人教版九年级数学上册:《一元二次方程》教案
人教版九年级数学上册- 一元二次方程教案
21.1 一元二次方程一、学习目标1、正确理解一元二次方程的意义,并能判断一个方程是否是一元二次方程;2、知道一元二次方程的一般形式是20(ax bx c a b c ++=、、是常数,0a ≠) ,能说出二次项及其系数,一次项及其系数和常数项;3、理解并会用一元二次方程一般形式中a ≠0这一条件;4、通过问题情境,进一步体会学习和探究一元二次方程的必要性,体会数学知识来源于生活,又能为生活服务,从而激发学习热情,提高学习兴趣。
重难点关键 1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.知识准备1、只含有_____个未知数,且未知数的最高次数是_______的整式方程叫一元一次方程2、方程2(x+1)=3的解是____________3、方程3x+2x=0.44含有____个未知数,含有未知数项的最高次数是_____,它____ (填“是”或“不是”)一元一次方程。
一、情境导入参加一次集会,如果有x个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?二、合作探究探究点一:一元二次方程的概念【类型一】一元二次方程的识别下列选项中,是关于x的一元二次方程的是( )A.x2+1x2=1 B.3x2-2xy-5y2=0C.(x-1)(x-2)=3 D.ax2+bx+c=0解析:选项A中的方程分母含有未知数,所以它不是一元二次方程;选项B中的方程含有2个未知数,所以它不是一元二次方程;当a=0时,选项D中的方程不含二次项,所以它不是一元二次方程,排除A、B、D,故选C.方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.一元二次方程的三个条件:一是方程两边都是整式;二是只含有一个未知数;三是未知数的最高次数是2.上述三个条件必须同时满足,缺一不可.【类型二】利用一元二次方程的概念确定字母系数关于x 的方程(k +1)x|k -1|+kx +1=0是一元二次方程,则k 的值为________.解析:由题意得⎩⎪⎨⎪⎧|k -1|=2,k +1≠0,∴⎩⎪⎨⎪⎧k =3或k =-1,k ≠-1.∴k =3.方法总结:由一元二次方程的概念满足的条件:未知数最高次数为2,构造方程,解出字母取值,并利用二次项系数不为0排除使二次项系数为0的字母取值,从而确定字母取值.探究点二:一元二次方程的一般形式将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数及常数项.(1)3x2-2=5x;(2)9x2=16;(3)2x(3x+1)=17;(4)(3x-5)(x+1)=7x-2.解析:先分别将各方程化为一般形式,再指出它们的各部分的名称.解:(1)方程化为一般形式为3x2-5x-2=0,二次项系数是3,一次项系数是-5,常数项是-2.(2)方程化为一般形式为9x2-16=0,二次项系数是9,一次项系数是0,常数项是-16.(3)方程化为一般形式为6x2+2x-17=0,二次项系数是6,一次项系数是2,常数项是-17.(4)方程化为一般形式为3x2-9x-3=0,二次项系数是3,一次项系数是-9,常数项是-3.方法总结:求一元二次方程的各项系数和常数项,必须先把方程化为一般形式,特别要注意确认各项系数和常数项一定要包括前面的符号.探究点三:列一元二次方程(2015·深圳一模)在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m 2.已知床单的长是2m ,宽是1.4m ,求花边的宽度.请根据题意列出方程.解析:设花边的宽度为x m ,则由图可知剩下部分的长为(2-2x )m ,剩下部分的宽为(1.4-2x )m.∵剩下部分面积为1.6m 2,∴可列方程(2-2x )(1.4-2x )=1.6.方法总结:列方程最重要的是审题,只有理解题意,才能恰当的设出未知数,准确地找出已知量和未知量之间的等量关系,正确的列出方程.探究点四:一元二次方程的解 【类型一】判断一元二次方程的解方程x 2-2x =0的解为( )A .x 1=1,x 2=2B .x 1=0,x 2=1C .x 1=0,x 2=2D .x 1=12,x 2=2解析:把各选项中未知数的值分别代入方程的左右两边,只有选项C 中的x 1=0,x 2=2都能使方程x2-2x=0的左右两边相等,所以选C.方法总结:判断一个未知数的值是否是一元二次方程的解,可以把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解.【类型二】利用一元二次方程的解的意义求字母或代数式的值已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是( )A.1 B.-1C.0 D.无法确定解析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到是一元二次方程,所以二次项系数不能等于0.由此得,(m-1)+1+1=0,解得m=-1,此时m-1=-2≠0,∴m=-1.故选B.方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目中,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.达标检测1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个B.2个C.3个D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.一元二次方程的一般形式是__________.4.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.5.关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 的取值范围是________.6.方程x (4x+3)=3x+1化为一般形式为_____________,它的二次项系数是______________,一次项系数是_______________,常数项是____________________.7、(1)方程n nx x +=-72中,有一个根为2,则n 的值.(2)一元二次方程()01122=-+++m x x m 有一个解为0,试求方程210m -=的解。
初中数学九年级上册第二十一章 一元二次方程《一元二次方程》教案
一元二次方程一、教学目标:知识技能:1.理解一元二次方程的概念;2.掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,确定出二次项系数、一次项系数和常数项;3..理解一元二次方程的根的意义,能够运用代入法检验根的正确性.数学思考:在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性.问题解决:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移得到一元二次方程的概念.情感态度:通过用数学知识解决实际问题的思想激发学生的学习热情和积极性.二、教学重难点:通过类比一元一次方程,了解一元二次方程的概念、一般形式ax2+bx+c=0(a≠0)及一元二次方程的根等概念,并能用这些概念解决简单问题.把实际问题转化为一元二次方程模型.教学时间:两课时三、教学过程:第一课时洋葱小视频分享一、有关解方程的科学家的故事,激发学生学习方程的兴趣。
洋葱小视频分享二、一元二次方程的定义讲解,激发学生利用手中的工具提前预习,轻松学习知识。
(一)、知识回顾、教师引导学生完成下列题目,复习一元一次方程的相关知识:一元一次方程的知识:1.一元一次方程中的“一元”是指__1个未知数__,“一次”是指__未知数的次数是1__,一元一次方程左右两边都是__整式__的形式.2.一元一次方程的一般形式是__ax+b=0(a,b是常数,且a≠0)__.若关于x的方程(m+1)x|m|+1=0是一元一次方程,则m=____1____.3.什么是一元一次方程的解?如何判断一个数是不是一元一次方程的解?若已知x=1是方程ax+3=0的解,则a=__-3__.(二)、【课堂引入】问题1:有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?学生先自主探究、分析,再在小组内合作讨论,设出合适的未知数,根据等量关系列出方程.1.探究交流观察[课堂引入]中所列的方程,分析以上两个方程是不是一元二次方程,它们与一元一次方程有什么区别与联系.学生观察、思考、讨论、交流、汇报.教师重点引导学生观察得到所列方程的特点:①整式;②一元;③二次.引入课题(板书):一元二次方程.2.归纳定义问题:根据找出的一元二次方程的特征,你能给一元二次方程下个定义吗?教师引导学生结合所列方程的三个特征及一元二次方程的名称,类比一元一次方程的定义,得出一元二次方程的定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.教师板书:整式;一元;二次.(三)、新知探究运用1、(试一试)抢答:下列各方程是不是一元二次方程:①3x+2=5x-2;②2x2-2x=0;③x2=0;④-=0;⑤3y2=(3y+1)(y-2);⑥ax2+bx+c=0;⑦3x2=5x-1;⑧(x+3)(2x-4)=0.第二课时教学过程:一、简单回顾一元二次方程的定义及判断二、新知探究:(一)、一元二次方程的一般形式:问题1:类比一元一次方程的一般形式,你能写出一元二次方程的一般形式,并说出各项的名称吗?师生共同小结(板书):一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.(试一试)抢答:指出下列各方程的二次项、一次项和常数项.①3x2+2x-1=0;②2x2=3;③=0.(二)、问题2:类比一元一次方程的解的定义,你能给一元二次方程的根下定义吗?师生共同小结(板书):概念:一元二次方程的根:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根. (试一试)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3,4.(三)、【应用举例】例1将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.变式练习:将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.例2已知关于x的方程x2-2x+k2=0的一个根是1,那么k的值是________.变式练习:已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为________.(四)、【拓展提升】例3已知关于x的方程(2a-4)x2-2x+a=0,在什么条件下,此方程为一元一次方程?在什么条件下,此方程为一元二次方程?例4已知关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,求a的值.例5求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.学生自主思考,教师做好指导,最后由个别学生进行课堂解答,教师给予评价和辅导.教师指出解答问题的易错点和方法应用.三、【达标测评】1.若方程mx2-2x+m=0是关于x的一元二次方程,则( C )A.m为任意实数B.m=0C.m≠0 D.m=0或m=12.下列方程中,不含一次项的是(D)A.3x2-5=2x B.16x=x2C.x(x-7)=0 D.(x+5)(x-5)=03.若关于x的一元二次方程ax2+bx+c=0有一个根为1,则a+b+c=__0__;若a-b+c=0,则方程必有一根为__-1__.4.一元二次方程2x2=1-4x的二次项系数、一次项系数和常数项之和为__5__.5.若关于x的方程(k-1)x|k|-1-x-2=0是一元二次方程,求k的值.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.四、课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?说一说!五、【教学反思】①[授课流程反思]在问题导入环节中,出示的问题有难度,需要教师进一步讲解;在新知探究环节中,学生充分发挥主动性,总结新知能力较强;在能力训练环节中,学生完成较好,值得鼓励与表扬.②[讲授效果反思]对于一元二次方程的定义,教师必须强调:(1)把握一般形式;(2)二次项系数不为0;(3)分清各项系数.③[师生互动反思]从课堂过程和效果分析,学生能够充分交流、合作,对于问题思考和解答都有独立性,效果较好.。
初中数学人教版九年级上册:第21章《一元二次方程》全章教案
初中数学人教版九年级上册实用资料第二十一章 一元二次方程 21.1 一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a ≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a ≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式. (1)2x -1 (2)mx +n =0 (3)1x+1=0 (4)x 2=13.下列哪个实数是方程2x -1=3的解?并给出方程的解的概念. A .0 B .1 C .2 D .3 活动2 探究新知 根据题意列方程.1.教材第2页 问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程? (3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程. 2.教材第2页 问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x 个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列? 4.一个正方形的面积的2倍等于25,这个正方形的边长是多少? 活动3 归纳概念 提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2教材第3页例题.例3以-2为根的一元二次方程是()A.x2+2x-1=0 B.x2-x-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第1~7题.21.2解一元二次方程21.2.1配方法(3课时)第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax 2+c =0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex +f)2+c =0型的一元二次方程.重点运用开平方法解形如(x +m)2=n(n ≥0)的方程,领会降次——转化的数学思想. 难点通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n ≥0)的方程.一、复习引入学生活动:请同学们完成下列各题. 问题1:填空(1)x 2-8x +________=(x -________)2;(2)9x 2+12x +________=(3x +________)2;(3)x 2+px +________=(x +________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p 2)2 p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x 2=9,根据平方根的意义,直接开平方得x =±3,如果x 换元为2t +1,即(2t +1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t +1变为上面的x ,那么2t +1=±3 即2t +1=3,2t +1=-3 方程的两根为t 1=1,t 2=-2例1 解方程:(1)x 2+4x +4=1 (2)x 2+6x +9=2分析:(1)x 2+4x +4是一个完全平方公式,那么原方程就转化为(x +2)2=1. (2)由已知,得:(x +3)2=2直接开平方,得:x +3=±2 即x +3=2,x +3=- 2所以,方程的两根x 1=-3+2,x 2=-3- 2 解:略.例2 市政府计划2年内将人均住房面积由现在的10 m 2提高到14.4 m 2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x ,一年后人均住房面积就应该是10+10x =10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x =10(1+x)2解:设每年人均住房面积增长率为x ,则:10(1+x)2=14.4 (1+x)2=1.44直接开平方,得1+x =±1.2 即1+x =1.2,1+x =-1.2所以,方程的两根是x 1=0.2=20%,x 2=-2.2因为每年人均住房面积的增长率应为正的,因此,x 2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x 的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2m ,长为8 m .像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1 用配方法解下列关于x 的方程: (1)x 2-8x +1=0 (2)x 2-2x -12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略. 三、巩固练习教材第9页 练习1,2.(1)(2).四、课堂小结 本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤. 通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤. 难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x 2-4x +7=0 (2)2x 2-8x +1=0 老师点评:我们上一节课,已经学习了如何解左边不含有x 的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联? 二、探索新知讨论:配方法解一元二次方程的一般步骤: (1)先将已知方程化为一般形式; (2)化二次项系数为1; (3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x +p)2=q 的形式,如果q ≥0,方程的根是x =-p±q ;如果q <0,方程无实根.例1解下列方程:(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4(2)(x-2)2=7提问1这种解法的(理论)依据是什么?提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x +p)2=q 的形式,如果q ≥0,方程的根是x =-p±q ;如果q <0,方程无实根.二、探索新知 用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac 2a,x 2=-b -b 2-4ac2a(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c二次项系数化为1,得x 2+b a x =-ca配方,得:x 2+b a x +(b 2a )2=-c a +(b2a )2即(x +b 2a )2=b 2-4ac4a 2∵4a 2>0,当b 2-4ac ≥0时,b 2-4ac4a 2≥0∴(x +b 2a )2=(b 2-4ac 2a)2直接开平方,得:x +b2a =±b 2-4ac 2a即x =-b±b 2-4ac2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法. 公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根. 例1 用公式法解下列方程:(1)2x 2-x -1=0 (2)x 2+1.5=-3x (3)x 2-2x +12=0 (4)4x 2-3x +2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x -2)(3x -5)=0 三、巩固练习教材第12页 练习1.(1)(3)(5)或(2)(4)(6). 四、课堂小结 本节课应掌握:(1)求根公式的概念及其推导过程; (2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a ,b ,c ,注意各项的系数包括符号;3)计算b 2-4ac ,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况. 五、作业布置教材第17页 习题4,5.21.2.3 因式分解法掌握用因式分解法解一元二次方程. 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程. 难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成:(1)x(2x +1)=0 (2)3x(x +2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x -1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1 三、巩固练习教材第14页 练习1,2.四、课堂小结 本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页 习题6,8,10,11.21.2.4 一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用. 2.培养学生分析、观察、归纳的能力和推理论证的能力. 3.渗透由特殊到一般,再由一般到特殊的认识事物的规律. 4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导 难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x 2-ax -3a =0的一个根是6,则求a 及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1=-b +b 2-4ac 2a,x 2=-b -b 2-4ac 2a .观察两式右边,分母相同,分子是-b +b 2-4ac 与-b -b 2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a ≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.即:对于方程 ax 2+bx +c =0(a ≠0) ∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积: (1)x 2-3x -1=0 (2)2x 2+3x -5=0 (3)13x 2-2x =0 (4)2x 2+6x = 3 (5)x 2-1=0 (6)x 2-2x +1=0例2 不解方程,检验下列方程的解是否正确? (1)x 2-22x +1=0 (x 1=2+1,x 2=2-1)(2)2x 2-3x -8=0 (x 1=7+734,x 2=5-734) 例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?) 例4 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值.变式一:已知方程x 2-2kx -9=0的两根互为相反数,求k ;变式二:已知方程2x 2-5x +k =0的两根互为倒数,求k.三、课堂小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.四、作业布置1.不解方程,写出下列方程的两根和与两根积.(1)x 2-5x -3=0 (2)9x +2=x 2 (3)6x 2-3x +2=0(4)3x 2+x +1=02.已知方程x 2-3x +m =0的一个根为1,求另一根及m 的值.3.已知方程x 2+bx +6=0的一个根为-2,求另一根及b 的值.21.3 实际问题与一元二次方程(2课时)第1课时 解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x 个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.第2课时解决几何问题1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.难点在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.活动4课堂小结与作业布置课堂小结1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.作业布置教材第22页习题21.3第8,10题.。
(完整版)数学人教版九年级上册一元二次方程第一课时教案
21. 1 一元二次方程教课内容一元二次方程观点及一元二次方程一般式及相关观点. 教课目的认识一元二次方程的观点;一般式 ax 2+bx+c=0 ( a ≠ 0)及其派生的观点; ?应用一元二次方程观点解决一些简单 题目.1.经过设置问 题,成立数学模型, ?模拟一元一次方程观点给一元二次方程下定义. 2.一元二次方程的一般形式及其相关观点. 3.解决一些观点性的 题目. 4.态度、感情、价值观5.经过生活学习数学,并用数学解决生活中的问 题来激发学生的学习热忱.重难点要点1.?要点:一元二次方程的观点及其一般形式和一元二次方程的相关观点并用这些观点解决问 题.2.难点打破:经过提出问 题,成立一元二次方程的数学模型, ?再由一元一次方程的观点迁徙到一元二次方程的观点.教课过程 一、复习引入问题 1:( 1)什么是一元一次方程?( 2)一元一次方程的一般形式是什么?问题 2:学生议论沟通达成前言: 要设计一座 2 m 高的人体塑像, 使塑像的上部 (腰以上) 与下部(腰以下)的高度比,等于下部与所有的高度比,塑像的下部应设计为多高?设塑像下部高 x m ,于是得方程。
问题 3:如图,有一块矩形铁皮,长 100 cm ,宽 50 cm ,在它的四角各切一个相同的正方形, 而后将周围突出部分折起, 就能制作一个无盖方盒, 假如要制作的无盖方盒的底面积为 3 600cm 2,那么铁皮各角应切去多大的正方形?设切去的正方形的边长为 x cm ,则盒底的长为( 100- 2x )cm ,宽为( 50- 2x )cm ,依据方盒的底面积为3 600 cm 2,得。
问题 4:要组织一次排球邀请赛,参赛的每两个队之间都要竞赛一场,依据场所和时间等条件,赛程计划安排 7 天,每日安排 4 场竞赛,竞赛组织者应邀请多少个队参赛?设应邀请 x 个队参赛,每个队要与其余( x - 1)个队各赛 1 场,因为甲队对乙队的竞赛和乙队对甲队的竞赛是同一场竞赛,所以所有竞赛共1x x 1场.可列方程为。
《一元二次方程》教案(人教版数学九年级上)
课题:22.1一元二次方程一、教学目标1.经历一元二次方程概念的形成过程,知道什么是一元二次方程.2.会把一元二次方程化成一般形式,并知道各项及系数的名称.二、教学重点和难点1.重点:一元二次方程的概念.2.难点:把一元二次方程化成一般形式.三、教学过程(一)创设情境,导入新课师:(板书:3x-5=0)这是一个什么方程?(稍停)3x-5=0是一个一元一次方程(板书:一元一次方程).师:哪位同学知道什么样的方程是一元一次方程?生:……(让几名同学回答)师:(指准3x-5=0)只含有一个未知数,并且未知数的次数是1的方程,叫做一元一次方程.(指准“一元一次方程”)一元指的是含有一个未知数,一次指的是未知数的次数是1.师:一元一次方程是我们在初一已经学过的,从今天开始,我们要学习一种新的方程,叫做一元二次方程(板书:一元二次方程).(二)尝试指导,讲授新课师:什么样的方程是一元二次方程?(板书:x2-x=56)x2-x=56是一个一元二次方程,(板书:4x2-9=0)4x2-9=0也是一元二次方程,(板书:x2+3x=0)x2+3x=0也是一元二次方程,(板书:3y2-5y=7)3y2-5y=7也是一元二次方程.师:从这些一元二次方程,哪位同学能概括什么样的方程是一元二次方程?(等到有一部分同学举手再叫学生)生:……(多让几名同学回答)师:(指准x2-x=56)只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程.(师出示下面的板书)只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程.师:请大家把一元二次方程的定义读两遍.(生读)师:根据一元二次方程的定义,(指准方程)我们很容易判断x2-x=56,4x2-9=0,x2+3x=0,3y2-5y=7这些方程都是一元二次方程.(板书:3x(x-1)=5(x+2))现在请大家判断,这个方程是不是一元二次方程?为什么?(让生思考一会儿)生:……(让几名学生发表看法)师:把这个方程两边去括号,得到3x2-3x=5x+10(边讲边板书:3x2-3x=5x+10),去括号后容易看出,这个方程是一元二次方程.师:(指3x2-3x=5x+10)这个方程还可以继续整理,怎么继续整理?(指准方程)先把右边的5x和10都移到左边去,再合并,得到3x2-8x-10=0(边讲边板书:3x2-8x-10=0).师:(指原方程和3x2-8x-10=0)大家可以比较这两个方程,这个方程是这个方程经过整理得到的,这个方程的形式又简单又整齐,我们把这种形式叫做一元二次方程的一般形式(板书:一元二次方程的一般形式).师:从这个例子大家可以看到,任何一个一元二次方程,经过整理,都可以化成一般形式,一般形式就是ax2+bx+c=0这样的形式(边讲边板书:ax2+bx+c=0).师:(指准ax2+bx+c=0)在一元二次方程的一般形式中,我们把ax2叫做二次项,a 是二次项系数(板书:其中a是二次项系数);bx叫做一次项,b是一次项系数(板书:b 是一次项系数);c叫做常数项(板书:c是常数项).师:(指准3x2-8x-10=0)譬如,在这个方程中,二次项是3x2,二次项系数是3;一次项是-8x,一次项系数是-8;常数项是-10.师:(指x2+3x=0)大家看这个方程,它的二次项、二次项系数是什么?生:二次项是x2,二次项系数是1.(多让几名同学回答)师:(指x2+3x=0)它的一次项、一次项系数是什么?生:一次项是3x,一次项系数是3.(多让几名同学回答)师:(指x2+3x=0)它的常数项是什么?生:常数项是0.(多让几名同学回答,如有必要师作解释)师:(指4x2-9=0)大家再看这个方程,它的二次项、二次项系数是什么?生:二次项是4x2,二次项系数是4.师:(指4x2-9=0)它的一次项、一次项系数是什么?生:……(多让几名同学回答)师:这个方程的一次项可以写成0x(边讲边板书:0x),所以这个方程的一次项是0x,一次项系数是0.师:(指4x2-9=0)它的常数项是什么?生:常数项是-9.师:前面我们学习了一元二次方程的概念和一般形式,下面请大家利用这些知识来做几个练习.(三)试探练习,回授调节1.填空:(1)把5x2-1=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把4x2=81化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(3)把x(x+2)=15化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(4)把(3x-2)(x+1)=8x-3化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .2.填空:(1)一个一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,这个一元二次方程是;(2)一个一元二次方程,它的二次项系数为1,一次项系数为-3,常数项为3,这个一元二次方程是;(3)一个一元二次方程,它的二次项系数为5,一次项系数为-1,常数项为0,这个一元二次方程是;(4)一个一元二次方程,它的二次项系数为1,一次项系数为0,常数项为-6,这个一元二次方程是 .(四)归纳小结,布置作业师:这节课我们学习了什么?哪位同学能帮老师小结一下?生:……(让一两名学生小结)(作业:P28习题1)四、板书设计课题:22.1一元二次方程(第2课时)一、教学目标1.知道什么是一元二次方程的解(根).2.会用直接开平方法解一元二次方程,渗透转化思想.二、教学重点和难点1.重点:一元二次方程解(根)的概念,直接开平方法.2.难点:直接开平方法.三、教学过程(一)基本训练,巩固旧知1.填空:(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程;(2)ax2+bx+c=0(a≠0)这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.2.填空:(1)把(x+3)(x-4)=0化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把(2x+1)2=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(二)尝试指导,讲授新课师:(板书:2x-6=0)这是一个一元一次方程,这个方程的解是什么?生:(齐答)解是x=3.(师板书:解是x=3)师:(指准方程)2x-6=0的解是x=3,这话是什么意思?(稍停)把x=3代入方程,左边=2×3-6=0,右边=0,左边和右边恰好相等.2x-6=0的解x=3,意思是,x=3能使方程左右两边恰好相等.师:(板书:x2-x=0)这是一个一元二次方程,这个方程的解是什么?(让生思考一会儿再叫学生)生:解是x=0.(师板书:x=0)师:(指准方程)把x=0代入方程,左边和右边相等,所以x=0是这个一元二次方程的一个解.师:除了x=0,这个方程还有没有别的的解?生:x=1.(师板书:x=1)师:(指准方程)把x=1代入方程,左边和右边相等,所以x=1也是这个一元二次方程的一个解.师:可见x2-x=0有两个解,一个解x1=0(边讲边标下标),另一个解x2=1(边讲边标下标).师:一元二次方程的解也叫做一元二次方程的根(板书:(根)),所以也可以这样说,(指准板书)x2-x=0有两个根,一个根x1是0,另一个根x2是1.师:下面请同学们做一个练习.(三)试探练习,回授调节3.填空:在-4,-3,-2,-1,0,1,2,3,4这些数中,是一元二次方程x2-x-6=0的根的是 .4.填空:方程x2-36=0的根是x1= ,x2= .(四)尝试指导,讲授新课师:(板书:x2-36=0)刚才我们求了x2-36=0这个一元二次方程的两个根,x1=6,x2=-6.我们是怎么求的?我们是通过凑数字求的.大家可以想到,凑数字求根是有局限性的,什么局限性?(稍停)通过凑数字只能求那些很简单的一元二次方程的根,如果方程稍微复杂一点,数字就不好凑了.譬如,我们把右边的0改为2x(边讲边把x2-36=0中的0改为2x),x2-36=2x这个方程就很难用凑数字来求根.所以,求一元二次方程的根不能光靠凑数字,还需要有专门的方法.师:解一元二次方程的方法有好几种,下面我们先来介绍第一种方法,叫直接开平方法(板书:直接开平方法).师:怎么用直接开平方法解一元二次方程?(稍停)让我们来看一个例子.(师出示例题)例解下列一元二次方程:(1)4x2-9=0; (2)3(2x-1)2=15.(师边讲解边板书,解题过程如下所示)解:(1)原方程化成29x=4.开平方,得3x=2±,x1=32,x2=-32.(2)原方程化成2(2x-1)=5.开平方,得2x-1=±,x1,x2师:(指准例题)从这两个题目,哪位同学会概括用直接开平方法解一元二次方程的步骤?生:……(让一两名好生概括)师:(指准例题)用直接开平方法解一元二次方程,有三步,第一步把原方程化成x2=常数,或者含x的式子的平方=常数的形式(板书:第一步:化成什么2=常数);第二步开平方,把一元二次方程化成一元一次方程(板书:第二步:开平方);第三步解一元一次方程,得到两个根(板书:第三步:解一元一次方程).师:下面请同学们按这三步来做两个题目.(五)试探练习,回授调节5.完成下面的解题过程:(1)解方程:2x2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:9(x-2)2=1.解:原方程化成 .开平方,得,x1= ,x2= .(六)归纳小结,布置作业师:(指准板书)本节课我们学习了一元二次方程根的概念,还学习了用直接开平方法解一元二次方程.用直接开平方法解一元二次方程有这么三步,第一步把原方程化成什么2=常数这种形式;第二步开平方,把一元二次方程化成一元一次方程,也就是把二次降为一次(板书:降次);第三步解一元一次方程,得到两个根.(作业:P28习题3,P42习题1)四、板书设计学-优]中。
人教版九年级数学上册教案《一元二次方程》人教)
《一元二次方程》一元二次方程是中学数学的主要内容之一在初中数学中占有重要地位学生通过一元二次方程的学习可以对已学过实数一元一次方程整式二次根式等知识加以巩固同时一元二次方程又是今后学生学习可化为一元二次方程的分式方程二次函数等知识的基础。
本节课通过实际生活出发,用数学解决生活中的问题,以此激发学生的学习热情,体会数学的严谨性以及结论的确定性,提升学生的综合能力。
【知识与能力目标】1. 通过设置问题,建立数学模型,模仿一元一次方程的概念给一元二次方程下定义;2. 一元二次方程的一般形式及其有关概念。
【过程与方法目标】1. 通过观察,归纳一元二次方程概念的教学;2. 使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式。
【情感态度价值观目标】1. 通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情;2. 感受数学的严谨性以及数学结论的确定性。
【教学重点】一元二次方程的概念及其一般形式和用一元二次方程有关概念解决问题。
【教学难点】通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。
(1)每人一份印刷练习题;(2)教师自制的多媒体课件;(3)上课环境为多媒体大屏幕环境。
1.创设情境,引入新知教师展示教科书本章的章前图,请同学们阅读章前问题,并回答:问题1.这个方程属于我们学过的某一类方程吗?师生活动:学生整理已经学过的方程类型,复习方程的概念,元与次的概念,观察新方程,分析此方程的元与次,尝试为新方程命名.【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识.问题2.这样的方程在其他实际问题中是否还存在呢?你能再想出一个例子吗?师生活动:学生思考二次项产生的原因,从熟悉的实际背景中,很有可能从矩形的面积出发,设计情境.【设计意图】让学生从“接受式”的学习方式中走出来,走向对一元二次方程产生的根源的探求,在编制情境的过程中,他们将加深对一元二次方程概念的理解.部分学生能够独立解决问题,自己编制情境并列出方程,部分学生可以根据同学给出的情境去列方程,或者阅读课本上的实际问题.2.拓宽情境,概括概念给出课本问题1、问题2的两个实际问题,设未知数,建立方程.问题1 如图21.1-1,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,你说组织者应邀请多少个队参赛?教师引导学生思考并回答以下几个问题:全部比赛共有______场.若设应邀请个队参赛,则每个队要与其他____个队各赛一场,全部比赛共有___ 场.由此,我们可以列出方程______________,化简得________________.问题3.这些方程是几元几次方程?师生活动:学生将实际问题中的语言转化成数学的符号语言,体会运算关系,寻找等量关系,学习建模.将列得的方程化简整理,判断出方程的次数.【设计意图】在建模的过程中不仅加强学生的数学思维能力,而且对二次项产生的根源将更加明晰,加深对一元二次方程的理解.让学生回答方程的元与次,一是让他们体会统一成一般形式的必要性,为概念的形成做铺垫,分解教学的难点;二是让他们明确教学的主线,从被动学习走向主动学习.问题4.这些方程是什么方程?师生活动:观察本课得出的一些方程,思考它们的共性,同学们尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式.(1)一元二次方程的概念:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2(二次)的方程叫做一元二次方程.(2)一元二次方程的一般形式是.其中是二次项,a是二次项系数;是一次项,b是一次项系数;c是常数项.【设计意图】让学生自己给出定义就是对过去所学一元一次方程的定义的类比和对比,概括一般形式是对一元二次方程另一个角度的理解,是对数学符号语言的应用能力的提升.3.辨析应用,加深理解问题5.请你说出一个一元二次方程,和一个不是一元二次方程的方程.师生活动:可以由学生举手回答,也可以随机选择学生回答,调动学生广泛地参与.追问学生所举的反例为什么不是一元二次方程?是什么方程?【设计意图】学生自己举例,应用概念,从正反两个方向强化了对概念的理解,在追问的过程中,帮助学生将已有的方程梳理成比较清晰的知识体系,如下:开发学生认识的资源,激发学生从不同角度、不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层教学分层指导的效果.问题6.下列方程哪些是一元二次方程?例1.下列方程哪些是一元二次方程?(1);(2);(3);(4);(5);(6).答案(2)(5)(6).师生活动:用概念指导辨析,方程(3)与(4)同学们可能会产生争议,(3)帮助学生明确一元二次方程是整式方程,(4)体会化为一般形式的必要性,对a≠0条件加深认识.【设计意图】补足学生所举正反例的缺漏,追问:有二次项的一元方程就是一元二次方程吗?帮助学生进一步巩固概念,深化对一元、二次的认识.问题7.指出下列方程的二次项、一次项和常数项及它们的系数.例2.将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:(1);(2).师生活动: (1)将方程去括号得:,移项,合并同类项得:,其中二次项是,二次项系数是3;一次项是,一次项系数是,常数项是.教师应及时分析可能出现的问题(比如系数的符号问题).(2)一元二次方程的一般形式是,过程略.例3.关于x的方程,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?答案:时此方程为一元二次方程;,时此方程为一元一次方程.【设计意图】在形式比较复杂的方程面前,通过辨析方程的元、次、项看清方程的本质,深化理解,淡化对一元二次方程概念的记忆.4.巩固概念,学以致用教科书第4页:练习【设计意图】巩固性练习,同时检验一元二次方程概念的掌握情况.5.归纳小结,反思提高请学生总结今天这节课所学内容,通过对比之前所学其他方程,谈对一元二次方程概念的认识,反思学习过程中的典型错误.6.布置作业教科书习题21.1略。
九年级数学上册(一元二次方程)教案 新人教版 教案
《一元二次方程》教案第一课时教学内容:一元二次方程概念及一元二次方程的一般形式及有关概念.教学目标:1. 通过设置问题,建立数学模型,•模仿一元一次方程的概念给一元二次方程下定义。
2.了解一元二次方程的概念;能熟练地把一元二次方程整理成一般形式:ax2+bx+c=0(a、b、c是常数,a≠0)。
3.通过教学,让生分清一般形式中的二次项及其系数,一次项及其系数以及常数项各是什么。
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键:1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程:一、复习引入学生活动:列方程.问题(1)绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?如果假设长方形的宽为x•米,•那么,•这个的长为_______•米,•根据题意,•得________.整理、化简,得:__________.问题(2)如图,如果AC CBAB AC,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=______,根据题意,得:________.整理得:_________.问题(3)学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册。
求这两年的年平均增长率。
如果假设这两年的年平均增长率为x。
则今年年底的图书数是__________万册。
同样,明年年底的图书数又是今年的_________倍,即____________万册。
由此可得方程____________________________,整理得:________________________。
老师点评并分析如何建立一元二次方程的数学模型,并整理.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得:40-16x-10x+4x2=18移项,得:4x2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:去括号,得:x2+2x+1+x2-4=1移项,合并得:2x2+2x-4=0其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.三、巩固练习教材P19练习题:(1)、(2)、(3)、(4).四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.五、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业1.教材P19习题23.1 : 1、2、3.2.选用作业设计.作业设计一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个 B.2个 C.3个 D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为(). A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________.3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值X围是________.三、综合提高题1.a满足什么条件时,关于x的方程a(x2+x)x-(x+1)是一元二次方程?2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?3.一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,•是这样做的:设铁片的长为x,列出的方程为x(x-3)=1,整理得:x2-3x-1=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程:第一步:所以,________<x<__________第二步:所以,________<x<__________(1)请你帮小明填完空格,完成他未完成的部分;(2)通过以上探索,估计出矩形铁片的整数部分为_______,十分位为______.。
(最新)人教版九年级数学上册《一元二次方程》教案
《一元二次方程》教案教学内容本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念.教学目标知识技能 探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识。
数学思考 在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系。
解决问题培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养。
情感态度通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.重难点、关键重点:一元二次方程的定义、各项系数的辨别,根的作用.难点:根的作用的理解.关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程 一、 情境引入【问题情境】问题1 如图,有一块矩形铁皮,长100 cm ,宽50 cm .在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm 2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为xcm,则盒底的长为 ,宽为 .根据方盒的底面积为3600cm2,得方程为 _______________ ,,整理, 得问题 2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?分析:全部比赛共4×7=28场350752=+-x x 0350752=+-x x设应邀请x 个队参赛,每个队要与其他 _____ 个队各赛1场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共 ______________场.得方程____________________________整理, 得【活动方略】 教师演示课件,给出题目.学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题.【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.二、 探索新知【活动方略】学生活动:请口答下面问题.(1)上面两个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x ;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.归纳:像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.【设计意图】主体活动,探索一元二次方程的定义及其相关概念.三、范例点击 例1 将方程3(1)5(2)x x x -=+化成一元二次方程的一般形式,并指出各项系数. 解:去括号得233510x x x -=+,移项,合并同类项,得一元二次方程的一般形式238100x x --=.其中二次项系数是3,一次项系数是-8,常数项是-10.【活动方略】学生活动:学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系562=-x x 562=-x x数.教师活动:在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题).【设计意图】进一步巩固一元二次方程的基本概念.例2 猜测方程2560x x --=的解是什么?【活动方略】学生活动:学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x =1、2、3、4、5等,发现x =8时等号成立,于是x =8是方程的一个解,如此等等.教师活动:教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结: 使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根).【设计意图】探究一元二次方程根的概念以及作用.四、跟踪训练。
初中数学精品教案:一元二次方程--教学设计
人教版数学九年级上册21.1 一元二次方程教学设计一、内容和内容解析1.内容一元二次方程的概念;根据实际问题中的数量关系建立方程模型.2.内容解析一元二次方程是在一元一次方程基础上“次”的推广,它是解决诸多实际问题的桥梁。
本节课以实际问题为背景,建立数学模型,列出一元二次方程,引导学生观察这些方程的共同特点,并类比一元一次方程,归纳得出一元二次方程的概念,体现了研究代数学问题的一般方法;一元二次方程一般形式也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果.这样编排有利于学生理解并接收新知识,有充分地反映出一元二次方程以及有关概念来源于现实世界,是刻画现实世界的一个有效数学模型.一元二次方程的学习是一次方程、方程组及不等式知识的延续和深化,也是函数等重要数学思想方法的基础。
本节课是研究一元二次方程的导入课,它为进一步学习一元二次方程的解法及简单应用起到铺垫作用。
基于以上分析,本节课的重点是:由实际问题列出一元二次方程和形成一元二次方程的概念.二、教学目标与解析1.教学目标(1)体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念.(2)使学生理解并能够掌握一元二次方程的一般形式以及确定项和系数.(3)了解一元二次方程根的概念.2.目标解析(1)通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程.学生能了解一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,培养学生分析问题和解决问题的能力及用数学思维的意识.(2)将不同形式的一元二次方程统一为一般形式,让学生从数学符号的角度,完善一元二次方程的概念.学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数.(3)会判断一个数是否是一元二次方程的根.三、教学问题诊断分析我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学生学习可化为一元二次方程的分式方程、二次函数等知识的基础。
初三数学一元二次方程教案优秀5篇
初三数学一元二次方程教案优秀5篇数学《一元二次方程》教案设计篇一教学目标1、了解整式方程和一元二次方程的概念;2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:1、教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。
方程,只有当时,才叫做一元二次方程。
如果且,它就是一元二次方程了。
解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。
如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。
如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
元二次方程的应用篇二12.6 一元二次方程的应用(三)一、素质教育目标(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题。
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识。
二、教学重点、难点1.教学重点:学会用列方程的方法解决有关增长率问题。
2.教学难点:有关增长率之间的数量关系。
下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了。
三、教学步骤(一)明确目标。
九年级数学一元二次方程教案5篇
九年级数学一元二次方程教案5篇一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法。
今天在这里整理了一些,我们一起来看看吧!九年级数学一元二次方程教案1教学目标1。
知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题。
2。
过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型。
根据数学模型恰如其分地给出一元二次方程的概念。
(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等。
(3)通过掌握缺一次项的一元二次方程的解法──直接开方法, 导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程。
九年级数学一元二次方程教案2【主体知识归纳】1.整式方程方程的两边都是关于未知数的整式,这样的方程叫做整式方程.2.一元二次方程只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程.3.一元二次方程的一般形式为ax2+bx+c=0(a≠0),其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.4.直接开平方法形如x2=a(a≥0)的方程,因为x是a的平方根,所以x=±,即x1= ,x2=-.这种解一元二次方程的方法叫做直接开平方法.5.配方法将一元二次方程ax2+bx+c=0(a≠0)化成(x+ )2=的形式后,当b2-4ac≥0时,用直接开平方法求出它的根,这种解一元二次方程的方法叫做配方法.用配方法解已化成一般形式的一元二次方程的一般步骤是:(1)将方程的两边都除以二次项的系数,把方程的二次项系数化成1;(2)将常数项移到方程右边;(3)方程两边都加上一次项系数一半的平方;(4)当右边是非负数时,用直接开平方法求出方程的根.6.公式法用一元二次方程ax2+bx+c=0(a≠0)的求根公式x= (b2-4ac≥0),这种解一元二次方程的方法叫做公式法.【基础知识讲解】1.一元二次方程的概念包涵三个条件:(1)整式方程;(2)方程中只含有一个未知数;(3)未知数的最高次数是2”.一元二次方程的概念中“只含有一个未知数,并且未知数的最高次数是2”是对化成一般形式之后而言的.例如,判断方程2x2+2x-1=2x2是否是一元二次方程?应先整理方程,得2x-1=0,所以此方程不是一元二次方程.2.在求二次项、一次项和常数项时,要先整理方程,把方程化成一般形式,即ax2+bx+c=0,再确定所求.方程ax2+bx+c=0只有当a≠0时,才是一元二次方程,例如a=0,b≠0时,它就是一元一次方程,因此,如果明确指出ax2+bx+c=0是一元二次方程,那么就一定包括a≠0这个条件.3.直接开平方法适用于解化为x2=a形式的方程,当a≥0时,方程有实数解;当a0时,方程没有实数解.4.配方法是先把方程的常数项移到方程的右边,再把左边配成一个完全平方式,如果右边是非负数,就可以进一步通过直接开平方法来求出它的解;如果右边是负数时,方程无实数解.5.求根公式是针对一元二次方程的一般形式来说的,使用求根公式时,必须先把方程化成一般形式,才能正确地确定各项系数,在应用公式之前,先计算出b2-4ac的值,当b2-4ac≥0时,代入公式求出方程的根;当b2-4ac0时,方程没有实数根,这时就不必再代入公式了.【例题精讲】例1:指出下列方程中哪些是一元二次方程:(1)5x2+6=3x(2x+1);(2)8x2=x;(3)y3-y-1=0;(4)4x2-3y=0;(5)-x2=0;(6)x(5x-1)=x(x+3)+4x2.剖析:判断一个方程是不是一元二次方程,首先要对方程进行整理,化成一般形式,然后再根据条件:①整式方程;②只含有一个未知数;③未知数的最高次数为2.只有当这三个条件缺一不可时,才能判断为一元二次方程.解:(1)去括号,得5x2+6=6x2+3x,移项、合并同类项,得x2+3x-6=0,∴此方程是一元二次方程.(2)移项,得8x2-x=0,∴此方程是一元二次方程.(3)因为未知数的最高次数是3,∴此方程不是一元二次方程.(4)∵方程中含有两个未知数,∴它不是一元二次方程.(5)∵a=-1≠0,∴它是一元二次方程.(6)整理,得4x=0∴它不是一元二次方程.例2:写出下列一元二次方程的二次项系数、一次项系数及常数项:(1)2x2=3x+5;(2)(x+1)(x-1)=1;(3)(x+2)2-4=0.剖析:虽然该题没有要求把方程化成一般形式,但在做题时,也要先把方程化成一般形式.因为方程的.二次项系数、一次项系数及常数项是在方程为一般形式下的,所以必须先整理方程.解:(1)整理,得2x2-3x-5=0.二次项系数是2,一次项系数是-3,常数项是-5.(2)整理,得x2-2=0.二次项系数是1,一次项系数是0,常数项是-2.(3)整理,得x2+4x=0.二次项系数是1,一次项系数是4,常数项是0.例3:关于x的整式方程(m-1)x2+(2m-1)x+4=0是一元二次方程吗?剖析:要判别原方程是否是一元二次方程,易想到用定义,满足条件:(1)整式方程;(2)方程中只含有一个未知数;(3)未知数的最高次数是2.原方程显然满足(1)、(2).由于不知m是怎样的实数,所以不一定满足(3).因此,需分类探讨.解:当m-1≠0,即m≠1时,原方程是一元二次方程.当m-1=0,即m=1时,原方程是x+4=0是一元一次方程.说明:在移项、合并同类项时,易出现符号错误,需格外小心,要认真区别题目要求是指出方程的各项还是各项系数.特别要小心当某项的系数为负数时,指出各项时千万不要丢负号.例4:用直接开平方法解下列方程:(1)3x2-27=0;(2)(3x-5)2-7=0.解:(1)3x2-27=0,3x2=27,x2=9,∴x=±,即x=3或x=-3.∴x1=3,x2=-3.(2)(3x-5)2-7=0,(3x-5)2=7,∴3x-5=±,即3x-5= 或3x-5=- .∴x1= ,x2= .例5:用配方法解方程2x2+7x-4=0.剖析:此题考查对配方法的掌握情况.配方法最关键的步骤是:(1)将二次项系数化为1;(2)将常数项与二次项、一次项分开在等式两边;(3)方程两边都加上一次项系数一半的平方,即可化为(x+a)2=k的形式,然后用开平方法求解.解:把方程的各项都除以2,得x2+ x-2=0.移项,得x2+ x=2.配方,得x2+ x+( )2=2+( )2= ,即(x+ )2= .解这个方程,得x+ =±,x+ =±.即x1= ,x2=-4.说明:配方法是一种重要的数学方法,除了用来解一元二次方程外,还在判断数的正、负,代数式变形、恒等式的证明中有着广泛的应用,例如证明不论x为何实数,代数式2x2-4x+3的值恒大于零,可以做如下的变形:2x2-4x+3=2x2-4x+2+1=2(x-1)2+1.例6:用公式法解下列方程:(1)2x2+7x=4;(2)x2-1=2 x.解:(1)方程可变形为2x2+7x-4=0.∵a=2,b=7,c=-4,b2-4ac=72-4×2×(-4)=810,∴x= .∴x1= ,x2=-4.(2)方程可变形为x2-2 x-1=0.∵a=1,b=-2 ,c=-1,b2-4ac=(-2 )2-4×1×(-1)=160.∴x= .∴x1= +2,x2= -2.说明:在用公式法解方程时,一定要先把方程化成一般形式.例7:一元二次方程(m-1)x2+3m2x+(m2+3m-4)=0有一根为零,求m的值及另一根.解:因为方程有一根为零,所以它的常数项m2+3m-4=0,解得m1=1,m2=-4,又因为此方程是一元二次方程,所以m-1≠0,即m≠1,所以m=-4.把m=-4代入方程,得-5x2+48x=0,解得:x1=0,x2=9.6,所以方程的另一根为9.6.说明:方程有一根为零时,常数项必须为零;求解字母系数的一元二次方程的问题中,二次项系数的字母必须保证二次项系数不等于零,这是解此类问题的先决条件.【同步达纲练习】1.选择题(1)下列方程中是一元二次方程的是( )A. =0B. =0C.x2+2xy+1=0D.5x=3x-1(2)下列方程不是一元二次方程的是( )A. x2=1B.0.01x2+0.2x-0.1=0C. x2-3x=0D. x2-x= (x2+1)(3)方程3x2-4=-2x的二次项系数、一次项系数、常数项分别为( )A.3,-4,-2B.3,2,-4C.3,-2,-4D.2,-2,0(4)一元二次方程2x2-(a+1)x=x(x-1)-1的二次项系数为1,一次项系数为-1,则a的值为( )A.-1B.1C.-2D.2(5)若方程(m2-1)x2+x+m=0是关于x的一元二次方程,则m的取值范围是( )A.m≠0B.m≠1C.m≠1且m≠-1D.m≠1或m≠-1(6)方程x(x+1)=0的根为( )A.0B.-1C.0,-1D.0,1(7)方程3x2-75=0的解是( )A.x=5B.x=-5C.x=±5D.无实数根(8)方程(x-5)2=6的两个根是( )A.x1=x2=5+B.x1=x2=-5+C.x1=-5+ ,x2=-5-D.x1=5+ ,x2=5-(9)若代数式x2-6x+5的值等于12,那么x的值为( )A.1或5B.7或-1C.-1或-5D.-7或1(10)关于x的方程3x2-2(3m-1)x+2m=15有一个根为-2,则m的值等于( )A.2B.-C.-2D.2.把下列方程化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数及常数项:(1)4x+1=9x2; (2)(x+1)(x-3)=2x-3;(3)(x+3)(x-3)=2(x-3)2; (4) y2- y= y2- y+ .3.当m满足什么条件时,方程(m+1)x2-4mx+4m-2=0是一元二次方程?当x=0时,求m的值.4.用直接开平方法解下列方程:(1)x2= ;(2)x2=1.96;(3)3x2-48=0;(4)4x2-1=0;(5)(x-1)2=144;(6)(6x-7)2-9=0.5.用配方法解下列方程:(1)x2+12x=0; (2)x2+12x+15=0 (3)x2-7x+2=0;(4)9x2+6x-1=0; (5)5x2-2=-x; (6)3x2-4x=2.6.用公式法解下列方程:(1)x2-2x+1=0; (2)x(x+8)=16; (3)x2- x=2; (4)0.8x2+x=0.3;(5)4x2-1=0; (6)x2=7x; (7)3x2+1=2 x; (8)12x2+7x+1=0.7.(1)当x为何值时,代数式2x2+7x-1与4x+1的值相等?(2)当x为何值时,代数式2x2+7x-1与x2-19的值互为相反数?8.已知a,b,c均为实数,且+|b+1|+(c+3)2=0,解方程ax2+bx+c=0.9.已知a+b+c=0.求证:1是关于x的一元二次方程ax2+bx+c=0的根.10.用配方法证明:(1)3y2-6y+11的值恒大于零;(2)-10x2-7x-4的值恒小于零.11.证明:关于x的方程(a2-8a+20)x2+2ax+1=0,不论a为何实数,该方程都是一元二次方程.九年级数学一元二次方程教案3教学目标1. 了解整式方程和一元二次方程的概念;2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
九年级数学上册(人教版)21.2解一元二次方程(直接开平方法)优秀教学案例
1.通过举例、讲解等方式,引导学生理解平方根的概念,为学习直接开平方法打下基础。
2.设计多个层次的练习题,让学生在练习中掌握直接开平方法的基本步骤,注意一些易错点。
3.引导学生总结直接开平方法的应用规律,提高解题效率。
在教学过程中,我将采用“问题-探究”的教学方法,引导学生通过举例、观察、分析等方法,自主地发现和总结平方根的概念。然后,我将结合学生的认知规律,设计一系列由浅入深的练习题,让学生在实践中逐步掌握直接开平方法的基本步骤,并注意一些易错点。在学生掌握基本方法后,我将引导学生总结直接开平方法的应用规律,提高他们在解题过程中的效率。
2.直接开平方法:在学生理解平方根的概念后,我会引入直接开平方法。我会通过讲解和示例,引导学生掌握直接开平方法的基本步骤。首先,我会让学生观察和分析一些具体的一元二次方程,使他们能够发现直接开平方法的应用规律。然后,我会引导学生总结直接开平方法的一般步骤,如确定方程的根的性质、求出方程的平方根、检验平方根是否为方程的解等。
(三)学生小组讨论
1.设计讨论问题:我会提出一些与本节课内容相关的问题,让学生进行小组讨论。例如,探讨直接开平方法在实际问题中的应用,讨论解一元二次方程时可能遇到的问题及解决方法等。
2.组织学生进行讨论:我会让学生分组进行讨论,鼓励他们积极发表自己的观点和想法。在讨论过程中,我会巡回指导,给予学生必要的帮助和提示。
二、教学目标
(一)知识与技能
1.理解直接开平方法的概念,掌握其解题步骤。
2.能够运用直接开平方法解一元二次方程。
3.了解直接开平方法在实际问题中的应用。
在教学过程中,我将以生动的语言、形象的比喻和具体的例子,帮助学生理解直接开平方法的概念,使他们能够清晰地认识到直接开平方法的特点和作用。通过大量的练习题,让学生在实践中掌握直接开平方法的解题步骤,使他们能够熟练地运用该方法解决实际问题。
21.1一元二次方程教案(人教版数学九年级上册)
21.1一元二次方程(一)教学目标(1)知识技能:1.通过类比方程,了解一元二次方程的定义及一般形式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念。
2.了解一元二次方程的解的定义,会检验一个数是不是一元二次方程的解。
(2)过程与方法:通过实例,列出一元二次方程,让学生体会一元二次方程是实际问题数量关系的有效模型,培养学生初步形成“模型思想”,增强学生应用数学知识解决实际问题的意识。
(3)情感态度使学生经历类比方程得到一元二次方程定义的过程,减少学生对新知识的陌生感,提高学生学习数学的兴趣。
(二)教学重点难点重点:通过类比方程,了解一元二次方程的定义及一般形式ax2+bx+c= 0(a≠0)和一元二次方程的解等定义,并能使用定义解决简单问题。
难点:一元二次方程、二次项及其系数、一次项及其系数与常数项的分别。
教学方法:教学准备:课件(三)教学过程:一、复习引入:同学们我们已经学习了一元一次方程,二元一次方程组和可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。
从这节课开始学习一元二次方程知识,先来回忆一下方程的有关概念.1.什么是方程?什么的一元一次方程?2.指出下面哪些方程是已经学过的方程?分别是什么方程?(1)3x+2=0;(2)2x−3y=8;(3)25x +3y=0;(4)13y=4;(5)x2−2x+1=0;(6)y(y−8)=24;(7)5+1x−3=1;(8)2x3−y2=2.3.什么的元?什么的次?二、探究新知:1.课件出示教材问题1、2,要求学生列出方程,思考下列问题。
问题1 有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个相同的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600 cm2,那么铁皮各角应切去多大的正方形?问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?提问:(1)问题1中列方程的等量关系是,所列的方程为,化简后为。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)因式分解法教案
21.2 解一元二次方程21.2.3 因式分解法一、教学目标【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度与价值观】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.二、课型新授课三、课时1课时四、教学重难点【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.五、课前准备课件六、教学过程(一)导入新课1.解一元二次方程的方法有哪些?(出示课件2)学生答:直接开平方法:x2=a (a≥0),配方法:(x+m)2=n (n≥0),公式法:x=2ba-±(b2-4ac≥0).2. 什么叫因式分解?学生答:把一个多项式分解成几个整式乘积的形式叫做因式分解,也叫把这个多项式分解因式.3.分解因式的方法有那些?(出示课件3)学生答:(1)提取公因式法:am+bm+cm=m(a+b+c).(2)公式法:a²-b²=(a+b)(a-b), a²±2ab+b²=(a±b) ².(3)十字相乘法.教师问:下面的方程如何使解答简单呢?x2+25x=0.出示课件5:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)教师问:你能根据题意列出方程吗?学生答:设物体经过x s 落回地面,这时它离地面的高度为0m ,即10x -4.9x 2=0.教师问:你能想出解此方程的简捷方法吗?(二)探索新知探究 因式分解法的概念学生用配方法和公式法解方程10x -4.9x 2=0.(两生板演)配方法解方程10x -4.9x 2=0. 解:2100049x x -=,22210050500494949x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2250504949x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭50504949x -=±50504949x =±+110049,=x 20.=x公式法解方程10x -4.9x 2=0.解:24.9100x x -=,a=4.9,b=-10,c=0.b 2-4ac= (-10)2-0=100,a acb b x 242-±-=()10102 4.9--±=⨯110049,=x20. =x教师引导学生尝试找出其简洁解法为:(出示课件7)x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.这种解法是不是很简单?教师问:以上解方程的方法是如何使二次方程降为一次方程的?x(10-4.9x)=0,①x=0或10-4.9x=0,②通过学生的讨论、交流可归纳为:(出示课件8)可以发现,上述解法中,由①到②的过程,不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法.教师提示:(出示课件9)1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的方法;3.理论依据是“ab=0,则a=0或b=0 ”.师生共同归纳:(出示课件10)分解因式法解一元二次方程的步骤是:1.将方程右边化为等于0的形式;2.将方程左边因式分解为A×B;3.根据“ab=0,则a=0或b=0”,转化为两个一元一次方程;4.分别解这两个一元一次方程,它们的根就是原方程的根.例1 解下列方程:(出示课件11)(1)x(x-2)+x-2=0; (2)5x 2-2x-14=x 2-2x+34. 师生共同解答如下: 解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x 1=2,x 2=-1;(2)原方程整理为4x 2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12,x 2=12. 想一想 以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.学生思考后,教师总结如下:(出示课件12)一.因式分解法简记歌诀:右化零,左分解;两因式,各求解.二.选择解一元二次方程的技巧:1.开平方法、配方法适用于能化为完全平方形式的方程.2.因式分解法适用于能化为两个因式之和等于0的形式的方程.3.配方法、公式法适用于所有一元二次方程.出示课件13:解下列方程:2222221 +=0; (2) -=0; (3) 3-6=-3;(4) 4-121=0; (5) 3(2+1)=4+2; (6) (-4)=(5-2).()x x x x x x x x x x x 学生自主思考并解答.(六生板演)解:⑴因式分解,得x(x+1)=0.于是得x=0或x+1=0,x 1=0,x 2=-1.⑵因式分解,得x (x)=0于是得x=0或x-2=0x1=0,x2=2.⑶将方程化为x2-2x+1 = 0. 因式分解,得(x-1)(x-1)=0.于是得x-1=0或x-1=0,x1=x2=1.⑷因式分解,得(2x+11)(2x-11)=0.于是得2x+11=0或2x-11=0,x1=-5.5,x2=5.5.⑸将方程化为6x2-x-2=0. 因式分解,得(3x-2)(2x+1)=0. 于是得3x-2=0或2x+1 = 0,x1=23,x2=12.⑹将方程化为(x-4)2-(5-2x)2=0.因式分解,得(x-4-5+2x)(x-4+5-2x)=0.(3x-9)(1-x)=0.于是得3x-9=0或1-x=0,x1=3,x2=1.出示课件16:用适当方法解下列方程:−x)2;(2)x2-6x-19=0;(3)3x2=4x+1;(4)y2-15=2y;(5)5x(x-3)-(x-3)(x+1)=0;(6)4(3x+1)2=25(x-2)2.教师提示:根据方程的结构特征,灵活选择恰当的方法来求解.四种方法的选择顺序是:直接开平方法→因式分解法→公式法→配方法.师生共同解答如下.(出示课件17,18,19)解:(1)(1-x)2=3,∴(x-1)2=3,x-1∴x1=1x2=1.(2)移项,得x2-6x=19.配方,得x2-6x+(-3)2=19+(-3)2.∴(x-3)2=28.∴x-3=±.∴x1=3+,x2=3-.(3)移项,得3x2-4x-1=0.∵a=3,b=-4,c=-1,∴x=−(−4)±√(−4)2−4×3×(−1)2×3=2±73.∴x1=2+73,x2=2-73.(4)移项,得y2-2y-15=0.把方程左边因式分解,得(y-5)(y+3)=0. ∴y-5=0或y+3=0.∴y1=5,y2=-3.(5)将方程左边因式分解,得(x-3)[5x-(x+1)]=0. ∴(x-3)(4x-1)=0.∴x-3=0或4x-1=0.∴x1=3,x2=1 4 .6)移项,得4(3x+1)2-25(x-2)2=0.∴[2(3x+1)]2-[5(x-2)]2=0.∴[2(3x+1)+5(x-2)]·[2(3x+1)-5(x-2)]=0. ∴(11x-8)(x+12)=0.∴11x-8=0或x+12=0.∴x1=811,x2=-12.出示课件20,21:用适当的方法解下列方程:(1)x2-41=0;(2) 5(3x+2)2=3x(3x+2).学生自主思考并解答.解:(1)∵x2-14=0,∴x2=14,即x=±14.∴x1=12,x2=-12.⑵原方程可变形为5(3x+2)2-3x(3x+2)=0,∴(3x+2)(15x+10-3x)=0.∴3x+2=0或12x+10=0.∴x1=-23,x2=-56.(三)课堂练习(出示课件22-30)1.已知x=2是关于x的一元二次方程kx²+(k²﹣2)x+2k+4=0的一个根,则k的值为.2. 解方程:2(x﹣3)=3x(x﹣3).3.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12.4.小华在解一元二次方程x2-x=0 时,只得出一个根x=1,则被漏掉的一个根是()A.x=4 B.x=3C.x=2 D.x=05.我们已经学习了一元二次方程的四种解法:直接开平方法、配方法、公式法和因式分解法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.我选择______________________.6.解方程:(x2+3)2-4(x2+3)=0.参考答案:1.-32.解:2(x﹣3)=3x(x﹣3),移项得2(x﹣3)﹣3x(x﹣3)=0,因式分解得(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3,x2=32.3.解:⑴x2+2x+2=0,(x+1)2=-1.此方程无解.⑵x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.4.D5.解:答案不唯一.若选择①,①适合公式法,x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=9-4=5>0.∴x=3±5 2.∴x1=3+52,x2=3-52.若选择②,②适合直接开平方法,∵(x-1)2=3,x-1=±3,∴x1=1+3,x2=1- 3. 若选择③,③适合因式分解法,x2-3x=0,因式分解,得x(x-3)=0.解得x1=0,x2=3.若选择④,④适合配方法,x2-2x=4,x2-2x+1=4+1=5,即(x-1)2=5.开方,得x-1=± 5.∴x1=1+5,x2=1- 5.5.提示:把(x2+3)看作一个整体来提公因式,再利用平方差公式,因式分解.解:设x2+3=y,则原方程化为y2-4y=0.分解因式,得y(y-4)=0,解得y=0,或y=4.①当y=0 时,x2+3=0,原方程无解;②当y=4 时,x2+3=4,即x2=1.解得x=±1.所以原方程的解为x1=1,x2=-1.(四)课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?⑴公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法).⑵方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法.(五)课前预习预习下节课(21.2.4)的相关内容。
人教版九年级上册数学:《一元二次方程》教案
《一元二次方程》学案学习目标:了解一元二次方程的定义,一般式ax2+bx+c=0(a≠0),•应用一元二次方程概念解决一些简单题目.一、自主学习(一)温故知新问题1 要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高?分析:设雕像下部高x m,则上部高________,得方程_____________________________整理得_____________________________ ①问题2如图,有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm,则盒底的长为__________,宽为__________.得方程_____________________________整理得_____________________________ ②问题3 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为___________.设应邀请x个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_________________场.列方程____________________________化简整理得________________________ ③(二)探索新知请回答下面问题:(1)方程①②③中未知数的个数各是多少?(2)它们最高次数分别是几次?方程①②③的共同特点是:这些方程的两边都是_________,只含有_______未知数(一元),并且未知数的最高次数是_____(二次)的方程.二、学习过程1.一元二次方程:_____________________________________________.2.一元二次方程的一般形式:____________________________ .其中ax2是____________,_____是二次项系数;bx是__________,_____是一次项系数;_____是常数项.(注意:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数0a ≠是一个重要条件,不能漏掉.)3.一元一次方程的解(根):_____________________________________________. 例:将方程3(1)5(2)x x x -=+化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.三、达标巩固1、判断下列方程是否为一元二次方程:(1)012=-x (2)y x 3)1(22=- (3)01322=--x x(4)0112=-x x(5)22)3()3(+=-x x (6)x x 4592-= 2、将下列方程化成一元二次方程的一般形式,并指出各项系数. (1)7)12(2=-x (2)0)12(532=++x x3、根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式.(1) 有一个面积为54m 2的长方形,将它的一边剪短5 m ,另一边剪短2 m ,恰好变成一 个正方形,这个正方形的边长是多少?(2) 三个连续整数两两相乘,再求和,结果为242,这三个数分别是多少?4、以-2为根的一元二次方程是( )A .x 2+2x -x =0 B .x 2-x -2=0 C .x 2+x +2=0 D .x 2+x -2=0 四、学后记五、课时训练 基础过关1.方程(x+3)(x+4)=5,化成一般形式是________.2.若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是_________.3.如果两个连续奇数的和是323,求这两个数,如果设其中一个奇数为x ,•你能列出求解x 的方程吗?_____________.4.如图,在宽为20m ,长30m 的矩形场地上,修筑同样宽的两条道路,余下的部分作为耕地,要使耕地的面积为500m 2,若设路宽为xm ,则可列方程为:_________.5.若ax 2-5x+3=0是一元二次方程,则不等式3a+6>0的解集是( ) A .a>-2 B .a<-2 C .a>-2且a ≠0 D .a>126.生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,•全组共互赠了182件,如果全组有x 名同学,则根据题意列出的方程是( ) A .x (x+1)=182 B .x (x-1)=182 C .2x (x+1)=182 D .x (x-1)=182×2 能力提升1.若关于x 的方程(m+3)27m x -+(m-5)x+5=0是一元二次方程,试求m 的值,•并计算这个方程的各项系数之和.2x 2x-4的二次项系数,一次项系数及常数项的积.3.若关于x 的方程(k 2-4)x 2是一元二次方程,求k 的取值范围.4.若α是方程x 2-5x+1=0的一个根,求α2+21α的值.5.关于x 的一元二次方程225250x x p p -+-+=的一个根为1,求实数p 的值.6.求证:关于x 的方程(m 2-8m+17)x 2+2mx+1=0,不论m 取何值,该方程都是一元二次方程.一、基础知识(一)一元二次方程的定义1.定义:只含有一个未知数,并且未知数的次数是二次的整式方程,叫做一元二次方程.2.注意事项:判断一个方程是不是一元二次方程时应抓住三点:①只含有一个未知数;②未知数的最高次数是2;③方程是整式方程(即含有未知数的式子是整式).三者必须同时满足,否则就不是一元二次方程.(二)一元二次方程的一般形式:20ax bx c ++=(a ,b ,c 为常数,0a ≠),其中0a ≠是定义中的一部分,不可缺少,否则就不是一元二次方程. 2ax 叫做二次项,a 叫做二次项系数,二者是不同的概念,不可混淆.剖析: 1.一元二次方程的一般形式是将方程变形和整理后的一种很有规律的表达形式,它的左边是未知数的二次三项式的降幂排列,且其中a 通常写成大于0的形式,而右边是0.2.当一元二次方程化成一般形式后,左边的三个单项式ax 2,bx ,c 分别叫做二次项,一次项和常数项;且常数a ,b 分别叫二次项系数和一次项系数.3.一元二次方程的一般形式是用配方法或公式法求一元二次方程根的基础. 二、重难点分析本课教学重点:一元二次方程的识别抓住一元二次方程的三个要点:①只含有一个未知数;②未知数的最高次数是2;③方程是整式方程(即含有未知数的式子是整式).三者必须同时满足,否则就不是一元二次方程.本题教学难点:一元二次方程的一般形式的转化,熟记公式20ax bx c ++=即可。
九年级数学上一元二次方程的解法教案【优秀3篇】
数学,是一门有趣而又很有学问的学科。
生活中存在着无穷的数学故事,与你我的生活息息相关,也是一个游戏的宝塔。
2022中考数学知识点有哪些你知道吗?一起来看看2022中考数学知识点,欢迎查阅!以下是人见人爱的小编分享的九年级数学上一元二次方程的解法教案【优秀3篇】,在大家参照的同时,也可以分享一下白话文给您最好的朋友。
数学《一元二次方程》教案设计篇一教材分析1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。
2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。
一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。
学情分析1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。
2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的`难度,解决这问题要以多练为主。
3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。
教学目标1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。
2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。
教学重点和难点1、重点:概念的形成及一般形式。
2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。
元二次方程的应用篇二第一课时教学目标一、教学1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
人教版九年级数学上册第二十一章一元二次方程数学活动教学设计
-利用信息技术辅助教学,如使用多媒体演示解法过程,提高教学的直观性和趣味性。
4.教学评价:
-采用形成性评价,关注学生在学习过程中的表现,及时给予反馈和指导。
-设计综合性的评价任务,如开放性问题、项目式作业等,评估学生对知识的综合运用能力。
2.实践应用题:选取两道与生活实际相关的一元二次方程问题,要求学生运用所学知识进行解答。例如,计算抛物线运动中物体的高度、计算二次函数图像下的面积等。此类题目旨在培养学生将数学知识应用于解决实际问题的能力。
3.提高拓展题:设计一道综合性的题目,要求学生运用一元二次方程的根与系数的关系,结合图形进行问题分析。此类题目旨在提高学生的数学思维能力和综合运用知识的能力。
-培养学生运用数学知识解决实际问题的能力。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,针对一元二次方程的解法,让每个小组讨论一种方法,并总结出关键步骤和注意事项。
-各小组汇报讨论成果,其他小组进行评价和补充。
2.教学目标:
-培养学生合作交流的能力。
-让学生通过讨论,加深对一元二次方程解法的理解。
-对于公式法,可以结合历史背景,介绍公式背后的数学故事,激发学生的学习兴趣,并帮助他们记忆公式。
-针对学生将实际问题抽象为一元二次方程的难点,可以设计一系列实际问题解决工作坊,让学生在小组合作中逐步培养抽象思维能力。
3.教学策略:
-采用问题驱动的教学方法,鼓励学生在解决具体问题的过程中,自主探索和发现数学规律。
-鼓励学生自我评价和同伴评价,培养他们的自我反思和批判性思维。
四、教学内容与过程
(一)导入新课
一元二次方程教案 一元二次方程数学教学教案8篇
一元二次方程教案一元二次方程数学教学教案8篇元二次方程教案篇一一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?九年级数学《一元二次方程》教案篇二教学目标知识与技能目标1、构建本章的部分知识框图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程
第一课时
教学内容
一元二次方程概念及一元二次方程一般式及有关概念.
教学目标
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.
1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义. 2.一元二次方程的一般形式及其有关概念.
3.解决一些概念性的题目.
4.态度、情感、价值观
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键
1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.
教学过程
一、复习引入
学生活动:列方程.
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,•两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,•那么门的高和宽各是多少?
如果假设门的高为x•尺,•那么,•这个门的宽为_______•尺,•根据题意,•得________.整理、化简,得:__________.
问题(2)如图,如果AC CB
AB AC
,那么点C叫做线段AB的黄金分割点.
如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.
整理得:_________.
问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.
整理,得:________.
老师点评并分析如何建立一元二次方程的数学模型,并整理.
二、探索新知
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.
解:去括号,得:
40-16x-10x+4x2=18
移项,得:4x2-26x+22=0
其中二次项系数为4,一次项系数为-26,常数项为22.
例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
解:去括号,得:
x2+2x+1+x2-4=1
移项,合并得:2x2+2x-4=0
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.
三、巩固练习
教材P32练习1、2
四、应用拓展
例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不论m取何值,该方程都是一元二次方程.
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
六、布置作业
1.习题22.1 1、2.
第二十一章一元二次方程
21.1 一元二次方程
1.下列方程中,是关于x的一元二次方程的是( )
A.x2+1
x2
=0 B.ax2+bx+c=0
C.(x-1)(x+2)=1 D.3x2-2xy-5y2=0
2.若关于x的方程ax2-3x+2=0是一元二次方程,则( )
A.a>0 B.a≠0
C.a=1 D.a≥0
3.已知0和-1都是下面某个方程的解,此方程是( )
A.x2-1=0 B.x(x+1)=0
C.x2-x=0 D.x2=x+1
4.王叔叔从市场上买一块长80 cm,宽70 cm的矩形铁皮,准备制作一个工具箱.如图2111所示,他将矩形铁皮的四个角各剪掉一个边长x cm的正方形后,剩余的部分刚好能围成一个底面积为3 000 cm2的无盖长方体工具箱,根据题意列方程为( )
图2111
A.(80-x)(70-x)=3 000
B.80×70-4x2=3 000
C.(80-2x)(70-2x)=3 000
D.80×70-4x2-(70+80)x=3 000
5.把下列方程化成一元二次方程的一般形式,并写出它们的二次项系数、一次项系数和常数项.
方程一般形式二次项系数一次项系数常数项4y2=5-3y
(3x+1)2-2x=0
3x2+x2-2x=1
c的
值.
(1)(2x-5)(x+2)=1;
(2)-2x(x-5)=3-x;
(3)(2x-1)(x+5)=6x.
7.一个QQ群里共有x个好友,每个好友都分别给其他好友发了1条消息,这样一共产生了756条消息.
(1)列出关于x的方程;
(2)将方程化为ax2+bx+c=0的形式,并指出a,b,c的值.
8.若方程(m-1)x2+x-1=0是一元二次方程,则m的取值范围是( )
A.m=1 B.m≠0
C.m≥1 D.m≠1
9.已知关于x的一元二次方程x2+ax+b=0有一个非零根为-b,则a-b的值为( ) A.1 B.-1
C.0 D.-2
10.已知x=1是一元二次方程x2+ax+b=0 的一个根,则a2+2ab+b2的值为.
11.已知m是方程x2+x-1=0的一个根,求代数式(m+1)2+(m+1)(m-1)的值.
12.如图2112所示,在一幅长80 cm,宽50 cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5 400 cm2,设金色纸边的宽为x cm,
求x满足的方程.
图2112
13.《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”大意是说:已知矩形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?(1丈=10尺,1尺=10寸)
如果设门的宽为x尺,那么这个门的高为(x+6.8)尺,根据题意,得,整理、化简,得.
参考答案
【分层作业】
1.C 2.B 3.B 4.C 5.略
6.解:(1)2x2-x-11=0,a=2,b=-1,c=-11.
(2)-2x2+11x-3=0,a=-2,b=11,c=-3.
(3)2x2+3x-5=0,a=2,b=3,c=-5.
7.(1)x(x-1)=756. (2)a=1,b=-1,c=-756.
8.D 9.A 10.1
11.原式=m2+2m+1+m2-1=2.
12.x2+65x-350=0.
13.x2+(x+6.8)2=102x2+6.8x-26.88=0。