人教新课标版数学高二A必修5练习 3.1 不等关系与不等式
高中数学 3.1不等关系和不等式课件(第二课时) 新人教A版必修5
思考3:如果ai>bi(i=1,2,3,„, n),那么a1· a2„an>b1· b2„bn吗? ai>bi>0 (i=1,2,3,„,n)
Þ
a1· a2„an>b1· b2„bn
思考4:如果a>b,那么an与bn的大小关 系确定吗? a>b,n为正奇数
Þ
a n>b n
思考5:如果a>b,c<d,那么a+c与b +d的大小关系确定吗?a-c与b-d的大 小关系确定吗?
探究(一):不等式的基本性质
思考1:有一个不争的事实:若甲的身材 比乙高,则乙的身材比甲矮,反之亦然. 从数学的观点分析,这里反映了一个不 等式性质,你能用数学符号语言表述这 个不等式性质吗?
a>b b<a(对称性)
思考2:又有一个不争的事实:若甲的 身材比乙高,乙的身材比丙高,那么甲 的身材比丙高,这里反映出的不等式性 质如何用数学符号语言表述?
作业:
P75习题3.1A组:2,3. B组:2.
a >b ,c <d
Þ a -c >b -d
1 1 思考6: 若a>b,ab>0,那么 a 与 b
的大小关系如何?
1 1 a>b,ab>0 a b
理论迁移
例1
已知a>b>0,c<0,
c c 求证: . a b
例2
1 1 已知 0 a b
,x >y >0 ,
x y 求证: . xa y b
思考1:在等式中有移项法则,即a+b= c a=c-b,那么移项法则在不等式 中成立吗? a +b >c a >c -b
思考2:如果ai>bi(i=1,2,3,„, n),a1+a2+„+an与b1+b2+„+bn的 大小关系如何? ai>bi (i=1,2,3,„,n) Þ a1+a2+„+an>b1+b2+„+bn
2020版数学人教A版必修5学案:第三章 3.1 不等关系与不等式 Word版含解析
§3.1不等关系与不等式学习目标 1.能用不等式(组)表示实际问题的不等关系.2.初步学会作差法、作商法比较两实数的大小.3.掌握不等式的基本性质,并能运用这些性质解决有关问题.知识点一不等关系现实世界中存在大量的不等关系.试用不等式表示下列关系:(1)a大于b a>b(2)a小于b a<b(3)a不大于b a≤b(4)a不小于b a≥b知识点二作差法作差法的理论依据:a>b⇔a-b>0;a=b⇔a-b=0;a<b⇔a-b<0.思考x2+1与2x两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较x2+1与2x的大小,而且具有说服力吗?答案作差:x2+1-2x=(x-1)2≥0,所以x2+1≥2x.知识点三不等式的基本性质不等式性质:(1)a>b⇔b<a(对称性);(2)a>b,b>c⇒a>c(传递性);(3)a>b⇒a+c>b+c(可加性);(4)a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;(5)a>b,c>d⇒a+c>b+d;(6)a>b>0,c>d>0⇒ac>bd;(7)a>b>0,n∈N,n≥1⇒a n>b n;(8)a >b >0,n ∈N ,n ≥21.2≥1.( √ ) 2.ab >1⇒a >b .( × ) 3.a >b ⇔a +c >b +c .( √ )4.⎩⎪⎨⎪⎧a >b ,c >d ⇔a +c >b +d .( × )题型一 用不等式(组)表示不等关系例1 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝⎛⎭⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝⎛⎭⎫8-x -2.50.1×0.2x ≥20(x ≥2.5).反思感悟 数学中考查的能力之一就是抽象概括能力,即能用数学语言表示出实际问题中的数量关系.用不等式(组)表示实际问题中的不等关系时 (1)要先读懂题,设出未知量; (2)抓关键词,找到不等关系;(3)用不等式表示不等关系.思维要严密、规范.跟踪训练1 某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系: .(不用化简) 答案 5x -2(19-x )≥80,x ∈N *解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2(19-x )≥80,x ∈N *.题型二 比较大小命题角度1 作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小.解 ∵a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2) =a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,(a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2. 引申探究1.若a >0,b >0,a 5+b 5与a 3b 2+a 2b 3的大小关系又如何? 解 (a 5+b 5)-(a 3b 2+a 2b 3)=a 5-a 3b 2+b 5-a 2b 3 =a 3(a 2-b 2)+b 3(b 2-a 2) =(a 2-b 2)(a 3-b 3)=(a -b )2(a +b )(a 2+ab +b 2). ∵a >0,b >0,∴(a -b )2≥0,a +b >0,a 2+ab +b 2>0. ∴a 5+b 5≥a 3b 2+a 2b 3.2.对于a n +b n ,你能有一个更具一般性的猜想吗?解 若a >0,b >0,n >r ,n ,r ∈N *,则a n +b n ≥a r b n -r +a n -r b r .反思感悟 比较两个实数的大小,可以求出它们的差的符号.作差法比较实数的大小的一般步骤是:差→恒等变形→判断差的符号→下结论.作差后变形是比较大小的关键一步,变形的方向是化成几个完全平方数和的形式或一些易判断符号的因式积的形式. 跟踪训练2 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵(x 3-1)-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34, 又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x . 命题角度2 作商法比较大小例3 若0<x <1,a >0且a ≠1,试比较|log a (1-x )|与|log a (1+x )|的大小关系. 解|log a (1-x )||log a (1+x )|=⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=||log (1+x )(1-x ),∵0<x <1,∴||log (1+x )(1-x )=-log (1+x )(1-x )=log (1+x )11-x,∵1-x 2=(1+x )(1-x )<1,且1-x >0,∴1+x <11-x, ∴log (1+x )11-x >1,即|log a (1-x )||log a (1+x )|>1,∴|log a (1+x )|<|log a (1-x )|.反思感悟 作商法的依据:若b >0,则ab >1⇔a >b .跟踪训练3 若a >b >0,比较a a b b 与a b b a 的大小. 解 a a b b a b b a =a a -b b b -a =⎝⎛⎭⎫ab a -b , ∵a >b >0, ∴ab >1,a -b >0, ∴⎝⎛⎭⎫a b a -b >1,即a a b ba b b a >1, 又∵a >b >0,∴a a b b >a b b a . 题型三 不等式的基本性质 例4 已知a >b >0,c <0,求证:c a >c b .证明 因为a >b >0,所以ab >0,1ab >0.于是a ×1ab >b ×1ab ,即1b >1a .由c <0,得c a >cb.反思感悟 有关不等式的证明,最基本的依据是不等式的8条基本性质,在解不等式时,对不等式进行有关变形的依据也是8条基本性质. 跟踪训练4 如果a >b >0,c >d >0,证明:ac >bd . 证明⎭⎪⎬⎪⎫ ⎭⎬⎫a >b >0c >0⇒ac >bc >0⎭⎬⎫c >d >0b >0⇒bc >bd >0⇒ac >bd .用好不等式性质,确保推理严谨性典例 已知12<a <60,15<b <36,求ab 的取值范围.[错解] ∵12<a <60,15<b <36,∴1215<a b <6036,∴45<a b <53. [点拨] 在确保条件的前提下,同向不等式可以相乘,但同向不等式没有相除的性质,不能臆造.确需相除,可转化为相乘.[正解] ∵15<b <36,∴136<1b <115,又12<a <60,∴1236<a b <6015,∴13<ab <4, 即ab的取值范围是⎝⎛⎭⎫13,4. [素养评析] 逻辑推理讲究言必有据.在不等式这一章,我们要对不等式进行大量的运算、变形,而运算、变形的依据就是不等式的性质.通过考问每一步是否有依据,整个推理过程是否有条理,可以使我们的理性精神和交流能力得到提升.1.某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( ) A.⎩⎪⎨⎪⎧ x ≥95,y ≥380,z >45 B.⎩⎪⎨⎪⎧ x ≥95,y >380,z ≥45C.⎩⎪⎨⎪⎧x >95,y >380,z >45 D.⎩⎪⎨⎪⎧x ≥95,y >380,z >45答案 D解析 “不低于”即“≥”,“高于”即“>”,“超过”即“>”,∴x ≥95,y >380,z >45. 2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-a D .a >b >-a >-b答案 C解析 由a +b >0,知a >-b ,∴-a <b <0. 又b <0,∴-b >0,∴a >-b >b >-a .3.已知a ,b ,c ∈R ,则下列命题正确的是( ) A .a >b ⇒ac 2>bc 2 B.a c >bc ⇒a >b C.⎭⎬⎫a >b ab <0⇒1a >1b D.⎭⎬⎫ab >0a >b ⇒1a >1b答案 C解析 当c =0时,A 不成立;当c <0时,B 不成立;当ab <0时,a >b ⇒a ab <b ab ,即1a >1b ,C 成立.同理可证D 不成立.4.若a >b >0,c <d <0,则一定有( ) A.a d >bc B.ad <b c C.a c >b d D.a c <b d 答案 B解析 因为c <d <0,所以-c >-d >0, 即1-d >1-c>0. 又a >b >0,所以a -d >b-c ,从而有a d <b c.5.比较(a +3)(a -5)与(a +2)(a -4)的大小. 解 ∵(a +3)(a -5)-(a +2)(a -4) =(a 2-2a -15)-(a 2-2a -8)=-7<0, ∴(a +3)(a -5)<(a +2)(a -4).1.比较两个实数的大小,只要求出它们的差就可以了. a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.作差法比较大小的一般步骤 第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”; 第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论); 最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.3.不等式的性质是不等式变形的依据,每一步变形都要严格依照性质进行,并注意不等式推导所需条件是否具备.一、选择题1.设x <a <0,则下列不等式一定成立的是( ) A .x 2<ax <a 2 B .x 2>ax >a 2 C .x 2<a 2<ax D .x 2>a 2>ax答案 B解析 ∵x 2-ax =x (x -a )>0,∴x 2>ax . 又ax -a 2=a (x -a )>0,∴ax >a 2,∴x 2>ax >a 2. 2.已知a <0,b <-1,则下列不等式成立的是( ) A .a >a b >a b 2B.a b 2>a b >aC.a b >a >a b 2D.a b >a b2>a 答案 D解析 取a =-2,b =-2,则a b =1,a b 2=-12∴a b >a b 2>a .3.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( ) A.1a <1bB .a 2>b 2 C.a c 2+1>bc 2+1 D .a |c |>b |c |答案 C解析 对于A ,若a >0>b ,则1a >0,1b <0,此时1a >1b,∴A 不成立;对于B ,若a =1,b =-2,则a 2<b 2,∴B 不成立; 对于C ,∵c 2+1≥1,且a >b , ∴a c 2+1>bc 2+1恒成立,∴C 成立; 对于D ,当c =0时,a |c |=b |c |,∴D 不成立.4.若a >b >c 且a +b +c =0,则下列不等式中正确的是( ) A .ab >ac B .ac >bc C .a |b |>c |b | D .a 2>b 2>c 2答案 A解析 由a >b >c 及a +b +c =0,知a >0,c <0,⎩⎪⎨⎪⎧a >0,b >c ,则ab >ac .5.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) A .a 2<b 2 B .a 2b <ab 2 C.1ab 2<1a 2b D.b a <a b答案 C解析 对于A ,在a <b 中,当a <0,b <0时,a 2<b 2不成立; 对于B ,当a <0,b >0时,a 2b >0,ab 2<0,a 2b <ab 2不成立; 对于C ,∵a <b ,1a 2b 2>0,∴1ab 2<1a 2b ;对于D ,当a =-1,b =1时,b a =ab=-1.6.若a >0且a ≠1,M =log a (a 3+1),N =log a (a 2+1),则M ,N 的大小关系为( ) A .M <N B .M ≤N C .M >N D .M ≥N 答案 C解析 当a >1时,a 3+1>a 2+1, y =log a x 为(0,+∞)上的增函数, ∴log a (a 3+1)>log a (a 2+1); 当0<a <1时,a 3+1<a 2+1,y =log a x 为(0,+∞)上的减函数, ∴log a (a 3+1)>log a (a 2+1), ∴当a >0且a ≠1时,总有M >N . 二、填空题7.b 克糖水中有a 克糖(b >a >0),若再添上m 克糖(m >0),则糖水就变甜了,试根据此事实提炼一个不等式:当b >a >0且m >0时, . 答案a +mb +m >ab解析 变甜了,意味着含糖量大了,即浓度高了.8.已知函数f (x )=ax +b,0<f (1)<2,-1<f (-1)<1,则2a -b 的取值范围是 . 答案 ⎝⎛⎭⎫-32,52 解析 由函数的解析式可知0<a +b <2,-1<-a +b <1, 且2a -b =12(a +b )-32(-a +b ),结合不等式的性质可得, 2a -b ∈⎝⎛⎭⎫-32,52. 9.若x ∈R ,则x 1+x 2与12的大小关系为 . 答案x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 10.(x +5)(x +7)与(x +6)2的大小关系为 . 答案 (x +5)(x +7)<(x +6)2 解析 因为(x +5)(x +7)-(x +6)2 =x 2+12x +35-(x 2+12x +36)=-1<0. 所以(x +5)(x +7)<(x +6)2. 三、解答题11.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,试用不等式(组)将题中的不等关系表示出来.解 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N ).12.设x ,y ,z ∈R ,比较5x 2+y 2+z 2与2xy +4x +2z -2的大小. 解 ∵5x 2+y 2+z 2-(2xy +4x +2z -2) =4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1 =(2x -1)2+(x -y )2+(z -1)2≥0, ∴5x 2+y 2+z 2≥2xy +4x +2z -2, 当且仅当x =y =12且z =1时取等号.13.已知a >b >0,c <d <0,e <0,求证:e a -c >eb -d .证明 ∵c <d <0,∴-c >-d >0, 又∵a >b >0,∴a +(-c )>b +(-d )>0, 即a -c >b -d >0,∴0<1a -c <1b -d,又∵e <0,∴e a -c >eb -d.14.若x >0,y >0,M =x +y 1+x +y ,N =x 1+x +y1+y ,则M ,N 的大小关系是( )A .M =NB .M <NC .M ≤ND .M >N答案 B解析 ∵x >0,y >0,∴x +y +1>1+x >0,1+x +y >1+y >0, ∴x 1+x +y <x 1+x ,y 1+x +y <y1+y,故M =x +y 1+x +y =x 1+x +y +y 1+x +y <x 1+x +y1+y=N ,即M <N .15.已知实数x ,y 满足-4≤x -y ≤-1,-1≤4x -y ≤5,则9x -3y 的取值范围是 . 答案 [-6,9]解析 设9x -3y =a (x -y )+b (4x -y )=(a +4b )x -(a +b )y ,∴⎩⎪⎨⎪⎧ a +4b =9,a +b =3⇒⎩⎪⎨⎪⎧a =1,b =2,∴9x -3y =(x -y )+2(4x -y ),∵-1≤4x -y ≤5,∴-2≤2(4x -y )≤10, 又-4≤x -y ≤-1, ∴-6≤9x -3y ≤9.。
新整理高二数学人教A必修5练习:3.1 不等关系与不等式 Word版含解析
课时训练15不等关系与不等式一、不等式性质的直接应用与判断1.若1a <1b<0,则下列结论不正确的是()A.a2<b2B.ab<b2C.b+a>2D.b<1答案:D解析:由1<1<0可知,b<a<0,所以b<1不成立,故选D.2.(2015山东威海高二期中,1)已知a>b,则下列不等式中成立的是()A.a2>b2B.1<1C.1>1D.a3>b3答案:D解析:A.虽然-1>-2,但(-1)2>(-2)2不成立;B.虽然3>-2,但是13<1-2不成立;C.虽然2>-3,但是12-(-3)>12不成立;D.∵a>b,∴a3-b3=(a-b)(a2+ab+b2)>0.(∵a2+ab+b2=(a+12b)2+34b2>0)成立.综上可知,只有D正确.故选D.3.已知下列说法:①若a<b<0,则a2>ab;②若a≥b,ac≥bc,则c≥0;③若a>b>0,c<0,则ca >cb;④若0<a<1,则log a(1+a)>log a(1+1a)其中正确的有.答案:①③④解析:对于①,由a<b,a<0,可得a2>ab,故①正确;对于②,当a=b时,c可以为负数,故②错误;对于③,当a>b>0时,得0<1a <1b,又c<0,∴c a >c b,故③正确;对于④,当0<a<1时,1a>1,则1+a<1+1a,∴log a (1+a )>log a (1+1a ),故④正确. 二、利用不等式的性质比大小4.(2015山东威海高二期中,2)不等式:①a 2+2>2a ;②a 2+b 2≥2(a-b-1);③a 2+b 2≥ab 恒成立的个数是( ) A.0 B.1C.2D.3答案:D解析:①a 2+2-2a=(a-1)2+1≥1,∴a 2+2>2a ,正确;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0, ∴a 2+b 2≥2(a-b-1),正确; ③a 2+b 2-ab=(a -12b)2+34b 2≥0,当且仅当a=b=0时取等号,正确.综上可得:①②③都恒成立.故选D . 5.若A=a 2+3ab ,B=4ab-b 2,则A ,B 的大小关系是 ( )A.A ≤BB.A ≥BC.A<B 或A>BD.A>B答案:B解析:∵A-B=a 2+3ab-4ab+b 2=a 2-ab+b 2=(a -b 2)2+34b 2≥0,∴A ≥B.6.(2015河南郑州高二期末,16)现有甲、乙两人相约爬山,若甲上山的速度为v 1,下山的速度为v 2(v 1≠v 2),乙上山和下山的速度都是v 1+v 22(甲、乙两人中途不停歇且下山时按原路返回),则甲、乙两人上下山所用的时间t 1,t 2的大小关系为 . 答案:t 1>t 2解析:由题意知,甲用的时间t 1=S v 1+S v 2=S ·v 1+v2v 1v 2,乙用的时间t 2=2×Sv1+v 22=4Sv 1+v 2. ∵t 1-t 2=S ·v 1+v 2v1v 2−4Sv 1+v 2=S (v 1+v 2v 1v 2-4v 1+v 2)=S (v 1-v 2)2v 1v 2(v 1+v 2)>0.∴t 1>t 2.7.已知a ,b ,x ,y 均为正实数,且1a >1b ,x>y ,试判断x x+a 与y y+b的大小关系. 解:因为x x+a −y y+b=bx -ay(x+a )(y+b ),又1a >1b 且a>0,b>0,所以b>a>0. 又x>y>0,所以bx>ay ,即bx-ay>0. 又x+a>0,y+b>0, 所以bx -ay (x+a )(y+b )>0,即xx+a>yy+b. 三、利用不等式的性质求代数式范围8.设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y 4的最大值是 . 答案:27解析:∵4≤x 2y ≤9,∴16≤x 4y 2≤81.① ∵3≤xy 2≤8,∴18≤1xy 2≤13.②由①②可得2≤x 4y 2·1xy 2≤27,即2≤x 3y 4≤27.∴x 3y 4的最大值为27.9.已知1<a<2,3<b<4,求下列各式的取值范围: (1)2a+b ;(2)a-b ;(3)a b.解:(1)因为1<a<2,所以2<2a<4.又3<b<4,所以5<2a+b<8. (2)因为3<b<4,所以-4<-b<-3. 又1<a<2,所以-3<a-b<-1. (3)因为3<b<4,所以14<1b <13. 又1<a<2,所以14<ab <23.四、利用不等式的性质证明10.已知a>b>0,c<d<0. 求证:√d 3<√bc 3.思路分析:解答本题可先比较a d 与b c的大小,进而判断√a d3<√b c3. 证明:∵c<d<0,∴-c>-d>0.∴0<-1c <-1d.又a>b>0,∴-a d >-b c>0.∴√-a d 3>√-b c 3,即-√a d 3>-√b c 3.两边同乘以-1,得√a d3<√b c3.(建议用时:30分钟)1.若a ,b ∈R ,且a>b ,则( )A.a 2>b 2B.b a<1 C.lg(a-b )>0 D.(12)a<(12)b答案:D解析:∵a>b ,无法保证a 2>b 2,ba <1和lg(a-b )>0,∴排除A 与B,C,故选D .2.如果a<b<0,那么下列不等式成立的是( ) A.1<1B.ab<b 2C.-ab<-a 2D.-1<-1答案:D解析:当a=-2,b=-1时,检验得A,B,C 错误,故D 正确. 3.若a>b>c ,则下列不等式成立的是( ) A.1a -c >1b -c B.1a -c <1b -c C.ac>bc D.ac<bc答案:B解析:∵a>b>c ,∴a-c>b-c>0.∴1a -c <1b -c .故选B.4.下列结论正确的是()A.若a>b>0,a>c,则a2>bcB.若a>b>c,则ac >bcC.若a>b,n∈N*,则a n>b nD.a>b>0,则ln a<ln b答案:A解析:对于B,当c<0时,不成立,对于C,当a=1,b=-2,n=2时,a n>b n不成立.对于D,由对数函数性质得不正确,故选A.5.若α,β满足-π2<α<β<π2,则2α-β的取值范围是()A.-π<2α-β<0B.-π<2α-β<πC.-3π2<2α-β<π2D.0<2α-β<π答案:C解析:∵-π2<α<π2,∴-π<2α<π.又-π2<β<π2,∴-π2<-β<π2.∴-3π2<2α-β<3π2.又α-β<0,α<π2,∴2α-β<π2.故-3π2<2α-β<π2.6.若实数a≠b,则a2-ab ba-b2(填不等号).答案:>解析:(a2-ab)-(ba-b2)=a2-ab-ba+b2=(a-b)2,∵a≠b,∴(a-b)2>0.∴a2-ab>ba-b2.7.已知2b<a<-b,则ab的取值范围为.答案:-1<a<2解析:∵2b<a<-b,∴2b<-b.∴b<0.∴-bb <ab<2bb,即-1<ab<2.8.若m<n,p<q且(p-m)(p-n)<0,(q-m)(q-n)<0,则m,n,p,q从小到大顺序是.答案:m<p<q<n解析:∵(p-m)(p-n)<0,∴{p -m >0,p -n <0或{p -m <0,p -n >0.又m<n ,∴m<p<n. 同理m<q<n ,又p<q ,∴m<p<q<n.9.甲、乙两位采购员同去一家粮食销售公司买了两次粮食(同一品种),两次粮食的价格不同,两位采购员的购粮方式也不同.其中,甲每次购买1 000 kg,乙每次购粮用去1 000元钱,谁的购粮方式更合算? 解:设两次价格分别为a 元、b 元,则甲的平均价格为m=a+b2元, 乙的平均价格为n=2 0001 000a +1 000b=2aba+b ,∴m-n=a+b 2−2ab a+b=(a -b )22(a+b )>0. ∴乙更合算.10.已知函数f (x )=ax 2-c ,-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 解:因为f (x )=ax 2-c ,所以{f (1)=a -c ,f (2)=4a -c .即{a -c =f (1),4a -c =f (2), 解得{a =13[f (2)-f (1)],c =13f (2)-43f (1),所以f (3)=9a-c=83f (2)-53f (1). 又因为-4≤f (1)≤-1,-1≤f (2)≤5, 所以53≤-53f (1)≤203,-83≤83f (2)≤403, 所以-1≤83f (2)-53f (1)≤20, 即-1≤f (3)≤20.。
高中数学新人教A版必修5课件:第三章不等式3.1不等关系与不等式4
2.已知
a>b>0,求证:
a b>
b a.
证明:因为 a>b>0,所以 a> b >0.①又因为 a>b>0,两边同
乘正数a1b,得1b>1a>0.②
①②两式相乘,得
a b>
b a.
利用不等式性质求代数式的取值范围
已知-1<x<4,2<y<3. (1)求 x-y 的取值范围; (2)求 3x+2y 的取值范围. 【解】 (1)因为-1<x<4,2<y<3,所以-3<-y<-2,所以 -4<x-y<2. (2)由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,所以 1<3x +2y<18.
A.ad>bc
B.ac>bd
C.a-c>b-d
D.a+c>b+d
解析:选 D.令 a=2,b=-2,c=3,d=-6,可排除 A,B,
C.由不等式的性质 5 知,D 一定成立.
若 x<1,M=x2+x,N=4x-2,则 M 与 N 的大小关系为 ________.
解析:M-N=x2+x-4x+2=x2-3x+2=(x-1)(x-2), 又因为 x<1,所以 x-1<0,x-2<0,所以(x-1)(x-2)>0,所 以 M>N. 答案:M>N
1.雷电的温度大约是 28 000 ℃,比太阳表面温度的 4.5 倍 还要高.设太阳表面温度为 t ℃,那么 t 应满足的关系式是 ________. 解析:由题意得,太阳表面温度的 4.5 倍小于雷电的温度, 即 4.5t<28 000. 答案:4.5t<28 000
高中数学第三章不等式3.1不等式关系与不等式课件新人教A版必修5
为函数 y=1x在(-∞,0)上单调递减,a<b<0,所以1a>1b,
故 D 正确.
答案:D
5.若 x>1,y>2,则: (1)2x+y>________; (2)xy>________. 解析:(1)x>1⇒2x>2,2x+y>2+2=4;(2)xy>2. 答案:(1)4 (2)2
类型 1 用不等式(组)表示不等关系 [典例 1] 分别写出满足下列条件的不等式: (1)一个两位数的个位数字 y 比十位数字 x 大,且这 个两位数小于 30; (2)某电脑用户计划用不超过 500 元的资金购买单价 分别为 60 元的单片软件 x 片和 70 元的盒装磁盘 y 盒.根 据需要,软件至少买 3 片,磁盘至少买 2 盒. 解:(1)y>x>0,30>10x+y>9,且 x,y∈N*; (2)x≥3,y≥2,60x+70y≤500,且 x,y∈N*.
同向 5
可加性
ac>>db⇒a+c⑫>b+d
同向同正 6
可乘性
ac>>db>>00⇒ac⑬>bd
7
可乘方性 a>b>0⇒an>bn(n∈N,n≥1)
8
可开方性
nn
a>b>0⇒ a> b(n∈N,n≥2)
[思考尝试·夯基] 1.思考义是指 x 不小于 2.( ) (2)若 a<b 或 a=b 之中有一个正确,则 a≤b 正 确.( ) (3)若 a>b,则 ac>bc 一定成立.( ) (4)若 a+c>b+d,则 a>b,c>d.( )
解析:(1)正确.不等式 x≥2 表示 x>2 或 x=2,即 x 不小于 2,故此说法是正确的.(2)正确.不等式 a≤b 表示 a<b 或 a=b.故若 a<b 或 a=b 中有一个正确,则 a ≤b 一定正确.(3)错误.由不等式的可乘性知,当不等式 两端同乘以一个正数时,不等号方向不变,因此由 a>b, 则 ac>bc,不一定成立,故此说法是错误的.(4)错误.取 a=4,c=5,b=6,d=2,满足 a+c>b+d,但不满足 a >b,故此说法错误.
高中数学新人教A版必修5第三章 3.1 不等关系与不等式
不等关系与不等式预习课本P72~74,思考并完成以下问题 (1)如何用不等式(组)来表示不等关系?(2)比较两数(或式)的大小有哪些常用的方法?(3)不等式的性质有哪几条?[新知初探]1.不等式的概念我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系.含有这些不等号的式子叫做不等式.2.比较两个实数a ,b 大小的依据3.不等式的性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ; (3)可加性:a >b ⇒a +c >b +c ; 推论(同向可加性):⎭⎬⎫a >bc >d ⇒a +c >b +d ;(4)可乘性:⎭⎬⎫a >b c >0⇒ac >bc ;⎭⎬⎫a >bc <0⇒ac <bc ; 推论(同向同正可乘性):⎭⎬⎫a >b >0c >d >0⇒ac >bd ;(5)正数乘方性:a >b >0⇒a n >b n (n ∈N *,n ≥1); (6)正数开方性:a >b >0⇒n a >nb (n ∈N *,n ≥2).[点睛] (1)在应用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.(2)要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)不等式x ≥2的含义是指x 不小于2( )(2)若a <b 或a =b 之中有一个正确,则a ≤b 正确( ) (3)若a >b ,则ac >bc 一定成立( ) (4)若a +c >b +d ,则a >b ,c >d ( )解析:(1)正确.不等式x ≥2表示x >2或x =2,即x 不小于2,故此说法是正确的. (2)正确.不等式a ≤b 表示a <b 或a =b .故若a <b 或a =b 中有一个正确,则a ≤b 一定正确.(3)错误.由不等式的可乘性知,当不等式两端同乘以一个正数时,不等号方向不变,因此由a >b ,则ac >bc 不一定成立,故此说法是错误的.(4)错误.取a =4,c =5,b =6,d =2,满足a +c >b +d ,但不满足a >b ,故此说法错误.答案:(1)√ (2)√ (3)× (4)×2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-aD .a >b >-a >-b解析:选C 法一:∵A 、B 、C 、D 四个选项中,每个选项都是唯一确定的答案,∴可用特殊值法.令a =2,b =-1,则有2>-(-1)>-1>-2, 即a >-b >b >-a .法二:∵a +b >0,b <0,∴a >-b >0,-a <b <0, ∴a >-b >0>b >-a ,即a >-b >b >-a .3.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( )A .a 2<b 2B .ab 2<a 2bC.1ab 2<1a 2bD.b a <a b解析:选C 因为a <b ,故b -a >0, 所以1a 2b -1ab 2=b -a a 2b 2>0,故1a 2b >1ab 2. 4.当m >1时,m 3与m 2-m +1的大小关系为________. 解析:∵m 3-(m 2-m +1)=m 3-m 2+m -1=m 2(m -1)+(m -1) =(m -1)(m 2+1).又∵m >1,故(m -1)(m 2+1)>0. 答案:m 3>m 2-m + 1用不等式(组)表示不等关系[典例] 某家电生产企业计划在每周工时不超过40 h 的情况下,生产空调、彩电、冰箱共120台,且冰箱至少生产20台.已知生产这些家电产品每台所需工时如下表:家电名称 空调 彩电 冰箱 工时(h)121314若每周生产空调x [解] 由题意,知x ≥0,y ≥0,每周生产冰箱(120-x -y )台.因为每周所用工时不超过40 h ,所以12x +13y +14(120-x -y )≤40,即3x +y ≤120;又每周至少生产冰箱20台, 所以120-x -y ≥20,即x +y ≤100. 所以满足题意的不等式组为⎩⎪⎨⎪⎧3x +y ≤120,x +y ≤100,x ≥0,x ∈N *,y ≥0,y ∈N *.1.将不等关系表示成不等式的思路 (1)读懂题意,找准不等式所联系的量.(2)用适当的不等号连接. (3)多个不等关系用不等式组表示.2.用不等式(组)表示不等关系时应注意的问题在用不等式(组)表示不等关系时,应注意必须是具有相同性质,可以进行比较时,才可用,没有可比性的两个(或几个)量之间不能用不等式(组)来表示.[活学活用]1.雷电的温度大约是28 000 ℃,比太阳表面温度的4.5倍还要高.设太阳表面温度为t ℃,那么t 应满足的关系式是________.解析:由题意得,太阳表面温度的4.5倍小于雷电的温度,即4.5t <28 000. 答案:4.5t <28 0002.一辆汽车原来每天行驶x km ,如果该汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程将超过2 200 km ,用不等式表示为________.解析:因为该汽车每天行驶的路程比原来多19 km ,所以汽车每天行驶的路程为(x +19)km ,则在8天内它的行程为8(x +19)km ,因此,不等关系“在8天内它的行程将超过2 200 km ”可以用不等式8(x +19)>2 200来表示.答案:8(x +19)>2 200不等式的性质[典例] (1)已知b <2a,3d <c ,则下列不等式一定成立的是( ) A .2a -c >b -3d B .2ac >3bd C .2a +c >b +3dD .2a +3d >b +c(2)下列说法不正确的是( ) A .若a ∈R ,则(a 2+2a -1)3>(a -2)3 B .若a ∈R ,则(a -1)4>(a -2)4 C .若0<a <b ,则⎝⎛⎭⎫13a >⎝⎛⎭⎫13bD .若0<a <b ,则a 3<b 3[解析] (1)由于b <2a,3d <c ,则由不等式的性质得b +3d <2a +c ,故选C.(2)对于A ,因为(a 2+2a -1)-(a -2)=a 2+a +1=⎝⎛⎭⎫a +122+34>0,所以a 2+2a -1>a -2,则(a 2+2a -1)3>(a -2)3,故A 选项说法正确;对于B ,当a =1时,(a -1)4=0,(a -2)4=1,所以(a -1)4>(a -2)4不成立;对于C 和D ,因为0<a <b ,所以由指数函数与幂函数的性质知C 、D 选项说法正确,故选B.[答案] (1)C (2)B1.利用不等式判断正误的2种方法(1)直接法:对于说法正确的,要利用不等式的相关性质或函数的相关性质证明;对于说法错误的只需举出一个反例即可.(2)特殊值法:注意取值一定要遵循三个原则:一是满足题设条件;二是取值要简单,便于验证计算;三是所取的值要有代表性.2.利用不等式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.[活学活用]1.已知a >b >c ,且a +b +c =0,则下列不等式恒成立的是( ) A .ab >bc B .ac >bc C .ab >acD .a |b |>|b |c解析:选C 因为a >b >c ,且a +b +c =0,所以a >0,c <0,所以ab >ac . 2.若a >b >0,c <d <0,e <0,求证:e (a -c )2>e(b -d )2. 证明:∵c <d <0,∴-c >-d >0.又a >b >0,∴a -c >b -d >0,则(a -c )2>(b -d )2>0,即1(a -c )2<1(b -d )2. 又e <0,∴e (a -c )2>e(b -d )2.数式的大小比较[典例] (1)已知x <1,比较x 3-1与2x 2-2x 的大小; (2)已知a >0,试比较a 与1a 的大小. [解] (1)(x 3-1)-(2x 2-2x ) =(x -1)(x 2+x +1)-2x (x -1) =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34.∵x <1,∴x -1<0.又⎝⎛⎭⎫x -122+34>0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0. ∴x 3-1<2x 2-2x .(2)因为a -1a =a 2-1a =(a -1)(a +1)a, 因为a >0,所以当a >1时,(a -1)(a +1)a >0,有a >1a ;当a =1时,(a -1)(a +1)a =0,有a =1a ; 当0<a <1时,(a -1)(a +1)a <0,有a <1a .综上,当a >1时,a >1a ; 当a =1时,a =1a ; 当0<a <1时,a <1a .1.作差法比较两个数大小的步骤及变形方法 (1)作差法比较的步骤:作差→变形→定号→结论.(2)变形的方法:①因式分解;②配方;③通分;④对数与指数的运算性质;⑤分母或分子有理化;⑥分类讨论.2.作商法比较大小的步骤及适用范围 (1)作商法比较大小的三个步骤. ①作商变形; ②与1比较大小; ③得出结论.(2)作商法比较大小的适用范围. ①要比较的两个数同号;②比较“幂、指数、对数、含绝对值”的两个数的大小时,常用作商法. [活学活用]若m >2,比较m m 与2m 的大小.解:因为m m 2m =⎝⎛⎭⎫m 2m ,又因为m >2,所以m 2>1,所以⎝⎛⎭⎫m 2m >⎝⎛⎭⎫m 20=1,所以m m >2m.用不等式性质求解取值范围 [典例] 已知1<a <4,2<b <8,试求2a +3b 与a -b 的取值范围. [解] ∵1<a <4,2<b <8,∴2<2a <8,6<3b <24. ∴8<2a +3b <32.∵2<b <8,∴-8<-b <-2.又∵1<a <4,∴1+(-8)<a +(-b )<4+(-2), 即-7<a -b <2.故2a +3b 的取值范围是(8,32),a -b 的取值范围是(-7,2).同向不等式具有可加性与可乘性,但是不能相减或相除,应用时,要充分利用所给条件进行适当变形来求范围,注意变形的等价性.1.在本例条件下,求ab 的取值范围. 解:∵2<b <8,∴18<1b <12,而1<a <4,∴1×18<a ·1b <4×12,即18<a b <2.故ab 的取值范围是⎝⎛⎭⎫18,2.不等式两边同乘以一个正数,不等号方向不变,同乘以一个负数,不等号方向改变,求解中,应明确所乘数的正负.2.已知-6<a <8,2<b <3,求ab 的取值范围. 解:∵-6<a <8,2<b <3. ∴13<1b <12, ①当0≤a <8时,0≤ab <4;②当-6<a <0时,-3<ab <0. 由①②得:-3<ab <4.故ab的取值范围为(-3,4). 利用不等式性质求范围,应注意减少不等式使用次数. 3.已知-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的取值范围.解:设a +3b =λ1(a +b )+λ2(a -2b )=(λ1+λ2)a +(λ1-2λ2)b ,解得λ1=53,λ2=-23.又-53≤53(a +b )≤53,-2≤-23(a -2b )≤-23,所以-113≤a +3b ≤1.故a +3b 的取值范围为⎣⎡⎦⎤-113,1.层级一 学业水平达标1.李辉准备用自己节省的零花钱买一台学习机,他现在已存60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A .30x -60≥400B .30x +60≥400C .30x -60≤400D .30x +40≤400解析:选B x 月后他至少有400元,可表示成30x +60≥400. 2.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <0解析:选D 由a >0,d <0,且abcd <0,知bc >0, 又∵b >c ,∴0<c <b 或c <b <0.3.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-b解析:选B 选项A ,若a =4,b =2,c =5,显然不成立,选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以.否则如a =-1,b =0时不成立,故选B.4.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,则2α-β3的范围是( ) A.⎝⎛⎭⎫0,56π B.⎝⎛⎭⎫-π6,56π C.()0,πD.⎝⎛⎭⎫-π6,π 解析:选D 0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,由同向不等式相加得到-π6<2α-β3<π.5.已知M =2x +1,N =11+x 2,则M ,N 的大小关系为( )A .M >NB .M <NC .M =ND .不确定解析:选A ∵2x >0,∴M =2x +1>1,而x 2+1≥1, ∴11+x 2≤1,∴M >N ,故选A. 6.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x 辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为________.解析:根据题意得:⎩⎪⎨⎪⎧30(x -1)<213,30x >213.答案:⎩⎪⎨⎪⎧30(x -1)<213,30x >2137.比较大小:a 2+b 2+c 2________2(a +b +c )-4. 解析:a 2+b 2+c 2-[2(a +b +c )-4] =a 2+b 2+c 2-2a -2b -2c +4=(a -1)2+(b -1)2+(c -1)2+1≥1>0, 故a 2+b 2+c 2>2(a +b +c )-4. 答案:>8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).解析:∵z =-12(x +y )+52(x -y ),-2≤-12(x +y )≤12,5≤52(x -y )≤152,∴3≤-12(x +y )+52(x -y )≤8,∴z 的取值范围是[3,8]. 答案:[3,8]9.两种药片的有效成分如下表所示:应满足怎样的不等关系?用不等式的形式表示出来.解:设提供A 药片x 片,B 药片y 片,由题意可得:⎩⎪⎨⎪⎧2x +y ≥12,5x +7y ≥70,x+6y ≥28,x ≥0,x ∈N ,y ≥0,y ∈N.10.(1)若a <b <0,求证:b a <a b ; (2)已知a >b ,1a <1b,求证:ab >0.证明:(1)由于b a -a b =b 2-a 2ab =(b +a )(b -a )ab, ∵a <b <0,∴b +a <0,b -a >0,ab >0, ∴(b +a )(b -a )ab <0,故b a <ab.(2)∵1a <1b ,∴1a -1b<0,即b -aab <0,而a >b ,∴b -a <0,∴ab >0.层级二 应试能力达标1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -1解析:选A 因为x 2+y 2-(2xy -1)=x 2-2xy +y 2+1=(x -y )2+1>0,所以x 2+y 2>2xy -1,故选A.2.已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N解析:选B ∵a 1∈(0,1),a 2∈(0,1),∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0,∴M >N ,故选B.3.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<1解析:选A 由-1<α<1,-1<β<1,得-1<-β<1, ∴-2<α-β<2.又∵α<β,故知-2<α-β<0.4.某厂技术科组织工人参加某项技能测试,某职工参加完测试后对自己的成绩进行了如下估计:理论考试成绩x 超过85分,技能操作成绩y 不低于90分,答辩面试成绩z 高于95分,用不等式组表示为( )A.⎩⎪⎨⎪⎧ x >85y ≥90z ≥95B.⎩⎪⎨⎪⎧ x ≥85y >90z >95C.⎩⎪⎨⎪⎧ x >85y ≥90z >95D.⎩⎪⎨⎪⎧x ≥85y >90z ≥95 解析:选C x 超过85分表示为x >85,y 不低于90分表示为y ≥90,z 高于95分,表示为z >95,故选C.5.已知|a |<1,则11+a与1-a 的大小关系为________. 解析:由|a |<1,得-1<a <1.∴1+a >0,1-a >0.即11+a 1-a =11-a 2∵0<1-a 2≤1,∴11-a 2≥1, ∴11+a≥1-a . 答案:11+a ≥1-a 6.设a ,b 为正实数,有下列命题:①若a 2-b 2=1,则a -b <1;②若1b -1a=1,则a -b <1; ③若|a -b |=1,则|a -b |<1;④若|a 3-b 3|=1,则|a -b |<1.其中正确的命题为________(写出所有正确命题的序号).解析:对于①,由题意a ,b 为正实数,则a 2-b 2=1⇒a -b =1a +b⇒a -b >0⇒a >b >0,故a +b >a -b >0.若a -b ≥1,则1a +b≥1⇒a +b ≤1≤a -b ,这与a +b >a -b >0矛盾,故a -b <1成立.对于②,取特殊值,a =3,b =34,则a -b >1. 对于③,取特殊值,a =9,b =4时,|a -b |>1.对于④,∵|a 3-b 3|=1,a >0,b >0,∴a ≠b ,不妨设a >b >0.∴a 2+ab +b 2>a 2-2ab +b 2>0,∴(a -b )(a 2+ab +b 2)>(a -b )(a -b )2.即a 3-b 3>(a -b )3>0,∴1=|a 3-b 3|>(a -b )3>0,∴0<a -b <1,即|a -b |<1.因此正确.答案:①④7.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解:因为x -y =a 3-b -a 2b +a =a 2(a -b )+a -b =(a -b )(a 2+1), 所以当a >b 时,x -y >0,所以x >y ;当a =b 时,x -y =0,所以x =y ;当a <b 时,x -y <0,所以x <y .8.已知x ,y 为正实数,且1≤lg(xy )≤2,3≤lg x y ≤4,求lg(x 4y 2)的取值范围.解:由题意,设a =lg x ,b =lg y ,∴lg(xy )=a +b ,lg x y =a -b ,lg(x 4y 2)=4a +2b .设4a +2b =m (a +b )+n (a -b ),∴⎩⎪⎨⎪⎧ m +n =4,m -n =2,解得⎩⎪⎨⎪⎧m =3,n =1. 又∵3≤3(a +b )≤6,3≤a -b ≤4,∴6≤4a +2b ≤10,∴lg(x 4y 2)的取值范围为[6,10].。
人教版必修5第三章第一节5.3.1不等关系与不等式3
1 1 解析:∵ < <0,∴a<0,b<0. a b ∴a+b<0,ab>0,∴a+b<ab,①正确. 1 1 1 1 b-a 由 < <0,得 - = <0. a b a b ab ∵ab>0,∴b-a<0,即 b<a,∴③错误. 由 b<a<0,知|b|>|a|,∴②错误.
b a b2+a2-2ab a-b2 由 + -2= = , ab ab a b
【思路启迪】 可利用不等式的性质判断一个命题为真命 题,要说明一个命题为假,可通过举反例说明.
【解】
(1)因未知 c 的正负或是否为零,无法确定 ac 与
bc 的大小,所以是假命题. (2)因为 c2≥0,所以只有 c≠0 时才能正确.c=0 时,ac2 =bc2,所以是假命题. 变式:若 ac2>bc2,则 a>b,命题是真命题. (3)a<b,a<0⇒a2>ab;a<b,b<0⇒ab>b2,命题的真命题. 1 1 (4)由性质定理 a<b<0⇒ > ,命题是真命题. a b
(3)乘法单调性: a>b,c>0⇒ a>b,c<0⇒ a>b>0,c>d>0⇒ a>b>0(n∈N*)⇒an>bn; a>b>0(n∈N ,n≥2)⇒ a> b. 双向性:a>b⇔ .
*
; ; ;
n
n
问题探究 1:两个不同向不等式的两边可以分别相减或相 除吗?
提示:不可以.两个不同向不等式的两边不能分别相减, 也不能分别相除,在需要求差或求商时,可利用不等式的性质 转化为同向不等式相加或相乘.
人教A版高中数学必修五3.1.不等关系与不等式 教学设计
人教版新课标普通高中◎数学⑤必修第三章不等式概述不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容.建立不等观念,处理不等关系与处理等量问题是同样重要的.根据课程标准,在本章中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的内在联系.1.内容与课程学习目标本章主要学习描述不等关系的数学方法,一元二次不等式的解法及其应用,线性规划问题,基本不等式及其应用等,通过学习,要使学生达到以下目标:(1)通过具体情境,感受在现实世界和日常生活中存在着大量的数量关系,了解不等式(组)的实际背景.(2)经历从实际情境中抽象出一元二次不等式模型的过程;通过函数图象了解一元二次不等式与相应函数、方程的联系;会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图.(3)从实际情境中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)探索基本不等式的证明过程;会用基本不等式解决简单最大(小)值问题.2.教学要求(1)基本要求①了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景;理解不等式(组)对于刻划不等关系的意义和价值;会用不等式(组)表示实际问题中的不等关系,能用不等式(组)研究含有不等关系的实际问题.②理解并掌握不等式的基本性质;了解从实际情境中抽象出一元二次不等式模型的过程.③理解一元二次不等式的概念;通过图象,理解并掌握一元二次不等式、二次函数及一元二次方程之间的关系.④理解并掌握解一元二次不等式的过程;会求一元二次不等式解集;掌握求解一元二次不等式的程序框图及隐含的算法思想,会设计求解的过程.⑤了解从实际情境中抽象出二元一次不等式(组)模型的过程;理解二元一次不等式(组)、二元一次不等式(组)的解集的概念;了解二元一次不等式的几何意义,理解(区域)边界的概念及实线、虚线边界的含义;会用二元一次不等式(组)表示平面区域,能画出给定的不等式(组)表示的平面区域.1教师备课系统──多媒体教案2 ⑥了解线性约束条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解的概念;掌握简单的二元线性规划问题的解法.⑦了解基本不等式的代数背景、几何背景以及它的证明过程;理解算术平均数,几何平均数的概念;会用基本不等式解决简单的最大(小)值的问题;通过基本不等式的实际应用,感受数学的应用价值.(2)发展要求①体会不等式的基本性质在不等式证明中所起的作用.②会从实际情景中抽象出一些简单的二元线性规划问题并加以解决.(3)说明①不等式的有关内容将在选修4-5中作进一步讨论.②淡化解不等式的技巧性要求,突出不等式的实际背景及其应用.③突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形.3. 教学内容及课时安排建议3.1不等式与不等关系(约2课时)3.2一元二次不等式及其解法(约2课时)3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域(约2课时)3.3.2简单的线性规划问题(约2课时)3.4基本不等式:2ba ab +≤(约2课时)人教版新课标普通高中◎数学⑤ 必修33.1 不等关系与不等式教案 A第1课时教学目标一、知识与技能通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质.二、过程与方法通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法.三、情感、态度与价值观通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯. 教学重点和难点教学重点:用不等式(组)表示实际问题的不等关系;并用不等式(组)研究含有不等关系的问题;理解不等式(组)对于刻画不等关系的意义和价值.教学难点:用不等式(组)正确表示出不等关系.教学关键:将实际问题的不等关系转化为数学中不等式问题.教学突破方法:通过分析实践、自主探究、合作交流等一系列的寻求问题解决方法的活动,讨论解决方法.教法与学法导航教学方法:观察法、探究法、尝试指导法、讨论法.学习方法:从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.教学准备教师准备:多媒体、黑板、教材.学生准备:直尺、教材.教学过程一、创设情境,导入新课在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.如两点之间线段最短、三角形两边之和大于第三边,等等.人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系.在数学中,我们用不等式来表示不等关系.下面我们首先来看如何利用不等式来表示不等关系.二、主题探究,合作交流1. 用不等式表示不等关系引例1:限速40km /h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是40v .教师备课系统──多媒体教案4引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示.3.2,5.20000≥≥p f问题1:设点A 与平面α的距离为d ,B 为平面α上的任意一点,则||d AB ≤. 问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本. 据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯ 万元,那么不等关系“销售的总收入不低于20万元”可以表示为不等式2.5(80.2)200.1x x --⨯≥. 问题3:某钢铁厂要把长度为4 000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍. 怎样写出满足所有上述所有不等关系的不等式呢?解:假设截得500 mm 的钢管 x 根,截得600mm 的钢管y 根.根据题意,应有如下的不等关系:(1)截得两种钢管的总长度不超过4 000mm ;(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍;(3)截得两种钢管的数量都不能为负.要同时满足上述的三个不等关系,可以用下面的不等式组来表示:5006004000300.x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩,,, 三、拓展创新,应用提高1. 试举几个现实生活中与不等式有关的例子.2. 教材第74页的练习 第1、2题.四、小结用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.五、课堂作业教材第75页习题 3.1A 组 第4、5题.人教版新课标普通高中◎数学⑤ 必修5第2课时教学目标一、知识与技能掌握不等式的基本性质,会用不等式的性质证明简单的不等式.二、过程与方法通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法.三、情感、态度与价值观通过讲练结合,培养学生转化的数学思想和逻辑推理能力.教学重点和难点教学重点:掌握不等式的性质和利用不等式的性质证明简单的不等式.教学难点:利用不等式的性质证明简单的不等式.教学关键:学生会用不等式的性质证明简单的不等式和比较两个数的大小.教学突破方法:通过问题解决情景的设置、投影错例展示的方式,解决学生对不等式的理解.教法与学法导航教学方法:采用探究法,遵循从具体到抽象的原则.学习方法:通过观察、分析、讨论,引导学生归纳小结出不等式的基本性质,设计较典型的问题,总结解题的规律.教学准备教师准备:多媒体、黑板、教材.学生准备:直尺、教材.教学过程一、创设情境,导入新课关于不等式的几个基本事实0;0;0.a b a b a b a b a b a b >⇔->⎧⎪=⇔-=⎨<⇔-<⎪⎩在初中,我们已经学习过不等式的一些基本性质,请同学们回忆初中不等式的的基本性质.1. 不等式的两边同时加上或减去同一个数,不等号的方向不改变,即若a b a c b c >⇒±>±;2. 不等式的两边同时乘以或除以同一个正数,不等号的方向不改变,即若,0a b c ac bc >>⇒>;3. 不等式的两边同时乘以或除以同一个负数,不等号的方向改变,即若,0a b c ac bc ><⇒<.二、主题探究,合作交流1. 不等式的基本性质教师备课系统──多媒体教案6 师:同学们能证明以上不等式的基本性质吗?证明:(1)()()0a cbc a b+-+=->,∴a c b c+>+;(2)()()0>-=---bacbca,∴cbca->-.实际上,我们还有,a b b c a c>>⇒>.(证明:∵a>b,b>c,∴a-b>0,b-c>0.)根据两个正数的和仍是正数,得(a-b)+(b-c)>0,即a-c>0,∴a>c.于是,我们就得到了不等式的基本性质:(1)abba<⇔>;(2),a b b c a c>>⇒>;(3)a b a c b c>⇒+>+;(4),0a b c ac bc>>⇒>;,0a b c ac bc><⇒<.例1已知0,0,a b c>><求证c ca b>.证明:因为0a b>>,所以ab>0,1ab>.于是11a bab ab⨯>⨯,即11b a>.由c<0 ,得c ca b>.例2比较(a+3)(a-5)与(a+2)(a-4)的大小.分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要).根据实数运算的符号法则来得出两个代数式的大小.比较两个实数大小的问题转化为实数运算符号问题.解:由题意可知:(a+3)(a-5)-(a+2)(a-4)=(a2-2a-15)-(a2-2a-8)=-7<0∴(a+3)(a-5)<(a+2)(a-4)2. 探索研究思考:利用上述不等式的性质,证明不等式的下列性质:(5)dbcadcba+>+⇒>>,;(6)bdacdcba>⇒>>>>0,0;人教版新课标普通高中◎数学⑤ 必修7(7))2,(0≥∈>⇒>>n N n b a b a n n ;(8))2,(0≥∈>⇒>>n N n b a b a n n .证明:(5)∵ a >b , ∴ a +c >b +c . ①∵ c >d , ∴ b +c >b +d . ②由①②得 a +c >b +d .(6)bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,.(7)同学们自己证明.(8)反证法)假设n n b a ≤,则:a b a b <⇒<=⇒=这都与b a >矛盾, ∴n n b a >.三、知识巩固,练习提高例3 已知x ≠0, 比较22)1(+x 与124++x x 的大小.解:(取差)22)1(+x -)1(24++x x22424112x x x x x =---++=.∵0≠x , ∴02>x . 从而22)1(+x >124++x x .例4 已知a >b >0,c <d <0,则ba -c 与ab -d 的大小关系为________.解析:b a -c -ab -d =b 2-bd -a 2+ac (a -c )(b -d )=(b +a )(b -a )-(bd -ac)(a -c )(b -d ).因为a >b >0,c <d <0,所以a -c >0,b -d >0,b -a <0,又-c >-d >0,则有-ac >-bd ,即ac <bd ,则bd -ac >0,所以(b +a )(b -a )-(bd -ac )<0,所以b a -c -a b -d =(b +a )(b -a )-(bd -ac )(a -c )(b -d )<0,即b a -c <ab -d ..教师备课系统──多媒体教案8 答案:ba-c<ab-d.课堂练习:教材第74页的练习第3题.四、小结本节课学习了不等式的性质,并用不等式的性质证明了一些简单的不等式,还研究了如何比较两个实数(代数式)的大小——作差法,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n个因式之积或完全平方式或常数的形式;第二步:判断差值与零的大小关系,必要时须进行讨论;第三步:得出结论.五、课堂作业教材第75页习题3.1 A组第2、3题;B组第1题.教案 B第1课时教学目标1.在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容;利用数轴回忆实数的基本理论并能用实数的基本理论来比较两个代数式的大小,及用实数的基本理论来证明不等式的一些性质.2.通过回忆与复习学生所熟悉的等式性质类比得出不等式的一些基本性质.并在了解不等式一些基本性质的基础之上,掌握作差比较法判断两实数或代数式大小,利用它们来证明一些简单的不等式.3.通过富有实际意义问题的解决,激发学生的探究精神和严肃认真和科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学生的学习兴趣.教学重点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题;理解不等式(组)对于刻画不等关系的意义和价值及不等式的三条基本性质.教学难点用不等式或不等式组准确地表示出不等关系,作差比较法判断两实数或代数式大小.教学过程一、导入新课章头图是一幅山峦重叠起伏的壮观画面,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.二、提出问题1.回忆初中学过的不等式,让学生说出“不等关系”与不等式的异同,怎样利用人教版新课标普通高中◎数学⑤ 必修 9不等式研究及表示不等关系?2. 在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系,你能举出一些实际例子吗?三、应用示例例1 某汽车公司由于发展的需要需购进一批汽车,计划使用不超过1 000万元的资金购买单价分别为40万元、90万元的A 型汽车和B 型汽车.根据需要,A 型汽车至少买5辆,B 型汽车至少买6辆,写出满足上述所有不等关系的不等式.解:设购买A 型汽车和B 型汽车分别为x 辆、y 辆,则40901000,5,6,N ,x y x y x y *+≤⎧⎪≥⎨≥⎪∈⎩,,即. 49100,5,6,N .x y x y x y *+≤⎧⎪≥⎨≥⎪∈⎩, 例2.某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种,按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍.怎样写出满足上述所有不等关系的不等式呢?解:假设截得的500mm 钢管x 根,截得的600mm 钢管y 根.根据题意,应有如下的不等关系:5006004000,3,,.x y x y x N y N +≤⎧⎪≥⎪⎨∈⎪⎪∈⎩说明:关键是找出题目中的限制条件,利用限制条件列出不等关系.四、小结上面的例子表明,我们可以用不等式(组)来刻画不等关系.表示不等关系的式子叫做不等式,常用(<>≤≥≠、、、、)表示不等关系. 老师进一步画龙点睛,指出不等式是研究不等关系的重要数学工具.五、练习教材第74页 练习第 1、2题.六、提出新问题怎样比较两个实数的大小?七、作业教材第75页习题3.1 A 组第4、5题; B 组第1、2题.第2课时教学目标1.在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容;利用数轴回忆实数的基本理论并能用实数的基本理论来比较两个代数式的大小,教师备课系统──多媒体教案10及用实数的基本理论来证明不等式的一些性质.2.通过回忆与复习学生所熟悉的等式性质类比得出不等式的一些基本性质.并在了解不等式一些基本性质的基础之上,掌握作差比较法判断两实数或代数式大小,利用它们来证明一些简单的不等式.3.通过富有实际意义问题的解决,激发学生的探究精神和严肃认真和科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学生的学习兴趣. 教学重点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值及不等式的三条基本性质. 教学难点用不等式或不等式组准确地表示出不等关系,作差比较法判断两实数或代数式大小. 教学过程一、提出问题不等式是研究不等关系的重要数学工具,我们都了解哪些不等式的性质呢?1.请学生回答等式有哪些性质?2.不等式有哪些基本性质?这些性质都有何作用?二、探究不等式的性质性质1:如果b a >,那么a b <;如果a b <,那么b a >(对称性).证:∵b a >,∴0>-b a ,由正数的相反数是负数.0)(<--b a ,0<-a b ,a b <.性质2:如果b a >,c b >,那么c a >(传递性).证:∵b a >,c b >,∴0>-b a ,0>-c b .∵两个正数的和仍是正数,∴+-)(b a 0)(>-c b .∵0>-c a ,∴c a >.由对称性,性质2可以表示为如果b c <且a b <那么a c <.性质3:如果b a >,那么c b c a +>+(加法单调性)反之亦然.证:∵0)()(>-=+-+b a c b c a ,∴c b c a +>+.从而可得移项法则:b c a b c b b a c b a ->⇒-+>-++⇒>+)()(.性质4:如果b a >且d c >,那么d b c a +>+(相加法则).证:d b c a d b c b d c c b c a b a +>+⇒⎭⎬⎫+>+⇒>+>+⇒>. 推论:如果b a >且d c <,那么d b c a ->-(相减法则).人教版新课标普通高中◎数学⑤ 必修 11证:∵d c < ∴d c ->-;d b c a d c ba ->-⇒⎩⎨⎧->->.或证:)()()()(d c b a d b c a ---=---.d c ba <> ⇒⎭⎬⎫<-∴>-∴00d c b a 上式>0.性质5:如果b a >且0>c ,那么bc ac >.如果b a >且0<c ,那么bc ac <(乘法单调性).证:c b a bc ac )(-=-.∵b a >,∴0>-b a .根据同号相乘得正,异号相乘得负,得:0>c 时0)(>-c b a ,即:bc ac >;0<c 时0)(<-c b a ,即:bc ac <.性质6:如果0>>b a 且0>>d c ,那么bd ac >(相乘法则).证:bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,.推论:如果0>>b a 且d c <<0,那么d bc a>(相除法则).证:∵0>>c d ∴⇒⎪⎭⎪⎬⎫>>>>0011b a dcd bc a >.性质7:如果0>>b a , 那么n n b a > (N 1)n n ∈>且.性质8:如果0>>b a ,那么n n b a > (N 1)n n ∈>且.证:(反证法)假设n n b a ≤,则:a b a b <=这都与b a >矛盾, ∴nn b a >.三、应用实例例1 比较大小教师备课系统──多媒体教案12 ①已知0>>ba,0<c求证:bcac>;解:∵0a b>>,∴ab>0,1ab>.∴11a bab ab⨯>⨯,即11b a>.∵c<0 ,∴c ca b>.②231-和10.解:∵23231+=-,∵02524562)10()23(22<-=-=-+.∴231-<10.例2 比较)5)(3(-+aa与)4)(2(-+aa的大小.解:(取差))5)(3(-+aa-)4)(2(-+aa7)82()152(22<-=-----=aaaa.∴)5)(3(-+aa<)4)(2(-+aa.例3 已知x≠0, 比较22)1(+x与124++xx的大小.解:(取差)22)1(+x-)1(24++xx22424112xxxxx=---++=.∵0≠x,∴02>x.从而22)1(+x>124++xx.小结:比较大小的步骤:“作差-变形-定号-结论”.例4 已知2,x>比较311x x+与266x+的大小.人教版新课标普通高中◎数学⑤ 必修 13解:3232211(66)33116x x x x x x x +-+=--+- 2(3)(32)(3)x x x x =-+-+-=(3)(2)(1)x x x --------------------(*)(1)当3x >时,(*)式0>,所以 311x x +>266x +;(2)当3x =时,(*)式0=,所以 311x x +=266x +;(3)当23x <<时,(*)式0<,所以 311x x +<266x +. 说明:实数比较大小的问题一般可用作差比较法,其中变形常用因式分解、配方、通分等方法才能定号.四、课堂练习1.已知0>>b a ,0<<d c ,0<e ,求证:db ec a e ->-. 证明:⇒⎪⎭⎪⎬⎫<-<-⇒>-<-⇒⎭⎬⎫<<>>011000e d b c a d b c a d c b a d b e c a e ->-. 2.||||,0b a ab >>, 比较a 1与b 1的大小. 解:a 1-b 1aba b -=, 当0,0>>b a 时,∵||||b a >即b a >,0<-a b ,0>ab , ∴0<-ab a b ,∴a 1<b1. 当0,0<<b a 时∵||||b a >即b a <,0>-a b ,0>ab , ∴0>-ab a b ,∴a 1>b1. 3.若0,>b a , 求证:a b ab >⇔>1. 解:01>-=-aa b a b . ∵0>a , ∴0>-a b ,∴b a <.0>-⇒>a b a b .∵0>a ,∴01>-=-a b a a b , ∴1>a b .教师备课系统──多媒体教案14 五、课堂小结1.不等式的性质,并用不等式的性质证明了一些简单的不等式;2.如何比较两个实数(代数式)的大小——作差法.六、布置作业教材第75页习题3.1 A组第2、3题;B组第2、3题.。
人教新课标版数学高二-数学必修5第三章《不等式》知识整合
数学·必修5(人教A版)一、本章概述不等关系是中学数学中最基本、最广泛、最普遍的关系.不等关系起源于实数的性质,产生了实数的大小关系、简单不等式、不等式的基本性质,如果赋予不等式中变量以特定的值、特定的关系,又产生了重要不等式、基本不等式等.不等式是永恒的吗?显然不是,由此又产生了解不等式与证明不等式两个极为重要的问题.解不等式即寻求不等式成立时变量应满足的范围或条件,不同类型的不等式又有不同的解法.不等式证明则是推理性问题或探索性问题.推理性即在特定条件下,阐述论证过程,揭示内在规律,基本方法有比较法、综合法、分析法;探索性问题大多是与自然数n有关的证明问题,常采用观察—归纳—猜想—证明的思路,以数学归纳法完成证明.另外,不等式的证明方法还有换元法、放缩法、反证法、构造法等.不等式中常见的基本思想方法有等价转化、分类讨论、数形结合、函数与方程.不等式的知识渗透在数学中的各个分支,相互之间有着千丝万缕的联系,因此不等式又可作为一个工具来解决数学中的其他问题,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,以及三角、数列、立体几何、解析几何中的最大值、最小值问题,这些问题无一不与不等式有着密切的联系.不等式还可以解决现实世界中反映出来的数学问题,许多问题最终归结为不等式的求解或证明.解决这类综合问题的一般思维方法是:引参,建立不等关系,解某一主元的不等式(实为分离变元),适时活用基本不等式.其中建立不等关系的常用途径是:①根据题设条件;②判别式法;③基本不等式法;④依据某些变量(如sin x,cos x)的有界性等.不等式的应用体现了一定的综合性、灵活多样性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用不等式解应用题的基本步骤:①审题;②建立不等式模型;③解决数学问题;④作答.本章中,不等式的证明是难点,解不等式是重点,含参数的不等式综合题是高考命题的热点.掌握不等式的意义和实数的符号法则,是分散难点和解决难点的关键.如能熟悉不等式的性质,认清基本不等式的特点,灵活运用比较、分析、综合等基本方法,认真进行思考和探索,是不难找到解题途径的.要善于进行转化变形,即化无理为有理、化分式为整式、化高次为低次、化绝对值为非绝对值等等,以突破解证不等式这一难关.通过本章的学习达到以下基本目标:1.会用不等式(组)表示不等关系;2.熟悉不等式的性质,能应用不等式的性质求解“范围问题”,会用作差法比较大小;3.会解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函数的关系;4.会作二元一次不等式(组)表示的平面区域,会解简单的线性规划问题;5.明确基本不等式及其成立条件,会灵活应用基本不等式证明或求解最值.二、主干知识1.不等式与不等关系.不等式的性质刻画了在一定条件下两个量的不等关系.不等式的性质包括“单向性”和“双向性”.单向性主要用于证明不等式,双向性是解不等式的基础.因为解不等式要求的是同解变形.要正确理解不等式的性质,必须先弄清每一性质的条件和结论、注意条件和结论的放宽和加强,以及条件与结论之间的相互联系.双向性主要有:(1)不等式的基本性质:⎩⎪⎨⎪⎧ a >b ⇔a -b >0,a =b ⇔a -b =0,a <b ⇔a -b <0,这是比较两个实数的大小的依据;(2)a >b ⇔b <a ;(3)a >b ⇔a +c >b +c .单向性主要有:(1)a >b ,b >c ⇒a >c ;(2)a >b ,c >d ⇒a +c >b +d ;(3)a >b ,c >0(c < 0)⇒ac >bc (ac <bc );(4)a >b >0,c >d >0⇒ac >bd ;(5)a >b >0,0<c <d ⇒a c >b d ;(6)a >b >0,m ∈N *⇒a m >b m ;(7)a >b >0,n ∈N *,n >1⇒n a >n b .特别提醒:(1)同向不等式可以相加,异向不等式可以相减.即: 若a >b ,c >d ,则a +c >b +d ;若a >b ,c <d ,则a -c >b -d .但异向不等式不可以相加,同向不等式不可以相减.(2)左右同正不等式,同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.即:若a >b >0,c >d >0,则ac >bd ;若a >b >0,0<c <d ,则a c >b d .(3)左右同正不等式,两边可以同时乘方或开方.即:若a >b >0,n ∈N *,n >1,则a n >b n 或n a >nb .(4)若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b .如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论.2.一元二次不等式及其解法解一元二次不等式常用数形结合法,基本步骤如下:①将一元二次不等式化成ax 2+bx +c >0的形式,②计算判别式并求出相应的一元二次方程的实数解,③画出相应的二次函数的图象,④根据图象和不等式的方向写出一元二次不等式的解集.设相应二次函数的图象开口向上,并与x 轴相交,则有口诀:大于取两边,小于取中间.解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键”.要注意对字母参数的讨论,如果遇到下述情况则一般需要讨论:(1)在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析Δ),比较两个根的大小,设根为x 1,x 2,要分x 1>x 2、x 1=x 2、x 1<x 2讨论.(2)不等式两端乘或除一个含参数的式子时,则需讨论这个式子的正负.(3)求解过程中,需用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.注意解完之后要写上:“综上,原不等式的解集是…”.若按参数讨论,最后应按参数取值分别说明其解集;若按未知数讨论,最后应求并集.一元二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解集:设相应的一元二次方程ax2+bx+c=0(a>0)的两根为x1、x2且x1≤x2,Δ=b2-4ac,则不等式的解的各种情况如下表所示:二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=(a>0)的根ax2+bx+c>0(a>0)的解集ax2+bx+c<0(a>0)的解集Δ>0有两相异实根x1,x2(x1<x2){x|x<x1,或x>x2}{x|x1<x<x2}Δ=0有两相等实根x1=x2=-b2a{x|x≠-b2a}∅Δ<0无实根R∅特别提醒:(1)解题中要充分利用一元二次不等式的解集是实数集R和空集∅的几何意义,准确把握一元二次不等式的解集与相应一元二次方程的根及二次函数图象之间的内在联系.(2)解不等式的关键在于保证变形转化的等价性.简单分式不等式可化为整式不等式求解:先通过移项、通分等变形手段将原不等式化为右边为0的形式,然后通过符号法则转化为整式不等式求解.转化为求不等式组的解时,应注意区别“且”、“或”,涉及最后几个不等式的解集是“交”,还是“并”.注意:不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(3)在解决实际问题时,先要从实际问题中抽象出数学模型,并寻找出该数学模型中已知量与未知量,再建立数学关系式,然后用适当的方法解决问题.(4)解含参数的不等式是高中数学中的一类较为重要的题型,解决这类问题的难点在于对参数进行恰当分类.分类相当于增加了题设条件,便于将问题分而治之.在解题过程中,经常会出现分类难以入手或者分类不完全的现象.强化分类意识,选择恰当的解题切入点,掌握一些基本的分类方法,善于借助直观图形找出分类的界值是解决此类问题的关键.3.二元一次不等式(组)与简单的线性规划问题.(1)确定二元一次不等式表示的区域的步骤:①在平面直角坐标系中作出直线Ax+By+C=0;②在直线的一侧任取一点P(x0,y0),当C≠0时,常把原点作为特殊点;③将P(x0,y0)代入Ax+By+C求值:若Ax0+By0+C>0,则包含点P的半平面为不等式Ax+By+C>0所表示的平面区域,不包含点P的半平面为不等式Ax+By+C <0所表示的平面区域.也可采用:把二元一次不等式改写成y>kx +b或y<kx+b的形式,前者表示直线的上方区域,后者表示直线的下方区域.(2)线性规划的有关概念:①满足关于x,y的一次不等式或一次方程的条件叫线性约束条件;②关于变量x,y的解析式叫目标函数,关于变量x,y一次式的目标函数叫线性目标函数;③求目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题;④满足线性约束条件的解(x,y)叫可行解,由所有可行解组成的集合叫做可行域;⑤使目标函数取得最大值或最小值的可行解叫做最优解.(3)解简单线性规划问题的基本步骤:①根据实际问题的约束条件列出不等式;②作出可行域,写出目标函数;③确定目标函数的最优位置,从而获得最优解.具体来讲有以下5步:a.画图:画出线性约束条件所表示的平面区域即可行域;b.定线:令z=0,得一过原点的直线;c.平移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;d.求最优解:通过解方程组求出最优解;e.求最值:求出线性目标函数的最大或最小值.特别提醒:(1)画不等式Ax+By+C≥0所表示的平面区域时,区域包括边界线,因此,将边界直线画成实线;无等号时区域不包括边界线,用虚线表示不包含直线l.(2)Ax+By+C>0表示在直线Ax+By+C=0(B>0)的上方,Ax +By+C<0表示在直线Ax+By+C=0(B>0)的下方.(3)设点P(x1,y1),Q(x2,y2),直线l:Ax+By+C=0,若Ax1+By1+C与Ax2+By2+C同号,则P,Q在直线l的同侧,异号则在直线l的异侧.(4)在求解线性规划问题时要注意:①将目标函数改成斜截式方程;②寻找最优解时注意作图规范.4.基本不等式ab≤a+b 2.(1)基本不等式:设a,b是任意两个正数,那么ab≤a+b2.当且仅当a=b时,等号成立.①基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.②如果把a+b2看做是正数a,b的等差中项,ab看做是正数a,b的等比中项,那么基本不等式也可以叙述为:两个正数的等差中项不小于它们的等比中项.③基本不等式ab≤a+b2几何意义是“半径不小于半弦”.(2)对基本不等式的理解:①基本不等式的左式为和结构,右式为积的形式,该不等式表明两正数a ,b 的和与两正数a ,b 的积之间的大小关系,运用该不等式可作和与积之间的不等变换.②“当且仅当a =b 时,等号成立”的含义:a .当a =b 时等号成立的含意是:a =b ⇒a +b 2=ab ; b .仅当a =b 时等号成立的含意是:a +b 2=ab ⇒a =b ; 综合起来,其含意是:a +b 2=ab ⇔a =b . (3)设a ,b ∈R ,不等式a 2+b 2≥2ab ⇔ab ≤a 2+b 22⇔ab ≤⎝ ⎛⎭⎪⎫a +b 22. (4)基本不等式的几种变式:设a >0,b >0,则a +1a ≥2,b a +a b ≥2,a 2b ≥2a -b .(5)常用的几个不等式:① a 2+b 22≥a +b 2≥ab ≥21a +1b(根据目标不等式左右的运算结构选用);②设a ,b ,c ∈R ,则a 2+b 2+c 2≥ab +bc +ca (当且仅当a =b =c 时,取等号);③真分数的性质:若a >b >0,m >0,则b a <b +m a +m(糖水的浓度问题).特别提醒:(1)用基本不等式求函数的最值时,要特别注意“一正、二定、三相等,和定积最大,积定和最小”这17字方针.常用的方法为:拆、凑、平方.(2)用基本不等式证明不等式时,应重视对所证不等式的分析和化归,应观察不等式左右两边的结构,注意识别轮换对称式,此时可先证一部分,其他同理可证,然后再累加或累乘.题型1 恒成立问题(1)若不等式f (x )>A 在区间D 上恒成立,则等价于在区间D 上f (x )min >A ;(2)若不等式f (x )<B 在区间D 上恒成立,则等价于在区间D 上f (x )max <B .设函数f (x )=x ,g (x ) =x +a (a >0),若x ∈[1,4]时不等式⎪⎪⎪⎪⎪⎪f (x )-ag (x )f (x )≤1恒成立,求a 的取值范围.解析:由⎪⎪⎪⎪⎪⎪⎪⎪f (x )-ag (x )f (x )≤1⇔-1≤f (x )-ag (x )f (x )≤1,得0≤ag (x )f (x )≤2, 即ax +a 2x ≤2在x ∈[1,4]上恒成立,也就是ax +a 2≤2x 在x ∈[1,4]上恒成立.令t =x ,则t ≥0,且x =t 2,由此可得 at 2-2t +a 2≤0在t ∈[1,2]上恒成立,设g (t ) = at 2-2t +a 2,则只需⎩⎪⎨⎪⎧g (1)≤0,g (2)≤0⇒⎩⎨⎧a -2+a 2≤0,4a -4+a 2≤0,解得 0<a ≤22-2,即满足题意的a 的取值范围是(0,22-2].题型2 能成立问题(1)若在区间D 上存在实数x 使不等式f (x )>A 成立,则等价于在区间D 上的f (x )max >A ;(2)若在区间D 上存在实数x 使不等式f (x )<B 成立,则等价于在区间D 上的f (x )min <B .若存在x ∈R ,使不等式|x -4|+|x -3|<a 成立,求实数a的取值范围.解析:设f (x )=|x -4|+|x -3|,依题意f (x )的最小值<a .又f (x )=|x -4|+|x -3|≥|(x -4)-(x -3)|=1(等号成立的条件是3≤x ≤4).故f (x )的最小值为1,∴a >1.即实数a 的取值范围是(1,+∞).题型3 恰成立问题(1)若不等式f (x )>A 在区间D 上恰成立,则等价于不等式f (x )>A 的解集为D ;(2)若不等式f (x )<B 在区间D 上恰成立,则等价于不等式f (x )<B 的解集为D .已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,求实数a 的取值集合.解析:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,∴Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件).再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,⇒x 2-(a +4)x +4=0有解,得:Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0.综上即知a =-8或a =0时,y min =1,故所求实数a 的取值集合是{-8,0}.题型4 利用基本不等式求最值基本不等式通常用来求最值问题:一般用a +b ≥2ab (a >0,b>0)解“定积求和,和最小”问题,用ab ≤⎝ ⎛⎭⎪⎪⎫a +b 22求“定和求积,积最大”问题,一定要注意适用的范围和条件:“一正、二定、三相等”,特别是利用拆项、添项、配凑、分离变量、减少变元等方法,构造定值条件的方法,和对等号能否成立的验证.若等号不能取到,则应用函数单调性来求最值,还要注意运用基本不等式解决实际问题.已知0<x <2,求函数y =x (8-3x )的最大值.解析:∵0<x <2,∴0<3x <6,8-3x >0, ∴y =x (8-3x )=13·3x ·(8-3x )≤132+-⎛⎫⎪⎝⎭3x 83x 2=163, 当且仅当3x =8-3x ,即x =43时,取等号,∴当x =43时,y =x (8-3x )有最大值为163.设函数f (x )=x +2x +1,x ∈[0,+∞).求函数f (x )的最小值.解析:f (x )=x +2x +1=(x +1)+2x +1-1,∵x ∈[0,+∞),∴x +1>0,2x +1>0,∴x +1+2x +1≥2 2.当且仅当x +1=2x +1,即x =2-1时,f (x )取最小值. 此时f (x )min =22-1.题型5 简单线性规划问题求目标函数在约束条件下的最优解,一般步骤为:一是寻求约束条件和目标函数,二是作出可行域,三是在可行域内求目标函数的最优解,特别注意目标函数z =ax +by +c 在直线ax +by =0平移过程中变化的规律和图中直线斜率关系.简单的线性规划应用题在现实生活中的广泛应用也是高考的热点.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34解析:不等式组表示的平面区域如图所示:由于直线y =kx +43过定点⎝⎛⎭⎪⎫0,43,因此只有直线过AB 中点时,直线y =kx +43能平分平面区域,因为A (1,1),B (0,4),所以AB 中点M ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73.答案:A题型6 三个二次(二次函数、二次不等式、二次方程)问题 一元二次方程、一元二次不等式与二次函数三者之间形成一个关系密切、互为关联、互为利用的知识体系.将二次函数看作主体,一元二次方程和一元二次不等式分别为二次函数的函数值为零(零点)和不为零的两种情况,一般讨论二次函数主要是将其通过一元二次方程和一元二次不等式来讨论,而讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象揭示解(集)的几何特征.当m 为何值时,方程2x 2+4mx +3m -1=0有两个负根?解析:方程2x 2+4mx +3m -1=0有两个负根,则有⎩⎪⎨⎪⎧Δ=(4m )2-4×2×(3m -1)≥0,-b a =-4m 2=-2m <0,c a =3m -12>0,即⎩⎪⎨⎪⎧m ≤12或m ≥1,m >0,m >13.∴当m ∈⎩⎨⎧⎭⎬⎫m 13<m ≤12或m ≥1时,原方程有两个负根.题型7 不等式与函数的综合问题定义在(-1,1)上的奇函数f (x )在整个定义域上是减函数,且f (1-a )+f (1-a 2)<0,求实数 a 的取值范围.解析:∵f (x )的定义域为(-1,1),∴⎩⎨⎧-1<1-a <1,-1<1-a 2<1,∴⎩⎨⎧0<a <2,-2<a <2且a ≠0,∴0<a <2,①原不等式变形为f (1-a )<-f (1-a 2). 由于f (x )为奇函数,有-f (1-a 2)=f (a 2-1), ∴f (1-a )<f (a 2-1). 又f (x )在(-1,1)上是减函数,∴1-a >a 2-1,解得-2<a <1.② 由①②可得0<a <1, ∴a 的取值范围是(0,1).题型8 求分式函数的最值求函数y =x 4+3x 2+3x 2+1的最小值.解析:y =(x 4+2x 2+1)+(x 2+1)+1x 2+1=(x 2+1)+1x 2+1+1≥2(x 2+1)·1x 2+1+1=3,当且仅当x 2+1=1x 2+1,即x 2+1=1,即x =0时等号成立.。
高中数学人教A版必修5课件 3-1 不等关系与不等式 第15课时《不等关系与不等式》
a>b c>d>0⇒ac>bd
同向
7
可乘方性 a>b>0⇒an>bn(n∈N*,n≥2)
8
可开方性
a>b>0⇒n
n a>
b(n∈N*,n≥2)
同正
【练习 3】 (1)已知 a>b,e>f,c>0.求证:f-ac<e-bc; (2)若 bc-ad≥0,bd>0.求证:a+b b≤c+d d.
证明:证法一:(1)∵a>b,c>0,∴ac>bc,∴-ac<-bc.∵f<e, ∴f-ac<e-bc.
分析:首先分别设出每天派出甲型卡车和乙型卡车的数量,然后
明确问题中的不等关系:(1)甲型卡车的数量不超过 4 辆且为自然数, 乙型卡车的数量不超过 7 辆且为自然数;(2)驾驶员不能超过 9 名;(3) 每天至少要运 360 t 矿石.再用不等式组表示出来即可.
解析:设每天派出甲型卡车 x 辆,乙型卡车 y 辆,则
变 式 探 究 4 若 二 次 函 数 f(x) 的 图 象 关 于 y 轴 对 称 , 且 1≤f(1)≤2,3≤f(2)≤4,求 f(3)的范围.
解析:设 f(x)=ax2+c(a≠0).ff12==a4+a+cc ⇒ca==4ff21-3-3ff12,.
z≥45
x>95 C.y>380
z>45
x≥95 D.y>380
z>45
解析:“不低于”即“≥”,“高于”即“>”,“超过”即 “>”,∴x≥95,y>380,z>45.
答案:D
知识点二 比较两个实数(代数式)大小
作差法比较两实数(代数式)大小
高中数学第三章不等式31不等关系与不等式课件新人教A版必修5
D.5
【解题探究】判断不等关系的真假,要紧扣不等的性
质,应注意条件与结论之间的联系. 【答案】C
【解析】①c 的范围未知,因而判断 ac 与 bc 的大小缺乏 依据,故该结论错误.
②由 ac2>bc2 知 c≠0,则 c2>0,
∴a>b,∴②是正确的.
③a<b, ⇒a2>ab,a<b, ⇒ab>b2,
【答案】M>N
【解析】M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1= a1(a2 - 1) - (a2 - 1) = (a1 - 1)(a2 - 1) , 又 ∵ a1∈(0,1) , a2∈(0,1) , ∴ a1 - 1<0 , a2 - 1<0.∴(a1 - 1)(a2 - 1)>0 , 即 M - N>0.∴M>N.
用不等式表示不等关系
【例1】 某钢铁厂要把长度为4 000 mm的钢管截成 500 mm 和600 mm两种规格,按照生产的要求,600 mm 钢管 的数量不能超过500 mm钢管的3倍.试写出满足上述所有不等 关系的不等式.
【解题探究】应先设出相应变量,找出其中的不等关 系,即①两种钢管的总长度不能超过4 000 mm;②截得600 mm钢管的数量不能超过500 mm钢管数量的3倍;③两种钢管 的数量都不能为负.于是可列不等式组表示上述不等关系.
比较大小要注重分类讨论
【示例】设 x∈R 且 x≠-1,比较1+1 x与 1-x 的大小. 【错解】∵1+1 x-(1-x)=1-1+1-x x2=1+x2 x,而 x2≥0,∴ 当 x>-1 时,x+1>0,1+x2 x≥0,即1+1 x≥1-x; 当 x<-1 时,x+1<0,1+x2 x≤0,即1+1 x≤1-x.
高二数学人教A必修5练习:3.1 不等关系与不等式 Word版含解析
第三章 不等式§3.1 不等关系与不等式 课时目标1.初步学会作差法比较两实数的大小.2.掌握不等式的基本性质,并能运用这些性质解决有关问题.1.比较实数a ,b 的大小(1)文字叙述如果a -b 是正数,那么a >b ;如果a -b 等于0,那么a =b ;如果a -b 是负数,那么a <b ,反之也成立.(2)符号表示a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b .2.常用的不等式的基本性质(1)a >b ⇔b <a (对称性);(2)a >b ,b >c ⇒a >c (传递性);(3)a >b ⇒a +c >b +c (可加性);(4)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;(5)a >b ,c >d ⇒a +c >b +d ;(6)a >b >0,c >d >0⇒ac >bd ;(7)a >b >0,n ∈N ,n ≥2⇒a n >b n ;(8)a >b >0,n ∈N ,n ≥2一、选择题1.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c | 答案 C解析 对A ,若a >0>b ,则1a >0,1b <0,此时1a >1b,∴A 不成立; 对B ,若a =1,b =-2,则a 2<b 2,∴B 不成立;对C ,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立, ∴C 正确;对D ,当c =0时,a |c |=b |c |,∴D 不成立.2.已知a <0,b <-1,则下列不等式成立的是( ) A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b2>a答案 D解析 取a =-2,b =-2,则a b =1,a b 2=-12, ∴a b >a b 2>a . 3.已知a 、b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab 2C.1ab 2<1a 2bD.b a <a b答案 C解析 对于A ,当a <0,b <0时,a 2<b 2不成立;对于B ,当a <0,b >0时,a 2b >0,ab 2<0,a 2b <ab 2不成立;对于C ,∵a <b ,1a 2b 2>0,∴1ab 2<1a 2b; 对于D ,当a =-1,b =1时,b a =a b=-1. 4.若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a答案 C解析 ∵1e<x <1,∴-1<ln x <0. 令t =ln x ,则-1<t <0.∴a -b =t -2t =-t >0,∴a >b .c -a =t 3-t =t (t 2-1)=t (t +1)(t -1),又∵-1<t <0,∴0<t +1<1,-2<t -1<-1,∴c -a >0,∴c >a .∴c >a >b .5.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( )A .b -a >0B .a 3+b 3<0C .a 2-b 2<0D .b +a >0答案 D解析 由a >|b |得-a <b <a ,∴a +b >0,且a -b >0.∴b -a <0,A 错,D 对.可取特值,如a =2,b =-1,a 3+b 3=7>0,故B 错.而a 2-b 2=(a -b )(a +b )>0,∴C 错.6.若a >b >c 且a +b +c =0,则下列不等式中正确的是( )A .ab >acB .ac >bcC .a |b |>c |b |D .a 2>b 2>c 2答案 A解析 由a >b >c 及a +b +c =0知a >0,c <0,又∵a >0,b >c ,∴ab >ac .故选A.二、填空题7.若1≤a ≤5,-1≤b ≤2,则a -b 的取值范围为________.答案 [-1,6]解析 ∵-1≤b ≤2,∴-2≤-b ≤1,又1≤a ≤5,∴-1≤a -b ≤6.8.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是________. 答案 f (x )>g (x )解析 ∵f (x )-g (x )=x 2-2x +2=(x -1)2+1>0,∴f (x )>g (x ).9.若x ∈R ,则x 1+x 2与12的大小关系为________. 答案 x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0, ∴x 1+x 2≤12. 10.设n >1,n ∈N ,A =n -n -1,B =n +1-n ,则A 与B 的大小关系为________. 答案 A >B解析 A =1n +n -1,B =1n +1+n. ∵n +n -1<n +1+n ,并且都为正数,∴A >B .三、解答题11.设a >b >0,试比较a 2-b 2a 2+b 2与a -b a +b的大小. 解 方法一 作差法a 2-b 2a 2+b 2-a -b a +b =(a +b )(a 2-b 2)-(a -b )(a 2+b 2)(a 2+b 2)(a +b )=(a -b )[(a +b )2-(a 2+b 2)](a 2+b 2)(a +b )=2ab (a -b )(a +b )(a 2+b 2)∵a >b >0,∴a +b >0,a -b >0,2ab >0.∴2ab (a -b )(a +b )(a 2+b 2)>0,∴a 2-b 2a 2+b 2>a -b a +b. 方法二 作商法∵a >b >0,∴a 2-b 2a 2+b 2>0,a -b a +b>0. ∴a 2-b 2a 2+b 2a -b a +b=(a +b )2a 2+b 2=a 2+b 2+2ab a 2+b 2=1+2ab a 2+b2>1. ∴a 2-b 2a 2+b 2>a -b a +b. 12.设f (x )=1+log x 3,g (x )=2log x 2,其中x >0且x ≠1,试比较f (x )与g (x )的大小.解 f (x )-g (x )=1+log x 3-2log x 2=log x 3x 4, ①当⎩⎪⎨⎪⎧ 0<x <1,3x 4>1,或⎩⎪⎨⎪⎧ x >1,0<3x 4<1, 即1<x <43时,log x 3x 4<0,∴f (x )<g (x ); ②当3x 4=1,即x =43时,log x 3x 4=0,即f (x )=g (x ); ③当⎩⎪⎨⎪⎧ 0<x <1,0<3x 4<1,或⎩⎪⎨⎪⎧x >1,3x 4>1, 即0<x <1,或x >43时,log x 3x 4>0,即f (x )>g (x ). 综上所述,当1<x <43时,f (x )<g (x );当x =43时,f (x )=g (x ); 当0<x <1,或x >43时,f (x )>g (x ). 能力提升13.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( )A .a 1b 1+a 2b 2B .a 1a 2+b 1b 2C .a 1b 2+a 2b 1 D.12答案 A解析 方法一 特殊值法.令a 1=14,a 2=34,b 1=14,b 2=34, 则a 1b 1+a 2b 2=1016=58,a 1a 2+b 1b 2=616=38, a 1b 2+a 2b 1=616=38, ∵58>12>38,∴最大的数应是a 1b 1+a 2b 2. 方法二 作差法.∵a 1+a 2=1=b 1+b 2且0<a 1<a 2,0<b 1<b 2,∴a 2=1-a 1>a 1,b 2=1-b 1>b 1,∴0<a 1<12,0<b 1<12. 又a 1b 1+a 2b 2=a 1b 1+(1-a 1)(1-b 1)=2a 1b 1+1-a 1-b 1,a 1a 2+b 1b 2=a 1(1-a 1)+b 1(1-b 1)=a 1+b 1-a 21-b 21,a 1b 2+a 2b 1=a 1(1-b 1)+b 1(1-a 1)=a 1+b 1-2a 1b 1,∴(a 1b 2+a 2b 1)-(a 1a 2+b 1b 2)=a 21+b 21-2a 1b 1=(a 1-b 1)2≥0,∴a 1b 2+a 2b 1≥a 1a 2+b 1b 2.∵(a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=4a 1b 1+1-2a 1-2b 1=1-2a 1+2b 1(2a 1-1)=(2a 1-1)(2b 1-1)=4⎝⎛⎭⎫a 1-12⎝⎛⎭⎫b 1-12>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.∵(a 1b 1+a 2b 2)-12=2a 1b 1+12-a 1-b 1 =b 1(2a 1-1)-12(2a 1-1)=(2a 1-1)⎝⎛⎭⎫b 1-12 =2⎝⎛⎭⎫a 1-12⎝⎛⎭⎫b 1-12>0, ∴a 1b 1+a 2b 2>12. 综上可知,最大的数应为a 1b 1+a 2b 2.14.设x ,y ,z ∈R ,试比较5x 2+y 2+z 2与2xy +4x +2z -2的大小.解 ∵5x 2+y 2+z 2-(2xy +4x +2z -2)=4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1=(2x -1)2+(x -y )2+(z -1)2≥0,∴5x 2+y 2+z 2≥2xy +4x +2z -2,当且仅当x =y =12且z =1时取到等号.1.比较两个实数的大小,只要考察它们的差就可以了.a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.2.作差法比较的一般步骤第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“积”;第三步:定号,就是确定是大于0,等于0,还是小于0.(不确定的要分情况讨论)最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.3.不等式的性质是不等式变形的依据,每一步变形都要严格依照性质进行,千万不可想当然.。
人教新课标版数学高二数学必修五练习3-1不等关系与不等式
第三章 不等式3.1 不等关系与不等式双基达标 (限时20分钟)1.某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( ). A.⎩⎪⎨⎪⎧ x ≥95y ≥380z >45B.⎩⎪⎨⎪⎧ x ≥95y >380z ≥45C.⎩⎪⎨⎪⎧ x >95y >380z >45D.⎩⎪⎨⎪⎧x ≥95y >380z >45 解析 “不低于”即≥,“高于”即>,“超过”即“>”,∴x ≥95,y >380,z >45.答案 D2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ).A .a >b >-b >-aB .a >-b >-a >bC .a >-b >b >-aD .a >b >-a >-b 解析 由a +b >0知a >-b ,∴-a <b <0.又b <0,∴-b >0,∴a >-b >b >-a .答案 C3.设x <a <0,则下列不等式一定成立的是( ). A .x 2<ax <a 2B .x 2>ax >a 2C .x 2<a 2<axD .x 2>a 2>ax解析 ∵x <a <0,∴x 2>a 2.∵x 2-ax =x (x -a )>0,∴x 2>ax .又ax -a 2=a (x -a )>0,∴ax >a 2.∴x 2>xa >a 2.答案 B4.若1≤a ≤5,-1≤b ≤2,则a -b 的取值范围为________.解析 ∵-1≤b ≤2,∴-2≤-b ≤1,又1≤a ≤5,∴-1≤a -b ≤6.答案 [-1,6]5.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是________.解析 ∵f (x )-g (x )=x 2-2x +2=(x -1)2+1>0,∴f (x )>g (x ).答案 f (x )>g (x )6.已知-π2≤α<β≤π2,求α+β2,α-β2的取值范围.解 ∵-π2≤α<β≤π2,∴-π4≤α2<π4,-π4<β2≤π4.上面两式相加得:-π2<α+β2<π2.∵-π4<β2≤π4,∴-π4≤-β2<π4,∴-π2≤α-β2<π2.又知α<β,∴α-β<0,故-π2≤α-β2<0.综合提高 (限时25分钟)7.若a >b >c 且a +b +c =0,则下列不等式中正确的是( ). A .ab >ac B .ac >bcC .a |b |>c |b |D .a 2>b 2>c 2解析 由a >b >c 及a +b +c =0知a >0,c <0,又∵a >0,b >c ,∴ab >ac .故选A.答案 A8.若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( ).A .a <b <cB .c <a <bC .b <a <cD .b <c <a解析 ∵1e<x <1,∴-1<ln x <0. 令t =ln x ,则-1<t <0.∴a -b =t -2t =-t >0,∴a >b .c -a =t 3-t =t (t 2-1)=t (t +1)(t -1),又∵-1<t <0,∴0<t +1<1,-2<t -1<-1,∴c -a >0,∴c >a .∴c >a >b .答案 C9.b 克糖水中有a 克糖(b >a >0),若再添上m 克糖(m >0),则糖水就变甜了,试根据此事实提炼一个不等式:________.解析 变甜了,意味着含糖量大了,即浓度高了.答案 a +m b +m >a b10.设n >1,n ∈N ,A =n -n -1,B =n +1-n ,则A 与B 的大小关系为________.解析 A =1n +n -1,B =1n +1+n . ∵n +n -1<n +1+n ,并且都为正数,∴A >B .答案 A >B 11.若a >0,b >0,求证:b 2a +a 2b ≥a +b . 证明 ∵b 2a +a 2b-a -b =(a -b )⎝⎛⎭⎫a b -b a =(a -b )2(a +b )ab, ∵(a -b )2≥0恒成立,且a >0,b >0,∴a +b >0,ab >0.∴(a -b )2(a +b )ab ≥0. ∴b 2a +a 2b≥a +b . 12.(创新拓展)已知f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5.求f (3)的取值范围.解 由⎩⎪⎨⎪⎧a -c =f (1),4a -c =f (2).得⎩⎨⎧ a =13[f (2)-f (1)],c =-43f (1)+13f (2).∴f (3)=9a -c =83f (2)-53f (1). ∵-1≤f (2)≤5,∴-83≤83f (2)≤403. ∵-4≤f (1)≤-1,∴⎝⎛⎭⎫-53×(-1)≤-53f (1)≤⎝⎛⎭⎫-53×(-4). ∴-83+53≤83f (2)-53f (1)≤403+203, 即-1≤f (3)≤20.即f (3)的取值范围是[-1,20].。
高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题
第三章章末复习课[整合·网络构建][警示·易错提醒]1.不等式的基本性质不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的八条性质.2.一元二次不等式的求解方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,共同确定出解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m <x<n.有口诀如下:大于取两边,小于取中间.3.二元一次不等式(组)表示的平面区域(1)二元一次不等式(组)的几何意义:二元一次不等式(组)表示的平面区域.(2)二元一次不等式表示的平面区域的判定:对于任意的二元一次不等式Ax+By+C>0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域.4.求目标函数最优解的两种方法(1)平移直线法.平移法是一种最基本的方法,其基本原理是两平行直线中的一条上任意一点到另一条直线的距离相等;(2)代入检验法.通过平移法可以发现,取得最优解对应的点往往是可行域的顶点,其实这具有必然性.于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.5.运用基本不等式求最值,把握三个条件(易错点) (1)“一正”——各项为正数;(2)“二定”——“和”或“积”为定值; (3)“三相等”——等号一定能取到.专题一 不等关系与不等式的基本性质1.同向不等式可以相加,异向不等式可以相减;但异向不等式不可以相加,同向不等式不可以相减.(1)若a >b ,c >d ,则a +c >b +d ; (2)若a >b ,c <d ,则a -c >b -a .2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.(1)若a >b >0,c >d >0,则ac >bd ; (2)若a >b >0,0<c <d ,则a c >bd.3.左右同正不等式,两边可以同时乘方或开方:若a >b >0,则a n >b n或n a >nb . 4.若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b.[例1] 已知a >0,b >0,且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解:因为⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )=a 2b -b +b 2a -a = a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝ ⎛⎭⎪⎫1b -1a =(a 2-b 2)a -b ab =(a -b )2(a +b )ab,因为a >0,b >0,且a ≠b , 所以(a -b )2>0,a +b >0,ab >0,所以⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )>0,即a 2b +b 2a >a +b .归纳升华不等式比较大小的常用方法(1)作差比较法:作差后通过分解因式、配方等手段判断差的符号得出结果. (2)作商比较法:常用于分数指数幂的代数式. (3)乘方转化的方法:常用于根式比较大小. (4)分子分母有理化. (5)利用中间量.[变式训练] (1)已知0<x <2,求函数y =x (8-3x )的最大值; (2)设函数f (x )=x +2x +1,x ∈[0,+∞),求函数f (x )的最小值. 解:(1)因为0<x <2,所以0<3x <6,8-3x >0, 所以y =x (8-3x )=13×3x ·(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当3x =8-3x ,即x =43时,取等号,所以当x =43时,y =x (8-3x )有最大值为163.(2)f (x )=x +2x +1=(x +1)+2x +1-1,因为x ∈[0,+∞),所以x +1>0,2x +1>0, 所以x +1+2x +1≥2 2. 当且仅当x +1=2x +1, 即x =2-1时,f (x )取最小值. 此时f (x )min =22-1.专题二 一元二次不等式的解法 一元二次不等式的求解流程如下: 一化——化二次项系数为正数.二判——判断对应方程的根. 三求——求对应方程的根. 四画——画出对应函数的图象. 五解集——根据图象写出不等式的解集. [例2] (1)解不等式:-1<x 2+2x -1≤2; (2)解不等式a (x -1)x -2>1(a ≠1).解:(1)原不等式等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0; 由②得(x +3)(x -1)≤0, 所以-3≤x ≤1.将①②的解集在数轴上表示出来,如图所示.求其交集得原不等式的解集为{x |-3≤x <-2或0<x ≤1}.(2)原不等式可化为a (x -1)x -2-1>0,即(a -1)⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0(*), ①当a >1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0,而a -2a -1-2=-a a -1<0,所以a -2a -1<2,此时x >2或x <a -2a -1. ②当a <1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)<0, 而2-a -2a -1=aa -1, 若0<a <1,则a -2a -1>2,此时2<x <a -2a -1; 若a =0,则(x -2)2<0,此时无解; 若a <0,则a -2a -1<2,此时a -2a -1<x <2. 综上所述,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a -2a -1或x >2; 当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <a -2a -1; 当a =0时,不等式的解集为∅; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a -2a -1<x <2.归纳升华含参数的一元二次不等式的分类讨论(1)对二次项系数含有参数的一元二次不等式,要注意对二次项系数是否为零进行讨论,特别当二次项系数为零时需转化为一元一次不等式问题来求解.(2)对含参数的一元二次不等式,在其解的情况不明确的情况下,需要对其判别式分Δ>0,Δ=0,Δ<0三种情况并加以讨论.(3)若含参数的一元二次不等式可以转化成用其根x 1,x 2表示的形如a (x -x 1)(x -x 2)的形式时,往往需要对其根分x 1>x 2、x 1=x 2,x 1<x 2三种情况进行讨论,或用根与系数的关系帮助求解.[变式训练] 定义在(-1,1)上的奇函数f (x )在整个定义域上是减函数,且f (1-a )+f (1-a 2)<0,某某数a 的取值X 围.解:因为f (x )的定义域为(-1,1),所以⎩⎪⎨⎪⎧-1<1-a <1,-1<1-a 2<1, 所以⎩⎨⎧0<a <2,-2<a <2且a ≠0,所以0<a <2,①原不等式变形为f (1-a )<-f (1-a 2). 由于f (x )为奇函数,有-f (1-a 2)=f (a 2-1), 所以f (1-a )<f (a 2-1). 又f (x )在(-1,1)上是减函数, 所以1-a >a 2-1,解得-2<a <1.② 由①②可得0<a <1, 所以a 的取值X 围是(0,1). 专题三 简单的线性规划问题 线性规划问题在实际中的类型主要有:(1)给定一定数量的人力、物力资源,求如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,问怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少. [例3] 某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A ,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:原料 每种产品所需原料/t现有原料数/tAB甲 2 1 14 乙 1 3 18 利润/(万元/t)53____(1)在现有原料条件下,生产A ,B 两种产品各多少时,才能使利润最大?(2)每吨B 产品的利润在什么X 围变化时,原最优解不变?当超出这个X 围时,最优解有何变化?解:(1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎪⎨⎪⎧2x +y ≤14.x +3y ≤18,x ≥0,y ≥0,作出可行域如图所示:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品 245 t ,B 产品 225t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m,又k AB =-2,k CB =-13,要使最优解仍为B 点,则-2≤-5m ≤-13,解得52≤m ≤15.归纳升华解答线性规划应用题的步骤(1)列:设出未知数,列出约束条件,确定目标函数. (2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解. (5)答:作出答案.[变式训练] 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:法一:依题意得,x +1>1,2y +1>1,易知(x +1)·(2y +1)=9,则(x +1)+(2y +1)≥2(x +1)(2y +1)=29=6,当且仅当x +1=2y +1=3,即x =2,y =1时,等号成立,因此有x +2y ≥4,所以x +2y 的最小值为4.法二:由题意得,x =8-2y 2y +1=-(2y +1)+92y +1=-1+92y +1, 所以x +2y =-1+92y +1+2y =-1+92y +1+2y +1-1,≥292y +1·(2y +1)-2=4,当且仅当2y +1=3,即y =1时,等号成立. 答案:B专题四 成立问题(恒成立、恰成立等)[例4] 已知函数f (x )=mx 2-mx -6+m ,若对于m ∈[1,3],f (x )<0恒成立,某某数x 的取值X 围.解:因为mx 2-mx -6+m <0, 所以m (x 2-x +1)-6<0, 对于m ∈[1,3],f (x )<0恒成立⇔⎩⎪⎨⎪⎧1×(x 2-x +1)-6<0,3×(x 2-x +1)-6<0, 即为⎩⎪⎨⎪⎧1-212<x <1+212,1-52<x <1+52,计算得出:1-52<x <1+52.所以实数x 的取值X 围:1-52<x <1+52.归纳升华不等式恒成立求参数X 围问题常见解法(1)变更主元法:根据实际情况的需要确定合适的主元,一般将知道取值X 围的变量看作主元. (2)分离参数法:若f (a )<g (x )恒成立,则f (a )<g (x )min ; 若f (a )>g (x )恒成立,则f (a )>g (x )max . (3)数形结合法:利用不等式与函数的关系将恒成立问题通过函数图象直观化.[变式训练] 已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,某某数a 的取值集合.解:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,所以Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件). 再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,即x 2-(a +4)x +4=0有解,所以Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0. 综上即知a =-8或a =0时,y min =1, 故所某某数a 的取值集合是{-8,0}. 专题五 利用分类讨论思想解不等式 [例5] 解关于x 的不等式x -ax -a 2<0(a ∈R). 分析:首先将不等式转化为整式不等式(x -a )(x -a 2)<0,而方程(x -a )(x -a 2)=0的两根为x 1=a ,x 2=a 2,故应就两根a 和a 2的大小进行分类讨论.解:原不等式等价于(x -a )(x -a 2)<0.(1)若a =0,则a =a 2=0,不等式为x 2<0,解集为∅; (2)若a =1,则a 2=1,不等式为(x -1)2<0,解集为∅; (3)若0<a <1,则a 2<a ,故解集为{x |a 2<x <a }; (4)若a <0或a >1,则a 2>a ,故解集为{x |a <x <a 2}. 归纳升华分类讨论思想解含有字母的不等式时,往往要对其中所含的字母进行适当的分类讨论.分类讨论大致有以下三种:(1)对不等式作等价变换时,正确运用不等式的性质而引起的讨论. (2)对不等式(组)作等价变换时,由相应方程的根的大小比较而引起的讨论. (3)对不等式作等价变换时,由相应函数单调性的可能变化而引起的讨论.[变式训练] 已知奇函数f (x )在区间(-∞,+∞)上单调递减,α,β,γ∈R 且α+β>0,β+γ>0,γ+α>0.试判断f (α)+f (β)+f (γ)的值与0的关系.解:因为f(x)为R上的减函数,且α>-β,β>-γ,γ>-α,所以f(α)<(-β),f(β)<f(-γ),f(γ)<f(-α),又f(x)为奇函数,所以f(-β)=-f(β),f(-α)=-f(α),f(-γ)=-f(γ),所以f(α)+f(β)+f(γ)<f(-β)+f(-γ)+f(-α)=-[f(β)+f(γ)+f(α)],所以f(α)+f(β)+f(γ)<0.。
数学3.1.1不等关系与不等式的性质强化作业成才之路(人教A版必修5)
3.1.1一、选择题1.(2010~2011·内蒙古赤峰市田家炳中学高二期中)已知a <0,-1<b <0,则下列各式正确的是( )A .a >ab >ab 2B .ab >a >ab 2C .ab 2>ab >aD .ab >ab 2>a[答案] D[解析] ∵-1<b <0,∴1>b 2>0>b >-1, 即b <b 2<1,两边同乘以a <0, ∴ab >ab 2>a .故选D.2.如果a 、b 、c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) A .ab >ac B .bc >ac C .cb 2<ab 2 D .ac (a -c )<0 [答案] C[解析] ∵c <b <a ,且ac <0,∴a >0,c <0.∴ab -ac =a (b -c )>0,bc -ac =(b -a )c >0,ac (a -c )<0,∴A 、B 、D 均正确. ∵b 可能等于0,也可能不等于0. ∴cb 2<ab 2不一定成立.3.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系为( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-a D .a >b >-a >-b [答案] C [解析]⎭⎪⎬⎪⎫a +b >0⇒a >-b b <0⇒-b >0⇒a >-b >0⇒-a <b <0.∴选C. [点评] 可取特值检验.∵a +b >0,b <0,∴可取a =2,b =-1,∴-a =-2,-b =1,∴-a <b <-b <a ,排除A 、B 、D ,∴选C.4.设x <a <0,则下列各不等式一定成立的是( ) A .x 2<ax <a 2 B .x 2>ax >a 2 C .x 2<a 2<ax D .x 2>a 2>ax[答案] B[解析]⎭⎪⎬⎪⎫x <a <0x <0a <0⇒⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x 2>ax ax >a 2⇒x 2>ax >a 2∴选B. 5.下列结论中正确的是( ) ①a >b >0,d >c >0⇒a c >bd ,②a >b ,c >d ⇒a -c >b -d , ③a c 2>bc2⇒a >b , ④a >b ⇒a n >b n (n ∈N ,n >1). A .①②③ B .①③ C .②③④ D .①③④[答案] B[解析]⎭⎪⎬⎪⎫d >c >0⇒1c >1d >0 a >b >0⇒a c >b d∴①对;a >b ,-c <-d 不同向不可加,∴②错. ∵a c 2>bc2,∴c 2>0.∴a >b .③对; 只有a >b >0时,对任意正整数n >1才有a n >b n , ∴④错.故选B.6.设a =2,b =7-3,c =6-2,则( ) A .c <b <a B .a <c <b C .c <a <b D .b <c <a[答案] D[解析] 假设a >b 即2>7-3,∴2+3>7,平方得6>1成立,∴a >b 排除B 、C.又假设b >c ,即7-3>6- 2∴7+2>6+3,平方得14>18显然不成立 ∴b <c 排除A.7.已知:0<a <b <1,x =a b ,y =log b a ,z =log 1a b ,则( )A .z <x <yB .z <y <xC .y <z <xD .x <z <y [答案] A[解析] y =log b a >log b b =1,0<x =a b <a 0=1,z =log 1a b <0,∴z <x <y .8.若a ,b 是任意实数,且a >b ,则( ) A .a 2>b 2 B.b a<1 C .lg(a -b )>0 D .(12)a <(12)b[答案] D[解析] 举反例,A 中2>-5但22<(-5)2;B 中-2>-5但-5-2>1;C 中a =5,b =4时,lg(a -b )=0,故选D.9.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上面叙述的关系正确的是( )A .a >4bB .(a +4)(b +4)=200C.⎩⎪⎨⎪⎧a >4b(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b4ab =200 [答案] C10.已知-1<a <0,A =1+a 2,B =1-a 2,C =11+a ,比较A 、B 、C 的大小结果为( )A .A <B <C B .B <A <C C .A <C <BD .B <C <A[答案] B[解析] 不妨设a =-12,则A =54,B =34,C =2,由此得B <A <C ,排除A 、C 、D ,选B.[点评] 具体比较过程如下: 由-1<a <0得1+a >0,A -B =(1+a 2)-(1-a 2)=2a 2>0得A >B ,C -A =11+a -(1+a 2)=-a (a 2+a +1)1+a=-a ⎣⎡⎦⎤⎝⎛⎭⎫a +122+341+a >0,得C >A ,∴B <A <C .二、填空题11.若a >b ,则a 3与b 3的大小关系是________. [答案] a 3>b 312.若x =(a +3)(a -5),y =(a +2)(a -4),则x 与y 的大小关系是________. [答案] x <y[解析] x -y =(a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0, ∴x <y .13.给出四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推得1a <1b 成立的是________.[答案] ①、②、④ [解析] 1a <1b ⇔b -aab <0,∴①、②、④能使它成立.14.a ≠2、b ≠-1、M =a 2+b 2、N =4a -2b -5,比较M 与N 大小的结果为________. [答案] M >N[解析] ∵a ≠2,b ≠-1,∴M -N =a 2+b 2-4a +2b +5=(a -2)2+(b +1)2>0,∴M >N . 三、解答题15.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表:的所有不等关系的不等式.[解析] 设需安排x 艘轮船和y 架飞机,则 ⎩⎪⎨⎪⎧300x +150y ≥2 000250 x +100 y ≥1 500x ≥0y ≥0,∴⎩⎪⎨⎪⎧6x +3y ≥405x +2y ≥30x ≥0y ≥0.16.如果30<x <42,16<y <24.分别求x +y 、x -2y 及xy 的取值范围.[解析] 46<x +y <66;-48<-2y <-32; ∴-18<x -2y <10;∵30<x <42,124<1y <116,∴3024<x y <4216,即54<x y <218. 17.(1)若x <y <0,试比较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的大小; (2)设a >0,b >0且a ≠b ,试比较a a b b 与a b b a 的大小. [解析] (1)(x 2+y 2)(x -y )-(x 2-y 2)(x +y ) =(x -y )[(x 2+y 2)-(x +y )2]=-2xy (x -y ) ∵x <y <0,∴xy >0,x -y <0, ∴-2xy (x -y )>0,∴(x 2+y 2)(x -y )>(x 2-y 2)(x +y ). (2)根据同底数幂的运算法则. a a b b a b b a =a a -b ·b b -a =(a b )a -b当a >b >0时,ab >1,a -b >0,则(a b )a -b >1,于是a a b b >a b b a . 当b >a >0时,0<ab <1,a -b <0,则(a b)a -b >1,于是a a b b >a b b a . 综上所述,对于不相等的正数a 、b ,都有a a b b >a b b a .[点评] 实数大小的比较问题,除利用a -b >0⇔a >b 外,还常常利用不等式的基本性质或“ab >1,且b >0⇒a >b ”来解决,比较法的关键是第二步的变形,一般来说,变形越彻底,越有利于下一步的判断.*18.设x >0,y >0,且x +y >2,求证1+y x 与1+xy 中至少有一个小于2.[解析] 假设都不小于2,即1+y x ≥2,1+x y≥2, ∵x >0,y >0,∴1+y ≥2x,1+x ≥2y . 两式相加得:2+x +y ≥2x +2,y ∴x +y ≤2. 这与x +y >2矛盾,∴假设不成立.故在1+y x 与1+x y中至少有一个小于2.[点评] 不等式的证明,有些情形下要用反证法. 反证法证题步骤为:①作出与结论相反的假设.②依据假设和题目条件及已知定理、公理、结论等进行推理,得出矛盾.③否定假设,肯定原题设结论正确.反证法常用于否定性命题,惟一性命题,以及结论中出现“至多”、“至少”等限制条件的命题.高я考⌒试)题⌒库。
高二人教A版必修5教案:3-1不等关系与不等式
提高 0.1 元,销量就相应地减少 2000 本。若把提价后杂志的定价设为 x 元,怎样用不等式
表示销售的总收入还不底于 20 万元呢?
(教师示范 → 学生板演 → 小结)
3、小结:文字语言与数学语言之间的转换,实数的运算性质与大小顺序之间的关系.
三、巩固练习:
1.某电脑拥护计划使用不超过 500 元的资金购买单价分别为 60 元、70 元的单片软件和盒装
教学重点:理解不等式的性质及其证明.
教学难点:从实际的不等关系中抽象出具体的不等式.
教学过程:
一、复习准备:
1. 提问:实数的运算性质与大小顺序之间的关系
2. 设点A与平面 之间的距离为 d,B为平面 上任意一点,则点A与平面 的距离小于
或等于A,B两点间的距离,请将上述不等关系写成不等式.
二、讲授新课:
三、本节难点
用不等式(组)正确表示出不等关系。
四、知识储备
“作差法”比较两个实数的大小和常用的不等式的基本性质 ① 用“作差法”比较两个实数大小的关键是判断差的正负,常采用配方、因式分解、有理
化等方法.常用的结论有 x2 0,− x2 0,|x| 0,-|x| 0 等.
② “作差法”的一般步骤是: ①作差;②变形;③判断符号;④得出结论. ③常用的不等式的基本性质
_____________.
④.配制 A, B 两种药剂需要甲、乙两种原料,已知配一剂 A 种药需甲料 3 毫克,乙料 5 毫克, 配一剂 B 药需甲料 5 毫克,乙料 4 毫克。今有甲料 20 毫克,乙料 25 毫克,若 A, B 两种药 至少各配一剂,则 A, B 两种药在配制时应满足怎样的不等关系呢?用不等式表示出来.
2022年高中数学第三章不等式1不等关系与不等式练习含解析新人教A版必修
课时训练15 不等关系与不等式一、不等式性质的直接应用与判断1.若1a <1b<0,则下列结论不正确的是( )A.a2<b2B.ab<b2C.b a +ab>2 D.ba<1答案:D解析:由1a <1b<0可知,b<a<0,所以ba<1不成立,故选D.2.(2015山东威海高二期中,1)已知a>b,则下列不等式中成立的是( )A.a2>b2B.1a <1bC.1a-b>1aD.a3>b3答案:D解析:A.虽然-1>-2,但(-1)2>(-2)2不成立;B.虽然3>-2,但是13<1-2不成立;C.虽然2>-3,但是12-(-3)>12不成立;D.∵a>b,∴a3-b3=(a-b)(a2+ab+b2)>0. (∵a2+ab+b2=(a+12b)2+34b2>0)成立.综上可知,只有D正确.故选D.3.已知下列说法:①若a<b<0,则a2>ab;②若a≥b,ac≥bc,则c≥0;③若a>b>0,c<0,则ca >cb;④若0<a<1,则log a(1+a)>log a(1+1a)其中正确的有 .答案:①③④解析:对于①,由a<b,a<0,可得a2>ab,故①正确;对于②,当a=b时,c可以为负数,故②错误;对于③,当a>b>0时,得0<1a < 1 b,又c<0,∴ca >cb,故③正确;对于④,当0<a<1时,1a >1,则1+a<1+1a,∴log a(1+a)>log a(1+1a),故④正确.二、利用不等式的性质比大小4.(2015山东威海高二期中,2)不等式:①a2+2>2a;②a2+b2≥2(a-b-1);③a2+b2≥ab恒成立的个数是( )A.0B.1C.2D.3答案:D解析:①a2+2-2a=(a-1)2+1≥1,∴a2+2>2a,正确;②∵a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1),正确;③a2+b2-ab=(a-12b)2+34b2≥0,当且仅当a=b=0时取等号,正确.综上可得:①②③都恒成立.故选D.5.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B 或A>BD.A>B答案:B 解析:∵A-B=a 2+3ab-4ab+b 2=a 2-ab+b 2=(a -b 2)2+34b 2≥0,∴A ≥B.6.(2015河南郑州高二期末,16)现有甲、乙两人相约爬山,若甲上山的速度为v 1,下山的速度为v 2(v 1≠v 2),乙上山和下山的速度都是v 1+v 22(甲、乙两人中途不停歇且下山时按原路返回),则甲、乙两人上下山所用的时间t 1,t 2的大小关系为 .答案:t 1>t 2解析:由题意知,甲用的时间t 1=S v 1+S v 2=S ·v 1+v 2v 1v 2,乙用的时间t 2=2×S v 1+v 22=4S v 1+v 2.∵t 1-t 2=S ·v 1+v 2v 1v 2−4S v 1+v 2=S (v 1+v 2v 1v 2-4v 1+v 2)=S (v 1-v 2)2v 1v 2(v 1+v 2)>0.∴t 1>t 2.7.已知a ,b ,x ,y 均为正实数,且1a >1b ,x>y ,试判断x x +a 与y y +b的大小关系.解:因为x x +a −y y +b =bx -ay (x +a )(y +b ),又1a >1b且a>0,b>0,所以b>a>0.又x>y>0,所以bx>ay ,即bx-ay>0.又x+a>0,y+b>0,所以bx -ay (x +a )(y +b )>0,即x x +a >y y +b.三、利用不等式的性质求代数式范围8.设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y 4的最大值是 .答案:27解析:∵4≤x 2y ≤9,∴16≤x 4y 2≤81.①∵3≤xy 2≤8,∴18≤1x y 2≤13.②由①②可得2≤x 4y 2·1x y 2≤27,即2≤x 3y 4≤27.∴x 3y 4的最大值为27.9.已知1<a<2,3<b<4,求下列各式的取值范围:(1)2a+b ;(2)a-b ;(3)ab .解:(1)因为1<a<2,所以2<2a<4.又3<b<4,所以5<2a+b<8.(2)因为3<b<4,所以-4<-b<-3.又1<a<2,所以-3<a-b<-1.(3)因为3<b<4,所以14<1b <13.又1<a<2,所以14<ab <23.四、利用不等式的性质证明10.已知a>b>0,c<d<0.求证:3√ad <3√bc .思路分析:解答本题可先比较a d 与b c 的大小,进而判断3√a d <3√bc .证明:∵c<d<0,∴-c>-d>0.∴0<-1c <-1d .又a>b>0,∴-ad >-bc>0.∴3√-a d>3√-b c,即-3√a d>-3√b c.两边同乘以-1,得3√a d<3√b c.(建议用时:30分钟) 1.若a,b∈R,且a>b,则( )A.a2>b2B.ba<1C.lg(a-b)>0D.(12)a<(12)b答案:D解析:∵a>b,无法保证a2>b2,ba<1和lg(a-b)>0,∴排除A与B,C,故选D.2.如果a<b<0,那么下列不等式成立的是( )A.1 a <1bB.ab<b2C.-ab<-a2D.-1a <-1b答案:D解析:当a=-2,b=-1时,检验得A,B,C错误,故D正确.3.若a>b>c,则下列不等式成立的是( )A.1 a-c >1b-cB.1a-c<1b-cC.ac>bcD.ac<bc 答案:B解析:∵a>b>c,∴a-c>b-c>0.∴1 a-c <1 b-c.故选B.4.下列结论正确的是( )A.若a>b>0,a>c,则a2>bcB.若a>b>c,则ac > b cC.若a>b,n∈N*,则a n>b nD.a>b>0,则ln a<ln b答案:A解析:对于B,当c<0时,不成立,对于C,当a=1,b=-2,n=2时,a n>b n不成立.对于D,由对数函数性质得不正确,故选A.5.若α,β满足-π2<α<β<π2,则2α-β的取值范围是( )A.-π<2α-β<0B.-π<2α-β<πC.-3π2<2α-β<π2D.0<2α-β<π答案:C解析:∵-π2<α<π2,∴-π<2α<π.又-π2<β<π2,∴-π2<-β<π2.∴-3π2<2α-β<3π2.又α-β<0,α<π2,∴2α-β<π2.故-3π2<2α-β<π2.6.若实数a≠b,则a2-ab ba-b2(填不等号).答案:>解析:(a2-ab)-(ba-b2)=a2-ab-ba+b2=(a-b)2,∵a≠b,∴(a-b)2>0.∴a2-ab>ba-b2.7.已知2b<a<-b,则ab的取值范围为 .答案:-1<ab<2解析:∵2b<a<-b,∴2b<-b.∴b<0.∴-b b <ab<2bb,即-1<ab<2.8.若m<n,p<q且(p-m)(p-n)<0,(q-m)(q-n)<0,则m,n,p,q从小到大顺序是 . 答案:m<p<q<n解析:∵(p-m)(p-n)<0,∴{p-m>0,p-n<0或{p-m<0,p-n>0.又m<n,∴m<p<n.同理m<q<n,又p<q,∴m<p<q<n.9.甲、乙两位采购员同去一家粮食销售公司买了两次粮食(同一品种),两次粮食的价格不同,两位采购员的购粮方式也不同.其中,甲每次购买1 000 kg,乙每次购粮用去1 000元钱,谁的购粮方式更合算?解:设两次价格分别为a元、b元,则甲的平均价格为m=a+b2元,乙的平均价格为n=20001000a+1000b=2aba+b,∴m-n=a +b 2−2ab a +b =(a -b )22(a +b )>0.∴乙更合算.10.已知函数f (x )=ax 2-c ,-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围.解:因为f (x )=ax 2-c ,所以{f (1)=a -c ,f (2)=4a -c .即{a -c =f (1),4a -c =f (2),解得{a =13[f (2)-f (1)],c =13f (2)-43f (1),所以f (3)=9a-c=83f (2)-53f (1).又因为-4≤f (1)≤-1,-1≤f (2)≤5,所以53≤-53f (1)≤203,-83≤83f (2)≤403,所以-1≤83f (2)-53f (1)≤20,即-1≤f (3)≤20.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时训练15不等关系与不等式一、不等式性质的直接应用与判断1.若1a <1b<0,则下列结论不正确的是()A.a2<b2B.ab<b2C.b+a>2D.b<1答案:D解析:由1<1<0可知,b<a<0,所以b<1不成立,故选D.2.(2015山东威海高二期中,1)已知a>b,则下列不等式中成立的是()A.a2>b2B.1<1C.1>1D.a3>b3答案:D解析:A.虽然-1>-2,但(-1)2>(-2)2不成立;B.虽然3>-2,但是13<1-2不成立;C.虽然2>-3,但是12-(-3)>12不成立;D.∵a>b,∴a3-b3=(a-b)(a2+ab+b2)>0.(∵a2+ab+b2=(a+12b)2+34b2>0)成立.综上可知,只有D正确.故选D.3.已知下列说法:①若a<b<0,则a2>ab;②若a≥b,ac≥bc,则c≥0;③若a>b>0,c<0,则ca >cb;④若0<a<1,则log a(1+a)>log a(1+1a)其中正确的有.答案:①③④解析:对于①,由a<b,a<0,可得a2>ab,故①正确;对于②,当a=b时,c可以为负数,故②错误;对于③,当a>b>0时,得0<1a <1b,又c<0,∴c a >c b,故③正确;对于④,当0<a<1时,1a>1,则1+a<1+1a,∴log a (1+a )>log a (1+1a ),故④正确. 二、利用不等式的性质比大小4.(2015山东威海高二期中,2)不等式:①a 2+2>2a ;②a 2+b 2≥2(a-b-1);③a 2+b 2≥ab 恒成立的个数是( ) A.0 B.1C.2D.3答案:D解析:①a 2+2-2a=(a-1)2+1≥1,∴a 2+2>2a ,正确;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0, ∴a 2+b 2≥2(a-b-1),正确; ③a 2+b 2-ab=(a -12b)2+34b 2≥0,当且仅当a=b=0时取等号,正确.综上可得:①②③都恒成立.故选D . 5.若A=a 2+3ab ,B=4ab-b 2,则A ,B 的大小关系是 ( )A.A ≤BB.A ≥BC.A<B 或A>BD.A>B答案:B解析:∵A-B=a 2+3ab-4ab+b 2=a 2-ab+b 2=(a -b 2)2+34b 2≥0,∴A ≥B.6.(2015河南郑州高二期末,16)现有甲、乙两人相约爬山,若甲上山的速度为v 1,下山的速度为v 2(v 1≠v 2),乙上山和下山的速度都是v 1+v 22(甲、乙两人中途不停歇且下山时按原路返回),则甲、乙两人上下山所用的时间t 1,t 2的大小关系为 . 答案:t 1>t 2解析:由题意知,甲用的时间t 1=S v 1+S v 2=S ·v 1+v2v 1v 2,乙用的时间t 2=2×Sv1+v 22=4Sv 1+v 2. ∵t 1-t 2=S ·v 1+v 2v1v 2−4Sv 1+v 2=S (v 1+v 2v 1v 2-4v 1+v 2)=S (v 1-v 2)2v 1v 2(v 1+v 2)>0.∴t 1>t 2.7.已知a ,b ,x ,y 均为正实数,且1a >1b ,x>y ,试判断x x+a 与y y+b的大小关系. 解:因为x x+a −y y+b=bx -ay(x+a )(y+b ),又1a >1b 且a>0,b>0,所以b>a>0. 又x>y>0,所以bx>ay ,即bx-ay>0. 又x+a>0,y+b>0, 所以bx -ay (x+a )(y+b )>0,即xx+a>yy+b. 三、利用不等式的性质求代数式范围8.设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y 4的最大值是 . 答案:27解析:∵4≤x 2y ≤9,∴16≤x 4y 2≤81.① ∵3≤xy 2≤8,∴18≤1xy 2≤13.②由①②可得2≤x 4y 2·1xy 2≤27,即2≤x 3y 4≤27.∴x 3y 4的最大值为27.9.已知1<a<2,3<b<4,求下列各式的取值范围: (1)2a+b ;(2)a-b ;(3)a b.解:(1)因为1<a<2,所以2<2a<4.又3<b<4,所以5<2a+b<8. (2)因为3<b<4,所以-4<-b<-3. 又1<a<2,所以-3<a-b<-1. (3)因为3<b<4,所以14<1b <13. 又1<a<2,所以14<ab <23.四、利用不等式的性质证明10.已知a>b>0,c<d<0. 求证:√d 3<√bc 3.思路分析:解答本题可先比较a d 与b c的大小,进而判断√a d3<√b c3. 证明:∵c<d<0,∴-c>-d>0.∴0<-1c <-1d.又a>b>0,∴-a d >-b c>0.∴√-a d 3>√-b c 3,即-√a d 3>-√b c 3.两边同乘以-1,得√a d3<√b c3.(建议用时:30分钟)1.若a ,b ∈R ,且a>b ,则( )A.a 2>b 2B.b a<1 C.lg(a-b )>0 D.(12)a<(12)b答案:D解析:∵a>b ,无法保证a 2>b 2,ba <1和lg(a-b )>0,∴排除A 与B,C,故选D .2.如果a<b<0,那么下列不等式成立的是( ) A.1<1B.ab<b 2C.-ab<-a 2D.-1<-1答案:D解析:当a=-2,b=-1时,检验得A,B,C 错误,故D 正确. 3.若a>b>c ,则下列不等式成立的是( ) A.1a -c >1b -c B.1a -c <1b -c C.ac>bc D.ac<bc答案:B解析:∵a>b>c ,∴a-c>b-c>0.∴1a -c <1b -c .故选B.4.下列结论正确的是()A.若a>b>0,a>c,则a2>bcB.若a>b>c,则ac >bcC.若a>b,n∈N*,则a n>b nD.a>b>0,则ln a<ln b答案:A解析:对于B,当c<0时,不成立,对于C,当a=1,b=-2,n=2时,a n>b n不成立.对于D,由对数函数性质得不正确,故选A.5.若α,β满足-π2<α<β<π2,则2α-β的取值范围是()A.-π<2α-β<0B.-π<2α-β<πC.-3π2<2α-β<π2D.0<2α-β<π答案:C解析:∵-π2<α<π2,∴-π<2α<π.又-π2<β<π2,∴-π2<-β<π2.∴-3π2<2α-β<3π2.又α-β<0,α<π2,∴2α-β<π2.故-3π2<2α-β<π2.6.若实数a≠b,则a2-ab ba-b2(填不等号).答案:>解析:(a2-ab)-(ba-b2)=a2-ab-ba+b2=(a-b)2,∵a≠b,∴(a-b)2>0.∴a2-ab>ba-b2.7.已知2b<a<-b,则ab的取值范围为.答案:-1<a<2解析:∵2b<a<-b,∴2b<-b.∴b<0.∴-bb <ab<2bb,即-1<ab<2.8.若m<n,p<q且(p-m)(p-n)<0,(q-m)(q-n)<0,则m,n,p,q从小到大顺序是.答案:m<p<q<n解析:∵(p-m)(p-n)<0,∴{p -m >0,p -n <0或{p -m <0,p -n >0.又m<n ,∴m<p<n. 同理m<q<n ,又p<q ,∴m<p<q<n.9.甲、乙两位采购员同去一家粮食销售公司买了两次粮食(同一品种),两次粮食的价格不同,两位采购员的购粮方式也不同.其中,甲每次购买1 000 kg,乙每次购粮用去1 000元钱,谁的购粮方式更合算? 解:设两次价格分别为a 元、b 元,则甲的平均价格为m=a+b2元, 乙的平均价格为n=2 0001 000a +1 000b=2aba+b ,∴m-n=a+b 2−2ab a+b=(a -b )22(a+b )>0. ∴乙更合算.10.已知函数f (x )=ax 2-c ,-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 解:因为f (x )=ax 2-c ,所以{f (1)=a -c ,f (2)=4a -c .即{a -c =f (1),4a -c =f (2), 解得{a =13[f (2)-f (1)],c =13f (2)-43f (1),所以f (3)=9a-c=83f (2)-53f (1). 又因为-4≤f (1)≤-1,-1≤f (2)≤5, 所以53≤-53f (1)≤203,-83≤83f (2)≤403, 所以-1≤83f (2)-53f (1)≤20, 即-1≤f (3)≤20.。