高考数学必考点 等差数列与等比数列 计算题专项
高考数学《等差与等比数列》练习题
等差与等比数列一、单项选择题1.已知等差数列{}a n 的前n 项和为S n ,2S 8=S 7+S 10,则S 21=( )A .21B .11C .-21D .02.在等比数列{}a n 中,若a 2 019=4,a 2 021=9,则a 2 020=( )A .6B .-6C .±6D .1323.在等差数列{}a n 中,a 1+a 8+a 6=15,则此等差数列的前9项之和为( )A .5B .27C .45D .904.等比数列{}a n 的公比为q ,前n 项和为S n ,设甲:q >0,乙:{}S n 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件5.已知等差数列{}a n 的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为( )A .28B .29C .30D .316.设{}a n 为等比数列,{}b n 为等差数列,且S n 为数列{}b n 的前n 项和,若a 2=1,a 10=16,且a 6=b 6,则S 11=( )A .20B .30C .44D .887.已知等差数列{}a n 的前n 项和为S n ,等差数列{}b n 的前n 项和为T n .若S n T n =2n -1n +1 ,则a 5b 5=( ) A .1911 B .1710 C .32 D .758.在等差数列{}a n 中,已知a 5>0,a 3+a 8<0,则使数列{}a n 的前n 项和S n <0成立时n 的最小值为( )A .6B .7C .9D .10二、多项选择题9.已知等比数列{}a n 的公比为q ,且a 5=1,则下列选项正确的是( )A .a 3+a 7≥2B .a 4+a 6≥2C .a 7-2a 6+1≥0D .a 3-2a 4-1≥010.已知无穷等差数列{}a n 的公差d ∈N *,且5,17,23是{}a n 中的三项,则下列结论正确的是( )A .d 的最大值是6B .2a 2≤a 8C .a n 一定是奇数D .137一定是数列{}a n 中的项11.已知数列{}a n 的前n 项和为S n ,则下列说法正确的是( )A .若S n =n 2-1,则{}a n 是等差数列B .若S n =2n -1,则{}a n 是等比数列C .若{}a n 是等差数列,则S 99=99a 50D .若{}a n 是等比数列,且a 1>0,q >0,则S 2n -1·S 2n +1>S 22n12.已知数列{}a n 是等比数列,下列结论正确的为( )A .若a 1a 2>0,则a 2a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若a 2>a 1>0,则a 1+a 3>2a 2D .若a 1a 2<0,则()a 2-a 1 ()a 2-a 3 <0三、填空题13.设等差数列{}a n 的前n 项和为S n ,若S 7=28,则a 2+a 3+a 7的值为________.14.已知等比数列{}a n 的前n 项和为S n ,a 3=7,S 3=21,则公比q =________.15.已知公差不为0的等差数列{a n }的前n 项和为S n ,若a 3,a 5,a 10成等比数列,则S 7a 7=________. 16.已知等差数列{}a n 的公差为d ()d >1 ,前n 项和为S n ,若a 7=a 5+3a 1,且a 2是S 4-1和a 1-1的等比中项,则d =________,S n =________.。
(完整版)等差等比数列求和与差的练习题
(完整版)等差等比数列求和与差的练习题
题目一:等差数列求和
已知等差数列的首项为$a_1$,公差为$d$,求该等差数列的前$n$项和$S_n$。
解答步骤:
1. 根据公式$S_n = \frac{n}{2}(a_1 + a_n)$计算出结果。
题目二:等差数列差的问题
已知等差数列的首项为$a_1$,公差为$d$,依次计算以下问题:
1. $a_3 - a_2$;
2. $a_5 - a_3$;
3. $a_{10} - a_5$。
解答步骤:
1. 利用公式$a_n = a_1 + (n-1)d$计算出各项的值;
2. 按照题目给定的差问题计算出结果。
题目三:等比数列求和
已知等比数列的首项为$a_1$,公比为$r$,求该等比数列的前$n$项和$S_n$。
解答步骤:
1. 如果公比$r=1$,则$S_n = n \cdot a_1$,直接计算结果;
2. 如果公比$r \neq 1$,则$S_n = a_1 \cdot \frac{1 - r^n}{1 - r}$,按照公式计算结果。
题目四:等比数列差的问题
已知等比数列的首项为$a_1$,公比为$r$,依次计算以下问题:
1. $a_2 - a_1$;
2. $a_4 - a_2$;
3. $a_{10} - a_{5}$。
解答步骤:
1. 利用公式$a_n = a_1 \cdot r^{(n-1)}$计算各项的值;
2. 按照题目给定的差问题计算出结果。
以上是关于等差数列求和与差的练题的完整版文档。
2020年高考数学(理)总复习:等差数列与等比数列(原卷版)
2020年高考数学(理)总复习:等差数列与等比数列题型一 等差、等比数列的基本运算 【题型要点】方程思想在等差(比)数列的基本运算中的运用等差(比)数列的通项公式、求和公式中一共包含a 1、d (或q )、n 、a n 与S n 这五个量,如果已知其中的三个,就可以求其余的两个.其中a 1和d (或q )是两个基本量,所以等差数列与等比数列的基本运算问题一般先设出这两个基本量,然后根据通项公式,求和公式构建这两者的方程组,通过解方程组求其值,这也是方程思想在数列问题中的体现.【例1】等比数列{a n }的前n 项和为S n ,已知a 2a 5=2a 3,且a 4与2a 7的等差中项为54,则S 5等于( )A .29B .31C .33D .36【例2】.{}a n 是公差不为0的等差数列,满足a 24+a 25=a 26+a 27,则该数列的前10项和S 10等于( )A .-10B .-5C .0D .5【例3】.已知递增数列{a n }对任意n ∈N *均满足a n ∈N *,aa n =3n ,记b n =a 2·3n -1(n ∈N *),则数列{b n }的前n 项和等于( )A .2n +nB .2n +1-1 C.3n +1-3n2D.3n +1-32题组训练一 等差、等比数列的基本运算1.设等差数列{a n }的前n 项和为S n ,若a 3+a 5=4,S 15=60则a 20等于( ) A .4 B .6 C .10 D .122.在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 8+a 10)=36,则a 6等于( ) A .8 B .6 C .4 D .33.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=120,设b n =1+log 3a n ,那么数列{b n }的前15项和为( )A .152B .135C .80D .16 题型二 等差、等比数列的性质及应用 【题型要点】(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.【例4】已知数列{a n },{b n }满足b n =log 2a n ,n ∈N *,其中{b n }是等差数列,且a 8·a 2 008=14,则b 1+b 2+b 3+…+b 2 015等于( ) A .log 22 015B .2 015C .-2 015D .1 0082.各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=10,S 12=130,则S 8等于( ) A .-30 B .40 C .40或-30D .40或-503.等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56题组训练二 等差、等比数列的性质及应用1.在等比数列{a n }中,a 3,a 15是方程x 2-7x +12=0的两根,则a 1a 17a 9的值为( )A .2 3B .4C .±2 2D .±4 2.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时n 的值为________.3.若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n>0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033题型三 等差、等比数列的综合问题 【题型要点】关于等差、等比数列的综合问题多属于两者运算的综合题以及相互之间的转化,关键是求出两个数列的基本量:首项和公差(或公比),灵活运用性质转化条件,简化运算,准确记忆相关的公式是解决此类问题的关键.【例3】已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.题组训练三 等差、等比数列的综合问题已知数列{a n }中,a 1=1,a n ·a n +1=n⎪⎭⎫⎝⎛21,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .题型四 数列与其他知识的交汇 【题型要点】数列在中学教材中既有相对独立性,又有较强的综合性,很多数列问题一般转化,特殊数列求解,一些题目常与函数、向量、三角函数、解析几何等知识交汇结合,考查数列的基本运算与应用.【例4】 已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 016OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 016等于( )A .1 007B .1 008C .2 015D .2 016题组训练四 数列与其他知识的交汇1.在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12B.32C .1D .-322.已知各项都为正数的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得 a m ·a n =4a 1,则1m +4n的最小值为( )A.32B.53C.256D.433.艾萨克·牛顿(1643年1月4日-1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f (x )的零点时给出一个数列{}x n 满足x n +1=x n -f (x n )f ′(x n ),我们把该数列称为牛顿数列.如果函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,数列{}x n 为牛顿数列,设a n =ln x n -2x n -1,已知a 1=2,x n >2,则{}a n 的通项公式a n =________.【专题训练】 一、选择题1.等比数列{a n }中,a 4=2,a 7=5,则数列{lg a n }的前10项和等于( ) A .2 B .lg 50 C .10D .52.在正项等比数列{a n }中,已知a 3a 5=64,则a 1+a 7的最小值为( ) A .64B .32C .16D .83.一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列的项数是( )A .13B .12C .11D .104.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n 等于( )A .n (3n -1)B.n (n +3)2C .n (n +1)D.n (3n +1)25.记S n 为正项等比数列{a n }的前n 项和,若S 12-S 6S 6-7·S 6-S 3S 3-8=0,且正整数m ,n满足a 1a m a 2n =2a 35,则1m +8n的最小值是( ) A.157 B.95 C.53D.756.数列{}a n 是以a 为首项,b 为公比的等比数列,数列{}b n 满足b n =1+a 1+a 2+…+a n (n =1,2,…),数列{}c n 满足c n =2+b 1+b 2+…+b n (n =1,2,…),若{}c n 为等比数列,则a +b 等于( )A. 2 B .3 C. 5 D .6二、填空题7.数列{a n }的通项a n =n 2·⎪⎭⎫ ⎝⎛-3sin 3cos22ππn n ,其前n 项和为S n ,则S 30=________. 8.已知数列{a n }满足a 1=2,且a n =2na n -1a n -1+n -1(n ≥2,n ∈N *),则a n =________.9.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A .8日B .9日C .12日D .16日10.数列{log k a n }是首项为4,公差为2的等差数列,其中k >0,且k ≠1.设c n =a n lg a n ,若{c n }中的每一项恒小于它后面的项,则实数k 的取值范围为________.三、解答题11.已知数列{}a n 的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得数列{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.12.已知数列{a n }的前n 项和为S n ,且S n -1=3(a n -1),n ∈N *. (1)求数列{a n }的通项公式;(2)设数列{b n }满足a n +1=⎪⎭⎫⎝⎛23a n ·b n ,若b n ≤t 对于任意正整数n 都成立,求实数t 的取值范围.。
2023高考数学复习专项训练《等比数列》(含答案)
2023高考数学复习专项训练《等比数列》一、单选题(本大题共12小题,共60分)1.(5分)等比数列{a n}满足a1+a2+a3=13,a2+a3+a4=133,则a5=()A. 1B. 13C. 427D. 192.(5分)给出以下命题:①存在两个不等实数α,β,使得等式sin(α+β)=sinα+sinβ成立;②若数列{a n}是等差数列,且a m+a n=a s+a t(m、n、s、t∈N∗),则m+n=s+t;③若S n是等比数列{a n}的前n项和,则S6,S12−S6,S18−S12成等比数列;④若S n是等比数列{a n}的前n项和,且S n=Aq n+B;(其中A、B是非零常数,n∈N∗),则A+B为零;⑤已知ΔABC的三个内角A,B,C所对的边分别为a,b,c,若a2+b2>c2,则ΔABC一定是锐角三角形.其中正确的命题的个数是()A. 1个B. 2个C. 3个D. 4个3.(5分)设T n为等比数列{a n}的前n项之积,且a1=−6,a4=−34,则当T n最大时,n的值为()A. 4B. 6C. 8D. 104.(5分)等比数列{a n},满足a1+a2+a3+a4+a5=3,a12+a22+a32+a42+a52= 15,则a1−a2+a3−a4+a5的值是()A. 3B. √5C. −√5D. 55.(5分)已知在等比数列{a n}中,公比q是整数,a1+a4=18,a2+a3=12,则此数列的前8项和为()A. 514B. 513C. 512D. 5106.(5分)已知正项数列{a n},{b n}分别为等差、等比数列,公差、公比分别为d,q(d,q∈N∗),且d=q,a1+b1=1,a3+b3=3.若a n+b n=2013(n>3),则n= ()A. 2013B. 2012C. 100D. 997.(5分)若a,b,c成等比数列,则关于x的方程a x2+bx+c=0( )A. 必有两个不等实根B. 必有两个相等实根C. 必无实根D. 以上三种情况均有可能8.(5分)公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则log2a10=()9.(5分)记Sn为等比数列{a n}的前n项和,已知S2=2,S3=−6.则{a n}的通项公式为()A. a n=(−2)nB. a n=−2nC. a n=(−3)nD. a n=−3n10.(5分)正项等比数列{a n}中,a3=2,a4.a6=64,则a5+a6a1+a2的值是()A. 4B. 8C. 16D. 6411.(5分)在等比数列{a n}中,a7,a11是方程x2+5x+2=0的二根,则a3.a9.a15a5.a13的值为()A. −2+√22B. −√2C. √2D. −√2或√212.(5分)已知等比数列{a n}的前n项和为S n,9S3=S6=63,则S10=A. 255B. 511C.1023 D. 2047二、填空题(本大题共5小题,共25分)13.(5分)已知等差数列{a n}的公差d≠0,且a3+a9=a10−a8.若a n=0,则n=__________14.(5分)若等比数列{an}的前n项和Sn满足:an+1=a1Sn+1(n∈N*),则a1=____.15.(5分)在等比数列{an}中,已知前n项和Sn=5n+1+a,则a的值为____________.16.(5分)若等比数列{a n}的首项为23,且a4=∫41(1+2x)dx,则公比q等于______.17.(5分)如图所示,将正整数排成三角形数阵,每排的数称为一个群,从上到下顺次为第1群,第2群,……,第n群,……,第n群恰好有n个数,则第n群中n个数的和是____________.123465812107162420149324840281811…三、解答题(本大题共6小题,共72分)18.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3−x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.19.(12分)如果等比数列{a n}中公比q>1,那么{a n}一定是递增数列吗?为什么?20.(12分)数列{a n}满足a1=1,a n=2a n−1-3n+6(n≥2,n∈N+).(1)设b n=a n-3n,求证:数列{b n}是等比数列;(2)求数列{a n}的通项公式.21.(12分)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=a n+12−4n−1,n∈N∗,且a2,a5,a14构成等比数列.(1)证明:a2=√4a1+5;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有1a1a2+1a2a3+…+1a n a n+1<12.22.(12分)已知数列{a n}是等差数列,其首项为2,且公差为2,若b n=2a n(n∈N∗).(Ⅰ)求证:数列{b n}是等比数列;(Ⅱ)设c n=a n+b n,求数列{c n right}的前n项和A n.23.(12分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+⋯+b2n−1.四、多选题(本大题共5小题,共25分)24.(5分)已知等差数列{a n}的公差和首项都不等于0,且a2,a4,a8成等比数列,则下列说法正确的是()A. a1+a5+a9a2+a3的值为3 B. a1+a5+a9a2+a3的值为2C. 数列{a n}的公差和首项相等D. 数列{a n}的公差和首项不相等25.(5分)设数列{a n},{b n}的前n项和分别为S n,T n,则下列命题正确的是()A. 若a n+1-a n=2(n∈N∗),则数列{a n}为等差数列B. 若b n+1=2b n(n∈N∗),则数列{b n}为等比数列C. 若数列{a n}是等差数列,则S n,S2n-S n,S3n-S2n⋯⋯(n∈N∗)成等差数列D. 若数列{b n}是等比数列,则T n,T2n-T n,T3n-T2n⋯⋯(n∈N∗)成等比数列26.(5分)在公比q为整数的等比数列{a n}中,S n是数列{a n}的前n项,若a1+a4= 18,a2+a3=12,则下列说法正确的是()A. q=2B. 数列{S n+2}是等比数列C. S8=510D. 数列\left{ lg a n}是公差为2的等差数列27.(5分)已知等差数列{a n}的首项为1,公差d=4,前n项和为S n,则下列结论成立的有()A. 数列{S nn}的前10项和为100B. 若a1,a3,a m成等比数列,则m=21C. 若∑n i=11a i a i+1>625,则n的最小值为6D. 若a m+a n=a2+a10,则1m +16n的最小值为251228.(5分)已知数列{a n}为等差数列,{b n}为等比数列,{a n}的前n项和为S n,若a1+ a6+a11=3π,b1b5b9=8,则()A. S11=11πB. sin a2+a10b4b6=12C. a3+a7+a8=3πD. b3+b7⩾4答案和解析1.【答案】D;【解析】解:设等比数列{a n }的公比为q ,由a 2+a 3+a 4=(a 1+a 2+a 3)q ,得133=13q ,解得q =13, 又a 1+a 2+a 3=a 1+13a 1+19a 1=139a 1=13,解得a 1=9,所以a 5=a 1q 4=9×(13)4=19, 故选:D.设等比数列{a n }的公比为q ,通过a 2+a 3+a 4=(a 1+a 2+a 3)q 可求出q 值,进一步根据a 1+a 2+a 3=a 1+a 1q +a 1q 2=13可求出a 1,最后利用a 5=a 1q 4进行求解即可. 此题主要考查等比数列的通项公式,考查学生逻辑推理和运算求解的能力,属于基础题.2.【答案】B; 【解析】该题考查命题真假的判断,考查学生灵活运用等差、等比数列的性质,三角函数以及三角形的判断,是一道综合题,属于中档题.利用特殊值判断①的正误;利用特殊数列即可推出命题②的正误;根据等比数列的性质,判断③的正误;根据等比数列的前n 项的和推出A ,B 判断④的正误.利用特殊三角形判断⑤的正误;解:对于①,实数α=0,β≠0,则sin (α+β)=sinβ,sinα+sinβ=sinβ,所以等式成立;故①正确;对于②,当公差d =0时,命题显然不正确,例如a 1+a 2=a 3+a 4,1+2≠3+4,故②不正确;对于③,设a n =(−1)n ,则S 6=0,S 12−S 6=0,S 18−S 12=0,∴此数列不是等比数列,故③不正确;对于④,S n 是等比数列{a n }的前n 项和,且S n =Aq n +B ;(其中A 、B 是非零常数,n ∈N ∗),所以此数列为首项是a 1,公比为q ≠1的等比数列, 则S n =a 1(1−q n )1−q ,所以A =−a11−q ,B =a11−q ,∴A +B =0,故④正确;对于⑤,如果三角形是直角三角形,a =5,b =3,c =4,满足a 2+b 2>c 2,故⑤不正确;故选:B .3.【答案】A;【解析】解:因为等比数列{a n }中,a 1=−6,a 4=−34,则由a 4=a 1q 3可得q =12. ∵T n 为等比数列{a n }的前n 项之积,∴T n =(−6)n .(12)n(n−1)2,因为求最大值,故只需考虑n 为偶数的情况, ∵T 2n +2T 2n =36×(12)4n +1,由T 2n +2T 2n⩾1可得n =1,∴T 2<T 4>T 6>T 8>⋯.则公比q =12,当T n 最大时,n 的值为4.故选:A .由已知可得q =12.只需考虑n 为偶数的情况,由T 2n +2T 2n⩾1可得n =1,即可求解.该题考查了等比数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.4.【答案】D;【解析】解:设数列{a n }的公比为q ,且q ≠1,则 a 1+a 2+a 3+a 4+a 5=a 1(1−q 5)1−q =3①, a 12+a 22+a 32+a 42+a 52=a 12(1−q 10)1−q 2=15②∴②÷①得a 12(1−q 10)1−q 2÷a 1(1−q 5)1−q=a 1(1+q 5)1+q=5,∴a 1−a 2+a 3−a 4+a 5=a 1(1+q 5)1+q=5.故选:D.先设等比数列{a n }公比为q ,分别用a 1和q 表示出a 12+a 22+a 32+a 42+a 52,a 1+a 2+a 3+a 4+a 5和a 1−a 2+a 3−a 4+a 5,发现a 12+a 22+a 32+a 42+a 52除以a 1+a 2+a 3+a 4+a 5正好与a 1−a 2+a 3−a 4+a 5相等,进而得到答案.此题主要考查了等比数列的性质.属基础题.解题时要认真审题,注意等比数列的性质的灵活运用.5.【答案】D;【解析】由已知得{a 1+a 1q 3=18a 1q +a 1q 2=12,解得:q =2或q =12.∵q 为整数,∴q =2.∴a 1=2.∴S 8=2(1−28)1−2=29−2=510.6.【答案】A;【解析】此题主要考查等差数列和等比数列的通项公式和性质的应用.计算时要认真仔细.解:∵{_1+b1=1a3+b3=3,∴{_1+b1=1a1+2d+b1q2=3,∵d=q,所以{_1+b1=1a1+2q+b1q2=3,解得d=q=1,∴a n+b n=a1+(n−1)d+b1q n−1=a1+n−1+b1=2013,∴n=2013.故选A.7.【答案】C;【解析】若a,b,c成等比数列,则b²=ac由题意得△=b²-4ac=b²-4b²=-3b²等比数列中没有为0的项,∴-3b²<0∴△小于0,即方程a x2+bx+c=0必无实根故选C。
高考数学必考点 等差数列与等比数列 计算题专项 试题
等差数列与等比数列测试题1.在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. 〔Ⅰ〕求数列{a n }的通项公式;〔Ⅱ〕对任意m ∈N ﹡,将数列{a n }中落入区间〔9m,92m〕内的项的个数记为bm ,求数列{b m }的前m 项和S m 。
{}n a 的前5项和为105,且2052a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m的项的个数记为m b .求数列{}m b 的前m 项和mS.3、设{}n a 是等差数列,1()2n an b =,123218b b b ++=,12318b b b =, 求等差数列{}n a 的通项公式。
4、设数列{}n a 为等差数列,n S 为数列{}n a 的前n 项和,7157,75S S ==,n T 为数列{nS n}的前n 项和,求n T 。
5、设n S 为数列{}n a 的前n 项和,2n S kn n =+,*n N ∈,其中k 是常数. 〔I 〕 求1a 及n a ;〔II 〕假设对于任意的*m N ∈,m a ,2m a ,4m a 成等比数列,求k 的值.6、设数列{}n a 的通项公式为(,0)n a pn q n N P *=+∈>. 数列{}n b 定义如下:对于正整数m ,m b 是使得不等式n a m ≥成立的所有n 中的最小值.〔Ⅰ〕假设11,23p q ==-,求3b ;〔Ⅱ〕假设2,1p q ==-,求数列{}m b 的前2m 项和公式;〔Ⅲ〕是否存在p 和q ,使得32()m b m m N *=+∈?假如存在,求p 和q 的取值范围;假如不存在,请说明理由.7、等比数列{n a }的前n 项和为n S , 对任意的n N +∈ ,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上.〔1〕求r 的值; 〔11〕当b=2时,记 1()4n nn b n N a ++=∈ 求数列{}n b 的前n 项和n T8、{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列〔1〕假设 31n a n =+,是否存在*,m n N ∈,有1m m k a a a ++=?请说明理由;〔2〕假设n n b aq =〔a 、q 为常数,且aq ≠0〕对任意m 存在k ,有1m m k b b b +⋅=,试求a 、q 满足的充要条件;〔3〕假设21,3n n n a n b =+=试确定所有的p,使数列{}n b 中存在某个连续p 项的和是数列中{}n a 的一项,请证明.参考答案1. 〔Ⅰ〕因为{}n a 是等差数列,由a 3+a 4+a 5= 4384,a =得428,a =设数列的公差为d ,由a 9=73,得9,45549==-=d a a d ,12728341=-=-=d a a ,于是899)1(1-=⨯-+=n n a n ,即89-=n a n .〔Ⅱ〕对任意m ∈N ﹡,m m n 29899<-<,那么899892+<<+m m n , 即989989121+<<+--m m n ,而*N n ∈,由题意可知11299---=m m m b , 于是)999(999110123121--+++-+++=+++=m m m m b b b S8980198019109819809991919199121212212mm m m m m m m -+=+⋅-=---=-----=++++, 即89801912mm m S -+=+. 2. 解:(I)设数列的公差为d ,前n 项和为n T ,那么由5105,T =2052a a =得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩ 解得17,7a d ==, 所以通项公式为7(1)77na n n =+-⋅=. (II) 任意*m ∈N ,假设277m n a n =≤,那么217m n -≤,即217m m b -=. ∵211217497m k m k b b ++-==,∴{}m b 是首项为7,公比为49的等比数列,∴7(149)7(491)14948m mmS -==--.3、解:∵ {a n }为等差数列 ∴ {b n }为等比数列 ∵ b 1b 3=b 22∴ b 23=81∴ b 2=21∴ ⎪⎪⎩⎪⎪⎨⎧==+41b b 817b b 2131 ∴ ⎪⎩⎪⎨⎧==81b 2b 31 或者 ⎪⎩⎪⎨⎧==2b 81b 21∴ n 231n n 2)41(2b --== 或者 5n 21n n 2481b --=⋅=∵ n a n )21(b = ∴ n 21n b log a =∴ a n =2n-3 或者 a n =-2n+5 4、解:法一:利用根本元素分析法设{a n }首项为a 1,公差为d ,那么⎪⎪⎩⎪⎪⎨⎧=⨯+==⨯+=75d 21415a 15S 7d 267a 7S 11517 ∴ ⎩⎨⎧=-=1d 2a 1∴ 2)1n (n 2S n -+-= ∴ 252n 21n 2n S n -=-+-= 此式为n 的一次函数 ∴ {n S n }为等差数列 ∴ n 4an 41T 2n -= 法二:{a n }为等差数列,设S n =An 2+Bn∴ ⎪⎩⎪⎨⎧=+⨯==+⨯=75B 1515A S 7B 77A S 21527 解之得:⎪⎪⎩⎪⎪⎨⎧-==25B 21A ∴ n 25n 21S 2n -=,下略 5、解:〔Ⅰ〕当1,111+===k S a n ,12)]1()1([,2221+-=-+--+=-=≥-k kn n n k n kn S S a n n n n 〔*〕经历,,1=n 〔*〕式成立, 12+-=∴k kn a n 〔Ⅱ〕m m m a a a 42,, 成等比数列,m m m a a a 422.=∴,即)18)(12()14(2+-+-=+-k km k km k km ,整理得:0)1(=-k mk , 对任意的*∈N m 成立, 10==∴k k 或 6、解:〔Ⅰ〕由题意,得1123n a n =-,解11323n -≥,得203n ≥.∴11323n -≥成立的所有n 中的最小整数为7,即37b =. 〔Ⅱ〕由题意,得21n a n =-,对于正整数,由n a m ≥,得12m n +≥. 根据m b 的定义可知当21m k =-时,()*m b k k N =∈;当2m k =时,()*1m b k k N =+∈. ∴()()1221321242m m m b b b b b b b b b -+++=+++++++()()1232341m m =++++++++++⎡⎤⎣⎦()()213222m m m m m m ++=+=+. 〔Ⅲ〕假设存在p 和q 满足条件,由不等式pn q m +≥及0p >得m qn p-≥. ∵32()m b m m N *=+∈,根据m b 的定义可知,对于任意的正整数m 都有3132m qm m p-+<≤+,即()231p q p m p q --≤-<--对任意的正整数m 都成立. 当310p ->〔或者310p -<〕时,得31p q m p +<--〔或者231p qm p +≤--〕, 这与上述结论矛盾! 当310p -=,即13p =时,得21033q q --≤<--,解得2133q -≤<-. ∴ 存在p 和q ,使得32()m b m m N *=+∈;p 和q 的取值范围分别是13p =,2133q -≤<-. 7、解:因为对任意的n N +∈,点(,)n n S ,均在函数(0xy b r b =+>且1,,b b r ≠n n S b r =+, 当1n =时,11a S b r ==+,当2n ≥时,1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-,又因为{n a }为等比数列, 所以1r =-, 公比为b , 所以1(1)n n a b b -=- 〔2〕当b=2时,11(1)2n n n a b b --=-=, 111114422n n n n n n n b a -++++===⨯ 那么234123412222n n n T ++=++++3451212341222222n n n n n T +++=+++++ 相减,得23451212111112222222n n n n T +++=+++++- 31211(1)112212212n n n -+⨯-++--12311422n n n +++=--所以113113322222n n n n n n T ++++=--=- 因此()()()()819819n n S n n n n n S n n n n n =-+-=-=--=--,或8、解:〔1〕由1,m m k a a a ++=得6631m k +++,整理后,可得42,3k m -=m 、k N ∈,2k m ∴-为整数∴不存在n 、k N *∈,使等式成立。
高考数学复习——数列、等差数列与等比数列(小题)
高考数学复习——数列、等差数列与等比数列(小题)
热点一 等差数列、等比数列的基本运算
1.等差数列、等比数列的基本公式(n ∈N *)
等差数列的通项公式:a n =a 1+(n -1)d ;
等比数列的通项公式:a n =a 1·q n -1.
等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2
d ; 等比数列的求和公式:S n =⎩⎪⎨⎪⎧ a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1,na 1,q =1.
2.等差数列、等比数列问题的求解策略
(1)抓住基本量,首项a 1、公差d 或公比q ;
(2)熟悉一些结构特征,如前n 项和为S n =an 2+bn (a ,b 是常数)的形式的数列为等差数列,通项公式为a n =p ·q n -1(p ,q ≠0)的形式的数列为等比数列;
(3)由于等比数列的通项公式、前n 项和公式中变量n 在指数位置,所以常用两式相除(即比值的方式)进行相关计算.
例1 (1)(2019·柳州模拟)已知点(n ,a n )在函数f (x )=2x
-1的图象上(n ∈N *).数列{a n }的前n 项和为S n ,设b n
=164
n S +,数列{b n }的前n 项和为T n .则T n 的最小值为________. 答案 -30
解析 ∵点(n ,a n )在函数y =2x -1的图象上,
∴a n =2n -1,
∴{a n }是首项为a 1=1,公比q =2的等比数列,。
高考数学《等差等比数列综合问题》基础知识与练习题(含答案)
高考数学《等差等比数列综合问题》基础知识与练习题(含答案)一、基础知识:1、等差数列性质与等比数列性质:(1)若{}n a 为等差数列,0,1c c >≠,则{}na c成等比数列证明:设{}n a 的公差为d ,则11n n n na a a da c c c c ++−==为一个常数所以{}na c成等比数列(2)若{}n a 为正项等比数列,0,1c c >≠,则{}log c n a 成等差数列 证明:设{}n a 的公比为q ,则11log log log log n c n c n c c na a a q a ++−==为常数 所以{}log c n a 成等差数列 二、典型例题:例1:已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A. 1 B. 1−或2 C. 2 D. 1−思路:由“1324,,2a a a 成等差数列”可得:3123122422a a a a a a =+⇒=+,再由等比数列定义可得:23121,a a q a a q ==,所以等式变为:22q q =+解得2q =或1q =−,经检验均符合条件 答案:B例2:已知{}n a 是等差数列,且公差d 不为零,其前n 项和是n S ,若348,,a a a 成等比数列,则( )A. 140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <>思路:从“348,,a a a 成等比数列”入手可得:()()()22438111327a a a a d a d a d =⇒+=++,整理后可得:2135a d d=−,所以135d a =−,则211305a d a =−<,且()2141646025a dS d a d =+=−<,所以B 符合要求答案:B小炼有话说:在等差数列(或等比数列)中,如果只有关于项的一个条件,则可以考虑将涉及的项均用1,a d (或1,a q )进行表示,从而得到1,a d (或1,a q )的关系例3:已知等比数列{}n a 中的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++=_______________思路:由等比数列性质可得:1011912a a a a =,从而51011912a a a a e ==,因为{}n a 为等比数列,所以{}ln n a 为等差数列,求和可用等差数列求和公式:101112201011ln ln ln ln ln 2010ln 502a a a a a a a ++++=⋅==答案:50例4:三个数成等比数列,其乘积为512,如果第一个数与第三个数各减2,则成等差数列,则这三个数为___________ 思路:可设这三个数为,,a a aq q ,则有3=512512aa aq a q⋅⋅⇒=,解得8a =,而第一个数与第三个数各减2,新的等差数列为82,8,82q q −−,所以有:()816282q q ⎛⎫=−+− ⎪⎝⎭,即22252520q q q q+=⇒−+=,解得2q =或者12q =,2q =时,这三个数为4,8,16,当12q =时,这三个数为16,8,4 答案: 4,8,16小炼有话说:三个数成等比(或等差)数列时,可以中间的数为核心。
等差数列与等比数列练习题
等差数列与等比数列练习题一、选择题1.对任意等比数列{}n a ,下列说法一定正确的是 A.139,,a a a 成等比数列 B.236,,a a a 成等比数列 C.248,,a a a 成等比数列 D.369,,a a a 成等比数列2.设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >3.各项不为零的等差数列{n a }中,2a 3-27a +2a 11=0,数列{n b }是等比数列,且b 7=a 7, 则b 6b 8=( ).A .2B .4C .8D .164.设等差数列{}n a 的前n 项和为n S ,若7662a a +=,则9S 的值是( )A .18B .36C .54D .725.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,236n n S S +-=,则n =( )A . 5B . 6C . 7D .86.等差数列{}n a 的前n 项和为n S ,311a =,14217S =,则12a =( )A .18B .20C .21D .227.设n S 为公差不为零的等差数列{}n a 的前n 项和,若983S a =,则) A .15 B .17 C .19 D .218.已知等差数列{n a },62a =,则此数列的前11项的和11S =A .44B .33C .22D .119.等差数列{}n a 的公差0d ≠,120a =,且3a ,7a ,9a 成等比数列.n S 为{}n a 的前n 项和,则10S 的值为( )A .110-B .90-C .90D .11010.由3,11==d a 确定的等差数列{}n a ,当268=n a 时,序号n 等于( )A .80B .100C .90D .8811.设}{n a 是等差数列,}{n b 为等比数列,其公比q≠1, 且0>i b (i=1、2、3 …n)若11b a =,1111b a =则A .66b a =B .66b a >C .66b a <D .66b a >或 66b a <12.已知等差数列{a n }的公差d≠0,若a 5、a 9、a 15成等比数列,那么它的公比为A13.在等差数列{}n a 中,0>n a ,且408321=++++a a a a ,则54a a ⋅的最大值是( )A .5B .10C .25D .5014.已知数列}{n a 为等差数列,且21=a ,1332=+a a ,则=++654a a a ( )(A )45 (B )43 (C )42 (D )4015.已知等差数列{}n a 中,前10项的和等于前5项的和.若06=+a a m 则=m ( )A.10B.9C.8D.216.设等差数列{}n a 的前n 项和为n S ,若493=+a a ,则11S 等于(A )12 (B )18 (C )22 (D )4417.在等差数列}{n a 中,1352,10a a a =+=,则7a =( )A.5B.8C.10D.1418.设n S 为等差数列{}n a 的前n 项的和,20141-=a ,则2014S 的值为( )A 、-2013B 、-2014C 、2013D 、2014 19.已知等差数列{}n a 满足32=a ,171=-n a ,)2(≥n ,100=n S ,则n 的值为( ) A .10 B .9 C .8 D .1120.等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,A21.等差数列}{n a 的前n 项和为2811,30n S a a a ++=若,那么13S 值的是 ( )A .130B .65C .70D .以上都不对22.设数列{}n a 是等差数列,26,a =- 86a =,n s 是数列{}n a 的前n 项和,则( )A .54s s <B .54s s =C .56s s <D .56s s =23.已知递减的等差数列{}n a 满足2921a a =,则数列{}n a 的前n 项和n S 取最大值时,n =( )A .3B .4或5C .4D .5或624.等差数列{}n a 中,19,793==a a ,则5a 为( )A .13B .12C .11D .1025.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ).A .4B .5C .6D .726.已知等差数列}{n a 的前n 项和S n 满足1021S S =,则下列结论正确的是( )A .数列{}n S 有最大值B .数列{}n S 有最小值C .150a =D .160a =27.设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )28.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为( )A.99B.49C.102D. 10129.已知等差数列}{n a 的前n 项和为n S ,若5418a a -=,则=8S ( ) A.18 B.36 C.30.已知数列{}n a 中,,则101a 的值为 A .50 B .51 C .52 D .5331.若{a n }为等差数列,S n 为其前n 项和,若首项17a =,公差2d =-,则使S n 最大的序号n 为( )A .2B .3C .4D .532.等差数列{}n a 中,a 1=1,d=3,a n =298,则n 的值等于( ).A .98B . 100C .99D .101 33,)(1)1(*N n f ∈=,猜想()f n 的表达式为( )A C 34.等差数列}{n a 中, 384362=+=+a a a a ,, 那么它的公差是( )A.4B.5C.6D.735.已知等差数列{}n a 中,26a =,前7项和784S =,则6a 等于( )A.18B.20C.24D.3236.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+ +log 3a 10=( )A .12B .8C .10D .2+log 3537.已知等比数列{}n a ,且482,a a +=则62610(2)a a a a ++的值为( )A .4B .6C .8D .1038.已知{}n a 是等比数列,21,441==a a ,则公比q =( ) A 、21- B 、2- C 、2 D 、21 39.若正数a,b,c 成公差不为零的等差数列,则 ( )(A )lga lgb lgc ,, 成等差数列(B )lga lgb lgc ,, 成等比数列(C )2,2,2a b c 成等差数列(D )2,2,2a b c 成等比数列40.已知等比数列{}n a 中,1633a a +=,2532a a =,公比1q >,则38a a +=( )A .66B .132C .64D .12841.等比数列{}n a 中,37a =,前3项之和321S =,则公比q 的值为( )(A )1 (B (C )1或(D )1或42.在ABC ∆中,,,a b c 分别为,,A B C 的对边,若sin A 、sin B 、sin C 依次成等比数列,则( )A .,,a b c 依次成等差数列B .,,a b c 依次成等比数列C .,,a c b 依次成等差数列D .,,a c b 依次成等比数列43.若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则122l n l n l n a a a ++⋅⋅⋅+等于( ) A .50 B .25 C .75 D .10044.正项等比数列{}n a 的公比为2,若21016a a =,则9a 的值是A.8B.16C.32D.6445.设等比数列{}n a 中,前n 项和为n S ,已知7863==S S ,,则 =++987a a a ( )A 46.正项等比数列{}n a 的公比为2,若21016a a =,则9a 的值是A.8B.16C.32D.6447.已知等比数列{}n a 的前n 项和为S n ,( ) A .4n -1 B .4n-1 C .2n -1 D .2n-148.已知等比数列{}n a 中,各项都是正数,成等差数列,( )A49.已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且639s s =,的前5项和为( )A5 B5 C50.在等比数列}{n a 中, ,8,1641=-=a a 则=7a ( ) A.4- B.4± C .2- D .2±51.若等比数列{}n a 的前n 项和为n S ,且314S =,12a =,则4a =( )A .16B .16或-16C .-54D .16或-5452.公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a =( ) A .1 B .2 C .4 D .853.数列{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 6=b 7,则有A .a 3+a 9<b 4+b 10B .a 3+a 9≥b 4+b 10C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小不确定 54.设等比数列{}n a 的公比2=q , 前n 项和为n S ,则) A .2 B .4 CD 55.等比数列{}n a 的首项11a =-,前n 项和为,n S则公比q 等于 ( )A.2 D .-2 56.各项不为零的等差数列{}n a 中,02211273=+-a a a ,数列{}n b 是等比数列,且77a b =,则=86b b ( )A 、2B 、4C 、8D 、16 57.若等比数列{}n a 满足153a a a =,则3a =( )(A )1 (B )1- (C )0或1 (D )1-或158.已知数列{}n a 是公比为2的等比数列,若416a =,则1a = ( )A .1B .2C .3D .459.在等比数列{}n a 中,若2n n a =,则7a 与9a 的等比中项为( )A .8aB .8a -C .8a ±D .前3个选项都不对60n 为( ) A .3 B .4 C .5 D .661.已知等比数列{n a }.等,则5cos a =( )A62.在等比数列{}n a 中,若,则=⋅82a a ( )A .-3B . 3C .-9D .963.已知{}n a 是等比数列,,则公比q =( ) A.2- C .2 D64.等比数列{}n a 的前n 项和为n S ,若1233a a a ++=,4566a a a ++=,则12S =( )A .15B .30C .45D .6065.数列{}n a 的首项为1,数列{}n b 为等比数列且,若10112b b ⋅=,则21a =( )A.20B.512C.1013D.102466.已知等比数列{}n a 中,74=a ,216=a ,则8a 的值 ( )A.35B.63C.321D. 321±67.在ABC ∆中的内角,,A B C 所对的边分别为,,a b c ,若60B ∠=,,a b c 且成等比数列,则ABC ∆的形状为A. 直角三角形B. 等腰三角形C. 等边三角形D. 不确定68.如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-969.设首项为l 的等比数列{}n a 的前n 项和为n S ,则 ( ) A.21n n S a =- B.32n n S a =-C.43n n S a =-D.32n n S a =-70.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2·a 4=1,S 3=7,则S 5=( )71.在等比数列{}n a 中,418a a =,则公比q 的值为(A )2 (B )3 (C )4 (D )872.等比数列}{n a 中,如果585,25a a ==则2a 等于( )C.5D.173.[2014·北京西城区期末]设f(n)=2+24+27+210+…+23n +10(n ∈N *),则f(n)等于( )n -n +1-1) n +3-n +4-1)二、双选题(题型注释)三、综合题(题型注释)四、填空题 74.数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________.75.(2013•重庆)已知{a n }是等差数列,a 1=1,公差d≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8= _________ .等差数列与等比数列练习题参考答案1.D【解析】试题分析:因为数列{}n a 为等比数列,设其公比为q ,则()22852391116a a a q a q a q a⋅=⋅⋅⋅=⋅= 所以,369,,a a a 一定成等比数列,故选D.考点:1、等比数列的概念与通项公式;2、等比中项.2.C【解析】 试题分析:因为{}n a 是等差数列,则2(1)1111(1)22a a a a n d n n a a n d +-=+-∴=,又由于1{2}n a a 为递减数列,所以 C.考点:1.等差数列的概念;2.递减数列.3.D【解析】试题分析:由等差数列的性质可知,,27113a a a =+由2a 3-27a +2a 11=0,可得,47=a 又b 7=a 7,47=b ,由等比数列的性质,可得.162786==b b b 故选D. 考点:等差数列、等比数列的性质.4.C .【解析】试题分析:设等差数列{}n a 的首项为1a ,公差为d ,则由7662a a +=,得d a d a 66)5(211++=+, 即641=+d a ,即65=a ;则. 考点:等差数列.5.D .【解析】试题分析:由题意得:12-=n a n ,∴22136362321368n n n n S S a a n n n +++-=⇒+=⇒+++=⇒=. 考点:等差数列的通项公式.6.B【解析】 选B . 考点:1.等差数列的求和公式;2.等差数列的性质.7.A【解析】 试题分析:由等差数列的性质知959S a =,15815S a =,所以选A . 考点:等差数列的性质,等差数列的前n 项和.8.C【解析】 试题分析:由等差数列的前n 项和公式,得 C. 考点:1、等差数列的前n 项和公式;2、等差数列的性质.9.D【解析】试题分析:d d a a 220213+=+=,d d a a 620617+=+=,d d a a 820819+=+=,由9327a a a ⋅=,()()()d d d 8202206202+⋅+=+∴,整理得022=+d d ,2-=∴d 或0=d(舍去), D. 考点:等差数列的通项公式和前n 项和公式.10.C【解析】试题分析:根据题意可知,32n a n =-,令32268n -=,解得90n =,故选C. 考点:等差数列.11.B 【解析】试题分析:由题可知,61111112a b b a a =+=+,因为公比q≠1, 且0>i b (i=1、2、3 …n),,即666622b a b a >⇒>。
2020版新高考数学大二轮复习:等差数列与等比数列(真题及考点精讲)
2020版新高考数学大二轮复习:等差数列与等比数列(真题及考点精讲)[做真题]题型一 等差数列1.(2019·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8nD .S n =12n 2-2n解析:选A.法一:设等差数列{a n }的公差为d ,因为⎩⎪⎨⎪⎧S 4=0,a 5=5,所以⎩⎪⎨⎪⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2,所以a n =a 1+(n -1)d =-3+2(n -1)=2n -5,S n =na 1+n (n -1)2d =n 2-4n .故选A. 法二:设等差数列{a n }的公差为d ,因为⎩⎪⎨⎪⎧S 4=0,a 5=5,所以⎩⎪⎨⎪⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2.选项A ,a 1=2×1-5=-3;选项B ,a 1=3×1-10=-7,排除B ; 选项C ,S 1=2-8=-6,排除C ; 选项D ,S 1=12-2=-32,排除D.故选A.2.(2018·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12解析:选B.设等差数列{a n }的公差为d ,因为3S 3=S 2+S 4,所以3(3a 1+3×22d )=2a 1+d+4a 1+4×32d ,解得d =-32a 1,因为a 1=2,所以d =-3,所以a 5=a 1+4d =2+4×(-3)=-10.故选B.3.(2017·高考全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A.设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23,即(a 1+d )(a 1+5d )=(a 1+2d )2,又a 1=1,所以d 2+2d =0,又d ≠0,则d =-2,所以a 6=a 1+5d =-9,所以{a n }前6项的和S 6=1-92×6=-24,故选A.4.(2019·高考全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S 10S 5=________.解析:设等差数列{a n }的公差为d ,由a 2=3a 1,即a 1+d =3a 1,得d =2a 1, 所以S 10S 5=10a 1+10×92d 5a 1+5×42d =10a 1+10×92×2a 15a 1+5×42×2a 1=10025=4.答案:4题型二 等比数列1.(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2解析:选C.设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4.2.(2017·高考全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B.每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1(1-27)1-2=381,解得a 1=3,故选B.3.(2019·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.解析:通解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.优解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以a 2a 6=a 6,所以a 2=1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.答案:12134.(2018·高考全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解:(1)设{a n }的公比为q ,由题设得a n =q n -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n-1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1.由S m =63得2m =64,解得m =6. 综上,m =6.题型三 等差、等比数列的判定与证明(2019·高考全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列.(2)由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.[学习指导意见]1.数列的概念和简单表示法了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)掌握等差数列、等比数列的通项公式与前n 项和的公式.考点1:等差、等比数列的基本运算[典型例题](1)已知等比数列{a n }的前n 项和为S n ,若a 1=1,S 10S 5=3332,则数列{a n }的公比q 为( )A .4B .2C .12D .34(2)(2019·开封模拟)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=3.①若a 3+b 3=7,求{b n }的通项公式; ②若T 3=13,求S n .【解】 (1)选C.因为S 10S 5=3332≠2,所以q ≠1.所以S 10S 5=a 1(1-q 10)1-q a 1(1-q 5)1-q =1+q 5,所以1+q 5=3332,所以q =12. (2)①设数列{a n }的公差为d ,数列{b n }的公比为q , 则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=3,得d +q =4,(*) 由a 3+b 3=7,得2d +q 2=8,(**)联立(*)(**),解得q =2或q =0(舍去), 因此数列{b n }的通项公式为b n =2n -1.②因为T 3=1+q +q 2,所以1+q +q 2=13, 解得q =3或q =-4,由a 2+b 2=3,得d =4-q ,所以d =1或d =8. 由S n =na 1+12n (n -1)d ,得S n =12n 2-32n 或S n =4n 2-5n .等差、等比数列问题的求解策略(1)抓住基本量,首项a 1、公差d 或公比q ;(2)熟悉一些结构特征,如前n 项和为S n =an 2+bn(a ,b 是常数)的形式的数列为等差数列,通项公式为a n =p·q n -1(p ,q ≠0)的形式的数列为等比数列;(3)由于等比数列的通项公式、前n 项和公式中变量n 在指数位置,所以常采用两式相除(即比值的方式)进行相关计算.[对点训练]1.(多选)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对于任意n>1,n ∈N *,满足S n +1+S n -1=2(S n +1),则( )A .a 9=17B .a 10=18C .S 9=81D .S 10=91解析:选BD.因为对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),所以S n -1-S n =S n-S n -1+2,所以a n +1-a n =2.所以数列{a n }在n ≥2时是等差数列,公差为2,又a 1=1,a 2=2,则a 9=2+7×2=16,a 10=2+8×2=18,S 9=1+8×2+8×72×2=73,S 10=1+9×2+9×82×2=91.故选BD.2.(一题多题)(2019·福州市质量检测)等比数列{a n }的各项均为正实数,其前n 项和为S n .若a 3=4,a 2a 6=64,则S 5=( )A .32B .31C .64D .63解析:选B.通解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由条件得⎩⎪⎨⎪⎧a 1·q 2=4a 1q ·a 1q 5=64,解得⎩⎪⎨⎪⎧a 1=1q =2,所以S 5=31,故选B.优解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由a 2a 6=a 24=64,a 3=4,得q =2,a 1=1,所以S 5=31,故选B.3.(2019·武昌区调研考试)设{a n }是公差不为零的等差数列,S n 为其前n 项和,已知S 1,S 2,S 4成等比数列,且a 3=5,则数列{a n }的通项公式为________.解析:设数列{a n }的公差为d (d ≠0),因为{a n }是等差数列,S 1,S 2,S 4成等比数列,所以(a 1+a 2)2=a 1(a 1+a 2+a 3+a 4),因为a 3=5,所以(5-2d +5-d )2=(5-2d )(5-2d +15),解得d =2或d =0(舍去),所以5=a 1+(3-1)×2,即a 1=1,所以a n =2n -1.答案:a n =2n -1考点2:等差(比)数列的性质[典型例题](1)在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为( )A .-2+22B .- 2C . 2D .-2或 2(2)(2019·长春质量检测)设S n 是等差数列{a n }的前n 项和,若S 4≠0,且S 8=3S 4,S 12=λS 8,则λ=( )A .13B .12C .2D .3(3)(2019·福建漳州质检改编)若S n 是等差数列{a n }的前n 项和,且a 2+a 9+a 19=6,则a 10=________,S 19=________.【解析】 (1)设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=-2,故选B.(2)因为S n 是等差数列{a n }的前n 项和, 若S 4≠0,且S 8=3S 4,S 12=λS 8,所以由等差数列的性质得:S 4,S 8-S 4,S 12-S 8成等差数列, 所以2(S 8-S 4)=S 4+(S 12-S 8), 所以2(3S 4-S 4)=S 4+(λ·3S 4-3S 4), 解得λ=2.(3)设等差数列{a n }的首项为a 1,公差为d .由等差数列的通项公式可得a 2+a 9+a 19=3(a 1+9d )=3a 10=6,所以a 10=2,由等差数列前n 项和公式可得S 19=19(a 1+a 19)2=19a 10=38.【答案】 (1)B (2)C (3)2 38等差、等比数列性质问题的求解策略[对点训练]1.(一题多解)(2019·福建省质量检查)等差数列{a n }的前n 项和为S n ,且a 8-a 5=9,S 8-S 5=66,则a 33=( )A .82B .97C .100D .115解析:选 C.通解:设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 8-a 5=9,S 8-S 5=66,得⎩⎪⎨⎪⎧(a 1+7d )-(a 1+4d )=9,(8a 1+28d )-(5a 1+10d )=66,解得⎩⎪⎨⎪⎧d =3,a 1=4,所以a 33=a 1+32d =4+32×3=100,故选C.优解:设等差数列{a n }的公差为d ,由a 8-a 5=9,得3d =9,即d =3.由S 8-S 5=66,得a 6+a 7+a 8=66,结合等差数列的性质知3a 7=66,即a 7=22,所以a 33=a 7+(33-7)×d =22+26×3=100,故选C.2.(一题多解)(2019·广东省七校联考)已知等差数列{a n }的前n 项和为S n ,a 6+a 8=6,S 9-S 6=3,则S n 取得最大值时n 的值为( )A .5B .6C .7D .8解析:选D.法一:设{a n }的公差为d ,则由题意得,⎩⎪⎨⎪⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎪⎨⎪⎧a 1=15,d =-2.所以a n =-2n +17,由于a 8>0,a 9<0,所以S n 取得最大值时n 的值是8,故选D. 法二:设{a n }的公差为d ,则由题意得,⎩⎪⎨⎪⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎪⎨⎪⎧a 1=15,d =-2.则S n =15n +n (n -1)2×(-2)=-(n -8)2+64,所以当n =8时,S n 取得最大值,故选D.3.(一题多解)已知数列{a n }满足a n =⎩⎪⎨⎪⎧⎝⎛⎭⎫12-λn +1(n <6),λn -5(n ≥6),若对于任意的n ∈N *都有a n >a n +1,则实数λ的取值范围是________.解析:法一:因为a n >a n +1,所以数列{a n}是递减数列,所以⎩⎪⎨⎪⎧12-λ<0,0<λ<1,λ<⎝⎛⎭⎫12-λ×5+1,解得12<λ<712.所以实数λ的取值范围是⎝⎛⎭⎫12,712. 法二:因为a n >a n +1恒成立,所以0<λ<1.若0<λ≤12,则当n <6时,数列{a n }为递增数列或常数列,不满足对任意的n ∈N *都有a n >a n+1;若12<λ<1,则当n <6时,数列{a n }为递减数列,当n ≥6时,数列{a n }为递减数列,又对任意的n ∈N *都有a n >a n +1,所以a 6<a 5,即λ<⎝⎛⎭⎫12-λ×5+1,解得λ<712, 所以12<λ<712.综上,实数λ的取值范围为⎝⎛⎭⎫12,712. 答案:⎝⎛⎭⎫12,712考点3:等差(比)数列的判定与证明[典型例题](2019·广州市调研测试)设S n 为数列{a n }的前n 项和,已知a 3=7,a n =2a n -1+a 2-2(n ≥2).(1)证明:数列{a n +1}为等比数列;(2)求数列{a n }的通项公式,并判断n ,a n ,S n 是否成等差数列? 【解】 (1)证明:因为a 3=7,a 3=3a 2-2,所以a 2=3, 所以a n =2a n -1+1, 所以a 1=1,a n +1a n -1+1=2a n -1+2a n -1+1=2(n ≥2),所以数列{a n +1}是首项为a 1+1=2,公比为2的等比数列. (2)由(1)知,a n +1=2n , 所以a n =2n -1,所以S n =2(1-2n )1-2-n =2n +1-n -2,所以n +S n -2a n =n +(2n +1-n -2)-2(2n -1)=0,所以n +S n =2a n , 即n ,a n ,S n 成等差数列.判断(证明)等差(比)数列应注意的问题(1)判断或者证明数列为等差数列、等比数列最基本的方法是用定义判断或证明,其他方法最后都会回到定义,如证明等差数列可以证明通项公式是n 的一次函数,但最后还得使用定义才能说明其为等差数列.(2)证明数列{a n }为等比数列时,不能仅仅证明a n +1=qa n ,还要说明a 1≠0,才能递推得出数列中的各项均不为零,最后判定数列{a n }为等比数列.[对点训练]1.(2019·湖南省湘东六校联考)已知数列{a n }满足a n +1-3a n =3n (n ∈N *)且a 1=1. (1)设b n =a n3n -1,证明数列{b n }为等差数列;(2)设c n =na n,求数列{c n }的前n 项和S n .解:(1)证明:由已知得a n +1=3a n +3n,得b n +1=a n +13n =3a n +3n 3n =a n3n -1+1=b n +1,所以b n +1-b n =1,又a 1=1,所以b 1=1, 所以数列{b n }是首项为1,公差为1的等差数列. (2)由(1)知,b n =a n 3n -1=n ,所以a n =n ·3n -1,c n =13n -1,所以S n =1×⎝⎛⎭⎫1-13n 1-13=32⎝⎛⎭⎫1-13n =32-12·3n -1.2.设S n 为数列{a n }的前n 项和,对任意的n ∈N *,都有S n =2-a n ,数列{b n }满足b 1=2a 1,b n =b n -11+b n -1(n ≥2,n ∈N *).(1)求证:数列{a n }是等比数列,并求{a n }的通项公式;(2)判断数列{1b n }是等差数列还是等比数列,并求数列{b n }的通项公式.解:(1)当n =1时,a 1=S 1=2-a 1,解得a 1=1;当n ≥2时,a n =S n -S n -1=a n -1-a n ,即a n a n -1=12(n ≥2,n ∈N *).所以数列{a n }是首项为1,公比为12的等比数列,故数列{a n }的通项公式为a n =⎝⎛⎭⎫12n -1.(2)因为a 1=1,所以b 1=2a 1=2.因为b n =b n -11+b n -1,所以1b n =1b n -1+1,即1b n -1b n -1=1(n ≥2). 所以数列{1b n }是首项为12,公差为1的等差数列. 所以1b n =12+(n -1)·1=2n -12,故数列{b n }的通项公式为b n =22n -1. 考点4:数列与新定义相交汇问题[典型例题]对任一实数序列A =(a 1,a 2,a 3,…),定义新序列ΔA =(a 2-a 1,a 3-a 2,a 4-a 3,…),它的第n 项为a n +1-a n .假定序列Δ(ΔA )的所有项都是1,且a 12=a 22=0,则a 2=________.【解析】 令b n =a n +1-a n ,依题意知数列{b n }为等差数列,且公差为1,所以b n =b 1+(n -1)×1,a 1=a 1, a 2-a 1=b 1, a 3-a 2=b 2, …a n -a n -1=b n -1,累加得a n =a 1+b 1+…+b n -1=a 1+(n -1)b 1+(n -1)(n -2)2=(n -1)a 2-(n -2)a 1+(n -1)(n -2)2,分别令n =12,n =22,得⎩⎪⎨⎪⎧11a 2-10a 1+55=0,21a 2-20a 1+210=0, 解得a 1=2312,a 2=100.【答案】 100数列新定义型创新题的一般解题思路(1)阅读审清“新定义”.(2)结合常规的等差数列、等比数列的相关知识,化归、转化到“新定义”的相关知识.(3)利用“新定义”及常规的数列知识,求解证明相关结论.[对点训练]1.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n ,则数列{a n }的前n 项和S n =( )A .2B .2nC .2n +1-2D .2n -1-2解析:选C.因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n-1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n,所以S n =2-2n +11-2=2n +1-2.2.(2019·福建五校第二次联考)在数列{a n }中,a 1=13,1a n +1=3a n (a n +3),n ∈N +,且b n=13+a n.记P n =b 1×b 2×…×b n ,S n =b 1+b 2+…+b n ,则3n +1P n +S n =________. 解析:因为1a n +1=3a n (a n +3)=1a n -1a n +3,所以b n =13+a n =1a n -1a n +1,所以S n =b 1+b 2+…+b n =⎝⎛⎭⎫1a 1-1a 2+⎝⎛⎭⎫1a 2-1a 3+…+⎝⎛⎭⎫1a n -1a n +1=1a 1-1a n +1.因为1a n +1=3a n (a n +3),所以b n =13+a n =a n 3a n +1,所以P n =b 1×b 2×…×b n =a 13a 2×a 23a 3×…×a n 3a n +1=a 13n a n +1.又a 1=13,故3n +1P n +S n =3a 1a n +1+1a 1-1a n +1=1a 1=3.答案:3一、选择题1.(2019·福州市质量检测)已知数列{a n }中,a 3=2,a 7=1.若数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,则a 9=( )A .12B .54C .45D .-45解析:选C.因为数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,a 3=2,a 7=1,所以数列⎩⎨⎧⎭⎬⎫1a n 的公差d =1a 7-1a 37-3=1-127-3=18,所以1a 9=1a 7+(9-7)×18=54,所以a 9=45,故选C.2.(一题多解)已知等比数列{a n }的前n 项和为S n ,若S 2=2,S 3=-6,则S 5=( ) A .18B .10C .-14D .-22解析:选 D.法一:设等比数列{a n }的公比为q ,由题意,得⎩⎪⎨⎪⎧a 1+a 1q =2a 1+a 1q +a 1q 2=-6,解得⎩⎪⎨⎪⎧a 1=-2q =-2,所以S 5=-2×[1-(-2)5]1-(-2)=-22,故选D.法二:设等比数列{a n }的公比为q ,易知q ≠1,令A =a 1q -1,则S n =Aq n -A ,⎩⎪⎨⎪⎧S 2=Aq 2-A =2S 3=Aq 3-A =-6,解得⎩⎪⎨⎪⎧A =23q =-2,所以S n =23[(-2)n -1],所以S 5=23×[(-2)5-1]=-22,故选D.3.已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tanb 3+b 91-a 4·a 8的值是 ( )A .- 3B .-1C .-33D . 3解析:选A.依题意得,a 36=(-3)3,3b 6=7π,所以a 6=-3,b 6=7π3,所以b 3+b 91-a 4·a 8=2b 61-a 26=-7π3,故tan b 3+b 91-a 4·a 8=tan ⎝⎛⎭⎫-7π3=tan ⎝⎛⎭⎫-2π-π3=-tan π3=-3,故选A. 4.(一题多解)(2019·合肥市第一次质量检测)已知正项等差数列{a n }的前n 项和为S n (n ∈N *),a 5+a 7-a 26=0,则S 11的值为( )A .11B .12C .20D .22解析:选 D.通解:设等差数列{a n }的公差为d (d >0),则由(a 1+4d )+(a 1+6d )-(a 1+5d )2=0,得(a 1+5d )(a 1+5d -2)=0,所以a 1+5d =0或a 1+5d =2,又a 1>0,所以a 1+5d >0,则a 1+5d =2,则S 11=11a 1+11×102d =11(a 1+5d )=11×2=22,故选D.优解:因为{a n }为正项等差数列,所以由等差数列的性质,并结合a 5+a 7-a 26=0,得2a 6-a 26=0,a 6=2,则S 11=11(a 1+a 11)2=11×2a 62=11a 6=22,故选D. 5.等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( ) A .6 B .7 C .8D .9解析:选C.由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d2>0,所以前8项和为前n 项和的最小值,故选C.6.(多选)已知数列{a n }是等比数列,则下列命题正确的是( ) A .数列{|a n |}是等比数列 B .数列{a n a n +1}是等比数列C .数列⎩⎨⎧⎭⎬⎫1a n 是等比数列D .数列{lg a 2n }是等比数列解析:选ABC.因为数列{a n }是等比数列,所以a n +1a n =q .对于A ,|a n +1||a n |=⎪⎪⎪⎪a n +1a n =|q |,所以数列{|a n |}是等比数列,A 正确;对于B ,a n +1a n +2a n a n +1=q 2,所以数列{a n a n +1}是等比数列,B 正确;对于C ,1a n +11a n =a n a n +1=1q,所以数列⎩⎨⎧⎭⎬⎫1a n 是等比数列,C 正确;对于D ,lg a 2n +1lg a 2n =2lg a n +12lg a n =lg a n +1lg a n ,不一定是常数,所以D 错误.二、填空题7.(2019·贵阳市第一学期监测)已知数列{a n }中,a 1=3,a 2=7.当n ∈N *时,a n +2是乘积a n ·a n +1的个位数,则a 2 019=________.解析:a 1=3,a 2=7,a 1a 2=21,a 3=1,a 2a 3=7,a 4=7,a 3a 4=7,a 5=7,a 4a 5=49,a 6=9,a 5a 6=63,a 7=3,a 6a 7=27,a 8=7,a 7a 8=21,a 9=1,a 8a 9=7,所以数列{a n }是周期为6的数列,又2 019=6×336+3,所以a 2 019=a 3=1.答案:18.在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”,下列是对“等差比数列”的判断:①k 不可能为0;②等差数列一定是“等差比数列”; ③等比数列一定是“等差比数列”; ④“等差比数列”中可以有无数项为0. 其中所有正确判断的序号是________.解析:由等差比数列的定义可知,k 不为0,所以①正确,当等差数列的公差为0,即等差数列为常数列时,等差数列不是等差比数列,所以②错误;当{a n }是等比数列,且公比q =1时,{a n }不是等差比数列,所以③错误;数列0,1,0,1,…是等差比数列,该数列中有无数多个0,所以④正确.答案:①④9.(2019·洛阳尖子生第二次联考)已知函数f (x )=e x -1e x +1,g (x )=f (x -1)+1,则g (x )的图象关于________对称,若a n =g ⎝⎛⎭⎫1n +g ⎝⎛⎭⎫2n +g ⎝⎛⎭⎫3n +…+g ⎝⎛⎭⎫2n -1n (n ∈N *),则数列{a n }的通项公式为________.解析:因为f (x )=e x -1e x +1,所以f (-x )=e -x -1e -x +1=1-e xe x +1=-f (x ),所以函数f (x )为奇函数.因为g (x )=f (x -1)+1,所以g (x )的图象关于点(1,1)对称,若x 1+x 2=2,则有g (x 1)+g (x 2)=2,所以a n =g ⎝⎛⎭⎫1n +g ⎝⎛⎭⎫2n +g ⎝⎛⎭⎫3n +…+g ⎝⎛⎭⎫2n -1n =2(n -1)+g (1)=2n -2+f (0)+1=2n -1,即a n =2n -1,故数列{a n }的通项公式为a n =2n -1.答案:(1,1) a n =2n -1 三、解答题10.(2019·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,若a 2=2,a 1+a 2+a 3=7.(1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.解:(1)由已知得⎩⎪⎨⎪⎧a 1q =2a 1+a 1q +a 1q 2=7, 则⎩⎪⎨⎪⎧a 1=4q =12或⎩⎪⎨⎪⎧a 1=1q =2(舍去).所以a n =4×⎝⎛⎭⎫12n -1=23-n .(2)因为b n =log 2a n =log 223-n =3-n ,所以数列{b n }是首项为2,公差为-1的等差数列. 设数列{b n }的前n 项和为T n , 则T n =n (2+3-n )2=n (5-n )2.11.(2019·武汉调研)已知等差数列{a n }前三项的和为-9,前三项的积为-15. (1)求等差数列{a n }的通项公式;(2)若{a n }为递增数列,求数列{|a n |}的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,则依题意得a 2=-3,则a 1=-3-d ,a 3=-3+d , 所以(-3-d )(-3)(-3+d )=-15,得d 2=4,d =±2, 所以a n =-2n +1或a n =2n -7.(2)由题意得a n =2n -7,所以|a n |=⎩⎪⎨⎪⎧7-2n ,n ≤32n -7,n ≥4,①n ≤3时,S n =-(a 1+a 2+…+a n )=5+(7-2n )2n =6n -n 2;②n ≥4时,S n =-a 1-a 2-a 3+a 4+…+a n =-2(a 1+a 2+a 3)+(a 1+a 2+…+a n )=18-6n +n 2.综上,数列{|a n |}的前n 项和S n =⎩⎪⎨⎪⎧-n 2+6n ,n ≤3n 2-6n +18,n ≥4.12.(2019·长沙市统一模拟考试)已知数列{a n }的首项a 1=3,a 3=7,且对任意的n ∈N *,都有a n -2a n +1+a n +2=0,数列{b n }满足b n =a 2n -1,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)求使b 1+b 2+…+b n >2 018成立的最小正整数n 的值. 解:(1)令n =1得,a 1-2a 2+a 3=0,解得a 2=5.又由a n -2a n +1+a n +2=0知,a n +2-a n +1=a n +1-a n =…=a 2-a 1=2, 故数列{a n }是首项a 1=3,公差d =2的等差数列, 于是a n =2n +1,b n =a 2n -1=2n +1. (2)由(1)知,b n =2n +1.于是b 1+b 2+…+b n =(21+22+ (2))+n =2(1-2n )1-2+n =2n +1+n -2.令f (n )=2n +1+n -2,易知f (n )是关于n 的单调递增函数,又f (9)=210+9-2=1 031,f (10)=211+10-2=2 056, 故使b 1+b 2+…+b n >2 018成立的最小正整数n 的值是10.。
【高考数学热点小专题】 等差、等比数列的综合问题
4.2数列大题4.2.1等差、等比数列的综合问题必备知识精要梳理1.判断给定的数列{a n}是等差数列的方法(1)定义法:a n+1-a n=d是常数(n∈N*).(2)通项公式法:a n=kn+b(k,b是常数).(3)前n项和法:数列{a n}的前n项和为S n=An2+Bn(A,B是常数且A2+B2≠0).(4)等差中项法:a n+a n+2=2a n+1(n∈N*).2.若数列{a n},{b n}为等差数列且项数相同,则{ka n},{a n±b n},{pa n+qb n}都是等差数列.3.判断给定的数列{a n}是等比数列的方法(1)定义法:a n+1a n=q(常数q≠0).(2)通项公式法:a n=kq n(k,q为常数,且kq≠0).(3)中项法:a n·a n+2=a n+12(n∈N*).(4)前n项和法:数列{a n}的前n项和为S n=A-Aq n(常数A≠0,公比q≠1).4.若数列{a n},{b n}为等比数列且项数相同,则{ka n}(k≠0),{a n2},{a nb n}都是等比数列.关键能力学案突破热点一等差(比)数列的判断与证明【例1】(2020山东淄博4月模拟,18)已知数列{a n}满足a1=1,a n+1=4a n+3n-1,b n=a n+n.(1)证明:数列{b n}为等比数列;(2)求数列{a n}的前n项和.解题心得1.判断数列是等差(比)数列的方法通常有四种,证明数列是等差(比)数列的方法常用定义法.2.对已知数列a n与S n的关系,证明{a n}为等差或等比数列的问题,解题思路是:由a n与S n 的关系递推出n+1时的关系式,两个关系式相减后,进行化简、整理,最终化归为用定义法证明.【对点训练1】(2019全国Ⅱ,理19)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n-b n+4,4b n+1=3b n-a n-4.(1)证明:{a n+b n}是等比数列,{a n-b n}是等差数列;(2)求{a n}和{b n}的通项公式.热点二等差数列的通项及求和【例2】(2019全国Ⅰ,文18)记S n为等差数列{a n}的前n项和.已知S9=-a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.解题心得a1,n,d是等差数列的三个基本量,a n和S n都可以用这三个基本量来表示,五个量a1,n,d,a n,S n中可“知三求二”,一般是通过通项公式和前n项和公式联立方程(组)求解,这种方法是解决数列问题的基本方法.【对点训练2】(2020海南天一大联考第三次模拟,17)对于由正整数构成的数列{A n},若对任意m,n∈N*且m≠n,A m+A n也是{A n}中的项,则称{A n}为“Q数列”.设数列{a n}满足a1=6,8≤a2≤12.(1)请给出一个{a n}的通项公式,使得{a n}既是等差数列也是“Q数列”,并说明理由;(2)根据你给出的通项公式,设{a n}的前n项和为S n,求满足S n>100的正整数n的最小值.热点三等比数列的通项及求和【例3】(2020山东,18)已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.解题心得1.已知等比数列前几项或者前几项的关系,求其通项及前n项和时,只需利用等比数列的通项公式及求和公式得到几个方程求解即可.2.若已知条件没有明确数列{a n}是等比数列,而是已知a n=f(S n)的关系式,在转化此条件时,通常有两种思路,一是将a n用S n-S n-1代替,二是由a n=f(S n)推出a n-1=f(S n-1),两式作差,消去S n.【对点训练3】(2020四川绵阳三模,理17)若数列{a n}的前n项和为S n,已知a1=1,a n+1=23S n.(1)求S n;(2)设b n=1S n ,求证:b1+b2+b3+…+b n<52.热点四等差、等比数列的综合问题【例4】(2020安徽合肥4月质检二,理17)已知等差数列{a n}的前n项和为S n,a2=1,S7=14,数列{b n}满足b1·b2·b3·…·b n=2n2+n 2.(1)求数列{a n}和{b n}的通项公式;(2)若数列{c n}满足c n=b n cos(a nπ),求数列{c n}的前2n项和T2n.解题心得对于等差、等比数列的综合问题,解决的思路主要是方程的思想,即运用等差、等比数列的通项公式和前n项和公式将已知条件转化成方程或方程组,求出首项、公差、公比等基本量,再由基本量求出题目要求的量.【对点训练4】(2020全国Ⅲ,文17)设等比数列{a n}满足a1+a2=4,a3-a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1=S m+3,求m.热点五等差、等比数列的存在问题【例5】(2020山东新高考模拟,17)在①b1+b3=a2,②a4=b4,③S5=-25这三个条件中任选一个,补充在下面问题中,若问题中的k存在,求k的值;若k不存在,说明理由.设等差数列{a n}的前n项和为S n,{b n}是等比数列,,b1=a5,b2=3,b5=-81,是否存在k,使得S k>S k+1且S k+1<S k+2?解题心得从三个给出的选择性条件中,选择自己好理解的条件是解题的关键,将已知的条件通过逻辑推理进行转换是解题的突破口,较强的运算能力是拿到满分的重要保证.【对点训练5】(2020山东枣庄二模,17)在①S4是a2与a21的等差中项;②a7是S33与a22的等比中项;③数列{a2n}的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题.已知{a n}是公差为2的等差数列,其前n项和为S n,.(1)求a n;(2)设b n=(34)n·a n,是否存在k∈N*,使得b k>278?若存在,求出k的值;若不存在,说明理由.核心素养微专题(四) 求解等差、等比数列的应用题【例1】(2020安徽合肥一中模拟,文12)如图所示,一条螺旋线是用以下方法画成的:△ABC 是边长为2的正三角形,曲线CA 1,A 1A 2,A 2A 3是分别以A ,B ,C 为圆心,AC ,BA 1,CA 2为半径画的圆弧,曲线CA 1A 2A 3称为螺旋线的第一圈,然后又以A 为圆心,AA 3为半径画圆弧,……,这样画到第n 圈,则所得螺旋线的长度l n 为( ) A.(3n 2+n )π B.2(3n 2+n )πC.(3n 2+n )π2D.(3n 2-n+1)π2核心素养分析本例考查考生多个核心素养,首先需要考生在读懂题意的基础上,从题目所给的几何图形中通过“数学抽象”得到一组数据;再通过“数学建模”将问题转化为等差数列模型;然后对等差数列模型的各项数值通过“数据分析”得到等差数列的项数和公差;最后通过“数学运算”得出答案.【跟踪训练1】(2019四川绵阳模拟,理16)如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n+1A n+1的面积均相等.设OA n =a n ,若a 1=1,a 2=2,则数列{a n }的通项公式是 .【例2】已知正方体ABCD-A 1B 1C 1D 1的棱长为6,E ,F ,G 分别为A 1B 1,BB 1,B 1C 1的中点,E 1,F 1,G 1分别为EB 1,FB 1,B 1G 的中点,E 2,F 2,G 2分别为E 1B 1,F 1B 1,B 1G 1的点,……,依此类推,令三棱锥B-A 1B 1C 1的体积为V 1,三棱锥F-EB 1G 的体积为V 2,三棱锥的体积为F 1-E 1B 1G 1的体积为V 3,……,则V 1+V 2+V 3+…+V n =( ) A.288-18×(14)n -23B.288-18×(14)n -13C.288-36×(18)n -17D.576-9×(18)n -27核心素养分析本例考查三个核心素养,考生在读懂题意的基础上,需要从题目所给的正方体中通过“数学抽象”得到三棱锥的一组体积数据;再通过“数学建模”将问题转化为等比数列模型;然后对等比数列通过“数学运算”得出答案.【跟踪训练2】在数列{a n }中,a 1=1,前n 项和S n 满足3x (S n+1-1)=(2x+3)S n x ≠0,x ≠-32,n ∈N *.令f (x )=a n+1a n,则f (x )= .4.2 数列大题4.2.1 等差、等比数列的综合问题关键能力·学案突破【例1】 (1)证明 ∵b n =a n +n ,∴b n+1=a n+1+n+1.又a n+1=4a n +3n-1,∴bn+1b n=a n+1+n+1a n +n=(4a n +3n -1)+n+1a n +n=4(a n +n )a n+n =4.又b 1=a 1+1=1+1=2,∴数列{b n }是首项为2,公比为4的等比数列. (2)解 由(1)知,b n =2×4n-1,∴a n =b n -n=2×4n-1-n ,∴S n =a 1+a 2+…+a n =2(1+4+42+…+4n-1)-(1+2+3+…+n )=2(1-4n )−n (n+1)=23(4n -1)-12n 2-12n. 对点训练1 (1)证明 由题设得4(a n+1+b n+1)=2(a n +b n ),即a n+1+b n+1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列. 由题设得4(a n+1-b n+1)=4(a n -b n )+8,即a n+1-b n+1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)解 由(1)知,a n +b n =12n -1,a n -b n =2n-1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n-12,b n =12[(a n +b n )-(a n -b n )]=12n -n+12. 【例2】 解 (1)设{a n }的公差为d.由S9=-a5,得a1+4d=0.由a3=4,得a1+2d=4.可得a1=8,d=-2.因此{a n}的通项公式为a n=10-2n.(2)由(1)得a1=-4d,故a n=(n-5)d,S n=n(n-9)d.由a1>0知d<0,故S n≥a n等价于n2-11n+10≤0,解得1≤n≤10.所以n的取值范围是{n|1≤n≤10,n∈N}.对点训练2解(1)给出的通项公式为a n=2n+4,a1=6,a2=8符合题意.因为对任意n∈N*,a n+1-a n=2(n+1)+4-2n-4=2,所以{a n}是公差为2的等差数列.对任意m,n∈N*且m≠n,a m+a n=2m+4+2n+4=2(m+n+2)+4=a m+n+2,所以{a n}是“Q数列”.(2)因为{a n}是等差数列,所以S n=n(6+2n+4)2=n2+5n(n∈N*).因为S n单调递增,且S7=72+5×7=84<100,S8=82+5×8=104>100,所以n的最小值为8.注:以下答案也正确,解答步骤参考上面内容:①a n=3n+3,S n=32n2+92n,n的最小值为7;②a n=6n,S n=3n2+3n,n的最小值为6.【例3】解(1)设{a n}的公比为q.由题设得a1q+a1q3=20,a1q2=8.解得q=12(舍去),q=2.因为a1q2=8,所以a1=2.所以{a n}的通项公式为a n=2n.(2)由题设及(1)知b1=0,且当2n≤m<2n+1时,b m=n.所以S100=b1+(b2+b3)+(b4+b5+b6+b7)+…+(b32+b33+…+b63)+(b64+b65+…+b100)=0+1×2+2×22+3×23+4×24+5×25+6×(100-63)=480.对点训练3(1)解a n+1=2S n,可得a n+1=S n+1-S n=2S n,即S n+1=5S n,由a 1=1,可得S 1=1,可得数列{S n }是首项为1,公比为53的等比数列,则S n =(53)n -1;(2)证明 因为b n =1n=(3)n -1,所以{b n }是首项为1,公比为35的等比数列,则b 1+b 2+b 3+…+b n =1-(35)n 1-35=521-(35)n <52.【例4】 解 (1)设{a n }的公差为d ,由a 2=1,S 7=14得{a 1+d =1,7a 1+21d =14.解得a 1=12,d=12,所以a n =n2.∵b 1·b 2·b 3·…·b n =2n 2+n2=2n (n+1)2,∴b 1·b 2·b 3·…·b n-1=2n (n -1)2(n ≥2),两式相除得b n =2n (n ≥2).当n=1时,b 1=2,适合上式,∴b n =2n . (2)∵c n =b n cos(a n π)=2n cos (nπ),∴T 2n =2cos π2+22cos π+23cos 3π2+24cos 2π+…+22n-1cos(2n -1)π2+22n cos n π=22cos π+24cos 2π+26cos 3π+ (22)cos n π=-22+24-26+…+(-1)n·22n=-4[1-(-4)n ]1+4=-4+(-4)n+15.对点训练4 解 (1)设{a n }的公比为q ,则a n =a 1q n-1.由已知得{a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q=3.所以{a n }的通项公式为a n =3n-1. (2)由(1)知log 3a n =n-1,故S n =n (n -1)2.由S m +S m+1=S m+3得m (m-1)+(m+1)m=(m+3)(m+2),即m 2-5m-6=0,解得m=-1(舍去),m=6.【例5】 解 因为在等比数列{b n }中,b 2=3,b 5=-81,所以公比q=-3,从而b n =b 2(-3)n-2=3×(-3)n-2,从而a 5=b 1=-1.若存在k ,使得S k >S k+1,即S k >S k +a k+1,从而a k+1<0; 同理,若使S k+1<S k+2,即S k+1<S k+1+a k+2,从而a k+2>0.若选①:由b 1+b 3=a 2,得a 2=-1-9=-10,又a 5=-1,则可得a 1=-13,d=3,所以a n =3n-16,当k=4时,能使a5<0,且a6>0成立;若选②:由a4=b4=27,且a5=-1,所以数列{a n}为递减数列,故不存在a k+1<0,且a k+2>0;若选③:由S5=-25=5(a1+a5)2=5a3,解得a3=-5,从而a n=2n-11,所以当k=4时,能使a5<0,a6>0成立.对点训练5解(1)若选①S4是a2与a21的等差中项,则2S4=a2+a21,即24a1+4×32×2=(a1+2)+(a1+20×2).解得a1=3.所以a n=3+2(n-1)=2n+1.若选②a7是S33与a22的等比中项,则a72=S33·a22,即(a1+6×2)2=a1+3-12×2·(a1+21×2).解得a1=3.所以a n=3+2(n-1)=2n+1.若选③数列{a2n}的前5项和为65,则a2+a4+a6+a8+a10=65,即5a1+25d=65,解得a1=3.所以a n=3+2(n-1)=2n+1.(2)不存在.理由如下,b n=(34)n·a n=(2n+1)·(34)n.b n+1-b n=(2n+3)·(3)n+1-(2n+1)·(3)n=3n4n+1[3(2n+3)-4(2n+1)]=3n4n+1(5-2n).所以b n+1>b n可转化为b n+1-b n>0,即5-2n>0,解得n<2.5,则n=1,2,即b3>b2>b1;b n+1<b n可转化为b n+1-b n<0,即5-2n<0,解得n>2.5,则n=3,4,5,…,即b3>b4>b5>….所以{b n}中的最大项为b3=(2×3+1)×(34)3=7×2764.显然b3=7×2764<8×2764=278.所以∀n∈N*,b n<278.所以不存在k∈N*,使得b k>278.核心素养微专题(四)【例1】B解析第一圈的三段圆弧为CA1,A1A2,A2A3,第二圈的三段圆弧为A3A4,A4A5,A5A6,…,第n圈的三段圆弧为A3(n-1)A3n-2,A3n-2A3n-1,A3n-1A3n.各段圆弧的长度分别为2×2π3,4×2π3,6×2π3,8×2π3,10×2π3,12×2π3,…,(6n-4)×2π3,(6n-2)×2π3,6n ×2π, 此数列是以4π3为首项,4π3为公差,项数为3n 的等差数列, 则l n =(2×2π3+6n×2π3)×3n 2=2(3n 2+n )π,故选B .跟踪训练1 a n =√3n -2 解析 设S △OA 1B 1=S ,∵a 1=1,a 2=2,OA n =a n , ∴OA 1=1,OA 2=2.又易知△OA 1B 1∽△OA 2B 2, ∴S △OA 1B1S △OA 2B2=(OA 1)2(OA 2)2=(12)2=14.∴S 梯形A 1B 1B 2A 2=3S △OA 1B 1=3S.∵所有梯形A n B n B n+1A n+1的面积均相等,且△OA 1B 1∽△OA n B n , ∴OA 1OA n=√S △OA 1B1S △OA n B n=√S S+3(n -1)S =√13n -2.∴a1a n=√3n -2,∴a n =√3n -2. 【例2】 C 解析 由题意得V 1=13×12×6×6×6=36.因为E ,F ,G 分别为A 1B 1,BB 1,B 1C 1的中点,所以三棱锥F-EB 1G 的体积为V 2=18V 1;E 1,F 1,G 1分别为EB 1,FB 1,B 1G 的中点,所以V 3=18V 2;E 2,F 2,G 2分别为E 1B 1,F 1B 1,B 1G 1的中点,所以V 4=18V 3;…,V k+1=18V k . 所以V 1,V 2,V 3,…,V n 成等比数列,且首项为36,公比为18, 所以S n =36×[1-(18)n]1-18=288-36×(18)n -17.故选C .跟踪训练22x+33x解析 由题知,当n=1时,3x (a 1+a 2-1)-(2x+3)a 1=0,因为a 1=1,所以a 2=2x+33x , 所以a2a 1=2x+33x . 当n ≥2时,有3x (S n+1-1)-(2x+3)S n =0, ① 3x (S n -1)-(2x+3)S n-1=0,②①-②得3xa n+1-(2x+3)a n=0,即a n+1a n =2x+33x,于是f(x)=2x+33x.。
数列等差数列与等比数列练习题
数列等差数列与等比数列练习题数列是数学中基础而重要的概念之一,同时也是数学的应用领域中常见的数学模型之一。
其中,等差数列和等比数列是数列中最基础的两种常见类型。
本文将为大家提供一些关于等差数列和等比数列的练习题,以巩固和提高大家对数列的理解和运用能力。
【练习题一】1. 若等差数列的首项是3,公差是4,求第n项的表达式。
解析:由题意,首项是3,公差是4。
所以等差数列的通项公式可以表示为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
代入已知条件,可得an = 3 + (n-1)4。
2. 若等差数列的第7项是18,公差是2,求首项和第n项的和。
解析:由题意,第7项是18,公差是2。
所以等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
代入已知条件,可得18 = a1 + (7-1)2。
解方程得a1 = 5。
首项和第n项的和可以表示为Sn = (n/2) * (a1 + an),其中n为项数,a1为首项,an为第n项。
代入已知条件,得Sn = (n/2) * (5 + 5 + (n-1)*2)。
【练习题二】1. 若等比数列的首项是2,公比是3,求第n项的表达式。
解析:由题意,首项是2,公比是3。
所以等比数列的通项公式可以表示为an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。
代入已知条件,可得an = 2 * 3^(n-1)。
2. 若等比数列的第4项是16,公比是2,求首项和第n项的和。
解析:由题意,第4项是16,公比是2。
所以等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。
代入已知条件,可得16 = a1 * 2^(4-1)。
解方程得a1 = 2。
首项和第n项的和可以表示为Sn = a1 * (1 - r^n) / (1 - r),其中n为项数,a1为首项,r为公比。
代入已知条件,得Sn = 2 * (1 - 2^n) / (1 - 2)。
历年高考数学真题汇编专题13 等差、等比数列的应用(解析版)
历年高考数学真题汇编专题13 等差、等比数列的应用1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .2.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则( ) A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .②当<0b 时,令2x x b =+,即20x x b -+=.则该方程140b ∆=->,即必存在0x ,使得2000x x b -+=, 则一定存在10 ==a a x ,使得21n n n a a b a +=+=对任意n *∈N 成立,解方程20a a b -+=,得12a ±=,10≤时,即90b -…时,总存在a =,使得121010a a a ==⋯=≤, 故C 、D 两项均不正确.③当0b >时,221a a b b =+≥,则2232a a b b b =+≥+,()22243a a b b b b =+++….(ⅰ)当12b =时,22451111711,1222162a a ⎡⎤⎛⎫++=>>+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥,则26111112224a ⎛⎫>++=> ⎪⎝⎭,2719222a >+=, 28918310224a ⎛⎫>+=> ⎪⎝⎭ ,则2981102a a =+>, 21091102a a =+> , 故A 项正确.(ⅱ)当14b =时,令1==0a a ,则2231111,4442a a ⎛⎫==+< ⎪⎝⎭,所以224311114242a a ⎛⎫=+<+= ⎪⎝⎭,以此类推,所以2210911114242a a ⎛⎫=+<+= ⎪⎝⎭,故B 项不正确. 故本题正确答案为A.遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.3、【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________. 【答案】58【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=.解得12q =-,所以441411()(1)521181()2a q S q ---===---. 准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.一题多解:本题在求得数列的公比后,可利用已知计算3343431315()428S S a S a q =+=+=+-=,避免繁分式计算. 4、【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【答案】100【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 5、【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组. 6、【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.n 由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a ≥等价于211100n n -+…,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n *≤≤∈N .该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.7、【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【解析】(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-, 因此数列{}n b 的前n 项和为21321n n +++-=L .本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.8、【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.n 因为110a =-,所以23410,102,103a d a d a d =-+=-+=-+. 因为23410,8,6a a a +++成等比数列, 所以()()()23248106a a a +=++. 所以2(22)(43)d d d -+=-+. 解得2d =.所以1(1) 212n a a n d n =+-=-. (2)由(1)知,212n a n =-.所以,当7n ≥时,0n a >;当6n ≤时,0n a ≤. 所以,n S 的最小值为630S =-.一、等差数列1、定义:数列{}n a 若从第二项开始,每一项与前一项的差是同一个常数,则称{}n a 是等差数列,这个常数称为{}n a 的公差,通常用d 表示2、等差数列的通项公式:()11n a a n d =+-,此通项公式存在以下几种变形: (1)()n m a a n m d =+-,其中m n ≠:已知数列中的某项m a 和公差即可求出通项公式(2)n ma a d n m -=-:已知等差数列的两项即可求出公差,即项的差除以对应序数的差(3)11n a a n d-=+:已知首项,末项,公差即可计算出项数3、等差中项:如果,,a b c 成等差数列,则b 称为,a c 的等差中项(1)等差中项的性质:若b 为,a c 的等差中项,则有c b b a -=-即2b a c =+ (2)如果{}n a 为等差数列,则2,n n N *∀≥∈,n a 均为11,n n a a -+的等差中项(3)如果{}n a 为等差数列,则m n p q a a a a m n p q +=+⇔+=+ 4、等差数列通项公式与函数的关系:()111n a a n d d n a d =+-=⋅+-,所以该通项公式可看作n a 关于n 的一次函数,从而可通过函数的角度分析等差数列的性质。
高中数学等差数列、等比数列,典型例题、常见考题、基础测试、考试模拟,全部附答案
高中数学数列(等差、等比)第一节数列的概念与简单表示法一、走进教材-11.在数列{a}中,a=1,a=1+(n≥2),则a=( )an-13A. B.53 C.82D.2.观察下列各图,并阅读下面的文字,像这样,10条直线相交所得的交点最多有________个。
二、基础检测1.数列-3,7,-11,15,…的通项公式可能是()A.a=4n-7B.a=(-1)(4n+1)nnC.a=(-1)(4n-1)D.a=(-1)+n n(4n-1)2.设数列{a}的前n项和S=nn n 2,则a的值为()8A.15B.16C.49D.643.已知数列{a}满足a=0,an1n+1=a-3n3a+1n,n∈N,则a等于( )2015A.0B.-3 C.3 D.3 2nn1n5 253nn n1*4.已知数列{a}的前n项和S=nn n 2+1,则a=________。
n5.已知数列{a}满足a=1,a=3a+2,则a=________。
n1n+1n n考点一考点精讲由数列的前几项求数列的通项公式【典例1】根据数列的前几项,写出下列各数列的一个通项公式。
(1)-1,7,-13,19,…;(2)0.8,0.88,0.888,…;115132961(3),,-,,-,,…。
【变式训练】(1)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( )A.a=(-1)-nnπC.a=2sinn +12,n为奇数B.a =0,n为偶数D.a=cos(n-1)π+1248163264n1n 2n(2)3 5 7 9 a +b已知数列 , , , , ,…,根据前三项给出的规律,则实2 4 6 a -b 10数对(a ,b )可能是()A .(19,3)B .(19,-3)C. ,D. ,-考点二由 a 与 S 的关系求通项公式 nn【典例 2】 (1). 已知数列{a }的前 n 项和为 S ,且 a =1,a =S +1,其中 n ∈nn1n +1nN ,则数列{a }的通项公式是 a =________。
等差数列与等比数列类比总结(全面知识点+100道练习题附解析)精编材料word版
等差数列与等比数列知识点总结及经典题目100道练习题:答案解析:14d +5 6解析:nS有最小值,可知1a<,0d>761aa<-变形得676a aa+<,故6a<,67a a+>671121212()12()22a aa aS++==>当12n<时,nS很明显都是小于0的故nS取到最小正数时的n为12.答案:1257解析:由1020S S=知对称轴为15n=,故最大值为前15项之和.答案:A5 8解析:41434442S a d⨯=+=,81878562S a d⨯=+=两式联立解得114a=,2d=-故2(1)14(2)152nn nS n n n-=+⨯-=-+对称轴为7.5,故当7n=或8n=时取最大值27715756S=-+⨯=.答案:最大值为7856S S==59解析:根据对称性,由67S S=可知58S S=,49S S=由中间到两端以此减小,所以985S S S<=,C选项错误.答案:C6 0解析:由条件可知函数零点在18与19之间,又函数过原点则对称轴应介于182与192之间,即大于9小于9.5数列的下标只能取正整数,离对称轴最近的正整数为9,故9S最大.答案:C数学浪子整理制作,侵权必究。
等差数列等比数列综合经典例题
以下是等差数列和等比数列的经典例题:
等差数列求和问题:已知一个等差数列的首项为a1,公差为d,第n项为an,求前n项和Sn。
解法:根据等差数列的通项公式an = a1 + (n-1)d,得到Sn = (a1+an)n/2 = n(a1+an)/2 = n(a1+a1+(n-1)d)/2。
将其化简可得Sn = n(a1+an)/2 = n(a1+a1+(n-1)d)/2 = (n/2)(a1+an) = (n/2)(a1+a1+(n-1)d),其中a1和an可以根据公式计算出来,从而求得Sn。
等比数列求和问题:已知一个等比数列的首项为a1,公比为q,第n项为an,求前n项和Sn。
解法:根据等比数列的通项公式an = a1q^(n-1),得到Sn = a1(1-q^n)/(1-q)。
将其化简可得Sn = a1*(1-q^n)/(1-q) = a1*(1-q)*(1+q+q^2+...+q^(n-1))/(1-q)。
由于1+q+q^2+...+q^(n-1)是一个等比数列的前n项和,因此可以用等比数列求和公式S=q^n-1/(q-1)求出,将其代入上式,就可以得到Sn的表达式。
这些例题是等差数列和等比数列求和问题中比较经典的例子,掌握了这些例题的解法,就能够比较顺利地解决一类问题。
在实际应用中,还会有更加复杂的情况,需要根据具体的条件设计相应的求和方法。
高考数学专题三数列 微专题21 等差数列、等比数列
设等差数列{an}的公差为d,等比数列{bn}的公比为q,且q>0, 因为 S14=7(a10+3),则 14a1+14×2 13d=7(a1+9d+3),可得 a1+4d= 3,即 a5=3,
因为b5=b=16,则b1q4=(b1q)4=16,可得q=2,b1=1, 因为cn=an+bn, 所以T9=c1+c2+…+c9=(a1+a2+…+a9)+(b1+b2+…+b9) =a1+2 a9×9+b111--qq9=a5×9+11--229 =3×9+11--229=538.
①
由 a1+S11=67,得 12a1+11×2 10d=67,即 12a1+55d=67.
②
由①②解得a1=1,d=1,所以an=n, 于是a3a10=3×10=30,而a30=30,故a3a10是{an}中的第30项.
1 2 3 4 5 6 7 8 9 10
2.(2023·武汉模拟)已知等比数列{an}满足a6=2,且a7,a5,a9成等差数列,
(2)(2023·新高考全国Ⅰ)设等差数列{an}的公差为 d,且 d>1.令 bn=n2a+n n, 记 Sn,Tn 分别为数列{an},{bn}的前 n 项和. ①若 3a2=3a1+a3,S3+T3=21,求{an}的通项公式;
∵3a2=3a1+a3, ∴3d=a1+2d,解得a1=d, ∴S3=3a2=3(a1+d)=6d,
1 2 3 4 5 6 7 8 9 10
3.记 Sn 为等比数列{an}的前 n 项和.若 a5-a3=12,a6-a4=24,则Sann等于
A.2n-1
√B.2-21-n
C.2-2n-1
D.21-n-1
1 2 3 4 5 6 7 8 9 10
方法一 设等比数列{an}的公比为q, 则 q=aa65--aa43=2142=2. 由a5-a3=a1q4-a1q2=12a1=12,得a1=1. 所以 an=a1qn-1=2n-1,Sn=a111--qqn=2n-1, 所以Sann=22n-n-11=2-21-n.
高考数学复习考点题型专题讲解8 等差数列与等比数列
高考数学复习考点题型专题讲解专题8 等差数列与等比数列高考定位 1.等差、等比数列的基本运算和性质的考查是高考热点,经常以小题形式出现;2.数列的通项也是高考热点,难度中档以下.1.(2022·全国乙卷)已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6=( ) A.14 B.12 C.6 D.3 答案 D解析 法一 设等比数列{a n }的首项为a 1,公比为q , 由题意可得⎩⎨⎧S 3=168,a 2-a 5=42,即⎩⎨⎧a 1(1+q +q 2)=168,a 1q (1-q 3)=42,解得⎩⎨⎧a 1=96,q =12,所以a 6=a 1q 5=3,故选D.法二 设等比数列{a n }的首项为a 1,公比为q , 由题意可得⎩⎨⎧S 3=168,a 2-a 5=42,即⎩⎨⎧a 1(1-q 3)1-q =168,a 1q (1-q 3)=42,解得⎩⎨⎧a 1=96,q =12,所以a 6=a 1q 5=3,故选D.2.(2021·全国甲卷)记S n 为等比数列{a n }的前n 项和.若S 2=4,S 4=6,则S 6=( ) A.7 B.8 C.9 D.10 答案 A解析 法一 因为S 2=4,S 4=6,且易知公比q ≠±1,所以由等比数列的前n 项和公式,得⎩⎪⎨⎪⎧S 2=a 1(1-q 2)1-q =a 1(1+q )=4,S 4=a 1(1-q 4)1-q =a 1(1+q )(1+q 2)=6,两式相除,得q 2=12,所以⎩⎨⎧a 1=4(2-2),q =22或⎩⎨⎧a 1=4(2+2),q =-22,所以S 6=a 1(1-q 6)1-q=7.故选A.法二 易知S 2,S 4-S 2,S 6-S 4构成等比数列,由等比中项得S 2(S 6-S 4)=(S 4-S 2)2,即4(S 6-6)=22,所以S 6=7.故选A.3.(2022·新高考Ⅱ卷)图1是中国古代建筑中的举架结构,AA ′,BB ′,CC ′,DD ′是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图,其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA 1BA 1=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3等于( )A.0.75B.0.8C.0.85D.0.9答案 D解析设OD1=DC1=CB1=BA1=1,则CC1=k1,BB1=k2,AA1=k3,依题意,有k3-0.2=k1,k3-0.1=k2,且DD1+CC1+BB1+AA1OD1+DC1+CB1+BA1=0.725,所以0.5+3k3-0.34=0.725,故k3=0.9.4.(2021·全国甲卷)已知数列{a n}的各项为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{S n}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.解①③⇒②.已知{a n}是等差数列,a2=3a1.设数列{a n}的公差为d,则a2=3a1=a1+d,得d=2a1,所以S n=na1+n(n-1)2d=n2a1.因为数列{a n }的各项均为正数, 所以S n =n a 1,所以S n +1-S n =(n +1)a 1-n a 1=a 1(常数),所以数列{S n }是等差数列. ①②⇒③.已知{a n }是等差数列,{S n }是等差数列. 设数列{a n }的公差为d , 则S n =na 1+n (n -1)2d=12n 2d +⎝⎛⎭⎪⎫a 1-d 2n .因为数列{S n }是等差数列,所以数列{S n }的通项公式是关于n 的一次函数, 则a 1-d2=0,即d =2a 1, 所以a 2=a 1+d =3a 1. ②③⇒①.已知数列{S n }是等差数列,a 2=3a 1, 所以S 1=a 1,S 2=a 1+a 2=4a 1. 设数列{S n }的公差为d ,d >0, 则S 2-S 1=4a 1-a 1=d ,得a 1=d 2, 所以S n =S 1+(n -1)d =nd , 所以S n =n 2d 2,所以n ≥2时,a n =S n -S n -1=n 2d 2-(n -1)2d 2=2d 2n -d 2, 对n =1也适合,所以a n =2d 2n -d 2,所以a n +1-a n =2d 2(n +1)-d 2-(2d 2n -d 2)=2d 2(常数), 所以数列{a n }是等差数列.热点一 等差数列、等比数列的基本公式1.等差数列的通项公式:a n =a 1+(n -1)d ;2.等比数列的通项公式:a n =a 1·q n -1.3.等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;4.等比数列的求和公式:S n =⎩⎨⎧a 1(1-q n )1-q =a 1-a n q1-q ,q ≠1,na 1,q =1.例 1 (1)已知等比数列{a n }的各项均为正数,且3a 12,a 34,a 2成等差数列,则a 20+a 19a 18+a 17等于( ) A.9 B.6 C.3 D.1(2)(2022·全国乙卷)记S n 为等差数列{a n }的前n 项和.若2S 3=3S 2+6,则公差d =________.(3)已知{a n }是递减的等比数列,且a 2=2,a 1+a 3=5,则{a n }的通项公式为________;a 1a 2+a 2a 3+…+a n a n +1(n ∈N *)=________. 答案 (1)A (2)2(3)a n =⎝ ⎛⎭⎪⎫12n -3(n ∈N *) 323×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n解析 (1)设公比为q ,由3a 12,a 34,a 2成等差数列, 可得3a 12+a 2=a 32,所以3a 12+a 1q =a 1q 22,则q 2-2q -3=0,解得q =-1(舍去)或q =3.所以a 20+a 19a 18+a 17=a 18q 2+a 17q 2a 18+a 17=q 2=9.(2)由2S 3=3S 2+6,可得2(a 1+a 2+a 3)=3(a 1+a 2)+6, 化简得2a 3=a 1+a 2+6, 即2(a 1+2d )=2a 1+d +6, 解得d =2.(3)设等比数列{a n }的公比为q , 由a 2=2,a 1+a 3=5, 得2q+2q =5, 解得q =12或q =2,又{a n }是递减的等比数列, 所以q =12,所以a n =a 2×⎝ ⎛⎭⎪⎫12n -2=12n -3,所以a n a n +1=12n -3·12n -2=122n -5,则a 1a 2+a 2a 3+…+a n a n +1是首项为8, 公比为14的等比数列的前n 项和,故a 1a 2+a 2a 3+…+a n a n +1=8×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n1-14=323×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n.规律方法 等差数列、等比数列的基本量问题的求解策略 (1)抓住基本量:首项a 1、公差d 或公比q .(2)熟悉一些结构特征,如前n 项和为S n =an 2+bn (a ,b 是常数)形式的数列为等差数列,通项公式为a n =p ·q n -1(p ,q ≠0)形式的数列为等比数列.训练1 (1)(2022·潍坊三模)已知等差数列{a n }的前n 项和为S n ,若S 7-S 6=24,a 3=8,则数列{a n }的公差d =( ) A.2 B.4 C.6 D.8(2)已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=90,设b n =log 2⎝ ⎛⎭⎪⎫13a n ,则数列{b n }的前15项和为( ) A.16 B.80 C.120 D.150(3)(2022·成都诊断)程大位是我国明代伟大的数学家,在他所著的《算法统宗》中有一道“竹筒容米”题:家有九节竹一茎,为因盛米不均平;下头三节三升九,上梢四节贮三升;惟有中间二节竹,要将米数次第盛;若是先生能算法,教君只算到天明.用你所学的数学知识求得中间二节的容积和为( ) A.2.1升 B.2.6升 C.2.7升 D.2.9升 答案 (1)B (2)C (3)A解析 (1)设等差数列{a n }的首项为a 1, 公差为d ,则a n =a 1+(n -1)d , 而a 7=S 7-S 6=24,又a 3=8,∴a 7-a 3=a 1+6d -(a 1+2d )=4d =16, 解得d =4,故选B.(2)设等比数列{a n }的公比为q ,则S 4=a 1+a 2+a 3+a 4=(a 1+a 3)(1+q )=90, 又a 1+a 3=a 1(1+q 2)=30, 解得a 1=6,q =2, 所以a n =a 1q n -1=3·2n , 所以b n =log 2⎝ ⎛⎭⎪⎫13a n =n ,则{b n }为等差数列, 所以数列{b n }的前15项和T 15=15(b 1+b 15)2=15×(1+15)2=120.故选C.(3)设从下到上每节竹容积构成数列{a n },易知{a n }为等差数列, 设其公差为d ,则a 1+a 2+a 3=3.9,a 6+a 7+a 8+a 9=3,即(a 1+a 3)×32=3.9,(a 6+a 9)×42=3,所以a 1+a 3=2.6,a 6+a 9=1.5, 即2a 1+2d =2.6,2a 1+13d =1.5, 解得a 1=1.4,d =-0.1, 所以a 4=1.1,a 5=1, 所以a 4+a 5=2.1.故选A.热点二 等差数列、等比数列的性质1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列,有a m a n =a p a q =a 2k .2.前n 项和的性质(m ,n ∈N *):对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外).例2 (1)在各项均为正数的等比数列{a n }中,a 3=2-2,a 5=2+1,则a 1a 5+2a 2a 6+a 3a 7=( ) A.1 B.9C.52+7D.32+9(2)(2022·徐州二模)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( ) A.2 B.73C.83D.3(3)(2022·金华模拟)设S n 为等差数列{a n }的前n 项和,a 6+a 7=1,则S 12=________;若a 7<0,则使得不等式S n <0成立的最小整数n =________. 答案 (1)B (2)B (3)6 13 解析 (1)由等比数列的性质可得:a 1a 5+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-2+2+1)2=9,故选B. (2)因为等比数列{a n }的前n 项和为S n ,S 6S 3=3,即S 6=3S 3, 则S 3,S 6-S 3,S 9-S 6成等比数列, 即S 6-S 3S 3=S 9-S 6S 6-S 3, 故4S 3=S 9-S 6,故S 9=7S 3,故S 9S 6=73.(3)根据题意,{a n }为等差数列, 若a 6+a 7=1,则S 12=(a 1+a 12)×122=(a 6+a 7)×122=6,若a 7<0,则S 13=(a 1+a 13)×132=13a 7<0,则使不等式S n <0成立的最小整数n =13. 规律方法 等差、等比数列性质问题的求解策略(1)抓住项与项之间的关系及项与序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.训练2 (1)(2022·长沙三模)在等比数列{a n}中,a7,a11是方程x2+5x+2=0的两根,则a3a9a15a5a13的值为( )A.-2+22B.- 2C.2D.-2或 2(2)(2022·聊城检测)设S n是等差数列{a n}的前n项和,若S4S8=25,则S8S16=( )A.514B.726C.35 D.25(3)已知各项均为正数的等比数列{a n},a6,3a5,a7成等差数列,若{a n}中存在两项a m,a n ,使得4a1为其等比中项,则1m+4n的最小值为( )A.4B.9C.23 D.32答案(1)B (2)A (3)D解析(1)在等比数列{a n}中,a7,a11是方程x2+5x+2=0的两根,则a7+a11=-5,a7·a11=2,∴a9=-2,则a3a9a15a5a13=a39a29=a9=- 2.(2)因为数列{a n}为等差数列,所以S4,S8-S4,S12-S8,S16-S12成等差数列.因为S 4S 8=25,所以设S 4=2k ,S 8=5k ,k ≠0, 则S 8-S 4=3k ,可知S 12-S 8=4k ,S 16-S 12=5k , 所以S 12=9k ,S 16=14k , 所以S 8S 16=5k 14k =514.(3)因为a 6,3a 5,a 7成等差数列, 所以2×3a 5=a 6+a 7.又{a n }是各项均为正数的等比数列, 设其首项为a 1,公比为q , 所以6a 1q 4=a 1q 5+a 1q 6, 所以q 2+q -6=0,解得q =2或q =-3(舍去), 又4a 1为a m ,a n 的等比中项, 所以(4a 1)2=a m ·a n ,所以16a 21=a 1·2m -1·a 1·2n -1=a 21·2m +n -2=24×a 21,所以m +n -2=4,即m +n =6,所以1m +4n =16(m +n )·⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫1+4m n +n m +4≥16⎝ ⎛⎭⎪⎫5+24mn ·n m =32, 当且仅当4m n =nm,即m =2,n =4时,等号成立,所以1m+4n的最小值为32.故选D.热点三等差数列、等比数列的判断与证明证明数列为等差(比)数列一般使用定义法.例3(2021·全国乙卷)设S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2Sn +1bn=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.(1)证明因为b n是数列{S n}的前n项积,所以n≥2时,S n=bnbn-1,代入2Sn+1bn=2可得,2b n-1bn+1bn=2,整理可得2b n-1+1=2b n,即b n-b n-1=12(n≥2).又2S 1+1b 1=3b 1=2,所以b 1=32, 故{b n }是以32为首项,12为公差的等差数列.(2)解 由(1)可知,b n =32+12(n -1)=n +22,则2S n +2n +2=2,所以S n =n +2n +1, 当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1n (n +1). 故a n=⎩⎪⎨⎪⎧32,n =1,-1n (n +1),n ≥2.易错提醒a n +1=a n q 和a 2n =a n -1a n +1(n ≥2)都是数列为等比数列的必要不充分条件,判定时还要看各项是否为零.训练3 已知数列{a n }的前n 项和为S n ,a 2=6,S n =12a n +1+1.(1)证明:数列{S n -1}为等比数列,并求出S n ;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n .(1)证明 由S n =12a n +1+1,得S n =12(S n +1-S n )+1,即S n +1-1=3(S n -1),又a 2=6,∴S 1=2a 2+1=4,S 1-1=3≠0,∴数列{S n -1}是首项为3,公比为3的等比数列,即S n -1=3n , ∴S n =3n +1.(2)解 由(1)可得:S n =12a n +1+1=3n +1,∴a n +1=2×3n , ∴a n =2×3n -1(n ≥2), 又a 1=4≠2×31-1=2, ∴a n =⎩⎨⎧4,n =1,2×3n -1,n ≥2, ∴1a n=⎩⎪⎨⎪⎧14,n =1,12×3n -1,n ≥2,∴当n ≥2时,T n =1a 1+1a 2+1a 3+…+1a n =14+12×13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n -11-13=12-14×3n -1,当n =1时T 1=14也符合上式,综上,T n =12-14×3n -1.一、基本技能练1.已知等比数列{a n }满足a 1=2,a 3a 5=4a 26,则a 3的值为( ) A.1 B.2C.1或-1D.2答案 A解析 由题意得a 3a 5=a 24=4a 26,又在等比数列中偶数项同号, ∴a 4=2a 6,∴q 2=12,∴a 3=a 1q 2=1,故选A.2.设数列{a n }是等差数列,S n 是数列{a n }的前n 项和,a 3+a 5=10,S 5=15,则S 6=( ) A.18 B.24 C.30 D.36 答案 B解析 由等差数列的性质知a 4=a 3+a 52=5,而S 5=a 1+a 52×5=5a 3=15,则a 3=3,等差数列{a n }的公差d =a 4-a 3=2, 所以a 1=a 3-2d =-1,则S 6=6a 1+6×(6-1)2·d =-6+30=24.3.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块.向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3 699块B.3 474块C.3 402块D.3 339块答案 C解析设每一层有n环,由题意可知,从内到外每环之间构成公差为d=9,首项为a1=9的等差数列.由等差数列的性质知S n,S2n-S n,S3n-S2n成等差数列,且(S3n-S2n)-(S2n-S n)=n2d,则9n2=729,解得n=9,则三层共有扇面形石板S3n=S27=27×9+27×262×9=3 402(块).4.若等差数列{a n}的前n项和为S n,则“S2 022>0,S2 023<0”是“a1 011a1 012<0”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 B解析因为S2 022>0,S2 023<0,所以(a1+a2 022)×2 0222>0,(a1+a2 023)×2 0232<0,即a1+a2 022=a1 011+a1 012>0,a1+a2 023=2a1 012<0,所以a1 011>0,a1 012<0,且a1 011>|a1 012|,所以a1 011a1 012<0,充分性成立;而当a1 011a1 012<0时,a1 011>0,a1 012<0或a1 011<0,a1 012>0,则S2 022>0,S2 023<0不一定成立.故“S2 022>0,S2 023<0”可以推出“a1 011a1 012<0”,但“a1 011a1 012<0”不能推出“S2 022>0,S2 023<0”,所以“S2 022>0,S2 023<0”是“a1 011a1 012<0”的充分不必要条件.故选B.5.(多选)已知等比数列{a n}的公比为q,且a5=1,则下列选项正确的是( )A.a3+a7≥2B.a4+a6≥2C.a7-2a6+1≥0D.a3-2a4-1≥0答案AC解析因为等比数列{a n}的公比为q,且a5=1,所以a3=1q2,a4=1q,a6=q,a7=q2,因为a3+a7=1q2+q2≥2,当且仅当q2=1时等号成立,故A正确;因为a4+a6=1q+q,当q<0时式子为负数,故B错误;因为a7-2a6+1=q2-2q+1=(q-1)2≥0,故C正确;因为a3-2a4-1=1q2-2q-1=⎝⎛⎭⎪⎫1q-12-2,则a3-2a4-1≥0不成立,故D错误.6.(多选)(2022·张家口质检)已知数列{a n}的前n项和为S n,下列说法正确的是( )A.若S n=n2+1,则{a n}是等差数列B.若S n=3n-1,则{a n}是等比数列C.若{a n }是等差数列,则S 9=9a 5D.若{a n }是等比数列,且a 1>0,q >0,则S 1·S 3>S 22 答案 BC解析 若S n =n 2+1,当n ≥2时,a n =2n -1,a 1=2不满足a n =2n -1, 故A 错误;若S n =3n -1,当n ≥2时,a n =S n -S n -1=2·3n -1, 由于a 1=S 1=31-1=2, 满足a n =2·3n -1,所以{a n }是等比数列,故B 正确; 若{a n }是等差数列,则S 9=9(a 1+a 9)2=9a 5,故C 正确;当q =1时,S 1·S 3-S 22=a 21(1+q +q 2)-a 21(1+q )2=-a 21q <0,故D 错误, 综上,选BC.7.写出一个公差为2,且前3项和小于第3项的等差数列a n =________. 答案 2n -4(n ∈N *)(答案不唯一) 解析 依题意得⎩⎨⎧a 1+a 2+a 3<a 3,d =2,解得a 1<-1,不妨令a 1=-2,∴a n =2n -4.8.(2022·菏泽模拟)已知数列{a n }的前n 项和是S n ,且S n =2a n -1,若a n ∈(0,2 022),则称项a n 为“和谐项”,则数列{a n }的所有“和谐项”的和为________. 答案 2 047解析当n≥2时,a n=S n-S n-1=2a n-1-(2a n-1-1)=2a n-2a n-1,∴a n=2a n-1,又由a1=S1=2a1-1,得a1=1,∴{a n}是公比为2,首项为1的等比数列,∴a n=2n-1,由a n=2n-1<2 022,得n-1≤10,即n≤11,∴所求和为S11=1-2111-2=2 047.9.已知数列{a n}满足a1=1,(a n+a n+1-1)2=4a n a n-1,且a n+1>a n(n∈N*),则数列{a n}的通项公式a n=________.答案n2解析因为a1=1,a n+1>a n≥a1>0,所以a n+1>a n.由(a n+a n+1-1)2=4a n a n+1得a n+1+a n-1=2a n a n+1,所以(a n+1-a n)2=1,所以a n+1-a n=1,所以数列{a n}是首项为1,公差为1的等差数列,所以a n=n,即a n=n2.10.(2022·福州模拟)已知数列{a n}是各项均为正数的等比数列,S n为数列{a n}的前n项和,若S2+a2=S3-3,则a4+3a2的最小值为________.答案18解析由S2+a2=S3-3得a2=S3-S2-3=a3-3,所以a 1q =a 1q 2-3⇒a 1=3q 2-q>0⇒q >1,所以a 4+3a 2=a 1q 3+3a 1q =3(q 3+3q )q 2-q =3(q 2+3)q -1=3×(q -1)2+2(q -1)+4q -1=3⎣⎢⎡⎦⎥⎤(q -1)+4q -1+6 ≥3×2(q -1)·4q -1+6=18,当且仅当q -1=4q -1, 即q =3时等号成立,故a 4+3a 2的最小值为18. 11.设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3(m ∈N *),求m . 解 (1)设{a n }的公比为q ,则a n =a 1qn -1.由已知得⎩⎨⎧a 1+a 1q =4,a 1q 2-a 1=8,解得⎩⎨⎧a 1=1,q =3.所以{a n }的通项公式为a n =3n -1(n ∈N *). (2)由(1)知log 3a n =n -1, 故S n =n (n -1)2(n ∈N *).由S m +S m +1=S m +3,得m (m -1)+(m +1)m =(m +3)(m +2), 即m 2-5m -6=0.解得m =-1(舍去)或m =6.12.(2022·新高考Ⅱ卷)已知{a n }是等差数列,{b n }是公比为2的等比数列,且a 2-b 2=a3-b3=b4-a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素的个数.(1)证明设等差数列{a n}的公差为d,由a2-b2=a3-b3得a1+d-2b1=a1+2d-4b1,即d=2b1,由a2-b2=b4-a4得a1+d-2b1=8b1-(a1+3d),即a1=5b1-2d,将d=2b1代入,得a1=5b1-2×2b1=b1,即a1=b1.(2)解由(1)知a n=a1+(n-1)d=a1+(n-1)×2b1=(2n-1)a1,b n=b1·2n-1,由b k=a m+a1,得b1·2k-1=(2m-1)a1+a1,由a1=b1≠0得2k-1=2m,由题知1≤m≤500,所以2≤2m≤1 000,所以k=2,3,4,…,10,共9个数,即集合{k|b k=a m+a1,1≤m≤500}={2,3,4,…,10}中元素的个数为9.二、创新拓展练13.(多选)(2022·济南质检)在等比数列{a n}中,公比为q,其前n项积为T n,并且满足a 1>1,a99·a100-1>0,a99-1a100-1<0,下列结论中正确的是( )A.0<q<1B.a99·a101-1<0C.T100的值是T n中最大的D.使T n>1成立的最大自然数n值等于198 答案ABD解析对于A,∵a99·a100-1>0,∴a 21·q 197>1,∴(a 1·q 98)2·q >1. ∵a 1>1,∴q >0. 又∵a 99-1a 100-1<0, ∴a 99>1,且a 100<1, ∴0<q <1,故A 正确;对于B ,∵a 2100=a 99·a 101,a 100<1, ∴0<a 99·a 101<1,即a 99·a 101-1<0,故B 正确; 对于C ,由于T 100=T 99·a 100, 而0<a 100<1,故有T 100<T 99,故C 错误;对于D ,T 198=a 1·a 2·…·a 198=(a 1·a 198)(a 2·a 197)·…·(a 99·a 100)=(a 99·a 100)99>1,T 199=a 1·a 2·…·a 199=(a 1·a 199)·(a 2·a 198)…(a 99·a 101)·a 100=(a 100)100<1,故D 正确. 故选ABD.14.(多选)(2022·石家庄模拟)已知数列{a n }满足a 1=10,a 5=2,且a n +2-2a n +1+a n =0(n ∈N *),则下列结论正确的是( ) A.a n =12-2nB.|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎨⎧30,n ≤5,n 2+5,n >5C.|a n |的最小值为0D.当且仅当n =5时,a 1+a 2+a 3+…+a n 取得最大值30 答案 AC解析 由a n +2-2a n +1+a n =0, 可得a n +2-a n +1=a n +1-a n ,所以数列{a n }是等差数列,设公差为d , 因为a 1=10,a 5=2, 所以d =a 5-a 15-1=-2,所以a n =10-2(n -1)=12-2n , 故A 正确;当n =6时,a n =0,所以当n ≤5时,a n >0, 当n >5时,a n ≤0,所以当n ≤5时,|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+a 3+…+a n =n (10+12-2n )2=11n -n 2.当n >5时,|a 1|+|a 2|+|a 3|+…+|a n | =a 1+a 2+…+a 5-a 6-…-a n=-(a 1+a 2+a 3+…+a n )+2(a 1+a 2+…+a 5) =-S n +2S 5 =-(11n -n 2)+60 =n 2-11n +60,所以|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎨⎧11n -n 2,n ≤5,n 2-11n +60,n >5,故B 错误;|a n |=|12-2n |,当n =6时,|a n |取得最小值为0,故C 正确; 当n =5或n =6时,a 1+a 2+a 3+…+a n 取最大值30,故D 错误.15.(多选)已知S n 是数列{a n }的前n 项和,且a 1=a 2=1,a n =a n -1+2a n -2(n ≥3),则下列结论正确的是( ) A.数列{a n +1+a n }为等比数列 B.数列{a n +1-2a n }为等比数列 C.a n =2n +1+(-1)n3D.S 20=23(410-1)答案 ABD解析 因为a n =a n -1+2a n -2(n ≥3), 所以a n +a n -1=2a n -1+2a n -2 =2(a n -1+a n -2), 又a 1+a 2=2≠0,所以{a n +a n +1}是等比数列,A 正确;同理a n -2a n -1=a n -1+2a n -2-2a n -1=-a n -1+2a n -2=-(a n -1-2a n -2),而a 2-2a 1=-1, 所以{a n +1-2a n }是等比数列,B 正确; 若a n =2n +1+(-1)n3,则a 2=23+(-1)23=3,但a 2=1≠3,C 错误;由A 知{a n +a n +1}是等比数列,且公比为2,因此数列a 1+a 2,a 3+a 4,a 5+a 6,…仍然是等比数列,公比为4,其前10项和为T 10, 则S 20=T 10=2(1-410)1-4=23(410-1),故D 正确.16.(多选)(2022·泰州调研)若正整数m ,n 只有1为公约数,则称m ,n 互质,对于正整数k ,φ(k )是不大于k 的正整数中与k 互质的数的个数,函数φ(k )以其首名研究者欧拉命名,称为欧拉函数,例如:φ(2)=1,φ(3)=2,φ(6)=2,φ(8)=4.已知欧拉函数是积性函数,即如果m ,n 互质,那么φ(mn )=φ(m )φ(n ),例如:φ(6)=φ(2)φ(3),则( ) A.φ(5)=φ(8)B.数列{φ(2n )}是等比数列C.数列{φ(6n )}不是递增数列D.数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1φ(6n )的前n 项和小于35 答案 ABD解析 ∵φ(5)=4,φ(8)=4, ∴φ(5)=φ(8),A 对.∵φ(2n )=2n -1,∴{φ(2n )}是等比数列,B 对.∵φ(6n )=2·6n -1,∴{φ(6n )}一定是单调递增数列,故C 错.φ(6n )=2·6n -1,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1φ(6n)的前n 项和S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫16n1-16=35⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫16n<35,D 对,选ABD. 17.已知数列{a n }的前n 项和为S n ,a 1=12,S n +1·(2-S n )=1.(1)求证:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n -1是等差数列; (2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 中最接近2 023的数.(1)证明1S 1-1=1a 1-1=-2.由S n +1·(2-S n )=1,得S n +1=12-S n. 因为1S n +1-1-1S n -1=112-S n-1-1S n -1=2-S n S n -1-1S n -1=-1,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n -1是以-2为首项,-1为公差的等差数列.(2)解 由(1)得1S n -1=-2+(n -1)×(-1)=-(n +1),即S n =nn +1,则a n =S n -S n -1=nn +1-n -1n =1n (n +1)(n ≥2),当n =1时,a 1=12满足上式,所以a n =1n (n +1)(n ∈N *),则1a n=n (n +1).由f (x )=x (x +1)=⎝⎛⎭⎪⎫x +122-14在(0,+∞)上单调递增, 当n =44时,1a 44=44×45=1 980;当n =45时,1a 45=45×46=2 070.所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 中最接近2 023的数是1 980.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列与等比数列测试题1.在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)对任意m ∈N ﹡,将数列{a n }中落入区间(9m ,92m)内的项的个数记为bm ,求数列{b m }的前m 项和S m 。
2.已知等差数列{}n a 的前5项和为105,且2052a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m的项的个数记为m b .求数列{}m b 的前m 项和mS.3、设{}n a 是等差数列,1()2n an b =,已知123218b b b ++=,12318b b b =, 求等差数列{}n a 的通项公式。
4、设数列{}n a 为等差数列,n S 为数列{}n a 的前n 项和,已知7157,75S S ==,n T 为数列{nS n}的前n 项和,求n T 。
5、设n S 为数列{}n a 的前n 项和,2n S kn n =+,*n N ∈,其中k 是常数. (I ) 求1a 及n a ;(II )若对于任意的*m N ∈,m a ,2m a ,4m a 成等比数列,求k 的值.6、设数列{}n a 的通项公式为(,0)n a pn q n N P *=+∈>. 数列{}n b 定义如下:对于正整数m ,m b 是使得不等式n a m ≥成立的所有n 中的最小值.(Ⅰ)若11,23p q ==-,求3b ;(Ⅱ)若2,1p q ==-,求数列{}m b 的前2m 项和公式; (Ⅲ)是否存在p 和q ,使得32()m b m m N *=+∈?如果存在,求p 和q 的取值范围;如果不存在,请说明理由.7、等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值; (11)当b=2时,记 1()4n nn b n N a ++=∈ 求数列{}n b 的前n 项和n T8、已知{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列(1)若 31n a n =+,是否存在*,m n N ∈,有1m m k a a a ++=?请说明理由;(2)若n n b aq =(a 、q 为常数,且aq ≠0)对任意m 存在k ,有1m m k b b b +⋅=,试求a 、q 满足的充要条件;(3)若21,3n n n a n b =+=试确定所有的p,使数列{}n b 中存在某个连续p 项的和是数列中{}n a 的一项,请证明.参考答案1. (Ⅰ)因为{}n a 是等差数列,由a 3+a 4+a 5= 4384,a =得428,a =设数列的公差为d ,由a 9=73,得9,45549==-=d a a d ,12728341=-=-=d a a ,于是899)1(1-=⨯-+=n n a n ,即89-=n a n .(Ⅱ)对任意m ∈N ﹡,m m n 29899<-<,则899892+<<+m m n , 即989989121+<<+--m m n ,而*N n ∈,由题意可知11299---=m m m b , 于是)999(999110123121--+++-+++=+++=m m m m b b b S8980198019109819809991919199121212212mm m m m m m m -+=+⋅-=---=-----=++++, 即89801912mm m S -+=+. 2. 解:(I)设数列的公差为d ,前n 项和为n T ,则由5105,T =2052a a =得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩ 解得17,7a d ==, 所以通项公式为7(1)77na n n =+-⋅=. (II) 任意*m ∈N ,若277mn a n =≤,则217m n -≤,即217m m b -=. ∵211217497m k m k b b ++-==,∴{}m b 是首项为7,公比为49的等比数列,∴7(149)7(491)14948m mmS -==--.3、解:∵ {a n }为等差数列 ∴ {b n }为等比数列 ∵ b 1b 3=b 22∴ b 23=81∴ b 2=21∴ ⎪⎪⎩⎪⎪⎨⎧==+41b b 817b b 2131 ∴ ⎪⎩⎪⎨⎧==81b 2b 31 或 ⎪⎩⎪⎨⎧==2b 81b 21 ∴ n 231n n 2)41(2b --== 或 5n 21n n 2481b --=⋅=∵ n a n )21(b = ∴ n 21n b log a =∴ a n =2n-3 或 a n =-2n+54、解:法一:利用基本元素分析法设{a n }首项为a 1,公差为d ,则⎪⎪⎩⎪⎪⎨⎧=⨯+==⨯+=75d 21415a 15S 7d 267a 7S 11517 ∴ ⎩⎨⎧=-=1d 2a 1∴ 2)1n (n 2S n -+-= ∴ 252n 21n 2n S n -=-+-= 此式为n 的一次函数 ∴ {n S n }为等差数列 ∴ n 4an 41T 2n -= 法二:{a n }为等差数列,设S n =An 2+Bn∴ ⎪⎩⎪⎨⎧=+⨯==+⨯=75B 1515A S 7B 77A S 21527 解之得:⎪⎪⎩⎪⎪⎨⎧-==25B 21A ∴ n 25n 21S 2n -=,下略 5、解:(Ⅰ)当1,111+===k S a n ,12)]1()1([,2221+-=-+--+=-=≥-k kn n n k n kn S S a n n n n (*)经验,,1=n (*)式成立, 12+-=∴k kn a n (Ⅱ)m m m a a a 42,, 成等比数列,m m m a a a 422.=∴,即)18)(12()14(2+-+-=+-k km k km k km ,整理得:0)1(=-k mk , 对任意的*∈N m 成立, 10==∴k k 或 6、解:(Ⅰ)由题意,得1123n a n =-,解11323n -≥,得203n ≥. ∴11323n -≥成立的所有n 中的最小整数为7,即37b =. (Ⅱ)由题意,得21n a n =-,对于正整数,由n a m ≥,得12m n +≥. 根据m b 的定义可知当21m k =-时,()*m b k k N =∈;当2m k =时,()*1m b k k N =+∈. ∴()()1221321242m m m b b b b b b b b b -+++=+++++++()()1232341m m =++++++++++⎡⎤⎣⎦()()213222m m m m m m ++=+=+. (Ⅲ)假设存在p 和q 满足条件,由不等式pn q m +≥及0p >得m qn p-≥. ∵32()m b m m N *=+∈,根据m b 的定义可知,对于任意的正整数m 都有3132m qm m p-+<≤+,即()231p q p m p q --≤-<--对任意的正整数m 都成立. 当310p ->(或310p -<)时,得31p q m p +<--(或231p qm p +≤--), 这与上述结论矛盾! 当310p -=,即13p =时,得21033q q --≤<--,解得2133q -≤<-. ∴ 存在p 和q ,使得32()m b m m N *=+∈;p 和q 的取值范围分别是13p =,2133q -≤<-. 7、解:因为对任意的n N +∈,点(,)n n S ,均在函数(0xy b r b =+>且1,,b b r ≠均为常数)的图像上.所以得n n S b r =+, 当1n =时,11a S b r ==+,当2n ≥时,1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-, 又因为{n a }为等比数列, 所以1r =-, 公比为b , 所以1(1)n n a b b -=- (2)当b=2时,11(1)2n n n a b b --=-=, 111114422n n n n n n n b a -++++===⨯ 则234123412222n n n T ++=++++3451212341222222n n n n n T +++=+++++ 相减,得23451212111112222222n n n n T +++=+++++- 31211(1)112212212n n n -+⨯-++--12311422n n n +++=-- 所以113113322222n n n n n n T ++++=--=-因此()()()()819819n n S n n n n n S n n n n n =-+-=-=--=--,或8、解:(1)由1,m m k a a a ++=得6631m k +++,整理后,可得42,3k m -=m 、k N ∈,2k m ∴-为整数∴不存在n 、k N *∈,使等式成立。
(2)当1m =时,则2312,k k b b b a q aq ⋅=∴⋅=3,k a q -∴=即c a q =,其中c 是大于等于2-的整数反之当ca q =时,其中c 是大于等于2-的整数,则n c nb q +=, 显然12121mc m c m c m m k b b q q q b ++++++⋅=⋅==,其中21k m c =++∴a 、q 满足的充要条件是c a q =,其中c 是大于等于2-的整数(3)设12m m m p k b b b a ++++++=当p 为偶数时,(*)式左边为偶数,右边为奇数, 当p 为偶数时,(*)式不成立。
由(*)式得13(13)2113m p k +-=+-,整理得13(31)42m p k +-=+当1p =时,符合题意。
当3p ≥,p 为奇数时,31(12)1p p -=+-()()011221122121222222212222222222pp p p p p pp p p p p p p p p pp p p p C C C C C C C C C C C C C p --=+⋅+⋅++⋅-=⋅+⋅++⋅=+⋅++⋅⎡⎤=+⋅++⋅+⎣⎦∴ 由13(31)42m p k +-=+,得()12222322221m pp p p p C C C p k +-⎡⎤+⋅++⋅+=+⎣⎦∴当p 为奇数时,此时,一定有m 和k 使上式一定成立。