FSK信号的解调与抗噪声性能分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F S K信号的解调与抗噪声
性能分析
Prepared on 21 November 2021
课程设计
课程设计名称:通信综合
专业班级:
学生姓名:
学号:
指导教师:
课程设计时间:2014年
电子信息工程专业课程设计任务书
目录
2FSK信号的解调与抗噪声性能分析一.课程设计的目的和意义
基本要求
掌握2FSK的调制与解调的实现方法,探索并分析其抗噪声性能;遵循本系统的设计原则,理顺基带信号、传输频带及两个载频三者间相互间的关系;加深理解2FSK调制器与解调器的工作原理,学会对2FSK工作过程进行检查及对主要性能指标进行测试的方法。
课程设计的目的及意义
本次课程设计是对通信原理课程理论教学和实验教学的综合和总结。通过这次课程设计,使同学认识和理解通信系统,掌握信号是怎样经过发端处理、被送入信道、然后在接收端还原。要求学生掌握通信原理的基本知识,运用所学的通信仿真的方法实现某种传输系统。能够根据设计任务的具体要求,掌握软件设计、调试的具体方法、步骤和技巧。对一个实际课题的软件设计有基本了解,能进一步掌握高级语言程序设计基本概念,掌握基本的程序设计方法,拓展知识面,激发在此领域中继续学习和研究的兴趣,为学习后续课程做准备。
在信道中,大多数具有带通传输特性,必须用数字基带信号对载波进行调制,产生各种已调数字信号。可以用数字基带信号改变正弦型载波的幅度、频率或相位中的某个参数,产生相应的数字振幅调制、数字频率调制和数字相位调制。也可以用数字基带信号同时改变正弦型载波幅度、频率或相位中的某几个参数,产生新型的数字调制。
本课程设计旨在根据所学的通信原理知识,并基于MATLAB软件,仿真一2FSK 数字通信系统。2FSK数字通信系统,即频移键控的数字调制通信系统。频移键控是利用载波的频率变化来传递数字信息。在2FSK中,载波的频率随二进制基带信号在f1和f2两个频率点间变化。因此,一个2FSK信号的波形可以看成是两个不同载频的2ASK信号的叠加。可以利用频率的变化传递数字基带信号,通过调制解调还原数字基带信号,实现课程设计目标。
二,2FSK的基本原理和实现
二进制频率调制是用二进制数字信号控制正弦波的频率随二进制数字信号的变化而变化。由于二进制数字信息只有两个不同的符号,所以调制后的已调
信号有两个不同的频率f1和f2,f1对应数字信息“1”,f2对应数字信息“0”。二进制数字信息及已调载波如图3-1所示。
图3-1 2FSK信号
2FSK的产生
在2FSK信号中,当载波频率发生变化时,载波的相位一般来说是不连续的,这种信号称为不连续2FSK信号。相位不连续的2FSK通常用频率选择法产生,如图3-2所示:
图3-2 2FSK信号调制器
两个独立的振荡器作为两个频率发生器,他们受控于输入的二进制信号。二进制信号通过两个与门电路,控制其中的一个载波通过。调制器各点波形如图3-3所示:
图3-3 2FSK调制器各点波形
由图3-3可知,波形g是波形e和f的叠加。所以,二进制频率调制信号2FSK可以看成是两个载波频率分别为f1和f2的2ASK信号的和。由于“1”、“0”统计独立,因此,2FSK信号功率谱密度等于这两个2ASK信号功率谱密度之和,即
(3-1)
2FSK信号的功率谱如图3-4所示:
图3-4 2FSK信号的功率谱
由图3-4看出,2FSK信号的功率谱既有连续谱又有离散谱,离散谱位于两个载波频率f1和f2处,连续谱分布在f1和f2附近,若取功率谱第一个零点
以内的成分计算带宽,显然2FSK信号的带宽为(3-
2)
为了节约频带,同时也能区分f1和f2,通常取|f1-f2|=2fs,因此2FSK信号
的带宽为
(3-3)
当|f1-f2|=fs时,图3-4中2FSK的功率谱由双峰变成单峰,此时带宽为
(3-4)对于功率谱是单峰的2FSK信号,可采用动态滤波器来解调。此处介绍功率谱为双峰的2FSK信号的解调。
2FSK滤波器的调解及抗噪声性能
2FSK信号的解调也有相干解调和包络解调两种。由于2FSK信号可看做是两个2ASK信号之和,所以2FSK解调器由两个并联的2ASK解调器组成。图3-5为2FSK相干和包络解调。
图3-5 2FSK信号调解器
相干2FSK抗噪声性能的分析方法和相干2ASK很相似。现将收到的2FSK信
号表示为(3-5)波频率为f1,信号能通过上支路的带通滤波器。上支路带通滤波器的输出是信号和窄带噪声ni1(t)的叠加(噪声中的下标1表示上支路窄带高斯噪声),即
(3-6)
此信号与同步载波cos2πf1t相乘,再经低通滤波器滤除其中的高频成分,送给取样判决器的信号为(3-
7)
上式中未计入系数1/2。与此同时,频率为f1的2FSK信号不能通过下支路中的带通滤波器,因为下支路中的带通滤波器的中心频率为f2,所以下支路带通滤波器的输出只有窄带高斯噪声,即
(3-8)
此噪声与同步载波cos2πf2t相乘,再经低通滤波器滤波后输出为
(3-9)上式中未计入系数1/2。定义
(3-10)取样判决器对x(t)取样,取样值为
(3-11)
其中,nI1、 nI2都是均值为0、方差为的高斯随机变
量,所以x是均值为a、方差为的高斯随机变量,x的概率密度函数
为
(3-
12)
概率密度曲线如图3-6所示:
图3-6 判决值的函数示意图
判决器对x进行判决,当x>0时,判发送信息为“1”,此判决是正确的;当x<0时,判决发送信息为“0”,显然此判决是错误的。由此可见,x<0
的概率就是发“1”错判成“0”的概率,即
(3-13)
当发送数字信号“0”时,下支路有信号,上支路没有信号。用与上面分析完全相同的方法,可得到发“0” 码时错判成“1”码的概率P(1/0),容易发现,
此概率与上式表示的P(0/1)相同,所以解调器的平均误码率为
P e=P(1)P(0/1)+P(0)P(1/0)=P(0/1)[P(1)+P(0)]=P(0/1) (3-14)
所以 (3-15)
式中注意,式中无需“1”、“0”等概这一条件。
由相关调制解调的原理图