集成运算放大器(1)

合集下载

运算放大器论文(1)

运算放大器论文(1)

这就要求运放有好的共模抑制能力。
若将反馈电阻 Rf 和 R1 电阻去掉,就成为图 6-23b 所示的电路,该电路的输 出全部反馈到输入端,是电压串联负反馈。有 R1=∞、Rf=0 可知 vo=vi ,就是输 出电压跟随输入电压的变化,简称电压跟随器。
由以上分析,在分析运算关系时,应该充分利用“虚断”“虚短”概念,首
由于同相端接地,故反相端为“虚地”。上式可写为
因此,输出电压 uO 与输入电压 uI1、uI2、uI3 之间的关系为
即电路可完成下列数学运算
y=-(a1x1+a2x2+a3x3)
从同相端与反相端外接电阻必须平衡的条件出发,同相输入端电阻 的阻值应 为
(2).同相输入加法电路
=R1//R2//R3//RF
、失调电流温漂
2、运放的线性应用 运放的应用首先是构成各种运算电路,在运算电路中,以输入电压自变量,
以输出电压作为函数,当输入电压发生变化时,输出电压反映输入电压某种运算 的结果,因此,运放必须工作在线性区,在深度负反馈条件下,利用反馈网络可 以实现各种数学运算。
本节中的运放都是理想运放,就是说在分析时,注意使用“虚断”“虚短” 概念。
(5-1-18) 该电路有很高的输入电阻。为了提高抑制共模信号的能力,要求运放具有较 高的共模抑制比。此外,应严格选配电阻。
11
(2).利用差分输入的减法电路
电路如图 5-1-12 所示,利用叠加定理即可以很方便的求出输出与输入间的 关系。
图 5-1-12 令同相端输入信号为零,得
差分输入减法电路
可以看出同相输入加法电路是同相比例运算电路的扩展。由同相比例运 算电路式(5-1-5)可得出
8
利用叠加定理,可求出 u+与 uI1、uI2、uI3 之间的关系 则输出电压为

集成 放大器

集成 放大器
6. 嘱所有人不得接触病人及病床,呼叫 “准备除颤”,电极板紧贴皮肤上一并页加下压一页同 返回
第一节 心脏除颤仪
再次观察除颤效果,是否恢复窦性心律, 以及神志、生命体征、皮肤情况,若恢复 窦性心律, 给予持续心电监护。
8. 协助病人取适宜体位,清洁皮肤,安慰 病人,整理床单位。
9. 关闭电源,开关置OFF位置,清洁电极 板和仪器,充电备用。洗手、记录。
上一页 返回
9.2 放大电路中的负反馈
9. 2. 1反馈的基本概念
1.反馈的概念 前面各章讨论放大电路的输人信号与输出信号间的关系时.只
涉及输人信号对输出信号的控制作用.这称做放大电路的正向 传输作用。然而.放大电路的输出信号也可能对输人信号产生 反作用。简单地说.这种反作用就叫做反馈。 引入反馈的放大电路称为反馈放大电路.它由基本放大电路、 反馈网络、输出取样、输人求和四部分组成一个闭合环路.称 为反馈环路只有一个反馈环路组成的放大电路.称为单环反馈 放大电路.如图9-4所示。其中.x1是输人信号;x0是输出信 号;xF是反馈信号;xID是净输人信号。这些电量可以是电压. 也可以是电流。
R波无关,放电由人工控制,可发生在心
动周期的任何时期,按下放电开关即可放
电。心脏除颤仪开机后自动默认为非同步
状态,室颤、室扑急救时切记采用非同步
模式。
上一页 下一页 返回
第一节 心脏除颤仪
心搏骤停(sudden cardiac arrest, SCA)是临床急救医学中最紧急、最严重 的心脏急症,就心搏骤停时的ECG表现形 式而言,72%~80%以上为心室颤动。电 除颤是抢救因室颤而致心搏骤停病人最有 效的方法。而电除颤的时机是治疗心室颤 动的关键,每延迟除颤时间1min,复苏 的成功率将下降7%~10%。在心搏骤停 发生1min、5min、7min、9min、 12min分钟内行电除颤,病人存活率分别 为90%、50%、30%、10%和上一2页%下~一5页%。返回

第六章集成运算放大器习题及答案

第六章集成运算放大器习题及答案

第六章集成运算放大器习题及答案1、由于 ,集成电路常采用直接耦合,因此低频性能好,但存在 。

2、共模抑制比K CMR 是 ,因此K CMR 越大,表明电路的 。

3、电流源不但可以为差分放大器等放大电路 ,而且可以作为放大电路的 来提高放大电路的电压增益,还可以将差分放大电路双端输出 。

4、一般情况下,差动电路的共模电压放大倍数越大越好,而差模电压放大倍数越小越好。

( )5、在输入信号作用下,偏置电路改变了各放大管的动态电流。

( )6、有源负载可以增大放大电路的输出电流。

( )7、用恒流源取代长尾式差分放大电路中的发射极电阻Re ,将使电路的 ( ) A.差模放大倍数数值增大 B.抑制共模信号能力增强 C.差模输入电阻增大8、在差动电路中,若单端输入的差模输入电压为20V ,则其共模输入电压为( )。

A. 40VB. 20VC. 10VD. 5V 9、电流源的特点是( )。

A 交流电阻小,直流电阻大;B 交流电阻大,直流电阻小; C. 交流电阻大,直流电阻大; D. 交流电阻小,直流电阻小。

10、关于理想运算放大器的错误叙述是( )。

A .输入阻抗为零,输出阻抗也为零;B .输入信号为零时,输出处于零电位;C .频带宽度从零到无穷大;D .开环电压放大倍数无穷大 11、(1)通用型集成运放一般由哪几部分电路组成?每一部分常采用哪种基本电路?对每一部分性能的要求分别是什么?(2)零点漂移产生的原因是什么?抑制零点漂移的方法是什么?12、已知一个集成运放的开环差模增益A id 为100dB ,最大输出电压峰-峰值U opp =±10V,计算差模输入电压u i (即u +-u -)为10μV,0.5mV ,-200μV 时的输出电压u 0。

13、如图所示电路参数理想对称,晶体管的β均为50 ,r bb ′=100Ω,U BEQ = 0.7。

试计算R W 滑动端在中点时VT 1管和VT 2管的发射极静态电流I EQ ,以及动态参数A d 和R i 。

集成运放

集成运放
i1=iF+ ib- ib-= i1-iF 电压并联负反馈
(2) 同相比例运算放大器
iF if
ib+ =0
RF
u-= u+= ui
ib- =0
ui
Rf
_ + +
Au=1+
uo
iF=if
uo ui R 2F ui R 1f
RP
RP=Rf//RF
RF
Rf
R2 F u o (1 )u i ) R 1f

– +u + A1 o1



R
– + + A2

uo



RL
试判别下图放大电路中从运算放大器A2输出 例2: 并联电流负反馈 端引至A1输入端的是何种类型的反馈电路。 – +u + A1 o1




ui
i1
id if
R
+ A2
+
uo
解: 因反馈电路是从运算放大器A2的负载电阻RL 的靠近“地”端引出的,所以是电流反馈; 因输入信号和反馈信号均加在同相输入端上, 所以是并联反馈; 因净输入电流 id 等于输入电流和反馈电流 之差,所以是负反馈。

Ao
1+ AoF




Ao F
Xo


Xf


Xf

Xd
Ao F 0
Xo
Xd
Xf 、 d X
同相,所以
则有: F|<|Ao| |A
负反馈使放大倍数下降。

集成运算放大器全篇

集成运算放大器全篇
要求。
习题判16
七、 微分器
iF R
i1 C ui
R2
– +
+
u–= u+= 0
uo
若输入: ui sin t
ui
则:uo RC cost RC sin(t 90 ) 0 uo
0
iF
uo R
i1
C
dui dt
i1 iF
uo
RC
dui dt
t t 习题判19
微分是积分的逆运算。因此,只要将积分运算电路 中R和C的位置互换,就能形成微分器基本电路。如果 说,积分电路能够延缓信号的传输,那么微分电路则能 加快信号的传输过程,微分器又称D调节器。
(2)无调零引出端的运放调零。有些运放是不设调零引出端 的,特别是四运放或双运放等因引脚有限,一般都省掉调零端。 用作电压比较器的运放,无需调零;用作弱信号处理的线性电 路,需要通过一个附加电路,引入一个补偿电压,抵消失调参 数的影响,几种附加的调零电路如图1-14所示。 调零电路的接人对信号的传输关系应无影响,故图l-14a和图l14b加入了限流电阻R3,R3的阻值要求比R1大数十倍,若R1 =10 kΩ, R3可取200 kΩ。图l-14c和图l-14d为不用调零电源 (+U和-U)的调零电路,通过调节电位器RP,可以改变输入偏置 电流的大小,以调整电消振措施 1)区分内外补偿。从产品手册或产品说明书上可查到补偿方法, 如F007型运放往往把消振用的RC元件制作在运放内部。大部分 没有外接相位补偿(校正)端子的运放,均列出补偿用RC元件 的参考数值,按厂家提供的参数,一般均能消除自激。 2)补偿电容与带宽的关系。有时按厂家提供的RC参数不能完全 消除自激。此时若加大补偿电容的容量,可以消除自激。对于 交流放大器,则必须注意补偿元件对频带的影响,不应取过大 的电容值,要选取适当的电容值,使之既能消除振荡,又能保 持一定的频带宽度。此外,对应不同的闭环增益,所需的补偿 电容和补偿电阻也不同。在选取补偿元件时,可以按以下原则 掌握:在消除自激的前提下,尽可能使用容量小的补偿电容和 阻值大的补偿电阻。

集成运算放大器_电子电路

集成运算放大器_电子电路
放大电路
集成运放:是一种高放大倍数的直接耦合 多级放大器。 直接耦合存在的最主要问题是:温漂问题 解决的办法:采用差动式放大电路
一.基本差动放大电路
(一)工作原理: 各元件相同:即T1,T2管对称 RS1=RS2=RS Rb1=Rb2=Rb Rc1=Rc2=Rc(两边严格对称)
优点:结构简单,符合集成电路特点
缺点:I。受Vcc、R、VBE影响,要使I。得到小电流, R必须很大,集成电路制作难。
二、微电流源电路
Io小电流,R值不太大,应使I。<IR
从PN结中伏安特性方程:
IE=Is(eUbe/UT-1),当Ube》UT时,
第三节
一、 镜像电流源电路 VB1=VB2→IB1=IB2=IB
电流源电路
集成运算放大中,常用电流源提供偏置电路作为有源负载。
(Ic1=Ic2=Ic0)→IR=Ic1+2IB=Ic1(1+2/) =I0(1+2/β)或I0=IR/(1+2/β) 当 β 》2,Vcc》VBE I。=IR=(Vcc-VBE)/R≈Vcc/R 当Ir 大小固定时,电流源输出I。也相应恒定,故称镜像电流
当静态工作时:Ic1Q=Ic2 Q
温度升高:Ic1升,Uc1降(对称性)Uc1Q=Uc2Q, U。=Uc1Q-Uc2Q=0 Ic2升,Uc2降 克服温度变化而引起的零点漂移现象
(二) 放大倍数
1、 差模放大倍数Ad: 当输入信号Ui1及Ui2时(幅度相同; 极性相反)(Ui1=-Ui2)或Ui1=Ui/2,Ui2=-Ui/2 Ui1:T1放大,UC1与Ui2反相;Ui2:T2放大,Uc2与Ui2反相 (U。=UC1-UC2) (差动或) 设单管放大倍数为A1,则:UC1= Ui1 A1=1/2 UiA1 U。=UC1-UC2= UiA1

集成运算放大器

集成运算放大器


A/D转换方法
– 计数法 速度慢 – 双积分式A/D转换器 精度高、干扰小 速度慢 – 逐次逼近式A/D转换器 原理同计数式相似,只是从最高位开始,通过试探值来计数。
例1:ADC0804 (8位,100us,转换精度 ±1LSB,内带可控三态门)。

例2:ADC570 (输入电压:0~10V 或 -5V~+5V)


例3. 8位以上A/D转换器和系统连接。 ADC1210:12位,100us,启动端SC,结束转换CC。

例4. ADC0809: 逐次逼近式8通道8位ADC。

同时有模拟电路和数字电路的系统中地 线的连接
模拟电路 ADC DAC 数字电路
模拟电路 AGND
数字电路 DGND
模拟地
公共接地点
if RF
R1 R2
R3 RP
- +
u0
ui 1 ui 2 ui 3 uo R1 R2 R3 Rf 可得: uo R f ( ui 1 ui 2 ui 3 ) R1 R2 R3 若R1=R2=R3=R,则 u R f ( u u u ) o i1 i2 i3 R
集成运算放大器
1.集成运算放大器概述
集成运算放大器是一种高电压增益、高输入电阻和低输出 电阻的多级直接耦合放大电路,一般由四部分组成:
输入级:一般是差动放大 器,利用其对称特性可以 提高整个电路的共模抑制 比和电路性能,输入级有 反相输入端“-”、同相 输入端“+”两个输入端; 中间级:的主要作用是
3、差动比例运算电路
R1=R2,R’=RF Uo=-RF/R1(Ui1-Ui2)
差动比例运算电路 又称减法运算电路

集成运算放大器

集成运算放大器

1 集成运算放大器
1.1 理想运算放大器的功能与特性 1.2 运算放大器的反相输入分析 1.3 运算放大器的同相输入分析 1.4 运算放大器的差分输入分析 1.5 仪表放大器 1.6 积分器与微分器 1.7 运算放大器的电源供电
1.1理想运算放大器的功能与特性 . 理想运算放大器的功能与特性
1.1.1电路符号与端口
i2 i1
Vsm
vs
t
R2
1 2 ∞ A 3
o
vs
Ri
R1
vo Ro
vo R2 Vsm R1
o (b)
t
(a)
对于正弦波输入时,其输入、 对于正弦波输入时,其输入、输出波形如上右图所示
1.2 运算放大器的反相输入分析 .
1.2.2输入、输出阻抗 输入、
输入阻抗R 输入阻抗 i: 因此有: Ri = vs = vs = R1 因此有: i1 vs R1 即为端口1与信号源之间的外接电阻。 即为端口1与信号源之间的外接电阻。
RF 为权重系数 Ri
R R R F v1 + F v2 +⋯+ F vn vo = −iF RF = − R2 Rn R1
利用运算放大器设计一个实现如下算法的电路。 例2 :利用运算放大器设计一个实现如下算法的电路。
v o = v1 + 2v 2 − 4v 3
要求运算放大器必须采用反相输入方式,并且要求对应输入信号v 要求运算放大器必须采用反相输入方式,并且要求对应输入信号 1 的 输入阻抗为10 10K 对应输入信号v 的输入阻抗为5 输入阻抗为10K,对应输入信号 3的输入阻抗为5K。试设计该电路并确 定电路中的各电阻取值。 定电路中的各电阻取值。 分析:当需要相反符号的信号进行加法时, 分析:当需要相反符号的信号进行加法时,可利用两级反相放大器的 级联来实现。 级联来实现。 因为 v o = v1 + 2v 2 − 4v 3 = −[− (v1 + 2v 2 )] − 4v 3 令 v o1 = − (v1 + 2v 2 ) 则有 v o = − (v o1 + 4v 3 ) 可见,该电路是由两级的加权电阻组成,电路结构如图 所示。 可见,该电路是由两级的加权电阻组成,电路结构如图1-2-7所示。 所示

集成运算放大器的分类和组成

集成运算放大器的分类和组成

《集成运算放大器的分类和组成》摘要:集成运算放大器简称集成运放,是由多级直接耦合放大电路组成的高增益模拟集成电路。

它是一种高放大倍数、高输入电阻、低输出电阻、集成化了的直接耦合多级放大器。

它在自动控制、测量设备、计算技术和电信等几乎一切电子技术领域中获得了日益广泛的应用。

关键词:集成运算放大器封装样式使用注意事项一、集成运算放大器的分类集成运算放大器可以按照人们的不同需求进行多种划分,具体有以下几种类别。

1.按照集成运算放大器的参数分类(1)通用型运算放大器通用型运算放大器就是以通用为目的而设计的。

这类器件的主要特点是价格低廉、产品量大、面广,其性能指标适合一般性的使用。

如mA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356。

它们是目前应用最为广泛的集成运算放大器。

(2)高阻型运算放大器这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012)W,IIB为几皮安到几十皮安。

实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。

用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。

常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。

(3)低温漂型运算放大器在精密仪器、弱信号检测等自动控制仪表中,总希望运算放大器的失调电压较小且不随温度的变化而变化。

低温漂型运算放大器就是为此而设计的。

目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。

(4)高速型运算放大器在快速A/D和D/A转换器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不适合高速应用的场合的。

实验二集成运算放大器的应用模拟运算 (1)

实验二集成运算放大器的应用模拟运算 (1)

实验七 集成运算放大器的应用(一)模拟运算电路预习部分一、实验目的1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2. 掌握运算放大器的使用方法,了解其在实际应用时应考虑的一些问题。

二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

本实验采用的集成运放型号为μA741,引脚排列如图2-7-1所示。

它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正,负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十K Ω的电位器并将滑动触头接到负电源端。

⑧脚为空脚。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

1) 反相比例运算电路电路如图2-7-2所示。

对于理想运放, 该电路的输出电压与输入电压之间的关系为Uo =-(R F / R 1)Ui为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1‖R F 。

2) 反相加法电路图2-7-2 反相比例运算电路 图2-7-3反相加法运算电路电路如图2-7-3所示,输出电压与输入电压之间的关系为F i Fi F O //R //R R R U R R U R R U 2132211=⎪⎪⎭⎫ ⎝⎛+-= 图2-7-1 μA741管脚图3) 同相比例运算电路图2-7-4(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 Uo =(1+R F / R 1)Ui R 2=R 1 // R F当R 1→∞时,Uo =Ui ,即得到如图2-7-4(b)所示的电压跟随器。

图中R 2=R F ,用以减小漂移和起保护作用。

一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。

(a) 同相比例运算电路 (b) 电压跟随器图2-7-4 同相比例运算电路4) 差动放大电路(减法器)对于图2-7-5所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式图2-7-5 减法运算电路 图2-7-6 积分运算电路 5) 积分运算电路反相积分电路如图2-7-6所示。

电子技术基础第五章集成运算放大器

电子技术基础第五章集成运算放大器
V C E V C V E V C C I C R c I B R b V BE
2.差模交流信号分析 :
2.差模交流信号分析 : 画出对差模交流信号的交流通路
理想的直流电压源短路 关键是此处对Ree的处理。 在以前画交流通路时,线性电阻在交流通路中保留,阻值 为线性电阻的交流电阻,因为是线性的,所以交流电阻与 直流电阻相等。
A u c(单 u u o ic ) c 1 1 (b R rb )e 2 R c ()1 e R e2 -R R e ce
4 对任意信号的分析方法
ui1=uic+uid/2 ui2=uic-uid/2 uic = (ui1+ui2)/2 uid=ui1-ui2 uid1= -uid2= uid /2
差模信号和共模信号
• 差模信号:有用的信号,包含着信息,要进行 放大的。
• 共模信号:人为引入的一个信号,不是要放大 的,而是用来描述零漂的大小。直接描述、测 量零漂很麻烦,要先后测量两种不同的环境温 度下的静态工作点,求取它们的差值。从另外 一个角度:在同样的环境温度下,在输入端施 加共模信号,测量输出端的信号,求取共模放 大倍数。
2.1差模输入双端输出
某瞬间的真实方向
uid = uid1-uid2 uid1= -uid2
Ree上交流压降为0。 因此,画差模交流信号交流通路时,Ree可视为短路,
即两管的发射极直接接地。
由uc1= -uc2可知RL两端电位一端为正,一端为负,RL的中点应 是地电位,即每管对地的负载电阻为RL/2.
(5)不能制造电感,如需电感,也只能外接。
(6)一般无二极管,用三极管代替(B、C 极接在一起)。
集成运放的组成:输入级

集成运算放大器电路设计习题解答

集成运算放大器电路设计习题解答

任务5.1集成运算放大器电路设计习题解答一、测试(一)判断题1. 集成运算放大器是一种直接耦合的多级放大器。

答案:T解题:集成运算放大器是一种直接耦合的多级放大器2. 集成运算放大器的共模抑制比越大,表示该器件抑制零点漂移的能力越强,差模信号放大倍数越大。

答案:T解题:集成运算放大器的共模抑制比越大,表示该器件抑制零点漂移的能力越强,差模信号放大倍数越大。

3.运算放大器的输入电压接近于零,所以可以将输入端短路,运算放大器仍可以正常工作。

答案:F解题:集成运算放大器放大能力无穷大,不代表,输入端两信号绝对相等。

4.运算放大器在线性工作时,同相输入端与反相输入端电位相等,故可以将其两端短接使用而不影响其正常工作。

答案:F解题:U+=U-,不代表可以短路使用,这个是放大器无穷大放大能力。

5.运算放大器只能用来放大直流信号。

答案:F解题:交直流都可以。

6、理想运算放大器工作在线性区时(例如运算电路),两个输入端电位必相等。

答案:T解题:满足虚拟短路,U+=U-7.运算放大器只能放大直流信号,不能放大交流正弦信号。

答案:F解题:交直流都可以。

8.将晶体管、二极管、电阻的元件及连线全部几种制造在同一块半导体基片上,成为一个完整的固体电路,通称为集成电路。

答案:T解题:将晶体管、二极管、电阻的元件及连线全部几种制造在同一块半导体基片上,成为一个完整的固体电路,通称为集成电路。

9. 各种集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成.答案:T解题:各种集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成.10.集成运算放大器在实现信号运算时,一般都采用正反馈连接方式,即把输出端与同相端进行连接。

答案:F解题:集成运算放大器在实现信号运算时,一般都采用负反馈连接方式,即把输出端与反向端进行连接。

(二)选择题1.下列关于集成运算放大器组成结构说法错误的是()A.集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成。

【电工学】集成运算放大器全篇

【电工学】集成运算放大器全篇

当 u+> u– 时, uo = + Uopp u+< u– 时, uo = – Uopp
(2) 由于rid→∞,仍然有: i+=i-≈0
3.3 基本运算电路
运算放大器与外部电阻、电容、半导体器件 等构成闭环电路后,可以实现对模拟信号进行比 例、加法、减法、微分、积分、对数、反对数、 乘法和除法等数学运算。
i1 R1 +
– +
uo +
+
ui –
i2 R2 i3
R3

因 i+=0, 所以 i2=i3 ,
u
R1 R1 RF
uo
而 u+=u- ,所以
uo
(1
RF R1
)u
u
ui R2 R3
R3
所以,u0
(1
RF R1
)(
R3 R2 R3
)ui
3 差动输入电路
iF RF
+ i1 R1

+
+
ui1
理想运算放大器的图形符号

i–

u–

i+
+
uo
u+
+
这里省略了其 它引线,而只画 出了两个输入端 和一个输出端,
其中:
“- ”为反相输入端;
“+”为同相输入端; “∞”表示开环电压放大倍数满足理想化条件;
“ ” 表示运放输入。
运放的三种工作方式
1)当信号从同相输入端对公共地端输入时,输出 电压与输入电压同相,——同相输入方式;
3.1.2 主要技术指标
1.开环差模电压增益 Aod 指无反馈电路时的差模电压放大倍数。

集成运算放大器原理

集成运算放大器原理

集成运算放大器原理集成运算放大器,简称运放,是现代电子电路中非常重要的一种器件。

它的重要性不仅在于它本身所能完成的多种电路设计任务,而且更在于它在大量其他器件中的应用。

另外,集成运算放大器的开发为现代电子设备的制造、现代电子技术的研究和发展,提供了非常重要的基础。

集成运算放大器的比较器部分由于运放的结构十分复杂,因此在讲述集成运放原理之前,我们先来看看运放中的比较器部分的原理。

运放的比较器部分主要由一个差分放大器组成。

差分放大器是指由两个相同而反向连接的共模信号放大器组成。

相同是指这两个放大器的电路参数相等,反向连接是指两个放大器(也称之为放大级)的输出信号相反,并且将这两个信号相减后再进行输出。

差分放大器的电路图示如下:![image.png](attachment:image.png)我们可以看到,差分放大器的输入端分别是V1和V2,输出端是Vo。

差分放大器主要的功能就是从两个输入信号之间的差异中产生一个输出信号。

在差分放大器中,输入信号被放大并经过输出节点的反相和非反相输入。

根据正片差分放大器的基本公式,可以算出振幅比为:![image-2.png](attachment:image-2.png)其中k为放大系数,当k = R1/R2时,放大器输出为差异电压(Vin1 - Vin2)。

进一步,如果通过一个电压比较器对差分放大器的输出电压进行监测,它们可以被调整或比较,以及当它们之间存在特定比较关系时产生输出信号。

这就实现了集成运算放大器的比较器部分。

集成运算放大器的反相放大器部分在讲完运放的比较器部分后,我们接下来来看看运放的反相放大器部分的原理。

反相放大器是由一个集成运放反相输入端和根据反馈电阻选定的电路分压器组成的。

反相放大器的电路图如下:![image-3.png](attachment:image-3.png)在反相放大器的电路中,输入电压通过电路分压器得到一个分压电压,并且在反相输入端的放大电路中被反向放大。

集成运算放大器

集成运算放大器

计算同双端输入双端输出:
Rb T1
+u
i1 -
iRe
T2 Rb u-
+ i2
_ReV EE
Aud
( Rc
//
RL 2
Rb rbe
)
Auc 0
Rid 2 Rb rbe
Ro 2Rc
4. 单端输入单端输出
+VCC
计算同双入单出:
Aud
Rc 2Rb
//
RL rbe
Auc
R 'L 2 Re
Rc
+ uo -
Rc
Rb T1
RL
T2 Rb
+ ui1

+
Ic3 T3 A
ui2 -
R3
R2 R1
B_
V EE
R等效
rce (1
rbe3
R3
R1 // R2
R3
)
5.2 集成运算放大器中旳单元电路
一 . 电流源电路
1. 镜像电流源
基准电流:
IR
=
VCC
UBE R
VCC R
因为:UBE2 = UBE1
uo
输入ui=0时,,输出有缓慢 变化旳电压产生。
0
产生零漂旳原因:
由温度变化引起旳。当温度
变化使第一级放大器旳静态
工作点发生微小变化时,这
种变化量会被背面旳电路逐
层放大,最终在输出端产生 +
较大旳电压漂移。因而零点 ui
漂移也叫温漂。

Rc1 Rb1
T1 Re1
t
Re2
+ VCC
+u o T2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档