二组分气液平衡相图的绘制

合集下载

第6章 二组分液态部分互溶系统及完全不互溶系统气液平衡相图

第6章 二组分液态部分互溶系统及完全不互溶系统气液平衡相图
c 界会溶点。对应于C点的温度tc,
C L1’
称为高临界溶解温度或高会溶
富水
温度。
l
L2’
富酚
温度高于高会溶温度,液 体水与液体苯酚可完全互溶, 温度低于高会溶温度,两液 体只能部分互溶。
l1+ l2
0M A (水)
N 100
wB /%
B(苯酚)
t
p=const.
e
加热
l1+ l2
g
冷却
的相变化,温度和三相组成均 不变,但三相的数量却在改变, 改变量之间的关系符合杠杆规 则。
二组分系统三相平衡的杠杆规则:
设A、B二组分系统成α,β, γ 三相平衡时,三个相的组成分 别为xB(α)、xB(β)、xB(γ) ,且 xB(γ) 介于xB(α)和xB(β)之间 。如 图:
又为另一液层的饱和蒸汽压。即气相与两个液
L2
相均平衡,而这两个液相相互平衡。
根据这三相组成的关系,可将部分互溶系统气-液平衡的温 度 - 组成图分为两类:
3.部分互溶系统的温度 - 组成图
(1)气相组成介于两液相组成之间的系统
t
P
92
L1 0M A
p=101.325kPa
Q
G L2
wB/%
N 100 B
对照相图理解三相平衡的杠 杆规则
Δn(α) xB ( β ) xB (γ ) Δn( β ) xB (γ ) xB (α)
Δn(α) α
Δn(β) γβ
0 xB(α) xB(γ) xB (β) 1
A
B
Δn(α) [xB (γ ) xB (α)] Δn( β ) [xB ( β ) xB (γ )]
P

实验七 双液系气液平衡相图的测绘

实验七 双液系气液平衡相图的测绘

实验七、双液系气—液平衡相图的测绘专业:11化学姓名:赖煊荣座号:32 同组人:黄音彬时间:2013.12. 3Ⅰ、目的要求1.测定相应组成时的沸点并制作常压下环已烷—无水乙醇双液系的平衡相图。

2.从沸点组成图了解分馏原理。

3.了解沸点的测定技术,掌握两组分液体沸点的测定方法。

4.掌握折光率与组成的关系及阿贝折光仪的使用方法。

Ⅱ、基本原理一、气—液相图两种液态物质混合而成的二组分体系称为双液系。

两个组分若能按任意比例互相溶解,称完全互溶双液系。

液体的沸点是指液体的蒸气压与外压相等时的温度。

在一定的外压下,纯液体的沸点有其确定值。

但双液系的沸点不仅与外压有关,而且还与两种液体的相对含量有关。

根据相律:自由度=组分数-相数+2 。

因此,一个以气—液共存的二组分体系,其自由度为2。

只要任意再确定一个变量,整个体系的存在状态就可以用二维图形来描述。

在T—x相图上,还有温度、液相组成和气相组成三个变量,但只有一个自由度。

一旦设定某个变量,则其它两个变量必有相应的确定值。

二、沸点测定仪沸点仪的构造特点满足:正确测定沸点、便于取样分析、防止过热及避免分馏等。

如图2,是一只带回流冷凝管的长颈圆底烧瓶。

冷凝管底部有一半球形小室,用以收集冷凝下来的气相样品。

溶液中事先加入沸石以减少溶液沸腾时的过热现象及防止暴沸。

三、组成分析本实验选用的环已烷和乙醇,两者折光率相差颇大,而折光率测定又只需少量样品,平衡体系两相组成的获得由事先测得的折光率——组成的工作曲线查得。

折光仪的原理及使用详见参考资料。

Ⅲ、仪器与试剂沸点测定仪一套,普通温度计一支、超级恒温器一套(配接触点温度计、温度计各一支),酒精灯一个、铁架台一附、阿贝折光仪一台、长滴管、烧杯、移液管、擦镜纸等。

环已烷(分析纯)、无水乙醇(分析纯)、丙酮(分析纯)、重蒸馏水等。

Ⅳ、实验步骤1.联接超级恒温器与阿贝折光仪。

调节超级恒温器恒温水浴温度为设定温度25℃,与阿贝折光仪温度一致。

ch6.3二组分理想液态混合物的气液平衡相图

ch6.3二组分理想液态混合物的气液平衡相图

二组分系统的相律分析
•根据相律 F = C - P + 2 = 4 - P
•F最大= 3 即最多可以有三个独立变量, 这三个变量通常是T,p 和组成 x
•P最大= 4 即最多可以四相平衡共存
•通常研究方法 •固定一个变量,用二维坐标描述使图形简单易用。 ( )T ( )P ( )x
两个纯液体可按任意比例互溶,每个组分都服从拉乌尔定律, 这样组成了理想的完全互溶双液系,或称为理想的液体混合物
pB pB xB
* pB
p
* A
pA pA (1 xB )
A
xB
B
∵T=常数,且系统达到气液平衡时,自由度数F= 1, 表明压力和组成中只有一个为变量,若选液相组成xB 为独立变量,即 p = f(xB),且yB = f(xB)
(2) p-x-y图
这是 p-x 图的一种,把液相组成 x 和气相组成 y 画在同一张图上。 • yA 和 yB的求法如下:
G1
tB pB p* a B ( t ) xB yB p 101.325kPa l * * 若已知t温度下的 pA (t )和pB (t ) A x B B 求得(t, xB , yB ) 以此类推可获得不同温度下的气液相组成,进而画出 气相点和液相点
(2)T-x图分析
在T-x图上,气 相线在上,液相线在 下,上面是气相区, 下面是液相区,梭形 区是气-液两相区。 •两条线 F=1 •三个区域 单相区 F=2 ; 气-液平衡区 F=1。 •两端点 F=0
(1)T-x图可通过计算获得
101.325kPa p (t )(1 x B ) p (t ) x B
* A * B
* * p* ( t ) ( p ( t ) p A B A ( t ))x B

完全互溶双液系气液平衡相图的绘制。实验报告

完全互溶双液系气液平衡相图的绘制。实验报告

完全互溶双液系气液平衡相图的绘制一.实验目的1.测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制沸点-组成相图。

2.掌握双组分沸点的测定方法,通过实验进一步理解分馏原理。

3.掌握阿贝折射仪的使用方法。

二.实验原理两种液体物质混合而成的两组分体系称为双液系。

根据两组分间溶解度的不同,可分为完全互溶、部分互溶和完全不互溶三种情况。

两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。

当压力保持一定,混合物沸点与两组分的相对含量有关。

恒定压力下,真实的完全互溶双液系的气-液平衡相图(T-x),根据体系对拉乌尔定律的偏差情况,可分为3类:(1)一在工作曲线上找出未知溶液的组成。

三.仪器与试剂沸点仪,阿贝折射仪,调压变压器,超级恒温水浴,温度测定仪,长短取样管。

环己烷物质的量分数x环己烷为0、0.2、0.4、0.6、0.8、1.0的环己烷-乙醇标准溶液,已知101.325kPa下,纯环己烷的沸点为80.1℃,乙醇的沸点为78.4℃。

25℃时,纯环己烷的折光率为1.4264,乙醇的折光率为1.3593。

四.实验步骤:1.环己烷-乙醇溶液折光率与组成工作曲线的测定调节恒温槽温度并使其稳定,阿贝折射仪上的温度稳定在某一定值,测量环己烷-乙醇标准溶液的折光率。

为了适应季节的变化,可选择若干温度测量,一般可选25℃、30℃、35℃三个温度。

2. 无水乙醇沸点的测定将干燥的沸点仪安装好。

从侧管加入约20mL无水乙醇于蒸馏瓶内,并使传感器(温度计)浸入液体内。

冷凝管接通冷凝水。

按恒流源操作使用说明,将稳流电源调至1.8-2.0A,使加热丝将液体加热至缓慢沸腾。

液体沸腾后,待测温温度计的读数稳定后应再维持3~5min以使体系达到平衡。

在这过程中,不时将小球中凝聚的液体倾入烧瓶。

记下温度计的读数,即为无水乙醇的沸点,同时记录大气压力。

3. 环己烷沸点的测定同2步操作,测定环己烷的沸点。

物化实验 二组分体系气液平衡相图绘制

物化实验 二组分体系气液平衡相图绘制

实验四二组分体系气液平衡相图一.实验目的1.了解液体沸点的测定方法。

2.掌握温度计的露茎校正方法。

3.掌握阿贝折光仪的原理及使用方法4.测定环己烷——乙醇二元系统气液平衡数据,给出沸点组成图。

二.实验原理常温下两液态物质混合构成的体系称为双液系。

若该双液系能按任意比例混合成为一相则称为完全互溶双液系。

若只能在一定比例范围内混合成为一相,其它比例范围内为两相则称部分互溶双液系。

环己烷——乙醇体系是完全互溶双液系。

液体的沸点是指液体的蒸气压和外压相等时的温度。

在一定外压下纯液体的沸点有确定值。

但是双液系沸点不仅与外压有关还随双液系的组成的改变而改变。

同时,在一般情况下双液系蒸馏时的气相组成和液相组成并不相同,因此原则上可通过反复蒸馏即精馏的方法分离双液系中的两液体。

但是当双液系具有恒沸点时,不能用单纯蒸馏的方法分离两液体。

如图4.1所示,本实验所用体系环己烷——乙醇的温度组成图是一个典型的具有最低恒沸点的相图。

若将组成在恒沸点处的体系蒸馏时气相组成和液相组成完全一样,因此在整个蒸馏过程中沸点也恒定不变,无法通过蒸馏的方法分离两组分。

恒沸点和恒沸混合物的组成还和外压有关,因此在不同外压条件下实验时所得双液系的相图也不尽相同,通常压力变化不大时恒沸点和恒沸混合物的组成的变化也不大,在未注明压力时一般均指外压为101.325kPa。

图4.1 具有最低恒沸点体系相图示意图本实验采用回流冷凝法测定环己烷——乙醇溶液在不同组成时的沸点。

由于液体沸腾时易发生过热现象,同时气相又易出现分馏效应,因此沸点的准确测定不易。

本实验所用的沸点仪如图 4.2所示,称为奥斯默沸点仪,它是一支带有回流冷凝管的长颈圆底烧瓶,加热用的电热丝直接浸在溶液中,这样可以减少溶液的过热现象和防止暴沸。

冷凝管的底部有一个小球泡用以收集冷凝下来的气相样品,由于分馏作用会使获得的气相样品的组成与气液平衡时的气相组成发生偏差,为此须在吹制沸点仪时尽量缩短小球泡与烧瓶间的距离以减少分馏作用。

04 双液系的气-液平衡相图的绘制

04  双液系的气-液平衡相图的绘制

实验四 双液系的气-液平衡相图的绘制一、目的要求1.用沸点仪测定大气压下乙醇—环己烷或异丙醇-环己烷双液系气-液平衡时气相与液相组成及平衡温度,绘制温度—组成图,确定恒沸混合物的组成及恒沸点的温度。

2.了解物化实验中光学方法的基本原理,学会阿贝折光仪的使用。

3.进一步理解分馏原理。

二、预习要求1.理解分馏原理,了解影响双液系气-液平衡的因素。

2.熟悉阿贝折光仪的使用方法,了解折射率与物系组成的关系。

3.掌握如何由实验数据绘制t x -相图的方法。

三、实验原理两种在常温时为液态的物质混合起来而组成的二组分体系称为双液系。

两种液体若能按任意比例互相溶解,称为完全互溶的双液系;若只能在一定比例范围内互相溶解,则称部分互双液系。

双液系的气液平衡相图t x -图可分为三类。

如图4.1。

图 4.1 二元系统t x -图这些图的纵轴是温度(沸点),横轴是代表液体B 的摩尔分数B x 。

在t x -图中有两条曲线:上面的曲线是气相线,表示在不同溶液的沸点时与溶液成平衡时的气相组成,下面的曲线表示液相线,代表平衡时液相的组成。

例如图4.1(a)中对应于温度t 1的气相点为y 1,液相点为1l ,这时的气相组成y 1点的横轴读数是g B x ,液相组成点1l 点的横轴读数为lB x 。

y 1l 1t 1g B x l B x A B t/℃(a )气液t/℃A B B x →(b )t/ ℃气液A B B x →(c )如果在恒压下将溶液蒸馏,当气液两相达平衡时,记下此时的沸点,并分别测定气相图。

(馏出物)与液相(蒸馏液)的组成,就能绘出此t x图4.1(b)上有个最低点,图4.1(c)上有个最高点,这些点称为恒沸点,其相应的溶液称为恒沸混合物,在此点蒸馏所得气相与液相组成相同。

四、仪器和药品1.仪器玻璃沸点仪一套;阿贝折光仪一台;WLS系列可调式恒流电源一台;SWJ型精密数字温度计一台;SYC超级恒温槽一台。

2.药品无水乙醇(AR)或异丙醇(AR);环己烷(AR)。

6-2二组分系统理想液态混合物的气—液平衡相图

6-2二组分系统理想液态混合物的气—液平衡相图
二组分系统液态互溶情况:
(a)完全互溶
(b)完全不互溶 (c)部分互溶
液态完全互溶系统 p-x、t-x图
理想系统 真实系统
一般正偏差 最大正偏差
一般负偏差 最大负偏差
液态部分互溶系统 t-x图
气相组成介于两液相之间 气相组成位于两液相同侧
液态完全不互溶系统 t-x图
完全互溶系统:理想液态混合物系统气-液平衡相图
1. 压力—组成图
A、B形成理想液态混合物:均符合拉乌尔定律
A组分分压: pA pA* xA pA* 1 xB
B组分分压: pB pB* xB
pA,pB,p和xB均成
气相总压: p pA pB
直线关系
pA* 1 xB pB* xB
pA* pB* pA* xB
液相线:气相总压 p 与液相组成 xB 之间的关系曲线
nL
解: (1) 先确定系统点的总组成
xM
nB nA nB
6 46
0.6
利用
nG (xM yB ) nL (xB xM ) 即 nG (0.6 0.2) nL (0.7 0.6) (1)
nG nL n总 =4+6=10mol (2)
解得
nG =2mol
nL =8mol
(2) 气相中: 甲苯 nB nG yB 2 0.2 0.4mol 苯 nA nG yA 2 0.8 1.6mol
(4)最大负偏差系统
p实际 p理想
且在某一组成范围内比 难挥发组分的饱和蒸气 压还小,实际蒸气总压 出现最小值
液相线
氯仿(A)—丙酮(B)系统
加上气相线:
一般正偏差系统
一般负偏差系统
最大正偏差系统
液相线 气相线

二组分气液平衡相图实验报告

二组分气液平衡相图实验报告

二组分气液平衡相图实验报告实验目的,通过实验,掌握二组分气液平衡相图的测定方法和实验技术。

实验原理,在一定温度下,将两种组分的混合物置于容器中,通过调节温度和压力,观察和记录气液相变的情况,最终绘制出气液平衡相图。

实验仪器,实验中所用的仪器有压力计、温度计、气液平衡相图测定装置等。

实验步骤:
1. 将两种组分混合物置于气液平衡相图测定装置中,调节温度和压力;
2. 观察和记录气液相变的情况,包括气液相变的压力和温度值;
3. 根据记录的数据,绘制出气液平衡相图。

实验结果与分析:
通过实验测定和数据处理,得到了二组分气液平衡相图。

在图中,我们可以清晰地看到气相和液相的边界,以及气液相变的压力和温度值。

根据相图的形状和数据分析,我们可以得出一些结论和规律。

实验结论:
1. 随着温度的升高,气相区域逐渐扩大,液相区域逐渐缩小;
2. 随着压力的升高,气相区域逐渐扩大,液相区域逐渐缩小;
3. 在一定温度下,压力越大,气相区域越大,液相区域越小;
4. 在一定压力下,温度越高,气相区域越大,液相区域越小。

实验总结:
通过本次实验,我们掌握了二组分气液平衡相图的测定方法和实验技术,了解了气液相变的规律和特点。

同时,也加深了对相图的理解和应用,为今后的实验和研究工作打下了坚实的基础。

结语:
二组分气液平衡相图实验是化学实验中的重要内容,通过本次实验,我们不仅学会了实验操作技巧,更重要的是对气液平衡相图有了更深入的理解。

希望通过今后的学习和实践,能够更好地运用这些知识,为科学研究和工程应用做出贡献。

3.2 二组分系统气液平衡相图

3.2 二组分系统气液平衡相图

LG
定温连结线
80
t
* B
xl,B
l(A+B)
60
0.0
0.0 0.2 0.4 0.6 0.8 1.0
C6H5CH3(A)
xB
C6H6 (B)
图3-10 C6H5CH3(A) - C6H6 (B)系统的 沸点-组成图
15
0.0 t/℃
120
t
* A
100
80
60
yB 0.2 0.4 0.6 0.8 1.0
p/102kPa
(2) 蒸气压‐组成曲线有极值
0.0 0.2 1. 0
t=60℃ 0.8
0.6
0.4
pA*
0.2
xB 0.4 0.6
l(A+B) lg
0.8 1.0 xB=0.92
蒸气压有极大值,
yB=xB,气相线与液相 线相切
左半支:yB > xB pB* 右半支:yB < xB
g(A+B)
0.0 0.0 0.2
若pB* > p > pA*, 则 yB > xB, yA < xA. 可知:
饱和蒸气压不同的两种液体形成理想液态混合物成气液平衡时, 两相的组成并不相同, 易挥发组分在气相中的相 对含量大于它在液相中的相对含量.
气-液平衡时蒸气总压p与气相组成yB的关系: 结合式 p = pA* + (pB* - pA* ) xB 和式 yB = pB*xB /p 可得
• 从相图分析恒温降压变化过程.
• 与纯物质在恒温下有一定的饱和蒸气压不同, 由于液相在 气化过程中组成不断变化(剩余难挥发性组分愈来愈多), 使得其平衡蒸气压不断下降, 因而存在相变压力区间. 5

二组分系统气液平衡相图的绘制(含数据)

二组分系统气液平衡相图的绘制(含数据)

二组分系统气液平衡相图的绘制一实验目的1.确定不同组成的环己烷——乙醇溶液的沸点及气、液两相的平衡浓度,由此绘制其沸点组成图。

2.掌握阿贝折射仪的原理及使用方法。

二实验原理本实验用回流冷凝法测定不同浓度的环己烷——乙醇溶液的沸点和气、液两相的组成,从而绘制T----x图。

下图为环己烷——乙醇的沸点组成图的大致形状,ADC和BEC为气相线,AD´C和BE´C 为液相线。

体系总组成为x的溶液开始沸腾时,气象组成为y ,继续蒸馏,气相量增加,液相量减少(总量不变),溶液温度上升,回流作用,控制了两相的量一定,沸点一定。

此时,气相组成为y´,与其平衡的液相组成为x´,体系的平衡沸点为t沸,此时气液两相服从杠杆原理。

当压力一定时,对两相共存区进行相律分析:独立组分K=2,相数P=2,则自由度f=K-P+1=2-2+1=1即有,体系温度一定,则气液两相成分确定。

总量一定时,亮相的量也一定。

在一实验装置中,控制气液两相的相对量一定,使体系温度一定,则气液组成一定。

用精密温度计可以测出平衡温度,取出气液两相样品测定其折射率可以求出其组成。

折射率和组成有一一对应关系,可以通过测定仪系列已知组成的样品折射率,绘出工作曲线。

测出样品就可以从工作曲线上找到未知样品的组成。

三仪器与药品仪器:阿贝折射仪、超级恒温槽、蒸馏瓶、调压变压器、1/10℃刻度温度计、25ml移液管一支、5ml、10ml移液管各两支、锥形瓶四个、滴管若干支药品:环己烷、乙醇、丙酮四实验步骤1.工作曲线的测定把超级恒温槽调至25℃,连接好恒温槽与阿贝折射仪,使恒温水流经折射仪。

准确配制下列溶液,测定纯环己烷,乙醇和下列溶液的折射率,并测定溶液温度。

环己烷 1 2 3 4ml乙醇 4 3 2 1ml2.测定环己烷的沸点按图装好仪器,调压变压器调至最小,将25ml苯加入蒸馏瓶,打开冷凝水,接通电源,缓慢增加电压,加压至12~16V,加压至液体沸腾使,记下温度稳定值。

双液体系气—液平衡相图的绘制及思考题

双液体系气—液平衡相图的绘制及思考题

双液体系气—液平衡相图的绘制一、实验目的1. 绘制环己烷—异丙醇双液体系的沸点组成图,确定其恒沸组成和恒沸温度。

2. 掌握回流冷凝管法测定溶液沸点的方法。

3.掌握阿贝折射仪的使用方法。

二、实验原理两种液体物质混合而成的两组分体系称为双液系。

根据两组分间溶解度的不 同,可分为完全互溶、部分互溶和完全不互溶三种情况。

两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。

当压力保持一定,混合物沸点与两组分的相对含量有关。

恒定压力下,真实的完全互溶双液系的气-液平衡相图(T -x ),根据体系对拉乌尔定律的偏差情况,可分为3类:(1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图 (a)所示。

(2)最大负偏差:存在一个最小蒸汽压值,比两个纯液体的蒸汽压都小,混合物存在着最高沸点,如盐酸—水体系,如图 (b)所示。

(3)最大正偏差:存在一个最大蒸汽压值,比两个纯液体的蒸汽压都大,混合物存在着最低沸点如图 (c))所示。

上图为二组分真实液态混合物气—液平衡相图(T-x 图)t At AtAt Bt B t Bt / o Ct / o t / o x Bx Bx BABAABB(a)(b)(c)x 'x '后两种情况为具有恒沸点的双液系相图。

它们在最低或最高恒沸点时的气相和液相组成相同,因而不能象第一类那样通过反复蒸馏的方法而使双液系的两个组分相互分离,而只能采取精馏等方法分离出一种纯物质和另一种恒沸混合物。

为了测定双液系的T-x相图,需在气-液平衡后,同时测定双液系的沸点和液相、气相的平衡组成。

本实验以环己烷-异丙醇为体系,该体系属于上述第三种类型,在沸点仪中蒸馏不同组成的混合物,测定其沸点及相应的气、液二相的组成,即可作出T-x相图。

本实验中两相的成分分析均采用折光率法测定。

三、仪器与试剂1、仪器:沸点仪1台;调压变压器1台;阿贝折射仪1台;温度计(0-100℃) 1支;长滴管1个;短滴管2支;2、试剂:环己烷(分析纯);异丙醇(分析纯)异丙醇—环己烷标准溶液(异丙醇分别为0.20,0.40,0.50,0.60,0.80,0.90)四、主要实验步骤1. 测定环己烷、异丙醇及标准溶液的折射率调节阿贝折射仪,用一支干燥的短滴管吸取环己烷数滴,注入折射仪的加液孔内,测定其折射率n,读数两次,取其平均值。

双液系气液平衡相图的绘制

双液系气液平衡相图的绘制

实验四双液系气液平衡相图的绘制姓名:谭成彬班级:生物工程学院生物工程07级四班学号;07041010428一、实验目的1.测定常压下环己烷—乙醇二元系统的气液平衡数据,绘制沸点—组成相图。

2.掌握双组份沸点的测定方法,通过实验进一步理解分馏原理。

3.掌握阿贝斯折射仪的使用方法。

二、实验原理两种液体物质混合而成的两组分体系称为双液系。

根据两组间分溶解度不同,可分为完全互溶、部分互溶和完全不互溶三种情况。

两种挥发性液体混合成完全互溶体系时,如果该两组分的蒸汽压不同,则混合物的组成于平衡的气相的组成不同。

当压力保持一定,混合物沸点与两组分的含量有关。

恒定压力下,真实的完全互溶双液系的气—液平衡相图(T—x图),根据体系对拉乌尔的偏差情况,可分为三类:1)一般偏差:混合物的沸点介于两种纯组分之间,如果苯—苯体系,如图1(a)所示。

2)最大负偏差:混合物存在最高沸点,如盐—水体系,如图1(b)所示。

3)最大正偏差:混合物纯在最低沸点,如正丙醇—水体系,如图1(c)所示。

(a) (b)(c)图1 二组分也太混合物气——液平衡相图(T—x图)对于后两种情况,为具有沸点的双系相图。

他们爱最高或最低衡沸点时气相和液相组成相同,因而不能像第一类那样通过反复蒸馏的方法而使双液系的两个组分分离,而只能采取精馏扥那个方法分离出一种纯物质和另一种衡沸混合物。

为了测定双液系的T—x图,需要在气—液平衡后,同时测定双液系的沸点和液相、气相的平衡组成。

本实验一环己烷—乙醇为体系,该体系属于上述第三类型,在沸点仪中蒸馏不同组成的混合物,、液二相组成,即可作出T—x 相图。

本实验气液两相的组成均采用折光率测定。

折光率是物质的一个特征数值,天宇物质的浓度计温度有关,因此在测定物质的折光率是要求温度恒定。

溶液的浓度不同、组成不同,折光率也不同,因此可先配制一系列已知组成的溶液,在恒定温度下扯其折光率,作出折光率—组成曲线,便可通过折光率的大小在工作曲线上找出未知溶液的组成。

二组分气液平衡相图

二组分气液平衡相图

实验三二组份气液平衡相图一、目的1、用沸点仪测定和绘制乙醇和环己烷的二组份气液平衡相图;2、用阿贝折射仪测定液体的组成,了解液体折射率的测量原理及方法。

二、基本原理两种液态物质混合而成的二组份系统称为双液系。

二液体若能按任意比例互相溶解,称完全互溶双液系;若只能在一定比例范围内互相溶解,则称部分互溶双液系。

例如水-乙醇双液系、苯-甲苯双液系都是完全互溶双液系,苯-水双液系则是部分互溶双液系。

液体的沸点是指液体的蒸汽压和外压相等时的温度。

在一定的外压下,纯液体的沸点有确定的值,但对于双液系,沸点不仅与外压有关,而且还与双液系的组成有关,即和双液系中两种液体的相对含量有关。

通常用几何作图的方法将双液系的沸点对其气相、液相的组成作图,即得二组份气液平衡相图,它表明溶液在各种沸点的液相组成和与之成平衡的气相组成的关系。

在恒压下,二组份完全互溶双液系的沸点组成图可分为三类:(1)溶液的沸点介于两纯组份沸点之间,如苯和甲苯、水和甲醇等。

(2)溶液有最高沸点,如氯化氢与水、硝酸和水、丙酮与氯仿等。

(3)溶液有最低沸点,如水和乙醇、苯和乙醇、乙醇和环已烷等。

这三种类型的相图如下图所示图4-1 二组份气液平衡相图的三种类型图中、T 分别表示纯A 纯B 的沸点。

图中两曲线包围的区域为气-液两相平衡共存区。

它的上方G 代表气相区,下方L 为液相区。

C 和C'分别表示最高和最低恒沸物的沸点和组成。

T A *B *测绘这类相图时,要求同时测定溶液的沸点及气液平衡时两相的组成。

本实验用回流冷凝法测定环己烷-乙醇溶液在不同组成时的沸点。

所用沸点仪如图4-2所示,是一只带有回流冷凝管的长颈园底烧瓶,冷凝管底部有一球形小室D ,用以收集冷凝下来的气相样品,液相样品则通过烧瓶上的支管L 抽取,图中E是一根电热丝,直接浸在溶液中加热溶液。

溶液的组成用测定其折射率确定。

折射率是物质的一个特征数值。

溶液的折射率与组成有关,因此测得一系列已知浓度的溶液折射率,作出该溶液的折射率-浓度工作曲线,就可按内插法求得具有某折射率的溶液组成。

双液系气液平衡相图的绘制实验报告

双液系气液平衡相图的绘制实验报告

双液系沸点-组成图测绘实验报告实验时间:2015年4月15日学号:1120132970 一、目的要求1.测定相应组成时的沸点并制作常压下环已烷—无水乙醇双液系的平衡相图。

2.从沸点组成图了解分馏原理。

3.了解沸点的测定技术,掌握两组分液体沸点的测定方法。

4.掌握折光率与组成的关系及阿贝折光仪的测量原理和使用方法。

二.实验原理1、由液态物质混合而成的二组分系统称为双液系统。

若两液体能以任意比例互溶,称其为完全互溶双液系,若两液体只能部分互溶,称其为部分互溶双液系。

一个完全互溶的二元体系,两个纯液体组分在所有组成范围内完全互溶。

在定压下,完全互溶的二元体系的沸点—组成图可分为三类,如图C7.1所示。

a.溶液的沸点介于两纯组分沸点之间,如苯一甲苯体系;b.溶液有最低恒沸点,如环己烷-乙醇体系;c.溶液有最高恒沸点,如丙酮—氯仿体系。

下面以a为例,简单说明绘制沸点-组成图的原理。

加热总组成为x1的溶液,体系的温度上升,达液相线上1点时溶液开始沸腾,组成为x2的气相开始生成,但气相量很少,趋于0,x1、x2二点代表达到平衡时液、气两相组成。

继续加热,气相量逐渐增多,沸点继续上升,气、液二相组成分别在气相线和液相线上变化,当达某温度(如2点)并维持温度不变时,则x3、x4为该温度下液、气两相组成,气相、液相的量之比按杠杆规则确定。

从相律f = c - p +2可知:当外压恒定时,在气、液两相共存区域自由度等于1;当温度一定时,则气、液两相的组成也就确定,总组成一定,由杠杆规则可知两相的量之比也已确定。

因此,在一定的实验装置中,全回流的加热溶液,在总组成、总量不变时,当气相的量与液相的量之比也不变时(达气-液平衡),则体系的温度也就恒定。

分别取出气、液两相的样品,分析其组成,得到该温度下气、液两相平衡时各相的组成。

改变溶液总组成,得到另一温度下气、液两相平衡时各相的组成。

测得溶液若干总组成下的气液平衡温度及气、液相组成,分别将气相点用线连接即为气相线,将液相点用线连接即为液相线,得到沸点-组成图。

双液系气液平衡相图的绘制(华南师范大学物化实验)

双液系气液平衡相图的绘制(华南师范大学物化实验)

双液系气—液平衡相图的绘制一、实验目的(1)用回流冷凝法测定沸点时气相与液相的组成,绘制双液系相图.找出恒沸点混合物的组成及恒沸点的温度.(2)掌握测定双组分液体的沸点及正常沸点的测定方法.(3)了解阿贝折射计的构造原理,熟悉掌握阿贝折射计的使用方法。

二、实验原理2。

1液体的沸点液体的沸点是液体饱和蒸汽压和外压相等时的温度,在外压一定时,纯液体的沸点有一个确定值。

2。

2双液系的沸点双液系的沸点不仅与外压有关,而且还与两种液体的相对含量有关.理想的二组分体系在全部浓度范围内符合拉乌尔定律。

结构相似、性质相近的组分间可以形成近似的理想体系,这样可以形成简单的T —x (y )图。

大多数情况下,曲线将出现或正或负的偏差.当这一偏差足够大时,在T —x(y )曲线上将出现极大点(负偏差)或极小点(正偏差)。

这种最高和最低沸点称为恒沸点,所对应的溶液称为恒沸混合物.恒定压力下,真实的完全互溶双液系的气-液平衡相图(T -x ),根据体系对拉乌尔定律的偏差情况,可分为3类:(1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图1(a )所示。

(2)最大负偏差:存在一个最小蒸汽压值,比两个纯液体的蒸汽压都小,混合物存在着最高沸点,如盐酸—水体系,如图1(b )所示。

(3)最大正偏差:存在一个最大蒸汽压值,比两个纯液体的蒸汽压都大,混合物存在着最低沸点,如水-乙醇体系,如图1(c ))所示。

图1. 二组分真实液态混合物气-液平衡相图(T —x 图)考虑综合因素,实验选择具有最低恒沸点的乙醇—乙酸乙酯双液系。

根据相平衡原理,对二组分体系,当压力恒定时,在气液平衡两相区,体系的自由度为1.若温度一定时,则气液亮相的组成也随之而定。

当溶液组成一定时,根据杠杆原t AtAt At Bt B t Bt / o Ct / o t / o x Bx Bx B ABAABB(a)(b)(c)x 'x '理,两相的相对量也一定。

二组分体系气-液平衡相图

二组分体系气-液平衡相图
2.与此同时另一同学练习折射仪的用法并测定折射仪标尺零点,钠黄光D线(波长589.26nm)
通过25℃的无水乙醇,折射率应为 n D =1.3594(文献值),如果25℃实测值为1.3600,则1.3600-
1.3594=0.0006 表 明 标 尺 零 点 有 正 误 差,应 予 校 正,校 正 值 △ = - 0.0006,实 验 中 每 次 测 定 应 加 上
△,此例为减去0.0006。用环己烷(
n
D 25
=1.4326)校正零点也是同样。
3.测定乙醇-环己烷溶液不同组成时的沸点及此时(气液平衡)气、液相的组成。待上述无水 乙醇冷却至近于室温或不烫手时,加1.5ml环己烷至无水乙醇中,测定沸点并测沸腾时气、液组成。 再 依 次 加 入 环 己 烷 2.0、2.0、8.0、10.0、10.0、10.0ml 至 无 水 乙 醇 中,分 别 测 其 沸 点 和 气、液 相 组 成。
file://E:\whsy\whsy05.htm
2008-4-22
二组分体系气-液平衡相图
页码,3/3
五.数据处理
1.根据沸点数据以及从折射率-组成曲线内插得到气液组成;
乙醇-环己烷溶液不同组成的沸点及气、液组成
加入量
T
n液
n气
液相组成
气相组成
20ml乙醇 加1。5环己烷 加2.0环己烷 加2.0环己烷 加8.0环己烷 加10.0环己烷 加10.0环己烷 加10.0环己烷
4.同法测定环己烷-乙醇不同组成的沸点及其相应的气、液组成。在沸点仪先加入25ml环己 烷,测定沸点,然后依次加入无水乙醇0.5、0.5、0.5、1.0、1.0、2.0、5.0ml,分别测定沸点和气、 液组成。
判断沸点的准则:温度计汞柱上升明显变缓;液体发生大量气泡;蒸汽冷凝得到的液体很快充 满支管。此时一手握住台架,一手扶好台架底座,倾斜沸点仪,将支管中冷凝液倒回液体中(此步 骤简称“回流”),,立即读温度计示值,反复回流数次待温度计示值稳定,就是沸点。

完全互溶双液系气液平衡相图的绘制实验报告

完全互溶双液系气液平衡相图的绘制实验报告

完全互溶双液系气液平衡相图得绘制。

一.实验目得1。

测定常压下环己烷一乙醉二元系统得气液平衡数据,绘制沸点一组成相图。

2。

掌握双组分沸点得测定方法,通过实验进一步理解分镉原理。

3。

堂握阿贝折射仪得使用方法。

二.实验原理两种液体物质混合而成得两组分体系称为双液系、根据两组分间溶解度得不同,可分为完全互溶、部分互溶与完全不互溶三种情况、两种挥发性液体混合形成完全互溶体系时,如果该两组分得蒸气压不同,则混合物得组成与平衡时气相得组成不同。

出压力保持一定,混合物沸点与两组分得相对含量有关。

恒定压力下,真实得完全互溶双液系得气一液平衡相图(r-x),根据体系对拉乌尔定律得偏差情况,可分为3类:(1)一般偏差:混合物得沸点介于两种纯组分之间,如甲苯一苯体系,如图2 o 7(a)所示。

(2 )垠大负偏差:存在一个最小蒸汽压值,比两个纯液体得蒸汽压都小,混合物存在着最髙沸点,如盐酸-水体系,如图2.7(b)所示。

(3 )最大正偏差:存在一个战大蒸汽压值,比两个纯液体得蒸汽圧都大,混合物存在着最低沸点如图2、7 (c)) 所示。

X B(a)(b)图2。

7二组分真实液态混合物气一液平衡相图(Tn图)后两种情况为具有恒沸点得双液系相图、它们在昴低或最岛恒沸点时得气相与液相组成相同,因而不能象第一类那样通过反复蒸馆得方法而使双液系得两个组分相互分离,而只能采取精懾等方法分离出一种纯物质与另一种恒沸混合物、为了测定双液系得T—x相图,需在气一液平衡后,同时测定双液系得沸点与液相、气相得平衡组成、木实验以环己烷■乙醇为体系,该体系属于上述第三种类型,在沸点仪(如图2、8 )中蒸锚不同组成得混合物,测定其沸点及相应得气、液二相得组成, 即可作出T—x相图。

木实验中两相得成分分析均采用折光率法测定。

折光率就是物质得一个持征数值,它与物质得浓度及温度有关,因此在测虽物质得折光率时耍求温度恒定、溶液得浓度不同、组成不同,折光率也不同、因此可先配制一系列已知组成得溶液,在恒定温度下测其折光率,作岀折光率 -组成匸作曲线,便可通过测折光率得大小在匸作曲线上找出未知溶液得组三.仪器与试剂沸点仪,阿贝折射仪,调斥变斥器,超级恒温水浴,溫度测定仪,长短取样管。

完全互溶双液系气液平衡相图的绘制。实验报告

完全互溶双液系气液平衡相图的绘制。实验报告

完全互溶双液系气液平衡相图的绘制一.实验目的1.测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制沸点-组成相图。

2.掌握双组分沸点的测定方法,通过实验进一步理解分馏原理。

3.掌握阿贝折射仪的使用方法。

二.实验原理两种液体物质混合而成的两组分体系称为双液系。

根据两组分间溶解度的不同,可分为完全互溶、部分互溶和完全不互溶三种情况。

两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。

当压力保持一定,混合物沸点与两组分的相对含量有关。

恒定压力下,真实的完全互溶双液系的气-液平衡相图(T -x ),根据体系对拉乌尔定律的偏差情况,可分为3类:(1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图2.7(a)所示。

(2)最大负偏差:存在一个最小蒸汽压值,比两个纯液体的蒸汽压都小,混合物存在着最高沸点,如盐酸—水体系,如图2.7(b)所示。

(3)最大正偏差:存在一个最大蒸汽压值,比两个纯液体的蒸汽压都大,混合物存在着最低沸点如图2.7(c))所示。

图2.7 二组分真实液态混合物气—液平衡相图(T-x 图)后两种情况为具有恒沸点的双液系相图。

它们在最低或最高恒沸点时的气相和液相组成相同,因而不能象第一类那样通过反复蒸馏的方法而使双液系的两个组分相互分离,而只能采取精馏等方法分离出一种纯物质和另一种恒沸混合物。

为了测定双液系的T -x 相图,需在气-液平衡后,同时测定双液系的沸点和液相、气相的平衡组成。

本实验以环己烷-乙醇为体系,该体系属于上述第三种类型,在沸点仪(如图2.8)中蒸馏不同组成的混合物,测定其沸点及相应的气、液二相的组成,即可作出T -x 相图。

本实验中两相的成分分析均采用折光率法测定。

折光率是物质的一个特征数值,它与物质的浓度及温度有关,因此在测量物质的折光率时要求温度恒定。

溶液的浓度不同、组成不同,折光率也不同。

因此可先配制一系列已知组成的溶液,在恒定温度下测其折光率,作出折光率-组成工作曲线,便可通过测折光率的大小在工作曲线上找出未知溶液的组成。

4.4 两组分气液液相图

4.4 两组分气液液相图
上部会溶点 上部会溶温度
系线(联结线)
CK 线 , C’K 线 : 溶解度随 温度的变化曲线称为 溶 解度曲线(雾点线)。
H2O(A)--i-C4H9OH(B)的液液平衡相图
返回章首
具有下部会溶点的 液液平衡相图
具有上部会溶点和下部 会溶点的液液平衡相图
水(A)--三乙胺(B)的液液相图
水(A)--烟碱(B)的液液相图
温度对溶解度影响的原因:Smix 0; 组分间存在氢键。
返回章首
2.气液液平衡 部分互溶系统的气液液平衡相图(类型1)
二元系的气液液相图
不同压力的二元系气液液相图
(2异丁醇(B)的气液液平衡相图
返回章首
wO
w L1
w
V
水(A)--异丁醇(B)的气液液平衡相图
D D O L D H V 11 2 W W WLL w w w w wO O D O D L H V 2 W W W w O w wLL11 W w
返回章首
部分互溶系统的精馏
wO
w L1
w
V
水(A)--异丁醇(B)的气液液平衡相图
两塔流程分离醇与水
返回章首
部分互溶系统的气液液 平衡相图(类型2)
完全不互溶系统的 二元气液液相图
H2O(A)--SO2(B)气液液相图
完全不互溶系统的二元气液液相图
返回章首
温度降至c点,开始凝结出纯B。 温度继续下降,纯 B 液体的量
4-4 两组分系统的气液液平衡相图
1.液液平衡 p 一定, T~wB 部分互溶实验
水(A) - 异丁醇(B)
t/℃
20
50
6.6
80
7.2
110
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双液系气-液平衡相图的绘制
一、实验目的、要求
1. 测定常压下环己烷-乙醇二元系统的汽液平衡数据,绘制101325Pa下的沸点-组成的相图。

2. 掌握阿贝折射仪的原理和使用方法。

二、实验原理
液体混合物中各组分在同一温度下具有不同的挥发能力。

因而,经过汽液见相变达到平衡后,各组分在汽、液两相中的浓度是不相同的。

根据这个特点,使二元混合物在精馏塔中进行反复蒸馏,就可分离得到各纯组分。

为了得到预期的分离效果,设计精馏装置必须掌握精确的汽液平衡数据,也就是平衡时的汽、液两相的组成与温度、压力见的依赖关系。

大量工业上重要的系统的平衡数据,很难由理论计算,必须由实验直接测定,即在恒压(或恒温)下测定平衡的蒸汽与液体的各组分。

其中,恒压数据应用更广,测定方法也较简便。

本实验测定的恒压下环己烷-乙醇二元汽液平衡相图。

图中横坐标表示二元系的组成(以B的摩尔分数表示),纵坐标为温度。

用不同组成的溶液进行测定,可得一系列数据,据此画出一张由液相线与汽相线组成的完整相图。

分析汽液两相组成的方法很多,有化学方法和物理方法。

本实验用阿贝折射仪测定溶液的折射率以确定其组成。

预先测定一定温度下一系列已知组成的溶液的折射率,得到折射率-组成对照表。

以后即可根据待测溶液的折射率,由此表确定其组成。

三、使用仪器、材料
沸点仪1套,阿贝折射仪,移液管,环己烷,无水乙醇
四、实验步骤
1、测定折射率与组成的关系,绘制工作曲线
将9支小试管编号,依次移入0.1 ml, 0.2 ml, …, 0.9 ml的环己烷,然后依次移入0.9 ml, 0.8 ml,…, 0.1 ml的无水乙醇,配成9份已知浓度的溶液,用阿贝折射仪测定每份溶液的折射率及纯环己烷和纯无水乙醇的折射率,以折射率对浓度作图。

2、测定环己烷-乙醇体系的沸点与组成的关系
(1) 右半部沸点-组成关系的测定取20 ml无水乙醇加入沸点仪中,然后依次加入环己烷0.5, 1.0, 1.5, 2.0, 4.0, 14.0 ml,测定溶液沸点,及气、液组分折射率n。

完成后,将溶液倒入回收瓶。

(2) 左半部沸点-组成关系的测定取25 ml环己烷加入沸点仪中,然后依次加入无水乙醇0.1, 0.2, 0.3, 0.4, 1.0, 5.0 ml,测定溶液沸点,及气、液组分折射率n。

完成后,将溶液倒入回收瓶。

五、实验过程原始记录(数据、图表、计算等)
标准曲线
V环己烷(ml) V乙醇(ml) xEtOH x环己烷折射率
0 1 1 0 1.3631
0.1 0.9 0.9437 0.0563 1.3710
0.2 0.8 0.8817 0.1183 1.3735
0.3 0.7 0.813 0.187 1.3814
0.4 0.6 0.7365 0.2635 1.3849
0.5
0.5 0.6507 0.3493 1.3912 0.6
0.4 0.554 0.446 1.3987 0.7
0.3 0.444 0.556 1.4111 0.8
0.2 0.3178 0.6822 1.4225 0.9
0.1 0.1715 0.8285 1.4294 1 0 0 1
1.4411
温度 液相折
射率 气相折射率 液相环己烷含
量 气相环己烷含量
78.5 0 0 77.5 1.3735 1.3662 0.1070 0.0140 75.93 1.3817 1.3663 0.2115 0.0153 71.5 1.3975 1.3683 0.4127 0.0408 69.3 1.4020 1.3734 0.4701 0.1057 66.5 1.4064 1.3825 0.5261 0.2217 64.8 1.4070 1.3990 0.5338 0.4318 63.8 1.4070 1.4100 0.5338 0.5720 68 1.4100 1.4271 0.5720 0.7898 72.4 1.4152 1.4322 0.6382 0.8548 75.3 1.4233 1.4377 0.7414 0.9248 78.2 1.4310 1.4403 0.8395 0.9580 79.2 1.4380 1.4407 0.9287 0.9631 80.5 1
1
六、实验结果及分析
1.绘制工作曲线的目的是什么?
2.每次加入乙醇及环己烷的量是否要求准确?
3.实验测得的沸点与标准大气压的沸点是否一致?。

相关文档
最新文档