拟预测)已知函数()2121xx f x -=+,若()()e 0x f f ax +<有解,则实数a 的取值范围为( )A .()0,∞+ B .(),e -∞- C .[]e,0- D .()(),e 0,-∞-⋃+∞例79.(2022·黑龙江·哈师大附中三模(理))已知函数()()1ln e 12x f x x =+-(e 为自然对数的底数),若()()21f a f a ≥-,则实数a 的取值范围是( )A .1,3⎛⎤-∞ ⎥⎝⎦ B .[1,+∞)C .1,13⎡⎤⎢⎥⎣⎦D .[)1,1,3⎛⎤-∞⋃+∞ ⎥⎝⎦ 【方法技巧与总结】(1)奇偶性与单调性综合解题,尤其要重视利用偶函数(或轴对称函数)与单调性综合解不等式和比较大小.(2)奇偶性、单调性、周期性综合解题,尤其要注意对称性与周期性之间的关系,周期是两条对称轴(或对称中心)之间距离的2倍,是对称中心与对称轴之间距离的4倍.【过关测试】 一、单选题1.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是( )A .1y x=B .ln y x x =--C .3y x x =--D .3=-+y x x2.(2022·河南·模拟预测(文))已知0x >,0y >,且2e e sin 2sin x y x y ->-,则( ) A .2x y <B .2x y >C .x y >D .x y <3.(2022·湖北·房县第一中学模拟预测)已知函数()221e e 1x x f x -=+,不等式()()22f x f x >+的解集为( )A .()(),12,-∞-+∞B .()1,2-C .()(),21,-∞-+∞D .()2,1-4.(2022·浙江浙江·高三阶段练习)已知定义在R 上的奇函数()f x 在0x >时满足32()(1)62f x x x =-++,且()()8f x m f x +≤在[]1,3x ∈有解,则实数m 的最大值为( )A .23B .2C .53D .45.(2022·河北·石家庄二中高三开学考试)已知函数(()cos ln 4f x x x π=+⋅在区间[5,5]-的最大值是M ,最小值是m ,则()f M m +的值等于( )A .0B .10C .4πD .2π6.(2022·安徽·蒙城第一中学高三阶段练习(理))已知()f x 为奇函数,且当0x >时()211e xf x x -=+,则曲线()y f x =在点11,22f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为( ) A .240x y ++= B .240x y -+= C .220x y -+=D .220x y ++=7.(2022·河南·模拟预测(理))已知函数()f x 的图象关于原点对称,且()()4f x f x =+,当()0,2x ∈时,()f x =32433log 4f ⎛⎫+= ⎪⎝⎭( )A .-11B .-8C .3log 4D .38log 4-8.(2022·江西·南昌市实验中学一模(理))对于函数()y f x =,若存在0x ,使()()00f x f x =--,则称点()()00,x f x 与点()()00,x f x --是函数()f x 的一对“隐对称点”.若函数()2ln ,0,0x x f x mx mx x >⎧=⎨--≤⎩的图像恰好有2对“隐对称点”,则实数m 的取值范围是( )A .10,e ⎛⎫⎪⎝⎭B .()0,1⋃(1,)+∞C .1,e ⎛⎫+∞ ⎪⎝⎭D .(1,)+∞二、多选题9.(2022·海南·模拟预测)下面关于函数23()2x f x x -=-的性质,说法正确的是( ) A .()f x 的定义域为(,2)(2,)-∞⋃+∞ B .()f x 的值域为RC .()f x 在定义域上单调递减D .点(2,2)是()f x 图象的对称中心10.(2022·辽宁·模拟预测)已知定义在R 上的偶函数()f x 的图像是连续的,()()()63f x f x f ++=,()f x 在区间[]6,0-上是增函数,则下列结论正确的是( )A .()f x 的一个周期为6B .()f x 在区间[]12,18上单调递减C .()f x 的图像关于直线12x =对称D .()f x 在区间[]2022,2022-上共有100个零点11.(2022·重庆巴蜀中学高三阶段练习)已知函数()f x 对任意x ∈R 都有()()2f x f x +=-,若函数()1y f x =-的图象关于1x =对称,且对任意的()12,0,2x x ∈,且12x x ≠,都有()()12120f x f x x x ->-,若()20f -=,则下列结论正确的是( )A .()f x 是偶函数B .()20220f =C .()f x 的图象关于点()1,0对称D .()()21f f ->-12.(2022·河北秦皇岛·二模)已知函数())lgf x x =,()212xg x =+,()()()F x f x g x =+,则( ) A .()f x 的图象关于()0,1对称 B .()g x 的图象没有对称中心C .对任意的[](),0x a a a ∈->,()F x 的最大值与最小值之和为4D .若()3311F x x x -+-<-,则实数x 的取值范围是()(),13,-∞⋃+∞三、填空题13.(2022·山东临沂·二模)已知函数e ()1xmxf x x =+-是偶函数,则m =__________. 14.(2022·湖北·房县第一中学模拟预测)已知函数()()ln 0f x x a a a =-+>在21,e ⎡⎤⎣⎦上的最小值为1,则a 的值为________.15.(2022·广东佛山·三模)已知函数()22x x f x a -=+⋅的图象关于原点对称,若3(21)2f x ->,则x 的取值范围为________.16.(2022·陕西宝鸡·二模(文))若函数f (x )同时满足:(1)对于定义域上的任意x ,恒有()()0f x f x +-=;(2)对于定义域上的任意12,x x ,当12x x ≠,恒有()()12120f x f x x x -<-,则称函数f (x )为“理想函数”,下列①()1f x x=,②()=f x ()1212xx f x -=+,④22,0(),0x x f x x x ⎧-=⎨<⎩四个函数中,能被称为“理想函数”的有___________.(填出函数序号)四、解答题17.(2022·上海市市西中学高三阶段练习)设a ∈R ,函数2()21x x af x +=+;(1)求a 的值,使得f (x )为奇函数;(2)若3()2a f x +<对任意x ∈R 成立,求a 的取值范围. 18.(2022·全国·高三专题练习)已知函数()21ax bf x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数; (3)解不等式()()10f x f x -+<.19.(2022·陕西·武功县普集高级中学高三阶段练习(理))设函数()()20,1,R x xf x ka a a a k -=->≠∈,()f x 是定义域为R 的奇函数(1)确定k 的值(2)若()13f =,判断并证明()f x 的单调性;(3)若3a =,使得()()()221f x f x λ≤+对一切[]2,1x ∈--恒成立,求出λ的范围.20.(2022·全国·高三专题练习)定义域均为R 的奇函数()f x 与偶函数()g x 满足()()10x f x g x +=. (1)求函数()f x 与()g x 的解析式; (2)证明:1212()()2()2x x g x g x g ++≥; (3)试用1()f x ,2()f x ,1()g x ,2()g x 表示12()f x x -与12()g x x +.21.(2022·全国·高三专题练习)定义在R 上的函数()f x ,对任意12,x x R ∈,满足下列条件:①1212()()()2f x x f x f x +=+- ②(2)4f =(1)是否存在一次函数()f x 满足条件①②,若存在,求出()f x 的解析式;若不存在,说明理由. (2)证明:()()2g x f x =-为奇函数;22.(2022·上海·二模)对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数π()2cos 3f x x ⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”?并说明理由;(2)设1()423x x f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围;(3)若()22log 2,3()2,3x mx x f x x ⎧->⎪=⎨-<⎪⎩为其定义域上的“M 类函数”,求实数m 取值范围.专题07 函数的性质——单调性、奇偶性、周期性【考点预测】 1.函数的单调性(1)单调函数的定义一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x ,2x 当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是减函数.①属于定义域A 内某个区间上; ②任意两个自变量1x ,2x 且12x x <; ③都有12()()f x f x <或12()()f x f x >;④图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的. (2)单调性与单调区间①单调区间的定义:如果函数()f x 在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数()f x 的单调区间.②函数的单调性是函数在某个区间上的性质. (3)复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数.2.函数的奇偶性函数奇偶性的定义及图象特点判断()f x -与()f x 的关系时,也可以使用如下结论:如果0(())f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果0(())f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇。
高考数学一轮复习 函数的奇偶性与周期性
解法二(图象法):作出函数 f(x)的图象,由图象关于原点对
称的特征知函数 f(x)为奇函数.
(3)由4|x-+x32|≥-03,≠0 得-2≤x≤2 且 x≠0.
所以 f(x)的定义域为[-2,0)∪(0,2],关于原点对称.
(4)(2018·武昌联考)若函数 f(x)=1k+-k2·2xx在定义 域上为奇函数,则实数 k=________.
解:因为 f(-x)=1k+-k2·2--xx=k2·2x+x-k1,所以 f(-x)+f(x)=(k-2x)((2x+1+k)k·2+x)((k·22xx+-k1))(1+k·2x) =((1k+2-k1·2)x)((222xx++1k)). 由 f(-x)+f(x)=0 对定义域中的 x 均成立可得 k2=1, 所以 k=±1.故填±1.
所以 f(x)=(x+43-)x2-3=
4-x2 x.
所以 f(x)=-f(-x),所以 f(x)是奇函数.
(4)由9x2--x92≥ ≥00, 得 x=±3.
所以 f(x)的定义域为{-3,3},关于原点对称.
又 f(3)+f(-3)=0,f(3)-f(-3)=0.
所以 f(x)=±f(-x). 所以 f(x)既是奇函数,又是偶函数.
(2)若函数 f(x)为偶函数,且在[a,b]上为增(减)函数,
则 f(x)在[-b,-a]上为. 6.奇、偶函数的“运算”(共同定义域上)
奇 ± 奇 = ________________ , 偶 ± 偶 = ________________,奇×奇=________________,偶×偶 =________________,奇×偶=________________.
2024年新高考数学复习知识梳理与题型归纳第7讲函数的奇偶性与周期性教师版
第7讲函数的奇偶性与周期性思维导图知识梳理1.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.核心素养分析能用代数运算和函数图象揭示函数的主要性质;在现实问题中,能利用函数构建模型,解决问题。
重点提升数学抽象、逻辑推理素养.题型归纳题型1函数奇偶性的判定【例1-1】下列函数中,为偶函数的是()A.2(1)y x B.2xy C.|sin |y x D.(1)(1)y lg x lg x 【分析】根据函数奇偶性的定义分别进行判断即可.【解答】解:A .函数关于1x 对称,函数为非奇非偶函数,B .函数的减函数,不具备对称性,不是偶函数,C ,()|sin()||sin ||sin |()f x x x x f x ,则函数()f x 是偶函数,满足条件.D .由1010x x得11x x 得1x ,函数的定义为(1,) ,定义域关于原点不对称,为非奇非偶函数,故选:C .【例1-2】判断下列函数的奇偶性:(1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1;(3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x 2+x ,x <0,2-x ,x >0.【分析】根据函数奇偶性的定义判断即可.【解答】(1)由f (x )=36-x 2|x +3|-3,可知x 2≥0,+3|-3≠0x ≤6,≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.x 2≥0,2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.x 2>0,-2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数.(4)法一:图象法画出函数f (x 2+x ,x <0,2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.【跟踪训练1-1】已知函数21(),()221x x f x g x x ,则下列结论正确的是()A.()()f x g x 为奇函数B.()()f x g x 为偶函数C.()()f x g x 为奇函数D.()()f x g x 为非奇非偶函数【分析】判断可知函数()f x ,()g x 均为奇函数,利用奇函数的性质即可得解.【解答】解:2112()()2112x xxxf x f x ,故函数()f x 为奇函数,显然函数()g x 也为奇函数,()()f x g x 为偶函数,()()f x g x 为奇函数,故选:BC .【跟踪训练1-2】判断下列函数的奇偶性,并求函数的值域(1)2()1x xf x x(2)()3||g x x 【分析】(1)可以得出()f x x ,从而可看出()f x 是奇函数,值域为R ;(2)可看出()g x 是偶函数,并容易求出()g x 的值域为( ,3].【解答】解:(1)2()1x x f x x x ,()f x 是奇函数,且()f x 的值域为R ;(2)()3||g x x 为偶函数,||0x ∵,3||3x ,()g x 的值域为( ,3].【名师指导】判断函数奇偶性的3种常用方法(1)定义法:确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称.若对称,再化简解析式后验证f (-x )=±f (x )或其等价形式f (-x )±f (x )=0是否成立.(2)图象法:(3)性质法:设f (x ),g (x )的定义域分别是D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.题型2函数奇偶性的应用【例2-1】(1)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.(2)函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________.(3)已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )=________.【分析】根据函数奇偶性的性质求解.【解答】(1)当x >0时,-x <0,f (-x )=-e -ax .因为函数f (x )为奇函数,所以当x >0时,f (x )=-f (-x )=e -ax ,所以f (ln 2)=e -a ln 2=8,所以a =-3.(2)因为f (x )为奇函数,当x >0时,f (x )=x +1,所以当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=x -1.(3)设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数.又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-1,从而f (-a )=0.【跟踪训练2-1】设()f x 为奇函数,且当0x 时,()1x f x e ,则当0x 时,()(f x )A.1x e B.1x e C.1x e D.1x e 【分析】设0x ,则0x ,代入已知函数解析式,结合函数奇偶性可得0x 时的()f x .【解答】解:设0x ,则0x ,()1x f x e ,∵设()f x 为奇函数,()1x f x e ,即()1x f x e .故选:D .【跟踪训练2-2】若函数133x xy a为偶函数,则a .【分析】根据题意,由函数奇偶性的定义可得()()113333x x x xa a,变形分析可得答案.【解答】解:根据题意,函数133x xy a 为偶函数,则()()f x f x ,即()()113333x x x xa a,变形可得:(33)(33)x x x x a ,必有1a ;故答案为:1.【跟踪训练2-3】已知()f x 为奇函数,当0x 时,()3f x lnx x ,则(1)f 的值为.【分析】结合已知函数解析式及奇函数的定义代入即可求解.【解答】解:因为()f x 为奇函数,当0x 时,()3f x lnx x ,则(1)f f (1)(13)3ln .故答案为:3【跟踪训练2-4】函数()y f x 是定义在R 上的偶函数,且图象过(1,1) 点.已知0x 时,()1(0x f x a a 且1)a .(Ⅰ)求f (1)的值和a 的值;(Ⅱ)若()[0f m ,3],求m 的取值范围.【分析】(Ⅰ)根据题意,由偶函数的性质可得f (1)(1)1f ,进而结合函数的解析式可得f (1)11a ,解可得a 的值,即可得答案;(Ⅱ)根据题意,由函数的解析式分析可得0m 时,()3f m 的解集,结合函数的奇偶性分析可得答案.【解答】解:(Ⅰ)根据题意,()y f x 图象过(1,1) 点,即(1)1f ,又由()y f x 是定义在R 上的偶函数,则f (1)(1)1f ,又由0x 时,()1x f x a ,则f (1)11a ,解可得2a ;(Ⅱ)根据题意,由(Ⅰ)的结论,0x 时,()21x f x ,此时若()3f m ,即213m 且0m ,解可得:02m ,又由()f x 为偶函数,则()322f m m ,即m 的取值范围为[2 ,2].【名师指导】与函数奇偶性有关的问题及解题策略(1)求函数的值:利用奇偶性将待求值转化为已知区间上的函数值求解.(2)求函数解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求解析式中的参数值:在定义域关于原点对称的前提下,利用f (x )为奇函数⇔f (-x )=-f (x ),f (x )为偶函数⇔f (x )=f (-x ),列式求解,也可利用特殊值法求解.对于在x =0处有定义的奇函数f (x ),可考虑列等式f (0)=0求解.题型3函数的周期性【例3-1】已知函数()f x 周期为1,且当01x 时,2()log f x x ,则3()2f.【分析】由题意知函数()f x 周期为1,所以化简3(2f 再代入即可.【解答】解:因为函数()f x 周期为1,所以31()()22f f ,因为当01x 时,2()log f x x ,所以1()12f ,故答案为:1 .【例3-2】已知()y f x 是定义在R 上的函数,且(4)()f x f x ,如果当[4x ,0)时,()x f x ,则(266)f .【分析】推导出(8)(4)()f x f x f x ,再由当[4x ,0)时,()3x f x ,得到(266)(3382)f f f (2)(2)f ,由此能求出结果.【解答】解:()y f x ∵是定义在R 上的函数,且(4)()f x f x ,(8)(4)()f x f x f x ,∵当[4x ,0)时,()x f x ,(266)(3382)f f f (2)2(2)2f .故答案为:2 .【跟踪训练3-1】已知()f x 是定义在R 上周期为2的函数,当[1x ,1]时,()||f x x ,那么当[7x ,5] 时,()(f x )A.|3|x B.|3|x C.|6|x D.|6|x 【分析】当[7x ,5] 时,6[1x ,1].再利用周期性即可得出.【解答】解:当[7x ,5] 时,6[1x ,1].()(6)|6|f x f x x ,故选:C .【跟踪训练3-2】已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则=________.【分析】先求出函数的周期,再根据周期函数的性质计算即可.【解答】∵f (x +2)=-1f (x ),∴f (x +4)=f (x ),∴2≤x ≤3时,f (x )=x ,∴=52,∴=52.【名师指导】函数周期性有关问题的求解策略(1)求解与函数的周期性有关的问题,应根据题目特征及周期定义,求出函数的周期.(2)周期函数的图象具有周期性,如果发现一个函数的图象具有两个对称性(注意:对称中心在平行于x 轴的直线上,对称轴平行于y 轴),那么这个函数一定具有周期性.题型4函数性质的综合应用【例4-1】若定义在R 的奇函数()f x 在(,0) 单调递减,且f (2)0 ,则满足(1)0xf x 的x 的取值范围是()A.[1 ,1][3 ,) B.[3 ,1][0 ,1]C.[1 ,0][1 ,)D.[1 ,0][1 ,3]【分析】根据函数奇偶性的性质,然后判断函数的单调性,利用分类讨论思想进行求解即可.【解答】解:∵定义在R 的奇函数()f x 在(,0) 单调递减,且f (2)0 ,()f x 的大致图象如图:()f x 在(0,) 上单调递减,且(2)0f ;故(1)0f ;当0x 时,不等式(1)0xf x 成立,当1x 时,不等式(1)0xf x 成立,当12x 或12x 时,即3x 或1x 时,不等式(1)0xf x 成立,当0x 时,不等式(1)0xf x 等价为(1)0f x ,此时0012x x,此时13x ,当0x 时,不等式(1)0xf x 等价为(1)0f x ,即0210x x,得10x ,综上10x 或13x ,即实数x 的取值范围是[1 ,0][1 ,3],故选:D .【例4-2】已知奇函数()f x 的定义域为R ,若(1)f x 为偶函数,且f (1)2 ,则(2019)(2020)(f f )A.2B.1C.0D.1【分析】根据题意,由(1)f x 为偶函数,分析可得()(2)f x f x 且f (1)2 ,结合函数周期即可得答案【解答】解:根据题意,函数()f x 为奇函数,则()()f x f x ,又由(1)f x 为偶函数,则函数()f x 的图象关于1x 对称,则有()(2)()()f x f x f x f x ,所以(4)()f x f x 即函数的周期为4,且f (1)2 ,则(2019)(12020)(1)f f f f (1)2 ,(2020)(0)0f f ,则(2019)(2020)2f f 故选:A .【例4-3】已知()f x 是定义域为(,) 的奇函数,(1)f x 是偶函数,且当(0x ,1]时,()(2)f x x x ,则()A.()f x 是周期为2的函数B.(2019)(2020)1f f C.()f x 的值域为[1 ,1]D.()f x 的图象与曲线cos y x 在(0,2) 上有4个交点【分析】A ,根据题意得()(4)f x f x ,()f x 是周期为4的周期函数,A 错误;B ,因为()f x 是周期为4的周期函数,则(2020)(0)0f f ;当(0x ,1]时,()(2)f x x x ,则f (1)1(12)1 ,则(2019)(12020)(1)f f f f (1)1 ,进而得出B 正确.C ,当(0x ,1]时,()(2)f x x x ,此时有0()1f x ,又由()f x 为R 上的奇函数,则[1x ,0)时,1()0f x ,进而得出C 正确.D ,由函数图象可知,D 正确.【解答】解:根据题意,对于A ,()f x 为R 上的奇函数,(1)f x 为偶函数,则()(11)(2)(2)(4)f x f x f x f x f x ;则()f x 是周期为4的周期函数,A 错误;对于B ,()f x 为定义域为R 的奇函数,则(0)0f ,()f x 是周期为4的周期函数,则(2020)(0)0f f ;当(0x ,1]时,()(2)f x x x ,则f (1)1(12)1 ,则(2019)(12020)(1)f f f f (1)1 ,则(2019)(2020)1f f ;故B 正确.对于C ,当(0x ,1]时,()(2)f x x x ,此时有0()1f x ,又由()f x 为R 上的奇函数,则[1x ,0)时,1()0f x ,所以函数()f x 的值域[1 ,1].故C 正确.对于D ,由函数图象可知,D 正确.故选:BCD .【跟踪训练4-1】设函数331()f x x x,则()(f x )A.是奇函数,且在(0,) 单调递增B.是奇函数,且在(0,) 单调递减C.是偶函数,且在(0,) 单调递增D.是偶函数,且在(0,) 单调递减【分析】先检验()f x 与()f x 的关系即可判断奇偶性,然后结合幂函数的性质可判断单调性.【解答】解:因为331()f x x x ,则331()()f x x f x x,即()f x 为奇函数,根据幂函数的性质可知,3y x 在(0,) 为增函数,故131y x 在(0,) 为减函数,231y x 在(0,) 为增函数,所以当0x 时,331()f x x x 单调递增,故选:A .【跟踪训练4-2】已知()f x 是定义在R 上的偶函数,且在区间( ,0]上单调递增,若实数a 满足3log (2)(a f f ,则a 的取值范围是.【分析】根据函数奇偶性和单调性之间的关系,即可得到结论.【解答】解:因为()f x 是定义在R 上的偶函数,且在区间( ,0]上单调递增,根据偶函数的对称性可知,()f x 在(0,) 上单调递减,因为3log (2)(a f f ,所以32log a ,即31log 2a,解可得,0a故答案为:【跟踪训练4-3】已知()f x 是定义在R 上的奇函数,且对任意实数x 恒有(2)()f x f x ,当[0x ,2]时,2()2f x x x .(1)求证:函数()f x 的周期是4;(2)求(2017)(2018)(2019)(2020)f f f f 的值;(3)当[2x ,4]时,求()f x 的解析式.【分析】(1)结合已知及周期的定义即可求解;(2)结合已知周期性及已知区间上的函数解析式进行转化,代入可求;(3)先把所求区间上的变量进行转化到已知区间上,然后结合奇函数的性质可求.【解答】解:(1)证明:因为(4)[)2)2](2)()f x f x f x f x ,故函数的周期4T ;(2)(2017)(2018)(2019)(2020)f f f f f (1)f (2)f (3)f (4)f (1)f (2)(1)(0)f f f (1)f (2)f (1)(0)f f (2)0 ,(3)当[2x ,4]时,[4x ,2] ,所以042x ,所以22(4)(4)2(4)68()()f x x x x x f x f x ,所以2()68f x x x ,[2x ,4].【名师指导】函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性的综合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合.此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.。
高中数学复习专题讲座(第7讲)奇偶性与单调性(1)
题目高中数学复习专题讲座处理具有单调性、奇偶性函数问题的方法(2) 高考要求函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样 特别是两性质的应用更加突出 本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象 帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识 重难点归纳(1)判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性 若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性同时,注意判断与证明、讨论三者的区别,针对所列的训练认真体会,用好数与形的统一复合函数的奇偶性、单调性 问题的解决关键在于 既把握复合过程,又掌握基本函数(2)加强逆向思维、数形统一 正反结合解决基本应用题目(3)运用奇偶性和单调性去解决有关函数的综合性题目 此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力(4)应用问题 在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决 特别是 往往利用函数的单调性求实际应用题中的最值问题 典型题例示范讲解例1已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xyyx ++1),试证明(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减命题意图 本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力知识依托 奇偶性及单调性定义及判定、赋值法及转化思想错解分析 本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得技巧与方法 对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是焦点证明 (1)由f (x )+f (y )=f (xyyx ++1), 令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21x xx --)=f (0)=0 ∴f (x )=-f (-x ) ∴f (x )为奇函数 (2)先证f (x )在(0,1)上单调递减令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴12121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0 ∴x 2-x 1<1-x 2x 1, ∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1)∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0 ∴f (x )在(-1,1)上为减函数例2设函数f (x )是定义在R 上的偶函数,并在区间(-∞,0)内单调递增,f (2a 2+a +1)<f (3a 2-2a +1) 求a 的取值范围,并在该范围内求函数y =(21)132+-a a 的单调递减区间 命题意图 本题主要考查函数奇偶性、单调性的基本应用以及对复合函数单调性的判定方法知识依托 逆向认识奇偶性、单调性、指数函数的单调性及函数的值域问题错解分析 逆向思维受阻、条件认识不清晰、复合函数判定程序紊乱 技巧与方法 本题属于知识组合题类,关键在于读题过程中对条件的思考与认识,通过本题会解组合题类,掌握审题的一般技巧与方法解 设0<x 1<x 2,则-x 2<-x 1<0,∵f (x )在区间(-∞,0)内单调递增, ∴f (-x 2)<f (-x 1),∵f (x )为偶函数,∴f (-x 2)=f (x 2),f (-x 1)=f (x 1), ∴f (x 2)<f (x 1) ∴f (x )在(0,+∞)内单调递减.032)31(3123,087)41(2122222>+-=+->++=++a a a a a a 又由f (2a 2+a +1)<f (3a 2-2a +1)得 2a 2+a +1>3a 2-2a +1 解之,得0<a <3又a 2-3a +1=(a -23)245 ∴函数y =(21)132+-a a 的单调减区间是[23,+∞] 结合0<a <3,得函数y =(12)132+-a a 的单调递减区间为[23,3)例3设a >0,f (x )=xx e a a e +是R 上的偶函数,(1)求a 的值;(2)证明 f (x )在(0,+∞)上是增函数(1)解 依题意,对一切x ∈R ,有f (x )=f (-x ),即x x x ae e a a e 1=++ae x 整理,得(a -a1)(e x -x e 1)=0 因此,有a -a1=0,即a 2=1,又a >0,∴a =1 (2)证法一(定义法) 设0<x 1<x 2,则f (x 1)-f (x 2)=)11)((1121122121--=-+-+x x xx x x x x e e e e e e e21211211)1(x x x x x x x e e ee ++---=由x 1>0,x 2>0,x 2>x 1,∴112--x x e >0,1-e 21x x +<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2) ∴f (x )在(0,+∞)上是增函数证法二(导数法) 由f (x )=e x +e -x ,得f ′(x )=e x -e -x =e -x ·(e 2x -1) 当x ∈(0,+∞)时,e -x >0,e 2x -1>0此时f ′(x )>0,所以f (x )在[0,+∞)上是增函数 学生巩固练习1 下列函数中的奇函数是( )A f (x )=(x -1)xx -+11B f (x )=2|2|)1lg(22---x xC f (x )=⎪⎩⎪⎨⎧>+-<+)0()0(22x x x x x xD f (x )=xx xx sin cos 1cos sin 1++-+2 函数f (x )=111122+++-++x x x x 的图象( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于直线x =1对称 3 函数f (x )在R 上为增函数,则y =f (|x +1|)的一个单调递减区间是____ 4 若函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2), 且在[x 2,+∞)上单调递增,则b 的取值范围是_________5 已知函数f (x )=a x +12+-x x (a >1) (1)证明 函数f (x )在(-1,+∞)上为增函数 (2)用反证法证明方程f (x )=0没有负数根6 求证函数f (x )=223)1(-x x 在区间(1,+∞)上是减函数7 设函数f (x )的定义域关于原点对称且满足(i)f (x 1-x 2)=)()(1)()(1221x f x f x f x f -+⋅;(ii)存在正常数a 使f (a )=1 求证 (1)f (x )是奇函数(2)f (x )是周期函数,且有一个周期是4a8 已知函数f (x )的定义域为R ,且对m 、n ∈R ,恒有f (m +n )=f (m )+f (n )-1,且f (-21)=0,当x >-21时,f (x )>0 (1)求证 f (x )是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证 参考答案:1 解析 f (-x )=2222(0)() (0)(0)() (0)x x x x x x x x x x x x ⎧⎧->-+<⎪⎪=⎨⎨--<--+>⎪⎪⎩⎩ =-f (x ), 故f (x )为奇函数 答案 C2 解析 f (-x )=-f (x ),f (x )是奇函数,图象关于原点对称 答案 C3 解析 令t =|x +1|,则t 在(-∞,-1]上递减,又y =f (x )在R 上单调递增,∴y =f (|x +1|)在(-∞,-1]上递减答案 (-∞,-1]4 解析 ∵f (0)=f (x 1)=f (x 2)=0,∴f (0)=d =0 f (x )=ax (x -x 1)(x -x 2)=ax 3-a (x 1+x 2)x 2+ax 1x 2x , ∴b =-a (x 1+x 2),又f (x )在[x 2,+∞)单调递增,故a >0又知0<x 1<x ,得x 1+x 2>0, ∴b =-a (x 1+x 2)<0 答案 (-∞,0)5 证明 (1)设-1<x 1<x 2<+∞,则x 2-x 1>0, 12x x a ->1且1x a >0,∴)1(12112-=--x x x x x a a a a >0,又x 1+1>0,x 2+1>0 ∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0, 于是f (x 2)-f (x 1)=12x x a a -+12121122+--+-x x x x >0 ∴f (x )在(-1,+∞)上为递增函数(2)证法一 设存在x 0<0(x 0≠-1)满足f (x 0)=0,则12000+--=x x a x 且由0<0x a <1得0<-1200+-x x <1, 即21<x 0<2与x 0<0矛盾,故f (x )=0没有负数根 证法二 设存在x 0<0(x 0≠-1)使f (x 0)=0,若-1<x 0<0,则1200+-x x <-2,0x a <1,∴f (x 0)<-1与f (x 0)=0矛盾, 若x 0<-1,则1200+-x x >0, 0x a >0, ∴f (x 0)>0与f (x 0)=0矛盾,故方程f (x )=0没有负数根6 证明 ∵x ≠0,∴f (x )=22422322)11(1)1(1)1(1x x x x x x x -=-=-, 设1<x 1<x 2<+∞,则01111,11121222122>->-<<x x x x2211222222112222)11(1)11(1.0)11()11(x x x x x x x x -<-∴>->-∴∴f (x 1)>f (x 2), 故函数f (x )在(1,+∞)上是减函数(本题也可用求导方法解决) 7 证明 (1)不妨令x =x 1-x 2,则f (-x )=f (x 2-x 1)=)()(1)()()()(1)()(12212112x f x f x f x f x f x f x f x f -+-=-+=-f (x 1-x 2)=-f (x )∴f (x )是奇函数(2)要证f (x +4a )=f (x ),可先计算f (x +a ),f (x +2a )∵f (x +a )=f [x -(-a )]=1)((1)(1)()()(1)()()()(1)()(=+-=--+-=---+-a f x f x f x f a f x f a f x f a f x f a f).(111)(1)(11)(1)(1)(1)(])[()2(x f x f x f x f x f a x f a x f a a x f a x f -=++--+-=++-+=++=+∴ ∴f (x +4a )=f [(x +2a )+2a ]=)2(1a x f +-=f (x ),故f (x )是以4a 为周期的周期函数8 (1)证明 设x 1<x 2,则x 2-x 1-21>-21,由题意f (x 2-x 1-21)>0,∵f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1=f (x 2-x 1)+f (-21)-1=f [(x 2-x 1)-21]>0,∴f (x )是单调递增函数(2)解 f (x )=2x +1 验证过程略 课前后备注。
高中数学一轮专题复习:函数的奇偶性与周期性课件
解析:∵f(x)为定义在R上的奇函数, ∴f(0)=0 又 f(x+4)=f(x),∴f(8)=f(4)=f(0)=0
题型三、函数性质的综合应用
命题点1:求函数值或函数解析式 例3:函数f(x)是定义在R上的奇函数,当x∈(-∞,0)
时,f(x)=2x3+x2,则f(2)=__1_2___
2
由图像可知,
-2 O
x
满足不等式x f(x)<0的解为:
x<-2或x>2
答案:(-∞,-2)∪(2,+∞)
三、归纳总结
1.函数的奇偶性是函数在其定义域上的整体性质,定义 域关于原点对称是函数具有奇偶性的必要不充分条 件.因此,判断函数的奇偶性,一要看定义域是否关于 原点对称;二要看f(x)与f(-x)的关系. 2.奇函数在关于原点对称的区间上具有相同的单调性; 偶函数在关于原点对称的区间上具有相反的单调性.
一、基础知识梳理
3.奇(偶)函数的性质
(2)奇函数在关于原点对称的区间上具有相同的单调性; 偶函数在关于原点对称的区间上具有相反的单调性. (3)若函数f(x)是奇函数,且在x=0处有定义,则f(0)=0; (4)在公共定义域内有: ①奇函数±奇函数=奇函数;
②偶函数±偶函数=偶函数; ③奇函数×奇函数=偶函数;
命题点1:求函数值或函数解析式 对点训练3:若函数f(x)是定义在R上的周期为2的奇 函数,当0<x<1时,f(x)=4x,则
f(-2.5)+f(2)=__-__2__
解析:∵f(x)是定义在R上的周期为2的奇函数,
∴f(2)=f(0)=0, ∵ 当 0<x<1时,f(x)=4x , ∴f(-2.5)=f(-0.5) =-f(0.5) =-40.5 =-(22)0.5
【数学】高考数学复习课件:函数的奇偶性与周期性
的积函数是____偶__函__数; v ②两个偶函数的和函数、积函数是__偶__函_数_;
v ③一个奇函数,一个偶函数的积函数是
v _奇__函__数___. v (3)若f(x)是奇函数且在x=0处有定义,则f(0)=0. v (4)若f(x)是偶函数,则f(x)=
v ∴f(x+6)=f[(x+3)+3]=-f(x+3)= f(x).
v 对于这种抽象函数周期问题,在推导 过程中应紧紧抓住题目中的已知关系 式,若能画出示意图,可利用图形先 试探,然后证明.
v 1.已知函数f(x)是偶函数,并且对于定义域内
v 任意的x,满足f(x+2)=
若当
2<x<3时,f(x)=x,则f(2007.5)= .
注意:当问题 比较抽象时,不妨作出符合 题 意的图形,让图 形来帮助“说 话 ”
(3)性质法判定 ①在定义域的公共部分内.两奇函数
之积(商)为偶函数;两偶函数之积(商)也 为偶函数;一奇一偶函数之积(商)为奇函 数(注意取商时分母不为零);
②偶函数在区间(a,b)上递增(减), 则在区间(-b,-a)上递减(增);奇函数在区 间(a,b)与(-b,-a)上的增减性相同. (4)函数分类:奇函数、偶函数、非奇 非偶函数、既是奇函数又是偶函数
v 【答案】 C
v 4.(2009年山东高考)已知定义在R上的奇函数 f(x)满足f(x-4)=-f(x),且在区间[0,2]上是 增函数.若方程f(x)=m(m>0)在区间[-8,8] 上有四个不同的根x1,x2,x3,x4,则x1+ x2+x3+x4=________.
v 【解析】 由已知,定义在R上的奇函 数f(x)图象一定过原点,又f(x)在[0,2] 区间上为增函数,所以方程f(x)=m(m >0)在[0,2]区间上有且只有一个根, 不妨设为x1;∵f(x1)=-f(-x1)=-[ -f(-x1+4)]=f(-x1+4),∴-x1+ 4∈[2,4]也是一个根,记为x2,∴x2= -x1+4⇒x1+x2=4.
高考数学一轮总复习第二章函数第7讲函数的周期性与奇偶性课件文新人教A版
1.函数奇偶性的定义:一般地,如果 对于函数f(x)的
定义域内任意一个x
:
(1)都有 f(-x)=-f(x),那么函数 f(x)就叫做 奇函数 ;
(2)都有 f(-x)=f(x) ,那么函数 f(x)就叫做偶函数.
2.奇函数的图象关于 原点 成 中心 对称图形,若奇
函数的定义域含数 0,则必有 f(0)=0(zh;ō偶n 函数的图象关于
第八页,共41页。
4.函数的周期性的定义:设函数 y=f(x),x∈D. 若 存 在 非 零 常 数 T , 使 得 对 任 意 的 x∈D 都 有 __f_(x_+__T_)_=_f_(_x_) _,则函数 f(x)为周期函数,称 T 为 y =f(x)的一个周期.若函数 f(x)对定义域中任意 x 满 足 f(x+a)=-f(x)或 f(x+a)=-f(1x)(a≠0)等,则 函数 f(x)必是_周__期__函__数__,它的一个周期为_2_|a_|_.如 果 在 周 期 函 数 f(x) 的 所 有 周 期 中 _存_在__一__个__最__小__的_正__数__,那么这个最小正数就叫做 f(x) 的__最__小__正__周_期___.
第四页,共41页。
3.已知 f(x)是定义在 R 上周期为 4 的奇函数,当 x∈(0,
2]时,f(x)=2x+log2x,则 f(2 017)=( C )
A.-2
1 B.2
C.2
D.5
【解析】因为 f(x)是定义在 R 上周期为 4 的奇函数,所 以 fx+4=fx,f-x=-fx.当 x∈(0,2]时,f(x)=2x+log2x,
2.分段函数要对其定义域的每一个区间上的奇偶性 进行判断,最后综合得出在定义域内总有 f(-x)=f(x)或 f(-x)=-f(x),从而判定其奇偶性,不能以其中某一个 区间来代替整个定义域.
第7讲 函数的奇偶性与周期性(原卷版)
第7讲函数的奇偶性与周期性思维导图知识梳理1.函数的奇偶性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x +T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.核心素养分析能用代数运算和函数图象揭示函数的主要性质;在现实问题中,能利用函数构建模型,解决问题。
重点提升数学抽象、逻辑推理素养.题型归纳题型1 函数奇偶性的判定【例1-1】(2019•全国)下列函数中,为偶函数的是( ) A .2(1)y x =+ B .2x y -=C .|sin |y x =D .(1)(1)y lg x lg x =++-【例1-2】(2019·肥西质检)判断下列函数的奇偶性:(1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.【跟踪训练1-1】(2020春•龙华区校级月考)已知函数21(),()221x x f x g x x +==-,则下列结论正确的是()A .()()f x g x 为奇函数B .()()f x g x 为偶函数C .()()f x g x +为奇函数D .()()f x g x +为非奇非偶函数【跟踪训练1-2】(2019秋•桥西区校级月考)判断下列函数的奇偶性,并求函数的值域(1)2 ()1x x f xx-=-(2)()3||g x x=-【名师指导】判断函数奇偶性的3种常用方法(1)定义法:确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称.若对称,再化简解析式后验证f(-x)=±f(x)或其等价形式f(-x)±f(x)=0是否成立.(2)图象法:(3)性质法:设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.题型2 函数奇偶性的应用【例2-1】(1)(2019·高考全国卷Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.(2)函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________. (3)(2020·湖南永州质检)已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )=________.【跟踪训练2-1】(2019•新课标Ⅱ)设()f x 为奇函数,且当0x 时,()1x f x e =-,则当0x <时,()(f x =)A .1x e --B .1x e -+C .1x e ---D .1x e --+【跟踪训练2-2】(2020•上海)若函数133x x y a =+为偶函数,则a = . 【跟踪训练2-3】(2020•迎泽区校级模拟)已知()f x 为奇函数,当0x >时,()3f x lnx x =-,则(1)f -的值为 .【跟踪训练2-4】(2019秋•丰台区期末)函数()y f x =是定义在R 上的偶函数,且图象过(1,1)-点.已知0x 时,()1(0x f x a a =->且1)a ≠. (Ⅰ)求f (1)的值和a 的值;(Ⅱ)若()[0f m ∈,3],求m 的取值范围.【名师指导】与函数奇偶性有关的问题及解题策略(1)求函数的值:利用奇偶性将待求值转化为已知区间上的函数值求解.(2)求函数解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求解析式中的参数值:在定义域关于原点对称的前提下,利用f (x )为奇函数⇔f (-x )=-f (x ),f (x )为偶函数⇔f (x )=f (-x ),列式求解,也可利用特殊值法求解.对于在x =0处有定义的奇函数f (x ),可考虑列等式f (0)=0求解. 题型3 函数的周期性【例3-1】(2019•上海)已知函数()f x 周期为1,且当01x <时,2()log f x x =,则3()2f = .【例3-2】(2020•安阳二模)已知()y f x =是定义在R 上的函数,且(4)()f x f x -=-,如果当[4x ∈-,0)时,()x f x -=,则(266)f = .【跟踪训练3-1】(2020春•红旗区校级月考)已知()f x 是定义在R 上周期为2的函数,当[1x ∈-,1]时,()||f x x =,那么当[7x ∈-,5]-时,()(f x = )A .|3|x +B .|3|x -C .|6|x +D .|6|x -【跟踪训练3-2】(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 【名师指导】函数周期性有关问题的求解策略(1)求解与函数的周期性有关的问题,应根据题目特征及周期定义,求出函数的周期.(2)周期函数的图象具有周期性,如果发现一个函数的图象具有两个对称性(注意:对称中心在平行于x 轴的直线上,对称轴平行于y 轴),那么这个函数一定具有周期性.题型4 函数性质的综合应用【例4-1】(2020•山东)若定义在R 的奇函数()f x 在(,0)-∞单调递减,且f (2)0=,则满足(1)0xf x -的x 的取值范围是( ) A .[1-,1][3,)+∞ B .[3-,1][0-,1]C .[1-,0][1,)+∞D .[1-,0][1,3]【例4-2】(2020•安庆模拟)已知奇函数()f x 的定义域为R ,若(1)f x +为偶函数,且f (1)2=,则(2019)(2020)(f f += )A .2-B .1-C .0D .1【例4-3】(多选)(2020•烟台模拟)已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(0x ∈,1]时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .(2019)(2020)1f f +=-C .()f x 的值域为[1-,1]D .()f x 的图象与曲线cos y x =在(0,2)π上有4个交点 【跟踪训练4-1】(2020•新课标Ⅱ)设函数331()f x x x =-,则()(f x ) A .是奇函数,且在(0,)+∞单调递增 B .是奇函数,且在(0,)+∞单调递减 C .是偶函数,且在(0,)+∞单调递增 D .是偶函数,且在(0,)+∞单调递减【跟踪训练4-2】(2020•和平区二模)已知()f x 是定义在R 上的偶函数,且在区间(-∞,0]上单调递增,若实数a 满足3log (2)(a f f >,则a 的取值范围是 .【跟踪训练4-3】(2020•江苏模拟)已知()f x 是定义在R 上的奇函数,且对任意实数x 恒有(2)()f x f x +=-,当[0x ∈,2]时,2()2f x x x =-. (1)求证:函数()f x 的周期是4;(2)求(2017)(2018)(2019)(2020)f f f f +++的值; (3)当[2x ∈,4]时,求()f x 的解析式.【名师指导】函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性的综合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性. (2)周期性与奇偶性的综合.此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.。
专题三函数的奇偶性及周期性(2021年高考数学一轮复习专题)
专题三 函数的奇偶性及周期性一、题型全归纳题型一 函数奇偶性的判断【题型要点】判断函数奇偶性的方法(1)根据定义判断,首先看函数的定义域是否关于原点对称,在定义域关于原点对称的条件下,再化简解析式,根据f (-x )与f (x )的关系作出判断. (2)利用函数图象特征判断.(3)分段函数奇偶性的判断,要分别从x >0或x <0来寻找等式f (-x )=f (x )或f (-x )=-f (x )成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.【例1】判断函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.的奇偶性。
【解析】法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数. 法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数【例2】已知函数f (x )=x 2x -1,g (x )=x2,则下列结论正确的是( )A .h (x )=f (x )+g (x )是偶函数B .h (x )=f (x )+g (x )是奇函数C .h (x )=f (x )g (x )是奇函数D .h (x )=f (x )g (x )是偶函数 【答案】A.【解析】:易知h (x )=f (x )+g (x )的定义域为{x |x ≠0},关于原点对称.因为f (-x )+g (-x )=-x 2-x -1+-x2=-x ·2x 1-2x -x 2=x (1-2x )-x 1-2x -x 2=x 2x -1+x2=f (x )+g (x ),所以h (x )=f (x )+g (x )是偶函数.故选A. 题型二 函数奇偶性的应用【题型要点】与函数奇偶性有关的问题及解决方法(1)已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.(2)已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.(4)应用奇偶性画图象和判断单调性:利用奇偶性可画出另一对称区间上的图象并判断另一区间上的单调性. 【例1】(2019·高考全国卷Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=( ) A .e -x -1 B .e -x +1 C .-e -x -1D .-e -x +1【解析】解法一:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D. 解法二:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D.【例2】已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为 . 【解析】:解法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-221⎪⎭⎫ ⎝⎛+x +14,所以当x <0时,函数f (x )的最大值为14.解法二:当x >0时,f (x )=x 2-x =221⎪⎭⎫ ⎝⎛+x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.题型三 函数的周期性【题型要点】函数周期性的判断与应用(1)判断函数的周期性只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z ,且k ≠0)也是函数的周期.【例1】(2020·广东六校第一次联考)在R 上函数f (x )满足f (x +1)=f (x -1),且f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0|2-x |,0≤x <1,其中a∈R ,若f (-5)=f (4.5),则a =( ) A .0.5 B .1.5 C .2.5D .3.5【解析】由f (x +1)=f (x -1),得f (x )是周期为2的函数,又f (-5)=f (4.5),所以f (-1)=f (0.5),即-1+a =1.5,所以a =2.5.故选C.【例2】已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,4]上与x 轴的交点的个数为( ) A .2 B .3 C .4D .5【解析】当0≤x <2时,令f (x )=x 3-x =x (x 2-1)=0,所以y =f (x )的图象与x 轴交点的横坐标分别为x 1=0,x 2=1.当2≤x <4时,0≤x -2<2,又f (x )的最小正周期为2,所以f (x -2)=f (x ),所以f (x )=(x -2)(x -1)(x -3),所以当2≤x <4时,y =f (x )的图象与x 轴交点的横坐标分别为x 3=2,x 4=3.又f (4)=f (2)=f (0)=0,综上可知,共有5个交点.题型四 函数性质的综合应用【题型要点】函数性质综合应用问题的常见类型及解题策略(1)单调性与奇偶性的综合:注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合:此类问题多考查求值问题,常用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合:解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.【例1】已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( ) A .-50 B .0 C .2 D .50【答案】C【解析】因为f (x +2)=f [1+(1+x )]=f [1-(1+x )]=f (-x )=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数.又f (x )为奇函数,且x ∈R ,所以f (0)=0,f (1)=2,f (2)=f (1+1)=f (0)=0,f (3)=f (1+2)=f (1-2)=f (-1)=-f (1)=-2,f (4)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0,而50=4×12+2,所以f (1)+f (2)+f (3)+…+f (50)=f (1)+f (2)=2.【例2】(2020池州联考)已知函数f (x )的定义域为R ,且满足下列三个条件:①∀x 1,x 2∈[4,8],当x 1<x 2时,都有f (x 1)-f (x 2)x 1-x 2>0;②f (x +4)=-f (x );③y =f (x +4)是偶函数.若a =f (6),b =f (11),c =f (2 025),则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <a <c C .a <c <b D .c <b <a 【答案】B【解析】由条件①知,当x ∈[4,8]时,f (x )为增函数;由条件②知,f (x +8)=-f (x +4)=f (x ),f (x )是周期为8的周期函数;由条件③知,y =f (x )关于直线x =4对称,所以f (11)=f (3)=f (5),f (2025)=f (1)=f (7),故f (5)<f (6)<f (7),即b <a <c .故选B.二、高效训练突破 一、选择题1.(2020·洛阳一中月考)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1【答案】C.【解析】:函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项A 的函数为奇函数,不符合要求;选项B 的函数是偶函数,但其单调性不符合要求;选项D 的函数为非奇非偶函数,不符合要求;只有选项C 符合要求.2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( ) A .-3 B .-54C.54 D .3 【答案】A【解析】:.由f (x )为R 上的奇函数,知f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=( ) A .-6 B .6 C .4 D .-4 【答案】D【解析】 因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.4.已知定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2x -2x ,则f (x )x>0的解集为( )A .(-1,0)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(0,1)D .(-∞,-1)∪(1,+∞)【解析】因为当x >0时,函数f (x )单调递增,又f (1)=0,所以f (x )=2x -2x >0的解集为(1,+∞),所以f (x )x >0在(0,+∞)上的解集为(1,+∞).因为f (x )是奇函数,所以f (x )x 是偶函数,则f (x )x >0在R 上的解集为(-∞,-1)∪(1,+∞).5.已知定义域为R 的奇函数f (x )满足⎪⎭⎫⎝⎛+x f 23=⎪⎭⎫⎝⎛x f -21,且当0≤x ≤1时,f (x )=x 3,则⎪⎭⎫⎝⎛25f =( ) A .-278B .-18C.18D.278【解析】:因为⎪⎭⎫⎝⎛+x f 23=⎪⎭⎫⎝⎛x f -21,所以⎪⎭⎫ ⎝⎛25f =⎪⎭⎫ ⎝⎛+123f =⎪⎭⎫ ⎝⎛1-21f =⎪⎭⎫⎝⎛21-f ,又因为函数为奇函数,所以⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫ ⎝⎛21-f =321-⎪⎭⎫⎝⎛=-18.6.已知函数f (x )=2|x |+x 3+12|x |+1的最大值为M ,最小值为m ,则M +m 等于( )A .0B .2C .4D .8【解析】:f (x )=2|x |+x 3+12|x |+1=1+x 32|x |+1.设g (x )=x 32|x |+1,因为g (x )定义域为R ,关于原点对称,且g (-x )=-g (x ),所以g (x )为奇函数,所以g (x )max +g (x )min =0.因为M =f (x )max =1+g (x )max ,m =f (x )min =1+g (x )min ,所以M +m =1+g (x )max +1+g (x )min =2.7.(2019·沈阳测试)设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( )A .m =1,且f (x )在(0,1)上是增函数B .m =1,且f (x )在(0,1)上是减函数C .m =-1,且f (x )在(0,1)上是增函数D .m =-1,且f (x )在(0,1)上是减函数 【答案】B【解析】因为函数f (x )=ln(1+x )+m ln(1-x )是偶函数,所以⎪⎭⎫ ⎝⎛21f =⎪⎭⎫⎝⎛21-f ,则(m -1)ln 3=0,即m =1,则f (x )=ln(1+x )+ln(1-x )=ln(1-x 2),因为当x ∈(0,1)时,y =1-x 2是减函数,故f (x )在(0,1)上是减函数.故选B.8.(2019·广州模拟)定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x )=f (x +4),且当x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=( ) A .1B.45 C .-1D .-45【解析】 因为x ∈R ,且f (-x )=-f (x ),所以函数为奇函数.因为f (x )=f (x +4),所以函数的周期为4.故f (log 220)=f (log 220-4)=⎪⎭⎫ ⎝⎛45log 2f =⎪⎭⎫ ⎝⎛45log --2f =⎪⎭⎫ ⎝⎛54log --2f =⎪⎭⎫ ⎝⎛+-5154log 22=⎪⎭⎫⎝⎛+-5154=-1.故选C.9.(2020·成都八中月考)设函数f (x )=ln(1+|x |)-11+x 2,则使f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎪⎭⎫⎝⎛131,B.⎪⎭⎫ ⎝⎛∞31-,∪(1,+∞)C.⎪⎭⎫ ⎝⎛3131,D.⎪⎭⎫ ⎝⎛∞31-,∪⎪⎭⎫ ⎝⎛∞+,31 【解析】 由题意知f (-x )=f (x ),所以函数f (x )是偶函数,当x ≥0时,易得函数f (x )=ln(1+x )-11+x 2是增函数,所以不等式f (x )>f (2x -1)等价于|2x -1|<|x |,解得13<x <1,则x 的取值范围是⎪⎭⎫⎝⎛131, 10.(2020·福建龙岩期末)设函数f (x )是定义在R 上的奇函数,满足f (x +1)=-f (x -1),若f (-1)>1,f (5)=a 2-2a -4,则实数a 的取值范围是( ) A .(-1,3) B .(-∞,-1)∪(3,+∞) C .(-3,1)D .(-∞,-3)∪(1,+∞)【解析】:由f (x +1)=-f (x -1),可得f (x +2)=-f (x ),则f (x +4)=f (x ),故函数f (x )的周期为4,则f (5)=f (1)=a 2-2a -4,又因为f (x )是定义在R 上的奇函数,f (-1)>1,所以f (1)<-1,所以a 2-2a -4<-1,解得-1<a <3,故答案为A.二、填空题1.已知定义在R 上的函数满足f (x +2)=-1f (x ),当x ∈(0,2]时,f (x )=2x -1.则f (17)= ,f (20)= . 【答案】:1 -13【解析】: 因为f (x +2)=-1f (x ), 所以f (x +4)=-1f (x +2)=f (x ),所以函数y =f (x )的周期T =4. f (17)=f (4×4+1)=f (1)=1.f (20)=f (4×4+4)=f (4)=f (2+2)=-1f (2)=-12×2-1=-13.2.(2020·晋中模拟)已知f (x )是R 上的奇函数,f (1)=2,且对任意x ∈R 都有f (x +6)=f (x )+f (3)成立,则f (2 023)=__________. 【答案】 2【解析】因为f (x +6)=f (x )+f (3),令x =-3,f (3)=f (-3)+f (3)=-f (3)+f (3)=0,所以f (x +6)=f (x )+0=f (x ),所以T =6,f (2 023)=f (337×6+1)=f (1)=2.3.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于 . 【答案】:3【解析】:f (-1)+g (1)=2,即-f (1)+g (1)=2①, f (1)+g (-1)=4,即f (1)+g (1)=4②, 由①②得,2g (1)=6,即g (1)=3.4.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,则g (f (-8))= .【答案】:-1【解析】:因为f (x )是定义在R 上的奇函数, 所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.5.设函数f (x )是定义在R 上周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则⎪⎭⎫⎝⎛23f = .【答案】:32【解析】:依题意得,f (2+x )=f (x ),f (-x )=f (x ),则⎪⎭⎫⎝⎛23f =⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫ ⎝⎛21f =12+1=32.6.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=x⎪⎭⎫⎝⎛21,则f (1),g (0),g (-1)之间的大小关系是 . 【答案】:f (1)>g (0)>g (-1)【解析】:在f (x )-g (x )=x⎪⎭⎫ ⎝⎛21中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以f (-x )=-f (x ),g (-x )=g (x ),因此得-f (x )-g (x )=2x.联立方程组解得f (x )=2-x -2x2,g (x )=-2-x +2x 2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1).7.(2019·常德模拟)设f (x )是偶函数,且当x >0时,f (x )是单调函数,则满足f (2x )=⎪⎭⎫⎝⎛++41x x f 的所有x 之和为______。
高中数学基础之函数的奇偶性与周期性
D.
考点二 函数奇偶性的应用
【例 2】 (1)(2019·全国卷Ⅱ)设 f(x)为奇函数,且当 x≥0 时,f(x)=ex-1,则
当 x<0 时,f(x)=( D ) A.e-x-1
B.e-x+1
C.-e-x-1
D.-e-x+1
(2)(2020·长沙第一中学期末)若函数 f(x)=xln(x+ a+x2)为偶函数,则 a= ___1_____.
又 x<0,∴-x>0. ∵x≥0 时,f(x)=ex-1,∴-y=e-x-1, ∴y=-e-x+1(x<0),即 f(x)=-e-x+1(x<0). 解法三(赋值法):∵f(x)是奇函数,且 x≥0 时,f(x)=ex-1, ∴f(-1)=-f(1)=-(e1-1)=1-e,即 f(-1)=-e+1,只有 D 符合. (2)因为 f(x)-f(-x)=xln(x+ a+x2)+xln(-x+ a+x2)=xln(a+x2-x2)=xlna =0,所以 a=1.
1.(2020·福州市高三期末)下列函数为偶函数的是( B )
A.y=tan(x+π4)
B.y=x2+e|x|
C.y=xcosx
D.y=ln|x|-sinx
[解析] 对于选项 A,易知 y=tan(x+π4)为非奇非偶函数;对于选项 B,设 f(x)
=x2+e|x|,则 f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以 y=x2+e|x|为偶函数;对于选
ቤተ መጻሕፍቲ ባይዱ
B.最小正周期为 2π 的奇函数
C.最小正周期为 π 的偶函数
D.最小正周期为 2π 的偶函数
(2)(2020·河南南阳模拟)已知函数 f(x)是定义在 R 上的偶函数,并且满足 f(x+
2021年新高考一轮复习函数的奇偶性、对称性、周期性
微专题函数的奇偶性、对称性、周期性【方法点拨】1.函数奇偶性、对称性间关系:⑴若函数y=J(x+a)是偶函数,即几?一x)=y(a+x),则函数v=^x)的图象关于直线x=a 对称;一般的,若对于R上的任意x都有夬7-x)=y@+x),则y=j(x)的图象关于直线x = ^- 对称.(2)若函数y=Xx+a)是奇函数,即X-x+a)+/(x+a) = O,则函数y=J(X)关于点(a, 0) 中心对称;一般的,若对于R上的任意x都有夬一x+a)+/(x+a) = 2b,则y= 夬x)的图象关于点(a, b)中心对称.2.函数对称性、周期性间关系:若函数有多重对称性,则该函数具有周期性且最小正周期为相邻对称轴距离的2倍,为相邻对称中心距离的2倍,为对称轴与其相邻对称中心距离的4倍.3.基于发现函数的对称性(中心对称、轴对称),有时需将对称性与函数的奇偶性相互转化. 【典型题示例】例1(2019江苏启东联考)已知函数/(x)对任意的A GR,都有用+"=/(}一",函数八• + 1)是奇函数,当一舟WxW*时,f(.x)=2x,则方程/(x)=-j在区间[一3,5]内的所有根之和为•【解析】Z□□=/(%J1)ZO匚二工二_/(乂1)二"二1)二二::二用二»二/讣二"二二二/(1 Zx)Z/(x)ZrZ/(xOl)ZZ/(x)--/(xO2)LZ/(xJl)Z/(x)Z □□ Z~f例2 已知/(x)是定义域为(f+8)的奇函数,满足/(l-x) = /(l + x).若/(1) = 2,则/(!) + / ⑵+ /(3) +…+ 八50)=A. -50B. 0C. 2D. 50【分析】同例1 得/(x)(Z(ZIZE4,故/(l) +/⑵ +/⑶ +/(4) =/(5) +/(6) +八7) +/⑻=・・・=/(45) +/(46) +/(47) +/(48), W/(l)=2, /(2)=/(0)=0 (夬1 一x)=;(l+x)中,取x=l)、/⑶=/(一1) =一/(1)= 一2、/(4)=/(0)=0,故/(I) +八2) +几3) +/(4)=/(5) +/(6) +/(7) 4-/(8)=・・・=/(45) +/(46) +/(47) +/(48) =0,所以/(I) +/(2) + /(3) + ・・・+/(50) =/(47) +/(48) =/(1) 4-/(2) =2.例3已知函数y = f(x)是/?上的奇函数,对任意x eR,都有f(2-x) = f(x) + f (2)成立,当壬,x,e[0, 1],且屁HX,时,都有冬)>0,则下列结论正确的有( )石一兀A.f (1) +/ (2) +f (3) +...+/(2019) = 0B.直线A =-5是函数y = f(X)图象的一条对称轴C.函数y = /(x)在[-7, 7]上有5个零点D.函数_y = /(X)在[-7, -5]上为减函数【解答】解:根据题意,函数y = f(x)是尺上的奇函数,则/(0) = 0;对任意xeR,都有/(2-x) = .f(x) + y (2)成立,当x = 2时,有/•(0) = 2/ (2) =0, 则有y (2) =0,则有/(2-A-)=/(A),RP X =1是函数f(x)的一条对称轴;又由/(x)为奇函数,则/(2-x) = -/(-%),变形可得f(x + 2) = -f(x),则有f(x + 4) = -/U + 2) = f(x),故函数/(A)是周期为4的周期函数,当不,x,曰0, 1],且X,",时,都有”丄凹>0,则函数f(x)在区间[0, 1]上 ' ' ' 斗一尤2为增函数,又由y = f(x)是尺上的奇函数,则八力在区间[-1, 1]上为增函数:据此分析选项:对于A, /(A +2)=-/(A),则/ (1) +/ (2) +/ (3) +/ (4) =[/ (1) +/ (3) ]+[f(2) +/ (4) ] = 0,f (1) +f (2) +f (3) +...+ /(20⑼= 5O4x[/ (1) +f (2) +f (3) +/ (4) ] +f (1) +f (2) + (3) =f (2)=0. A 正确;对于〃,x = l是函数八朗的一条对称轴,且函数/(x)是周期为4的周期函数,则x = 5 是函数/(x)的一条对称轴,又由函数为奇函数,则宜线x = -5是函数y = f(x)图象的一条对称轴,3正确:对于C,函数y = f(x)在[-7, 7]上有7个零点:分别为-6, -4, -2, 0, 2, 4, 6;C错误;对于D, f(x)在区间[-1, 1]上为增函数且英周期为4,函数y = f(x)在[-5, -3]上为增函数,又由A =-5为函数/(x)图象的一条对称轴,则函数y = /(才)在[-7, -5]上为减函数,D正确:故选:ABD.【巩固训练】1.已知函数/(X)= (|)|r_u|关于x = l 对称,KiJ/(2A:-2)>/(0)的解集为__________ .22.已知泄义在R上的函数/(x)满足/(l + x) = -/(3-x),且/Xx)的图象与gM = lg 的图象有四个交点,则这四个交点的横纵坐标之和等于_____________ .4-x3•已知函数f(x)(x e R)满足/(I + x) = /(1-A),/(4+ X)= /(4-x),且_3 < x 5 3 时,f(x) = \n(x+yl\+x2)^则7(2018)=()A. 0B. 1C. ln($_2)D. In(苗+2)4.已知定义在R上的奇函数f(x),满足= 且在区间[0, 2]上是增函数, 若方程夬x)="0>O)在区间[-8,8]上有四个不同的根召宀,“,兀,则x}+x2+x3 + x4= ______________ ・85.(多选题)已知/(x)是泄义域为R的奇函数,且函数/U + 2)为偶函数,下列结论正确的是( )A.函数y = /(X)的图象关于直线x = l对称B. f (4) =0C. /U+8)=/(A)D.若/(-5) = -1,则/'(2(H9) = —16.(多选题)函数/(x)的定义域为且/(x-1)与/'(x-2)都为偶函数,贝9( )A. /(x)为偶函数B. + 为偶函数C. /(A +2)为奇函数D. f(x)为同期函数7•若定义在2?上的函数f(x)满足/(x+2)= -/(x), /(x + 1)是奇函数,现给出下列4 个论断:①/(X)是周期为4的周期函数:②/•(")的图象关于点(1,0)对称:③/(刃是偶函数;④/(X)的图象经过点(-2,0):其中正确论断的个数是【答案或提示】1. 【答案】[1,2]【解析】•・•函数/ (x) =(丄)冋关于X = 1对称,・•. d = 1J (刃=22. 【答案】8X【解析】^(x) = lg —,故g(4 — x) = —g(x),即y = g(x)的图象关于点(2,0)对称,又函数f ⑴满足/(1 + A ) = -/(3-X ),则函数.¥ = /(%)的图象关于点(2,0)对称,所 以四个交点的横纵坐标之和为8.3. 【答案】D【解析】因为/(l+x) = /(l-x),/(4+x) = /(4-x),所以/(x) = /(2-x),/(x) = /(8-x) A /(2-X ) = /(8-X )/.T = 8-2 = 6,A 7(2018) = /⑵= ln(2 + $) •4. 【答案】一85. 【答案】BCD6. 【答案】ABD7. 【答案】3【解析】命题①:由/(X+2) = — f (x),得:/(x4-4) = —f (x + 2)= /(x), 所以函数/(x)的周期为4,故①正确;命题②:由/(X + 1)是奇函数,知/(X+1)的图象关于原点对称, 所以函数.f (X)的图彖关于点(1,0)对称,故②正确:则由/(2x-2)>/(0) =命题③:由/(X + 1)是奇函数,得:/(l+x) = -/(l-.v),又心2)= -于⑴,所以/(-x) = -/(-x+2) = -/(l+l-x) = /(l-0-^)) = /W»所以函数/(x)是偶函数,故③正确:命题④:/(-2) = -/(-2 + 2) = -/(0).无法判断其值,故④错误•综上,正确论断的序号是:®@®.。
高考数学二轮复习专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)(文)(解析版)
专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)一、函数的单调性(一)函数的单调性和单调区间定义:1、增函数与减函数的定义:设函数)(x f y =的定义域为A ,区间A M ⊆,如果取区间M 中的任意两个值1x 、2x ,改变量012>-=∆x x x ,则当0)()(12>-=∆x f x f y 时,就称函数)(x f y =在区间M 上是增函数;当0)()(12<-=∆x f x f y 时,就称函数)(x f y =在区间M 上是减函数。
2、函数的单调性与单调区间:如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间)。
此时也说函数是这一区间上的单调函数。
在单调区间上,增函数的图像是上升的,减函数的图像是下降的。
例1-1.下列给定函数中,在区间)10(,上单调递减的函数是( )。
A 、x x f =)(B 、)1(log )(21+=x x g C 、|1|)(+=x x h D 、12)(+=x x w【答案】B【解析】x x f =)(在)0[∞+,上是增函数,)1(log )(21+=x x g 在)1(∞+-,上是减函数,|1|)(+=x x h 在]1(--∞,上是减函数,在)1[∞+-,上是增函数,12)(+=x x w 在R 上是增函数,则)(x g 在区间)10(,上单调递减的函数,选B 。
(二)对函数单调性定义的理解1、函数的单调性是局部性质:从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,即单调区间是定义域的子集,是函数的局部特征。
函数的单调性只在定义域内讨论,可以是整个定义域,也可以是定义域的某个子区间;如果一个函数在某个区间上是单调的,那么在这个区间的子区间上也是单调的。
但在某个区间上单调,在整个定义域上不一定单调。
如函数2x y =的定义域为R ,当)0[∞+∈,x 时是增函数,当]0(,-∞∈x 时是减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 5 页 2021年新高考数学总复习第7讲:函数的奇偶性与周期性
1.(2020·重庆一中月考)下列函数中,既是偶函数又在(0,+∞)上是减函数的是( )
A .y =x -1
B .y =lnx 2
C .y =cosx x
D .y =-x 2
答案 D
解析 由函数的奇偶性排除A 、C ,由函数的单调性排除B ,由y =-x 2的图象可知当x>0时,此函数为减函数,又该函数为偶函数.故选D.
2.(2020·唐山市高三测试)设函数f(x)=x(e x +e -x ),则f(x)( )
A .是奇函数,且在(0,+∞)上单调递增
B .是偶函数,且在(0,+∞)上单调递增
C .是奇函数,且在(0,+∞)上单调递减
D .是偶函数,且在(0,+∞)上单调递减
答案 A
解析 方法一:由条件可知,f(-x)=(-x)(e -x +e x )=-x(e x +e -x )=-f(x),故f(x)为奇函数.f ′(x)=e x +e -x +x(e x -e -x ),当x>0时,e x >e -x ,所以x(e x -e -x )>0,又e x +e -x >0,所以f ′(x)>0,所以f(x)在(0,+∞)上单调递增.故选A.
方法二:根据题意知f(-1)=-f(1),所以排除B 、D.易知f(1)<f(2),所以排除C.故选A.
3.(2020·浙江宁波十校联考)函数f(x)=x 3+sinx +1(x ∈R ).若f(m)=2,则f(-m)的值为( )
A .3
B .0
C .-1
D .-2 答案 B
解析 把f(x)=x 3+sinx +1变形为f(x)-1=x 3+sinx.令g(x)=f(x)-1=x 3+sinx ,则g(x)为奇函数,有g(-m)=-g(m),所以f(-m)-1=-[f(m)-1],得到f(-m)=-(2-1)+1=0.
4.(2020·南昌市联考)函数f(x)=9x +13x 的图象( ) A .关于x 轴对称
B .关于y 轴对称
C .关于坐标原点对称
D .关于直线y =x 对称 答案 B
解析 因为f(x)=9x +13x =3x +3-x ,易知f(x)为偶函数,所以函数f(x)的图象关于y 轴对称. 5.(2020·皖南八校联考)设f(x)是定义在R 上周期为2的奇函数,当0≤x ≤1时,f(x)=x 2
-x ,则f ⎝⎛⎭
⎫-52=( )。