静电场中的导体和电介质

静电场中的导体和电介质
静电场中的导体和电介质

第十章静电场中的导体和电介质§10-1 静电场中的导体

一、导体的静电平衡

1、金属导体的电结构及静电感应

(1)金属导体:由带正电的晶格和带负电的自由电子组成.

带电导体:总电量不为零的导体;

中性导体:总电量为零的导体;

孤立导体:与其他物体距离足够远的导体.

“足够远”指其他物体的电荷在该导体上激发的场强小到可以忽略.

(2)静电感应过程:导体内电荷分布与电场的空间分布相互影响的过程.

(3)静电平衡状态:导体中自由电荷没有定向移动的状态.

2、导体静电平衡条件

(1)从场强角度看:

①导体内任一点,场强;

②导体表面上任一点与表面垂直.

证明:由于电场线与等势面垂直,所以导体表面附近的电场强度必定与该处表面垂直.

说明:①静电平衡与导体的形状和类别无关.

②“表面”包括内、外表面;

(2)从电势角度也可以把上述结论说成:静电平衡时导体为等势体.

①导体内各点电势相等;

②导体表面为等势面.

证明:在导体上任取两点A,B,.由于=0,所以.

(插话:空间电场线的画法.

由于静电平衡的导体是等势体,表面是等势面.因此,导体正端发出的电场线绝对不会回到导体的负端.应为正电荷发出的电场线终于无穷远,负电荷发出的电场线始于无穷远.)

二、静电平衡时导体上的电荷分布

1、导体内无空腔时电荷分布

如图所示,导体电荷为Q,在其内作一高斯面S,高斯定理为:

导体静电平衡时其内,

, 即.

S面是任意的,导体内无净电荷存在.

结论:静电平衡时,净电荷都分布在导体外表面上.

2、导体内有空腔时电荷分布

(1)腔内无其它电荷情况

如图所示,导体电量为Q,在其内作一高斯面S,高斯定理为:

由于静电平衡时,导体内

因此,即S内净电荷为0,

空腔内无其它电荷,静电平衡时,

导体内又无净电荷

空腔内表面上的净电荷为0.

讨论:在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A点附近出现+q,B点附近出现-q,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,,但静电平衡时,导体为等势体,即,因此,假设不成立.

结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同).

(2)空腔内有点电荷情况

如图所示,导体电量为Q,其内腔中有点电荷+q,在导体内作一高斯面S,高斯定理为

静电平衡时 , .

又因为此时导体内部无净电荷,而腔内有电荷+q,

腔内表面必有感应电荷-q.

结论:静电平衡时,腔内表面有感应电荷-q,外表面有感应电荷+q. 3、导体表面附近的电场强度和电荷面密度的关系

(1)导体表面上电荷分布

设在导体表面上某一面积元(很小)上,电荷分布如图所示 ,过边界作一闭合柱面,S上下底、均与平行,S侧面与垂直,柱面的高很小,即与非常接近,此柱面并且是关于对称的.S作为高斯面,高斯定理为

(注意与无限大带电平面的区别).

结论:导体表面附近,.

(2)导体表面曲率对电荷分布影响

理论证明某些规则形状的孤立导体带电后,在表面上曲率越大的地方场强越强, 必大,所以曲率大的地方电荷面密度大;导体曲率较小处,表面电荷面密度也较小;在表面凹进去的地方(曲率为负),电荷密度更小.但不是绝对结论.

(3)、尖端放电

尖端附近场强较大,该处的空气可能被电离成导体而出现尖端放电

现象.如图,BC相对AC更容易放电.

“电晕”:离子撞击空气分子时,有时能量较小不能使分子电离,但能使分子获得高能量而跃迁到高能级,返回基态时就会发出光子,在尖端

出现暗淡的光环.夜晚高压线周围笼罩的绿色光晕.

“电风”:金属针接起电机,针尖紧贴蜡烛焰.假设金属针带足量正电荷,针尖附近场强足够大,电离空气分子,吸引负电荷离子,排斥正电荷离子,则正电荷离子吹向蜡烛焰,形成“电风”.

4、静电屏蔽

(1)空腔内无带电体.由于空腔中的场强处处为零,放在空腔中的物体,就不会受到外电场的影响,所以空心金属球体对于放在它的空腔内的物体有保护作用,使物体不受外电场影响.

(2)空腔导体接地.由于空腔外表面电荷因接地而与大地中和,所以腔内物体带电不影响腔外物体.

静电屏蔽现象:空腔导体可以保护腔内物体不受腔外电荷和电场的影响,或接地的空腔导体可以保护外部物体不受腔内电荷和电场的影响.

应用:如电话线从高压线下经过,为了防止高压线对电话线的影响,

在高压线与电话线之间装一金属网等.

例10-1:在电荷+q的电场中,放一不带电的

金属球,从球心 到点电荷所在距

离处的矢径为,试问

(1)金属球上净感应电荷?

(2)这些感应电荷在球心处产生的场强?

解:(1)0

(2)球心处场强(静电平衡要求),即+q在处产生的场强与感应电荷在处产生场强的矢量和=0.

方向指向+q.

(感应电荷在处产生电势=?球电势=?选无穷远处电势=0.)

P49.课本例题例10.1;10.2

§10-2 电介质的电极化和有介质时的高斯定理

一、电介质的电结构

1、结构

电介质:通常所说的绝缘体,常温下电阻率在108-1018Ω?m范围内.

主要特征:它的分子中电子被原子核束缚的很紧,介质内几乎没有自由电子,其导电性能很差.

与导体的主要区别:在外电场作用下达静电平衡时,电介质内部的场强不为零.

2、电介质分类(2类)

(1)无极分子电介质:无外电场时,分子正负电荷中心重合(如等).

其固有电矩为零,对外不显电性.

(2)有极分子电介质:即使无外电场时,分子的正负电荷中心也不重合(如:等).由于分子热运动的无规则性,在物理小体积内的平均

电偶极矩仍为零,因而也没有宏观电偶极矩分布(对外不显电性).

分子正负电荷中心不重合时相当于一电偶极子.

二、电介质的极化

1、电极化现象

实验表明,将电容器充电后,再去掉电源,然后将某种电介质(如:玻璃,硬橡胶等)插入电容器之间,会发现极板间电压减小了.

由知,E减小了.那么E是如何减少的呢?从平板电容场强公式知,E

的减小,意味着电介质与极板的近邻处的电荷面密度减小了.但是,极板上的电荷没变,即电荷面密度没变,这种改变只能是电介质上的两个表面出现了如图所示的正、负电荷.

电介质在外电场作用下,其表面或体内出现净电荷的现象称为电介质的极化.电极化时电介质表面处出现的净电荷称为极化电荷(属于束缚电荷范畴),称为自由电荷.可见,电荷面密度(自由电荷面密度)-(极化电荷面密度),即减小了.(束缚电荷受到限制,束缚电荷量比自由电荷少的多,故比少的多.)E减小.

更直观的解释是,产生的场强与产生的场强相反,所以它的场强为,即减小了,这也可以解释实验结果.

2、两类电介质的极化

(1)无极分子的位移极化

无极分子在没有受到外电场作用时,它的正负电荷的中心是重合

的,因而没有电偶极矩,如图a所示,但当外电场存在时,它的正负电荷的中心发生相对位移,形成一个电偶极子,其偶极矩方向沿外电场方向,如图b所示.对一块介质整体来说,由于电介质中每一个分子都成为电偶极子,所以,它们在电介质中排列如图,在电介质内部,相邻电偶极子正负电荷相互靠近,因而对于均匀电介质来说,其内部仍是电中性的,但在和外电场垂直的两个端面上就不同了.由于电偶极子的负端朝向电介质一面,正端朝向另一面,所以电介质的一面出现负电荷,一面出现正电荷,显然这种正负电荷是不能分离的,故为束缚电荷.

结论:无极分子的电极化是由于分子的正负电荷的中心在外电场的作用下发生相对位移的结果,这种电极化称为位移电极化.

(2)有极分子的取向极化

有极分子本身就相当于一个电偶极子,在没有外电场时,由于分子做不规则热运动,这些分子偶极子的排列是杂乱无章的,如图d所示,所以电介质内部呈电中性.当有外电场时,每一个分子都受到一个电力矩作用,如图所示,这个力矩要使分子偶极子转到外电场方向,只是由

于分子的热运动,各分子偶极子不能完全转到外电场的方向,只是部分地转到外电场的方向,即所有分子偶极子不是很整齐地沿着外电场方向排列起来,如图f所示.但随着外电场的增强,排列整齐的程度要增大.无论排列整齐的程度如何,在垂直外电场的两个端面上都产生了束缚电荷.

结论:有极分子的电极化是由于分子偶极子在外电场的作用下发生转向的结果,故这种电极化称为转向电极化.

说明:在静电场中,两种电介质电极化的微观机理显然不同,但是宏观结果即在电介质中出现束缚电荷的效果时确是一样的,故在宏观讨论中不必区分它们.

(3)附加电场

由于电介质极化后出现极化电荷,介质内空间一点的场强:

.

:介质外的电荷产生的电场,即外电场;

:介质上的极化电荷产生的电场.

对均匀电介质,外场为匀强电场时,介质内的与方向严格相反,大

小||<||.作用是减小介质内电场的,..

(插话:1、对电介质的要求

对于均匀电介质,极化电荷只出现在电介质表面;对于不均匀电介质,极化电荷出现在表面和内部.一般考虑均匀电介质.

均匀电介质:电介质的物理和化学性质各处一致.比如,密度均匀,力学、热学、光学、电磁效应各处一致.

2、极化电荷与自由电荷

极化电荷:电介质因极化而出现在电介质表面(或体内)的宏观电荷;自由电荷:在外场作用下可以自由运动的宏观电荷.

(1)极化电荷是束缚电荷的宏观表现,是束缚在晶格上的分子中的电子作的微小位移,或者整个分子作微小旋转所引起的.因此,极化电荷的运动范围不能超出分子线度;而自由电荷是由于原子或分子的电离或者金属中自由电子的重新分布引起的,它的活动范围可以是整个物体或物体之间;

(2)极化电荷不能转移,自由电荷可以转移;

可略(3)极化电荷可以吸附导体中自由电荷,但不能被中和掉,而自由电荷可以被中和.

3、静电场中的电介质与静电场中的导体

(1)它们都会因受电场的作用而出现宏观电荷;这些电荷反过来又会影响电场,这种影响都削弱了原电场;(比较微观本质的不同)(2)都会达到稳定状态——电介质的稳定极化状态和导体的静电平衡状态.(比较微观本质的不同)

导体处于静电平衡状态时,表面的感应电荷在导体内产生的感应电场能把外电场完全抵消,导体内场强处处为零;而电介质被极化后,表面出现的极化电荷在介质内产生的电场不能完全抵消外电场,介质内存在电场.)

3、电偶极子在外场受到的力和力矩

均匀外场下,电偶极子所受总静电力:;

总力矩: (10.3)

虽然=0,但不为0. 的效果将使电偶极矩旋转到与外电场方向一致,使趋于0,形成稳定状态.

三、电极化强度、极化电荷与极化强度的关系

1、定义.电极化强度矢量定义为

(10.4)

即电极化强度矢量是单位体积内分子电矩的矢量和.

当外电场越强时,极化现象越显著,单位体积内的分子电矩矢量和就越大,极化强度就越大.反之,外电场越弱,极化现象不显著,单位体积内的分子电矩矢量和就越小.可见,电极化强度矢量可以用来描述电介质的极化程度.上式给出的极化强度是点的函数,一般来说,介质中不同点的电极化强度矢量不同.但对于均匀的无极分子电介质处在均匀的外电场中,,其中n是分子数密度(单位体积的分子数),p是极化后电介质每个分子的电矩矢量.

在国际单位制中,电极化强度矢量的单位为库仑/米2(C/m2).

2、电极化强度与束缚电荷的关系

由于束缚电荷是电介质极化的结果,所以束缚电荷与电极化强度之间一定存在某种定量关系.为方便讨论,现以无极分子电介质为例来讨论,考虑电介质内某一小面元dS,设其电场E的方向(因而P的方向)与dS的法线方向成θ角(如图6.7所示),由于E的作用,分子的正负电荷中心将沿电场方向拉开距离l.为简化分析,假定负电荷不动,而正电荷沿E 的方向发生位移l.在面元dS后侧取一斜高为l,底面积为dS的体元dV.由于电场E的作用,此体元内所有分子的正电荷中心将穿过dS面到前侧去.以q表示每个分子的正电荷量,则由于电极化而越过dS面元的总电荷为(1)介质表面处

dS是电介质的表面,由于电介质极化

(10.5)

是其外法向单位矢.

讨论:

(2)封闭曲面处

由于极化穿过有限面积S的电荷为,若dS是封闭曲面,则穿过整个封闭曲面的电荷为.

因为电介质是电中性的,据电荷守恒定律,则得由电介质极化而在封闭面内净余的束缚电荷为

(10.6)

(10.6)可称为“极化强度的高斯定理”.从闭合面内向外的极化强度的通量,等于从闭合面内移出去的极化电荷的量.

结论:式(10.5)和式(10.6)就是由于介质极化而产生的束缚电荷与电极化强度的关系.从(10.6)可以看出,在均匀外电场中,均匀电介质内部的任何体元内都不会有净余束缚电荷,束缚电荷只能出现在均匀电介质的表面,即:.对非均匀电介质,电介质内部也有束缚电荷分布.

四、电极化强度与场强的关系

电介质的极化状态通过极化强度来描述,由于电介质的极化是电场对电介质作用的结果,因此,电介质内任意一点的极化强度应由该点总

电场()决定.与的关系与电介质的性质有关,

对各向同性电介质:. (10.7)

:各向同性均匀电介质的电极化率.电场不太强时,由电介质性质决定,是无量纲量.该式是一个经验定律.课程中讨论的都是各向同性的均匀电介质.

五、有介质时的高斯定理

1、有介质时的高斯定理

(1)定理推导

根据真空中的高斯定理,通过闭合曲面S的电场强度通量为所给面包围的电荷除以,即

此处, 应理解为闭合面内一切正、负电荷的代数和,在无电介质存在时,;在有介质存在时,S内既有自由电荷,又有极化电荷,应是S内一切自由电荷与极化电荷的代数和,即

、分别表示自由电荷和极化电荷.由于难以测量和计算,应消除.

根据.上式变换为

令.得

(2)定理形式

(10.8)

其中,称为电位移矢量.利用经验规律

(10.9)

其中,称为相对介电常数,称为绝对介电常数(也叫电容率).(10.9)式称为各向同性经验电介质的性能方程.

(10.8)式称为“高斯定理的普遍形式”——“有介质时的高斯定理”.表明通过任意曲面的电位移通量,等于该封闭曲面内包围的自由电荷的代数和.

说明:(1)上式为电介质中的高斯定理,是高斯定理的普遍形式.

(2)是辅助量,无真正的物理意义,是为了回避难以量化的极化电荷而引入的辅助量.算出后,可求.

(3)如同引进电力线一样,为描述方便,可引进电位移线,并规定电位移线的切线方向即为的方向,电位移线的密度(通过与电位移线垂直的单位面积上的电位移线条数)等于该处的大小.所以,通过任一曲面上电位移线条数为,称此为通过S的电位移通量;对闭合曲面,

此通量为.

(4)根据,以平行板电容器产生的线、线和线说明其区别.

①电位移线总是始于正的自由电荷,止于负的自由电荷,与极

化电荷无关.因而线在电介质和真空中一致;

②电力线是可始于一切正电荷和止于一切负电荷(包括自由电荷

与极化电荷).真空中,线与线一致,而在极化电荷内部,由于与反向,减弱了,如图.

③电极化强度线起于极化负电荷,终于极化正电荷,只存在于极

化电介质内,真空中=0,电介质内,.

2、定理的应用

例10-2:平行板电容器,板间有二种各向同性的均匀介质,分界面平行板面,介电常数分别为、,厚度为、,自由电荷面密度为.求

(1)、=?(2)电容C=?

解:(1) 设二种介质中电位移矢量分别为、,在左极板处做高斯面S,一对面平行板面,面积均为A,侧面垂直板面,由高斯定理有

其中,左底面=0,侧面上.又,

,即 ,方向垂直板面向右.

同样在右极板处做高斯面,一对面平行极板面,

面积均为,侧面与板面垂直,由高斯定理

有:

,即,方向向右.

可见,,即两种介质中法向不变.

方向向右.

(2)

例10-3:在半径为R的金属球外,有一外半径为的同心均匀电介质层,

其相对介电常数为,金属球电量为Q,试求:(1)场强空间分布;

(2)电势空间分布.

解:(1)由题意知,均是球对称的,取球形高斯面S,由

Q>0:沿半径向外;Q<0:沿半径向内.

(2)介质外任一点P电势

介质内任一点Q电势

球为等势体,电势为

例10-4:有一个带电为+q半径为的导体球,与内外半径分别为、 带电

量为-q的导体球壳同心,二者之间有两层均匀电介质,内层和外层电介

质的介电常数分别为、,且二电介质分界面也是与导体球同心的半径为

的球面.试求:

(1)电位移矢量分布;

(2)场强分布;

(3)导体球与导体空间电势差;

(4)导体球壳构成电容器的电容.

解:(1)由题意知,场是球对称的,选球形高斯面S, 由

得 ,

沿半径向外.

(2)

与同向,即沿半径向外.

(3)

(4)

根据自由电荷分布利用高斯定理求解,和前面一样,必须满足对称性:

第一,自由电荷的分布和电介质的分布同时满足三种对称性之一,即平面对称、轴对称、球对称,概括为“电介质的表面为等势面”;

第二,电介质充满整个电场.

在满足上述对称性后,可以利用高斯定理唯一地求解电场问题,此时电位移矢量与极化电荷无关.

§10-3 电容 电容器

一、孤立导体的电容

在真空中设有一半径为R的孤立的球形导体,它的电量为q,那么它的电势为(取无限远处电势=0)

对于给定的导体球,即R一定,当变大时,V也变大;变小时,V也变小,但是却不变.此结论虽然是对球形孤立导体而言的,但对一定形

状的其它导体也是如此,仅与导体大小和形状等有关,因而有下面定义.

定义:孤立导体的电量q与其电势V之比称为孤立导体电容,用C表示,记作:

(10.11)

对于孤立导体球,其电容为.C的单位为:F(法),1F=1C/1V.在实用中F太大,常用或,他们之间换算关系:

.

(电容与电量的存在与否无关)

二、电容器及其电容

实际上,孤立的导体是不存在的,周围总会有别的导体.当有其它导体存在时,则必然因静电感应而改变原来的电场分布,进而影响导体电容.下面我们具体讨论电容器的电容.

1、电容器:

两个带有等值而异号电荷的导体所组成的带电系统称为电容器.电容器可以储存电荷,也可以储存能量.

2、电容器电容:

如图所示,两个导体A、B放在真空中,它们所带的电量分别为

+q,-q,如果A、B电势分别为、,那么A、B电势差为,电容器的电容定义为:

(10.12)

由上可知,如将B移至无限远处,=0.所以,上式就是孤立导体的电容.所以,孤立导体的电势相当于孤立导体与无限远处导体之间的电势差.所以,孤立导体电容是B放在无限远处时的特例.导体A、B常称电容器的两个电极.

3、电容器电容的计算

①极间分别带有+Q,-Q电量,利用高斯定理,计算极间电场强度分布;

②根据电场去分布,求出极间电势差;

③将极板电量和极间电势差代入电容器电容定义式,计算出电容.(1)、平行板电容器的电容

设A、B二极板平行,面积均为S,相距为d,电量为+q,-q,极板线度比d大得多,且不计边缘效应.所以A、B间为均匀电场.板间充满电介质,介电常数为ε.

由高斯定理知,A、B间场强大小为

.

则 (10.13)

为该电容器极板间真空时的电容值.

(2)、球形电容器

设二均匀带电同心球面A、B,半径、,电荷为+q,-q. 板间充满电介质,介电常数为ε.

A、B间任一点场强大小为:,

.

为该电容器极板间真空时的电容值.

讨论:①当时,有,

令,为平行板电容器电容.

②当为孤立球形电容器电容.

A为导体球或A、B均为导体球壳结果如何?

(3)、圆柱形电容器

圆柱形电容器是两个同轴柱面极板构成的,如图所示,设A、B半径为、,电荷为+q,-q,板间充满电介质,介电常数为ε.除边缘外,电荷均匀分布在内外两圆柱面上,单位长柱面带电量,是柱高.

由高斯定理知,A、B内任一点P处的大小为

则 (10.15)

(可知:在计算电容器时主要是计算两极间的电势差).

(插话:

4、电介质对电容器电容的影响

以上所得电容是极间为真空情况,若极间充满电介质(不导电的物质),实际表明,此时电容C要比真空情况电容大,可表示

,或.

与介质有关,称为相对介电系数 .

以上各情况若充满电介质(极间),有:

球形: ;

平板:;

柱形:.

称为介质的介电常数.

())

下面以平行板电容器为例求:

(1)电介质中场强 E

由电容器定义,有

(无介质) 为电压,为电量.

(有介质) 为电压,为电量.

(2)极化电荷面密度

介质内电场:

.

即: (极化电荷面密度)

三、电容器的串联与并联

在实际应用中,现成的电容器不一定能适合实际的要求,如电容大小不合适,或者电容器的耐压程度不合要求有可能被击穿等原因.因此有必要根据需要把若干电容器适当地连接起来.若干个电容器连接成电容器的组合,各种组合所容的电量和两端电压之比,称为该电容器组合的等值电容.

1、 串联:

几个电容器的极板首尾相接(特点:各电容的电量相同).

设A、B间的电压为,两端极板电荷分别为+q,-q,由于静电感应,其它极板电量情况如图,

.

由电容定义有

(10.16a)

第八章 静电场中的导体和电介质

103 第八章 静电场中的导体和电介质 一、基本要求 1.理解导体的静电平衡,能分析简单问题中导体静电平衡时的电荷分布、场强分布和电势分布的特点。 2.了解两种电介质极化的微观机制,了解各向同性电介质中的电位移和场强的关系,了解各向同性电介质中的高斯定理。 3.理解电容的概念,能计算简单几何形状电容器的电容。 4.了解电场能量、电场能量密度的概念。 二、本章要点 1.导体静电平衡 导体内部场强等于零,导体表面场强与表面垂直;导体是等势体,导体表面是等势面。 在静电平衡时,导体所带的电荷只能分布在导体的表面上,导体内没有净电荷。 2.电位移矢量 在均匀各向同性介质中 E E D r εεε0== 介质中的高斯定理 ∑??=?i i s Q s d D 自 3.电容器的电容 U Q C ?= 电容器的能量 C Q W 2 21= 4.电场的能量 电场能量密度 D E w ?= 2 1 电场能量 ? = V wdV W 三、例题 8-1 下列叙述正确的有(B) (A)若闭合曲面内的电荷代数和为零,则曲面上任一点场强一定为零。 (B)若闭合曲面上任一点场强为零,则曲面内的电荷代数和一定为零。

104 (C)若闭合曲面内的点电荷的位置变化,则曲面上任一点的场强一定会改变。 (D)若闭合曲面上任一点的场强改变,则曲面内的点电荷的位置一定有改变。 (E)若闭合曲面内任一点场强不为零,则闭合曲面内一定有电荷。 解:选(B )。由高斯定理??∑=?0/εi i q s d E ,由 ∑=?=00φq ,但场强则 不一定为零,如上题。 (C )不一定,受静电屏蔽的导体内部电荷的变动不影响外部场强。 (D )曲面上场强由空间所有电荷产生,改变原因也可能在外部。 (E )只要通过闭曲面电通量为0,面内就可能无电荷。 8-2 如图所示,一半径为R的导体薄球壳,带电量为-Q1,在球壳的正上方距球心O距离为3R的B点放置一点电荷,带电量为+Q2。令∞处电势为零,则薄球壳上电荷-Q1在球心处产生的电势等于___________,+Q2在球心处产生的电势等于__________,由叠加原理可得球心处的电势U0等于_____________;球壳上最高点A处的电势为_______________。 解:由电势叠加原理可得,球壳上电荷-Q1在O 点的电势为 R Q U 0114πε- = 点电荷Q2在球心的电势为 R Q R Q U 02 0221234πεπε= ?= 所以,O 点的总电势为 R Q Q U U U 01 2210123ε-= += 由于整个导体球壳为等势体,则 0U U A =R Q Q 01 2123ε-= 8-3 两带电金属球,一个是半径为2R的中空球,一个是半径为R的实心球,两球心间距离r(>>R),因而可以认为两球所带电荷都是均匀分布的,空心球电势为U1,实心球电势为U2,则空心球所带电量Q1=___________,实心球所带电Q2=___________。若用导线将它们连接起来,则空心球所带电量为______________,两球电势为______________。 解:连接前,空心球电势R Q U 2401 1πε= ,所以带电量为

第13章静电场中的导体和电介质

思考题 13-1 尖端放电的物理实质是什么? 答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。 13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球A ,试判断下列说法是否正确?并说明理由。 (1) B 球电势高于A 球。 答: 正确。不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。 (2) 以无限远为电势零点,A 球的电势: V A < 0 答: 不正确。若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。所以,V A >0。 13-3 怎样能使导体净电荷为零 ,而其电势不为零? 答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有∑=0q 而导体的电势V ≠0 。 图13-37 均匀带电球体的电场能

13-4 怎样理解静电平衡时导体内部各点的场强为零? 答: 必须注意以下两点: (1) 这里的“点”是指导体内的宏观点,即无限小体积元。对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零; (2) 静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。 13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比? 答: 不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S ?σ产生的。实际上这个场强是导体表面上全部电荷所贡献的合场强。如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。 13-6 为什么不能使一个物体无限制地带电? 答: 所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。当物体带电时,在其周围空间产生电场,其电场强度随物体带电量的增加而增大。带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿。在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电量减少。所以一个物体不能无限制地带电。如尖端放电现象。 13-7 感应电荷的大小和分布怎样确定? 答: 当施感电荷Q 接近于一导体时,导体上出现等量异号的感应电荷±q ′。其分布一方面与导体的表面形状有关,另一方面与施感电荷

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 02 00π4 . D ) (π4 . C π4 . B π4 .A R) (a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='= ' = 'q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε= '+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 2 . D . C 2 . B 2 .A εd E= εE= E E σσεσ εσ= = 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0 εσ= E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

静电场中的导体和电介质

第十章 大学物理辅导 静电场中的导体和电介质 ~53 ~ 第十章 静电场中的导体和电介质 一、教材的安排与教学目的 1、教材安排 本章的教材安排,讲授顺序可概括为以下五个方面: (1)导体的静电平衡; (2)电介质的极化规律; (3)电位移矢量和有介质时的高斯定理; (4)电容和电容器; (5)电容器的储能和电场的能量。 2、教学目的 本章的教学目的是: (1)使学生确切理解并掌握导体的静电平衡条件及静电平衡导体的基本性质; (2)使学生了解电介质极化的机构,了解极化规律;理解电位移矢量的定义和有介质时的高斯定理; (3)使学生正确理解电容概念,掌握计算电容器的方法。 (4)使学生掌握电容器储能公式,并通过电容器的储能了解电场的能量。 二、教学要求 1、掌握导体的静电平衡条件,明确导体与电场相互作用的大体图象; 2、了解电介质的极化规律,清楚对电极化强度矢量是如何定义的,明确极化强度由总电场决定,并且'=σθP cos ; 3、理解电位移矢量的定义,注意定义式 D E P =+ε0是普遍适用的,明确 D 是一个 辅助矢量; 4、掌握有介质时的高斯定理; 5、掌握电容和电容器的概念,掌握电容器电容的计算方法; 6、了解电容器的储能和电场能量 三、内容提要 1、导体的静电平衡条件 (1)导体的静电平衡条件是导体内部场强处处为零。所谓静电平衡,指的是带电体系中的电荷静止不动,因而电场分布不随时间而变化。导体的特点是体内存在着自由电荷,它们在电场作用下可以移动从而改变电荷的分布。电荷分布的改变又会影响到场的分布。这样互相影响,互相制约,最后达到静电平衡。 (2)从导体的静电平衡条件出发,可以得出三个推论 导体是个等势体,表面是个等势面; 导体表面外侧的场强方向处处垂直于表面,并且有导体内部无净电荷,即电荷体密度,电荷只分布在导体表面。 ;E =??? ??? =σερ00 2、电介质的极化规律

第6章 静电场中导体和电介质

第6章 静电场中的导体与电介质 一、选择题 1. 当一个导体带电时, 下列陈述中正确的是 (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过 [ ] 2. 关于带电导体球中的场强和电势, 下列叙述中正确的是 (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C) 导体内的电势与导体表面的电势相等 (D) 导体内的场强大小和电势均是不为零的常数 [ ] 3. 当一个带电导体达到静电平衡时 (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高 (C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高 [ ] 4. 一个带正电的小球放入一个带等量异号电荷、半径为R 的球壳中,如图1所示.在距球心为r (R r <)处的电场与放入小球前相比将 (A) 放入前后场强相同 (B) 放入小球后场强增加 (C) 因两者电荷异号, 故场强减小 (D) 无法判定 [ ] 5. 设无穷远处电势为零, 半径为R 的导体球带电后其电势为V , 则球外离球心距离为r 处的电场强度大小为 (A) 23R V r (B) V r (C) 2RV r (D) V R [ ] 6. 有两个大小不等的金属球, 其大球半径是小球半径的两倍, 小球带有正电荷.当用金属细线连接两金属球后 (A) 大球电势是小球电势的两倍 (B) 大球电势是小球电势的一半 (C) 所有电荷流向大球 (D) 两球电势相等 [ ] 7. 在某静电场中作一封闭曲面S .若有 ??=?s S D 0d ? ρ, 则S 面内必定 (A) 没有自由电荷 (B) 既无自由电荷, 也无束缚电荷 (C) 自由电荷的代数和为零 (D) 自由电荷和束缚电荷的代数和为零 [ ] 8. 有一空气球形电容器, 当使其内球半径增大到两球面间的距离为原来的一半时, 此电容器的电容为 (A) 原来的两倍 (B) 原来的一半 (C) 与原来的相同 (D) 以上答案都不对 [ ] 9. 一均匀带电Q 的球体外, 罩一个内、外半径分别为r 和R 的同心金属球壳,如图2所示.若以无限远处为电势零点, 则在金属球壳r <R '<R 的区域内 q 图1

静电场中的导体

第七章 静电场中的导体、电介质 一、选择题: 1. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ,如图所示,则板外两侧的电场强度的大小为:[ ] (A )E=0 2εσ (B )E=02εσ (C )E=0εσ (D )E=02d εσ 2. 两个同心薄金属体,半径分别为R 1和R 2(R 2>R 1),若分别带上电量为q 1和q 2的电荷,则两者的电势分别为U 1和U 2(选无穷远处为电势零点),现用导线将两球壳相连接,则它们的电势为[ ] (A )U 1 (B )U 2 (C )U 1+U 2 (D )2 1 (U 1+U 2) 3.如图所示,一封闭的导体壳A 内有两个导体B 和C ,A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是[ ] (A )U A =U B =U C (B )U B > U A =U C (C )U B >U C >U A (D )U B >U A >U C 4.一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板的距离均为h 的两点a 、b 之间的电势差为: [ ] (A )零 (B )02εσ (C )0εσh (D )0 2εσh 5. 当一个带电导体达到静电平衡时: [ ] (A) 表面上电荷密度转大处电势较高

(B) 表面曲率较大处电势。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。 6. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一内、 外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: [ ] (A )E= r Q U r Q 02 04,4πεπε= (B )E=0, 1 04r Q πε (C )E=0, r Q 04πε (D )E=0,2 04r Q πε 7. 设有一个带正电的导体球壳,若球壳内充满电介质,球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;若球壳内、外均为真空时,壳外一点的场强大小和电势用E 2、U 2表示,则两种情况下,壳外同一处的场强大小和电势大小的关系为: [ ] (A )E 1=E 2, U 1=U 2 (B )E 1=E 2, U 1>U 2 (C )E 1>E 2, U 1>U 2 (D )E 1

大学物理课后答案第七章静电场中的导体和电介质

大学物理课后答案第 七章静电场中的导 体和电介质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 习题7 7-2 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题7-2图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少以地的电势为零,则A 板的电势是多少 解: 如题7-2图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为 2σ 题7-2图 (1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d 21===AC AB AB AC E E σσ 且 1σ+2σS q A = 得 ,32S q A = σ S q A 321=σ 而 711023 2 -?-=- =-=A C q S q σC C 10172-?-=-=S q B σ (2) 30 1 103.2d d ?== =AC AC AC A E U εσV

3 7-3 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算: (1)外球壳上的电荷分布及电势大小; (2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势 题7-3图 ? ? ∞ ∞==?=2 2 020π4π4d d R R R q r r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生: 0π4π42 02 0=- = R q R q U εε (3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且 0π4' π4'π4'2 02 01 0=+-+ - = R q q R q R q U A εεε

第6章 静电场中的导体和电介质习题讲解

第6章静电场中的导体和电介质 一、选择题 1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场.此后将该点电荷移至距球心r/2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪 一种情况? [ ] (A) 对球壳内外电场无影响 (B) 球壳内外电场均改变 (C) 球壳内电场改变, 球壳外电场不变 T6-1-1图 (D) 球壳内电场不变, 球壳外电场改变 2. 当一个导体带电时, 下列陈述中正确的是 [ ] (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过 3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ] (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C) 导体内的电势与导体表面的电势相等 (D) 导体内的场强大小和电势均是不为零的常数 4. 当一个带电导体达到静电平衡时 [ ] (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高 (C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高 T6-1-5图

5. 一点电荷q放在一无限大导体平面附近, 相距d, 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A) qq (B) - (C) q (D) -q 22 6. 在一个绝缘的导体球壳的中心放一点电荷q, 则球壳内、外表面上电荷均匀分布.若 使q偏离球心, 则表面电荷分布情况为 [ ] (A) 内、外表面仍均匀分布 (B) 内表面均匀分布, 外表面不均匀分布 (C) 内、外表面都不均匀分布 (D) 内表面不均匀分布, 外表面均匀分布 7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来.若大球半径为m, 小球半径为n, 当静电平衡后, 两球表面的电荷密度之比σ m/σ n 为 mnm2n2 [ ] (A) (B) (C) 2 (D) 2 nmnm 8. 真空中有两块面积相同的金属板, 甲板带电q, 乙板带电Q.现 将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A) 0 (B) -q (C) - q+Qq+Q (D) 22 T6-1-8图 9. 在带电量为+q的金属球的电场中, 为测量某点的电场强度E, 现在该点放一带电量为(+q/3)的试验电荷, 电荷受力为F, 则该点的电场强度满足 6F 3F[ ] (A) E> (B) E> qq 3F 3FT6-1-9图 (C) E< (D) E= qq 测得它所受力为F.若考虑到q不是足够小, 则此时F/q比P点未放q 时的场强 [ ] (A) 小 (B) 大 (C) 相等 (D) 大小不能确定 10. 在一个带电量为Q的大导体附近的P点, 置一试验电荷q, 实验

ch7-静电场中的导体和电介质-习题及答案

第7章 静电场中的导体和电介质 习题及答案 1. 半径分别为R 和r 的两个导体球,相距甚远。用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。试证明: R r =21σσ 。 证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以 半径为R 的导体球的电势为 R R V 0211π4επσ= 14εσR = 半径为r 的导体球的电势为 r r V 0222π4επσ= 24εσr = 用细导线连接两球,有21V V =,所以 R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。 证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 部的闭合圆柱面为高斯面,由高斯定理得 S S d E S ?+==??)(1 0320 σσε 故 +2σ03=σ 上式说明相向两面上电荷面密度大小相等、符号相反。 (2)在A 部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即 022220 4 030201=---εσεσεσεσ

又 +2σ03=σ 故 1σ4σ= 3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。 解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为 = O V R q dq R 3π4π4100εε+ ? 03π4π400=+'= R q R q εε 故 - ='q 3 q 4.半径为1R 的导体球,带有电量q ,球外有外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。 (1)求导体球和球壳的电势1V 和2V ; (2)如果将球壳接地,求1V 和2V ; (3)若导体球接地(设球壳离地面很远),求1V 和2V 。 解:(1)应用均匀带电球面产生的电势公式和电势叠加原理求解。 半径为R 、带电量为q 的均匀带电球面产生的电势分布为 ???????>≤=)( 4)( 400 R r r q R r R q V πεπε 导体球外表面均匀带电q ;导体球壳表面均匀带电q -,外表面均匀带电Q q +,由电势叠加原理知,空间任一点的电势等于导体球外表面、导体球壳表面和外表面电荷在该点产生的电势的代数和。 导体球是等势体,其上任一点电势为 )( 413 210 1R Q q R q R q V ++-= πε 球壳是等势体,其上任一点电势为

大学物理同步训练第2版第七章静电场中的导体详解

第七章 静电场中的导体和电介质 一、选择题 1. (★★)一个不带电的空腔导体球壳,内半径为R 。在腔内离球心的 距离为a 处(a

10第十章 静电场中的导体与电介质作业答案

一、选择题 [ B ]1(基础训练2) 一“无限大”均匀带电平面A ,其附近放一与它 平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷 面密度为+σ ,则在导体板B 的两个表面 1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21- , σ 2 =σ2 1 +. (C) σ 1 = σ21- , σ 1 = σ2 1 -. (D) σ 1 = - σ, σ 2 = 0. 【提示】“无限大”平面导体板B 是电中性的:σ 1S+σ 2S=0, 静电平衡时平面导体板B 内部的场强为零,由场强叠加原理得: 02220 2010=-+εσεσεσ 联立解得: 122 2 σ σ σσ=- = [ C ]2(基础训练6)半径为R 的金属球与地连接。在与球心O 相距d =2R 处有一电荷为q 的点电荷。如图所示,设地的电势为零,则球上的感生电荷q ' 为: (A) 0. (B) 2q . (C) -2 q . (D) -q . 【提示】静电平衡时金属球是等势体。金属球接地,球心电势为零。球心电 势可用电势叠加法求得: 000'044q dq q R d πεπε' +=?, 00' 01'44q q dq R d πεπε=-?, 'q q R d =-,其中d = 2R ,'2q q ∴=- [ C ]3(基础训练8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把 它们充电到 1000 V ,然后将它们反接(如图所示),此时两极板间的电势差 为: (A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V 【提示】反接,正负电荷抵消后的净电量为 661212(82)101000610Q Q Q C U C U C --=-=-=-??=? 这些电荷重新分布,最后两个电容器的电压相等,相当于并联。并联的等效电容为 512C'10C C F -=+=,电势差为'600()' Q U V C = =。 [ D ]4(基础训练10)两个完全相同的电容器C 1和C 2,串联后与电源连接。现将一各向同性均匀电介质板插入C 1中,如图所示,则(A) 电容器组总电容减小. (B) C 1上的电荷大于C 2上的电荷. (C) C 1上的电压高于C 2上的电压 .(D) 电容器组贮存的总能量增大. 【提示】(A) C 1↑,1/C=(1/C 1)+(1/C 2),∴C ↑ (B) 串联,Q 1=Q 2 (C) U 1=Q/C 1,U 2=Q/C 2 ,∴U 1

第9章_静电场中的导体和电介质

第9章静电场中的导体和电介质 什么是导体什么是电介质 静电场中的导体静电平衡 9.1.1 静电感应静电平衡 金属导体:金属离子+、自由电子- 1、静电感应:在外电场作用下,导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。(感应电荷与外加电场相互影响,比如金属球置于匀强电场中,外电场使电荷重新分布,感应电荷的分布使均匀电场在导体附近发生弯曲。) 2、导体静电平衡条件 不受外电场影响时,无论对整个导体或对导体中某一个小部分来说,自由电子的负电荷和金属离子的正电荷的总量是相等的,正负电荷中心重合,导体呈现电中性。

若把金属导体放在外电场中,比如把一块金属板放在电场强度为0E r 的匀强电场中,这时导体中的自由电子在作无规则热运动的同时,还将在电场力作用下作宏观定向运动,自由电子逆着电场方向移动,从而使导体中的电荷重新分布。电荷重新分布的结果使得金属板两侧会出现等量异号的电荷。这种在外电场作用下,引起导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。 感应电荷在金属板的内部建立起一个附加 电场,其电场强度'E r 和外在的电场强度0E r 的方向相反。这样,金属板内部的电场强度E r 就是0 E r 和'E r 的叠加。开始时0'E E <,金属板内部的 电场强度不为零,自由电子会不断地向左移动, 从而使'E r 增大。这个过程一直延续到金属板内部的电场强度等于零,即0'0E E E =+=r r r 时为止。这时,导体上没有电荷作定向运动,导体处于静电平衡 状态。 当导体处于静电平衡状态时,满足以下条件:

静电场中的导体与电介质考试题及答案

静电场中的导体与电介质考试题及答案 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。 6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。因而正确答案为(A )。 6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E

(D )R εq V d εq E 020π4,π4== 分析与解 达到静电平衡时导体内处处各点电场强度为零。点电荷q 在导 体球表面感应等量异号的感应电荷±q ′,导体球表面的感应电荷±q ′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。因而正确答案为(A )。 6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。因而正确答案为(E )。 6 -5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该

静电场中的导体和电介质

第十章静电场中的导体和电介质§10-1 静电场中的导体 一、导体的静电平衡 1、金属导体的电结构及静电感应 (1)金属导体:由带正电的晶格和带负电的自由电子组成. 带电导体:总电量不为零的导体; 中性导体:总电量为零的导体; 孤立导体:与其他物体距离足够远的导体. “足够远”指其他物体的电荷在该导体上激发的场强小到可以忽略. (2)静电感应过程:导体内电荷分布与电场的空间分布相互影响的过程. (3)静电平衡状态:导体中自由电荷没有定向移动的状态. 2、导体静电平衡条件 (1)从场强角度看: ①导体内任一点,场强; ②导体表面上任一点与表面垂直. 证明:由于电场线与等势面垂直,所以导体表面附近的电场强度必定与该处表面垂直. 说明:①静电平衡与导体的形状和类别无关.

②“表面”包括内、外表面; (2)从电势角度也可以把上述结论说成:静电平衡时导体为等势体. ①导体内各点电势相等; ②导体表面为等势面. 证明:在导体上任取两点A,B,.由于=0,所以. (插话:空间电场线的画法. 由于静电平衡的导体是等势体,表面是等势面.因此,导体正端发出的电场线绝对不会回到导体的负端.应为正电荷发出的电场线终于无穷远,负电荷发出的电场线始于无穷远.) 二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布 如图所示,导体电荷为Q,在其内作一高斯面S,高斯定理为: 导体静电平衡时其内, , 即. S面是任意的,导体内无净电荷存在. 结论:静电平衡时,净电荷都分布在导体外表面上. 2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况 如图所示,导体电量为Q,在其内作一高斯面S,高斯定理为:

大学物理练习题 静电场中的导体

练习六 静电场中的导体 一、选择题 1. 以下说法中正确的是 (A ) 电场强度相等的地方电势一定相等。 (B ) 电势梯度绝对值大的地方场强的绝对值也一定大。 (C ) 带正电的导体上电势一定为正。 (D ) 电势为零的导体一定不带电。 2. 以下说法中正确的是 (A ) 场强大的地方电位一定高。 (B ) 带负电的物体电位一定为负。 (C ) 场强相等处电势梯度不一定相等。 (D ) 场强为零处电位不一定为零。 3. 如图所示,真空中有一点电荷Q 及空心金属球壳A ,A 处于静电平衡,球内有一点M ,球壳中有一点N ,以下说法正确的是 ?Q q (A ) E M ≠ 0,E N = 0,Q 在M 处产生电场,而在N 处不产生电场。 (B ) E M = 0,E N ≠ 0,Q 在M 处不产生电场,而在N 处产生电场。 (C ) E M = E N = 0,Q 在M 、N 处都不产生电场。 (D ) E M ≠ 0,E N ≠ 0,Q 在M 、N 处都产生电场。 (E ) E M = E N = 0,Q 在M 、N 处都产生电场。 4. 如图所示,原先不带电的金属球壳的球心处放一点电荷q 1,球 外放一点电荷q 2,设q 2、金属内表面的电荷、外表面的电荷对q 1的 作用力分别为1F v 、2F v 、3F v ,q 1受的总电场力为F v ,则 (A ) F 1 = F 2 = F 3 = F =0。 (B ) F 1 = q 1q 2/(4πε0d 2),F 2 = 0,F 3 = 0,F = F 1。 (C ) F 1 = q 1q 2/(4πε0d 2),F 2 = 0,F 3 = ? q 1 q 2 /(4πε0d 2)(即与1F v 反向),F = 0。 (D ) F 1 = q 1q 2/(4πε0d 2),与 2F v 3F v 的合力与1F v 等值反向,F = 0。 (E ) F 1= q 1q 2 /(4πε0d 2),F 2 = ? q 1q 2/(4πε0d 2)(即与1F v 反向),F 3 = 0,F = 0。 5. 如图所示,一导体球壳A ,同心地罩在一接地导体B 上,今给A 球带负电?Q ,则B 球 Q (A ) 带正电。 (B ) 带负电。 (C ) 不带电。 (D ) 上面带正电,下面带负电。 6. A 、B 是两块不带电的导体,放在一带正电导体的电场中,如图所示。设无限远处为电势零点,A 的电势为 U A ,B 的电势为U B ,则: (A ) U B > U A ≠ 0。 (B ) U B < U A = 0。 (C ) U B = U A 。 (D ) U B < U A 。 7. 半径分别为R 和r 的两个金属球,相距很远。用一根长导线将两球连接,并使它们带电。在忽略导线影响的情况下,两球表面的电荷面密度之比σR /σr 为: (A ) R /r 。

第28讲静电场中的导体静电场中的电介质

教学要求 了解有极分子和无极分子,有极分子的取向极化、无极分子的位移极化、电极化强度。了解电介质的静电场。 理解静电平衡的条件、推论及其性质、静电平衡时导体上的电荷分布,空腔导体内外的静电场、静电屏蔽,有电介质时的高斯定理及应用、电位移的定义、D ,E ,P 之间的关系。 9.5 静电场中的导体 9.5.1 导体的静电平衡 导体的特点是导体内存在着大量的自由电荷,对金属导体(本书讨论都是金属导体)而言,就是自由电子。即金属导体在它内部有可以自由移动的电荷—自由电子。一个不带电的中性导体放在静电场中,在电场力作用下,它内部自由电子将受静电场的作用而产生定向运动而改变导体上的电荷分布。这电荷的分布的改变又将反过来改变导体内外的电场分布。这种现象叫做静电感应。导体由于静电感应而带的电荷叫感应电荷。因此,当电场中有导体存在时,电荷分布和电场分布相互影响、相互制约。当导体内部和表面都没有电荷的宏观定向运动时,我们称导体处于静电平衡状态。导体达到静电平衡状态所满足的条件叫静电平衡条件。 如图9-27,我们将一块导体板放入一均匀电场E 中,电场力则驱动金属板内部的自由 电荷逆着电场的方向运动,使得金属板的两个侧面出现等量异号的电荷。这些电荷将在金属 板的内部建立一个附加电场'E ,附加电场'E 的方向与原场E 相反。金属板内部的电场强度就是E 和'E 的叠加。开始时,E E <',金属板内部的电场不为零,自由电子会不停地向左移动,从而使' E 增大。这个过程一直达到静电平衡状态为止。 int 0 E = 'E E 图9-27 导体的静电平衡 E E

静电平衡状态只有在导体内部场强处处为零时才有可能达到和维持。否则,导体内部的自由电子在电场的作用下将发生定向移动。同时,导体表面附近的电场强度必定和导体表面垂直。显然,导体的静电平衡条件是:导体内部场强处处为零,即int 0E ≡ ,导体表面紧邻 处的场强s E 垂直于导体表面。这里所说的电场强度,指的是外加的静电场E 和感应电荷产 生的附加电场'E 叠加后的总电场,即=E E E '+ 总。由于将导体放入电场中到建立静电平衡 的时间是极短的(610s -的数量级),所以通常在我们处理静电场中的导体问题时,若非特别说明,总是把它当作已达到静电平衡的状态来讨论。 处于静电平衡状态的导体,除了电场强度满足上述的静电平衡条件外,还具有以下性质: (1)导体是等势体,导体表面是等势面。当导体处于静电平衡时,因为其内部电场强度处处为零,而且表面紧邻处的电场强度都垂直于表面,所以导体中以及表面上任意两点间的电势必然为零。 (2)导体内部处处没有未被抵消的净电荷,净电荷只分布在导体的表面上。 为了证明上述结论,我们在导体内部围绕任意点P 作一个小闭合曲面S (如图9-28),由于静电平衡时导体内部电场强度处处为零,因此通过此封闭曲面的电通量必然为零。按高斯定理,此闭合曲面内电荷的代数和为零,由于P 点是任意的,封闭曲面也可以作得任意地小,所以导体内部各处净电荷为零,电荷只能分布在表面。 (3) 导体以外,靠近导体表面附近场强大小和导体表面在该处的面电荷密度 的关系 为 E σε= (9-30 图9-29导体表面电荷与场强的关系 ' S ?int 0 E = E 图9-28 导体内无净电荷 p σ

04.静电场中的导体答案

《大学物理》练习题 No .4 静电场中的导体 电介质及能量 班级 ___________ 学号 ___________ 姓名 ___________ 成绩 ________ 一、 选择题 1. 如图4.1,真空中有一点电荷Q 及空心金属球壳A, A 处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是 [ E ] (A) E M ≠0, E N =0 ,Q 在M 处产生电场,而在N 处不产生电场; (B) E M =0, E N ≠0 ,Q 在M 处不产生电场,而在N 处产生电场; (C) E M = E N =0 ,Q 在M 、N 处都不产生电场; (D) E M ≠0,E N ≠0,Q 在M 、N 处都产生电场; (E) E M = E N =0 ,Q 在M 、N 处都产生电场. 2.如图4.2,原先不带电的金属球壳的球心处放一点电荷q 1 , 球外放一点电荷q 2 ,设q 2 、金属内表面的电荷、外表面的电荷对q 1的作用力分别为F 1、F 2、F 3 , q 1受的总电场力为F , 则 [ C ] (A) F 1=F 2=F 3=F =0. (B) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2 = 0 , F 3 = 0 , F =F 1 . (C) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2 = 0 ,F 3 =- q 1 q 2 / ( 4 π ε0 d 2 ) (即与F 1反 向), F =0 . (D) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2 = - q 1 q 2 / ( 4 π ε0 d 2 ) (即与F 1反 向) ,F 3 =0, F =0 . (E) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2=- q 1 q 2 / ( 4 π ε0 d 2 ) (即与F 1反向), F 3 = 0, F =0 . 3. 一导体球外充满相对电容率为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为: [ B ] (A) ε0E . (B) ε0εr E . (C) εr E . (D) (ε0εr -ε0)E . 4. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则: [ C ] (A) 空心球电容值大. (B) 实心球电容值大. (C) 两球电容值相等. (D) 大小关系无法确定. 5.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C , 极板间电压V ,极板空间(不含插入的导体板)电场强度E 以及电场的能量W 将(↑表示增大,↓表示减小) [ B ] (A) C ↓,U ↑,W ↑,E ↑. (B) C ↑,U ↓,W ↓,E 不变. (C) C ↑,U ↑,W ↑,E ↑. (D) C ↓,U ↓,W ↓,E ↓. ?Q 图4.1, q 图4.2

相关文档
最新文档