10.19数列解答题专题-教师用卷
高中数学必修一数列性质专项习题及答案
高中数学必修一数列性质专项习题及答案1. 数列基础概念题1:已知数列${a_n}$的通项公式为$a_n = 3n - 2$,求$a_1, a_2,a_3$的值。
答案:$a_1 = 3 \times 1 - 2 = 1$ <br>$a_2 = 3 \times 2 - 2 = 4$ <br>$a_3 = 3 \times 3 - 2 = 7$题2:已知数列${b_n}$的通项公式为$b_n = 2^n$,求$b_1, b_2,b_3$的值。
答案:$b_1 = 2^1 = 2$ <br>$b_2 = 2^2 = 4$ <br>$b_3 = 2^3 = 8$2. 等差数列题1:已知数列${c_n}$为等差数列,且首项$a_1 = 2$,公差$d = 3$,求$c_1, c_2, c_3$的值。
答案:$c_1 = a_1 = 2$ <br>$c_2 = a_1 + d = 2 + 3 = 5$ <br>$c_3 = c_2 + d = 5 + 3 = 8$题2:已知数列${d_n}$为等差数列,且首项$a_1 = -1$,公差$d = -2$,求$d_1, d_2, d_3$的值。
答案:$d_1 = a_1 = -1$ <br>$d_2 = a_1 + d = -1 + (-2) = -3$ <br>$d_3 = d_2 + d = -3 + (-2) = -5$3. 等比数列题1:已知数列${e_n}$为等比数列,且首项$a_1 = 2$,公比$q = 3$,求$e_1, e_2, e_3$的值。
答案:$e_1 = a_1 = 2$ <br>$e_2 = a_1 \times q = 2 \times 3 = 6$ <br>$e_3 = e_2 \times q = 6 \times 3 = 18$题2:已知数列${f_n}$为等比数列,且首项$a_1 = -2$,公比$q = -\frac{1}{2}$,求$f_1, f_2, f_3$的值。
2010-2019高考数学理科真题分类汇编专题六 数列 第十八讲 数列的综合应用含答案
专题六 数列 第十八讲 数列的综合应用2019年1.(2019浙江10)设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,n *∈N ,则 A .当b =12时,a 10>10 B .当b =14时,a 10>10C .当b =-2时,a 10>10D .当b =-4时,a 10>102.(2019浙江20)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N证明:12+.n c c c n *++<∈N L 3.(2019江苏20)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }*()n ∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.4.(2019北京理20)已知数列{}n a ,从中选取第 1i 项、第2i 项、…、第m i 项()12m i i i <<⋯<,若12mi i i a a a <<<L ,则称新数列12mi i i a a a ⋅⋅⋅L 为{}n a 的长度为m 的递增子列。
规定:数列{}n a 的任意一项都是{}n a 的长度为1的递增子列。
(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{}n a 的长度为P 的递增子列的末项的最小值为o m a ,长度为q 的递增子列的末项的最小值为on a ,若p <q ,求证:o o m n a a <;(Ⅲ)设无穷数列{}n a 的各项均为正整数,且任意两项均不相等,若{}n a 的长度为s 的递增子列末项的最小值为2s -1,且长度为s 末项为2s -1的递增子列恰有12s -个(s =1,2,…),求数列{}n a 的通项公式.2010-2018年一、选择题1.(2017新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是02,接下来的两项是02,12,再接下来的三项是02,12,22,依此类推.求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是A .440B .330C .220D .1102.(2016年全国Ⅲ)定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个(B )16个(C )14个(D )12个3.(2015湖北)设12,,,n a a a ∈R L ,3n ≥.若p :12,,,n a a a L 成等比数列;q :222121()n a a a -+++⨯L 22222312231()()n n n a a a a a a a a a -+++=+++L L ,则A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件4.(2014新课标2)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n项和n S =A .()1n n +B .()1n n -C .()12n n + D .()12n n -5.(2014浙江)设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99i ia =, 0,1,2,,99i =⋅⋅⋅,记10|()()|k k k I f a f a =-+21|()()|k k f a f a -+⋅⋅⋅+ 9998|()()|k k f a f a -,.3,2,1=k 则A .321I I I <<B . 312I I I <<C . 231I I I <<D . 123I I I << 二、填空题6.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 .7.(2015陕西)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为 .8.(2014新课标2)数列{}n a 满足111n na a +=-,2a =2,则1a =_________. 9.(2013重庆)已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =.10.(2011江苏)设7211a a a ≤≤≤≤Λ,其中7531,,,a a a a 成公比为q 的等比数列,642,,a a a 成公差为1的等差数列,则q 的最小值是________.11.(2011浙江)若数列2(4)()3n n n ⎧⎫+⎨⎬⎩⎭中的最大项是第k 项,则k =_______________. 三、解答题12.(2018江苏)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,(1a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求d 的取值范围(用1,,b m q 表示).13.(2017天津)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N .14.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈*N .证明:当n ∈*N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1122n n n n x x x x ++-≤; (Ⅲ)121122n n n x --≤≤.15.(2016年四川高考)已知数列{n a }的首项为1,n S 为数列{n a }的前n 项和,11n n S qS +=+ ,其中q >0,*n N ∈ .(I )若2322,,2a a a + 成等差数列,求n a 的通项公式;(Ⅱ)设双曲线2221ny x a -=的离心率为n e ,且253e =,证明:121433n n n n e e e --++⋅⋅⋅+>.16.(2015湖北)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =. (Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}n c 的前n 项和n T . 17.(2015陕西)设()n f x 是等比数列1,x ,2x ,⋅⋅⋅,n x 的各项和,其中0x >,n ∈N ,2n ≥.(Ⅰ)证明:函数()()2n n F x f x =-在1(,1)2内有且仅有一个零点(记为n x ),且11122n n n x x +=+; (Ⅱ)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为()n g x ,比较()n f x 与()n g x 的大小,并加以证明.18.(2015重庆)在数列{}n a 中,13a =,2110n n n n a a a a λμ++++=()n N +∈.(Ⅰ)若0,2λμ==-,求数列{}n a 的通项公式; (Ⅱ)若0001(,2)k N k k λ+=∈≥,1μ=-,证明:010011223121k a k k ++<<+++.19.(2014山东)已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)令n b =,4)1(11+--n n n a a n求数列}{n b 的前n 项和n T . 20.(2014浙江)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221Λ.若{}na 为等比数列,且.6,2231b b a +== (Ⅰ)求n a 与n b ; (Ⅱ)设()*∈-=N n b a c nn n 11.记数列{}n c 的前n 项和为n S . (ⅰ)求n S ;(ⅱ)求正整数k ,使得对任意*∈N n ,均有n k S S ≥. 21.(2014湖南)已知数列{n a }满足*111,||,.n n n a a a p n N +=-=∈(Ⅰ)若{n a }是递增数列,且12,3,23a a a 成等差数列,求p 的值; (Ⅱ)若12p =,且{21n a -}是递增数列,{2n a }是递减数列,求数列{n a }的通项公式. 22.(2014四川)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(*n N ∈).(Ⅰ)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (Ⅱ)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}nna b 的前n 项和n T . 23.(2014江苏)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”. (Ⅰ)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;(Ⅱ)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值;(Ⅲ)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.24.(2013安徽)设数列{}n a 满足12a =,248a a +=,且对任意*n N ∈,函数1212()()cos -sin n n n n n f x a a a x a x a x ++++=-++⋅⋅,满足'()02f π=(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若122nn n a b a =+(),求数列{}n b 的前n 项和n S . 25.(2013广东)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441n n S a n +=--,*n N ∈,且2514,,a a a 构成等比数列.(Ⅰ)证明:2a =(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有1223111112n n a a a a a a ++++<L . 26.(2013湖北)已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.27.(2013江苏)设{}n a 是首项为a ,公差为d 的等差数列()0d ≠,n S 是其前n 项和.记2nn nS b n c=+,N n *∈,其中c 为实数.(Ⅰ) 若0c =,且1b ,2b ,4b 成等比数列,证明:()2N nk k S n S k,n *=∈;(Ⅱ) 若{}n b 是等差数列,证明:0c =.28. (2012山东)已知等差数列{}n a 的前5项和为105,且1052a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m项和m S .29.(2012湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为n a 万元. (Ⅰ)用d 表示12,a a ,并写出1n a +与n a 的关系式;(Ⅱ)若公司希望经过m (m ≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d 的值(用m 表示).30.(2012浙江)已知数列{}n a 的前n 项和为n S ,且n S =22n n +,n ∈N ﹡,数列{}n b 满足24log 3n n a b =+,*n N ∈. (Ⅰ)求,n n a b ;(Ⅱ)求数列{}n n a b ⋅的前n 项和n T .31.(2012山东)在等差数列{}n a 中,84543=++a a a ,973a =(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意的*N m ∈,将数列{}n a 中落入区间()29,9m m 内的项的个数为m b ,求数列{}m b 的前m 项和m S .32.(2012江苏)已知各项均为正数的两个数列{}n a 和{}n b满足:1n a n *+=∈N .(Ⅰ)设11n n nb b n a *+=+∈N ,,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(Ⅱ)设1nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值. 33.(2011天津)已知数列{}{}n n a b 与满足11(2)1nn n n n b a b a +++=-+,1*13(1),,22n n b n N a -+-=∈=且.(Ⅰ)求23,a a 的值;(Ⅱ)设*2121,n n n c a a n N +-=-∈,证明{}n c 是等比数列;(Ⅲ)设n S 为{}n a 的前n 项和,证明*21212122121().3n n n n S S S S n n N a a a a --++++≤-∈L 34.(2011天津)已知数列{}n a 与{}n b 满足:1123(1)0,2nn n n n n n b a a b a b ++++-++==,*n ∈N ,且122,4a a ==.(Ⅰ)求345,,a a a 的值;(Ⅱ)设*2121,n n n c a a n N -+=+∈,证明:{}n c 是等比数列;(Ⅲ)设*242,,k k S a a a k N =++⋅⋅⋅+∈证明:4*17()6nk k kS n N a =<∈∑. 35.(2010新课标)设数列{}n a 满足21112,32n n n a a a -+=-=g(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令n n b na =,求数列的前n 项和n S .36.(2010湖南)给出下面的数表序列:124 4 8表1 表2 表3 ∙∙∙1 1 3 1 3 5其中表n (n =1,2,3 L )有n 行,第1行的n 个数是1,3,5,L 2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.(Ⅰ)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明);(Ⅱ)每个数列中最后一行都只有一个数,它们构成数列1,4,12L ,记此数列为{}n b 求和:32412231n n n bb b b bb b b b ++++L *()n N ∈ .专题六 数列 第十八讲 数列的综合应用答案部分2019年1.解析:对于B ,令2104x λ-+=,得12λ=, 取112a =,所以211,,1022n a a ==<L , 所以当14b =时,1010a <,故B 错误;对于C ,令220x λ--=,得2λ=或1λ=-, 取12a =,所以22,,210n a a ==<L , 所以当2b =-时,1010a <,故C 错误; 对于D ,令240x λ--=,得12λ±=,取112a +=212a +=,…,1102n a +=<, 所以当4b =-时,1010a <,故D 错误;对于A ,221122a a =+…,223113224a a ⎛⎫=++ ⎪⎝⎭…,242431911714216216a a a ⎛⎫=++++=> ⎪⎝⎭…,10n n a a +->,{}n a 递增,当4n …时,11132122n n n n a a a a +=+>+=,所以5465109323232a a a a a a ⎧>⎪⎪⎪>⎪⎨⎪⎪⎪>⎪⎩M,所以610432a a ⎛⎫> ⎪⎝⎭,所以107291064a >>故A 正确.故选A . 2.解析:(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N .由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(2)*n c n ===∈N . 我们用数学归纳法证明.①当n =1时,c 1=0<2,不等式成立;②假设()*n k k =∈N时不等式成立,即12h c c c +++<L .那么,当1n k =+时,121k k c c c c +++++<<L<==即当1n k =+时不等式也成立.根据(1)和(2),不等式12n c c c +++<L 对任意*n ∈N 成立. 3.解析(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k kq k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-.设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x =e.列表如下:x (1,e)e (e ,+∞) ()f 'x+0 –f (x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取33q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.3.解析:(I )1,3,5,6.(答案不唯一).(II )设长度为q 末项为0n a 的一个递增子列为110,...,,q r r n a a a -.由p q <,10p q r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a .又12,,...,p r r r a a a 是{}n a 的长度为p 的递增子列,所以0,p m r a a ≤所以00m n a a <.(III )由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m -1之前(m 为正整数).假设2m 排在2m -1之后,设121,,...,,21m p p p a a a m --是数列{}n a 的长度为m 末项为2m -1的递增子列,则121,,...,,2 1.2m p p p a a a m m --是数列{}n a 的长度为m+1末项为2m 的递增子列,与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小正偶数为2m.因为2k 排在2k -1之前() 1,2,1k m =⋯- ,所以2k 和2k -1不可能在{}n a 的同一个子列中. 又{}n a 中不超过 21m +的数为1,2,….., 21m -, 21m +, 所以{}n a 的长度为 1m +末项为 21m +的递增子列个数至多为12222112 2m m -⨯⨯⨯⋅⋅⋅⨯⨯⨯=<,与已知矛盾.最后证明 2m 排在 23m -之后( 2m ≥为整数).假设存在 2m ( 2m ≥),使得 2m 排在 23m -之前,则{}n a 的长度为 1m +末项为 21m +的递增子列个数小于 2m ,与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,,23,2,21,m m m ⋅⋅⋅--⋅⋅⋅. 经验证,数列2,1,4,3,,23,2,21,m m m ⋅⋅⋅--⋅⋅⋅符合条件, 所以1,1.n n n a n n +⎧=⎨-⎩为奇数为偶数.2010-2018年1.A 【解析】对数列进行分组如图k321∙∙∙,222121,2k 22,21,20,20,20,20则该数列前k 组的项数和为(1)1232k k k ++++⋅⋅⋅+= 由题意可知100N >,即(1)1002k k +>,解得14k ≥,n ∈*N 即N 出现在第13组之后.又第k 组的和为122112kk -=-- 前k 组的和为1(12)(122)k +++⋅⋅⋅+++⋅⋅⋅+12(21)(21)(21)k =-+-+⋅⋅⋅+- 12(222)k k =++⋅⋅⋅+-122k k +=--,设满足条件的的N 在第1k +(k ∈*N ,13k ≥)组,且第N 项为第1k +的第m ()m ∈*N 个数,第1k +组的前m 项和为211222m -+++⋅⋅⋅+21m =-,要使该数列的前N 项和为2的整数幂, 即21m -与2k --互为相反数, 即212mk -=+, 所以23mk =-,由14k ≥,所以2314m-≥,则5m ≥,此时52329k =-= 对应满足的最小条件为29(291)54402N +=+=,故选A . 2.C 【解析】由题意可得10a =,81a =,2a ,3a ,…,7a 中有3个0、3个1,且满足对任意k ≤8,都有1a ,2a ,…,k a 中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111, 00011011, 00011101,00100111, 00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.3.A 【解析】对命题p :12,,,n a a a L 成等比数列,则公比)3(1≥=-n a a q n n且0≠n a ; 对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立;②当0≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a L 成等比数列, 所以p 是q 的充分条件,但不是q 的必要条件.4.A 【解析】2a ,4a ,8a 成等比数列,∴2428a a a =⋅,即2111(6)(2)(14)a a a +=++,解得12a =,所以(1)n S n n =+.5.B 【解析】∵21)(x x f =在[0,1]上单调递增,可得1110()()0f a f a ->,1211()()0f a f a ->,…,199198()()0f a f a ->,∴111101211199198|()()||()()||()()|I f a f a f a f a f a f a =-+-+⋅⋅⋅+-1110121119919819910()()+()()()()=()()f a f a f a f a f a f a f a f a --+⋅⋅⋅+--=299-0=199() ∵),(2)(22x x x f -=在490]99[,上单调递增,在50[,1]99单调递减 ∴2120()()0f a f a ->,…,249248()()0f a f a ->,250249()()0f a f a -=,251250()()0f a f a -<,…,299298()()0f a f a -<∴221202221299298|()()||()()||()()|I f a f a f a f a f a f a =-+-+⋅⋅⋅+- =24920299250()()[()()]f a f a f a f a ---=250202992()()()f a f a f a --=505098004(1)199999801⨯⨯-=< ∵|2sin |31)(3x x f π=在24[0,]99,5074[,]9999上单调递增,在2549[,]9999,75[,1]99上单调递减,可得33253493742492()2()2(=(2sin sin )39999I f a f a f a ππ=-+-)252(2sin sin )1312123ππ>-==> 因此312I I I <<.6.27【解析】所有的正奇数和2n (*n ∈N )按照从小到大的顺序排列构成{}n a ,在数列{}n a中,52前面有16个正奇数,即5212a =,6382a =.当1n =时,1211224S a =<=,不符合题意;当2n =时,2331236S a =<=,不符合题意;当3n =时,3461248S a =<=,不符合题意;当4n =时,45101260S a =<=,不符合题意;……;当26n =时,52621(141)2(12)212S ⨯+⨯-=+-= 441 +62= 503<2712516a =,不符合题意;当27n =时,52722(143)2(12)212S ⨯+⨯-=+-=484 +62=546>2812a =540,符合题意.故使得112n n S a +>成立的n 的最小值为27.7.5【解析】设数列的首项为1a ,则12015210102020a +=⨯=,所以15a =,故该数列的首项为5.8.12【解析】将82a =代入111n n a a +=-,可求得712a =;再将712a =代入111n na a +=-,可求得61a =-;再将61a =-代入111n na a +=-得52a =;由此可知数列{}n a 是一个周期数列,且周期为3,所以1712a a ==. 9.64【解析】由11a =且125,,a a a 成等比数列,得2111(4)()a a d a d +=+,解得2d =,故81878642S a d ⨯=+=. 102a t =,则23112t q t q t q ++≤≤≤≤≤≤,由于1t ≥,所以max{q t ≥,故q.11.4【解析】由题意得1122(4)()(1)(14)()3322(4)()(1)(14)()33k k k k k k k k k k k k -+⎧+>--+⎪⎪⎨⎪+>+++⎪⎩,得22(1)1010k k ⎧-<⎨>⎩,因此*k N ∈,所以4k =.12.【解析】(1)由条件知:(1)n a n d =-,12n n b -=.因为1||n n a b b -≤对n =1,2,3,4均成立, 即1|(1)2|1n n d ---≤对n =1,2,3,4均成立,即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤.因此,d 的取值范围为75[,]32.(2)由条件知:1(1)n a b n d =+-,11n n b b q -=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111|(1)|n b n d b q b -+--≤(n =2,3,···,m +1),即当2,3,,1n m =+L 时,d 满足1111211n n q q b d b n n ---≤≤--.因为q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+L 均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+L 均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+L ). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>. 因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当0x >时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()(0)1f x f <=.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.13.【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =.所以,2nn b =.由3412b a a =-,可得138d a -= ①. 由114=11S b ,可得1516a d += ②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(Ⅱ)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯, 故23245484(31)4nn T n =⨯+⨯+⨯++-⨯L ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯L ,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯L1112(14)4(31)414(32)48.n n n n n ++⨯-=---⨯-=--⨯- 得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 14.【解析】(Ⅰ)用数学归纳法证明:0n x >当1n =时,110x => 假设n k =时,0k x >,那么1n k =+时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>. 因此0n x >()n ∈*N所以111ln(1)n n n n x x x x +++=++>因此10n n x x +<<()n ∈*N(Ⅱ)由111ln(1)n n n n x x x x +++=++>得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++ 记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数()f x 在[0,)+∞上单调递增,所以()(0)f x f ≥=0, 因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥ 故112(N )2n n n n x x x x n *++-∈≤ (Ⅲ)因为11111ln(1)2n n n n n n x x x x x x +++++=+++=≤所以112n n x -≥得 由1122n n n n x x x x ++-≥得 111112()022n n x x +-->≥ 所以12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥ 故212n n x -≤综上,1211(N )22n n n x n *--∈≤≤ .15.【解析】(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+两式相减得到21,1n n a qa n ++=?.又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ³都成立. 所以,数列{}n a 是首项为1,公比为q 的等比数列. 从而1=n n a q -.由2322+2a a a ,,成等比数列,可得322=32a a +,即22=32,q q +, 则(21)(2)0q+q -=, 由已知,0q >,故 =2q . 所以1*2()n n a n -=?N .(Ⅱ)由(Ⅰ)可知,1n n a q -=.所以双曲线2221ny x a -=的离心率n e =由53q =解得43q =. 因为2(1)2(1)1+k k q q -->1*k q k -?N (). 于是11211+1n n n q e e e q q q --++鬃?>+鬃?=-, 故1231433n nn e e e --++鬃?>. 16.【解析】(Ⅰ)由题意有,1110451002a d a d +=⎧⎨=⎩ ,即1129202a d a d +=⎧⎨=⎩.解得112a d =⎧⎨=⎩ 或1929a d =⎧⎪⎨=⎪⎩,故1212n n n a n b -=-⎧⎪⎨=⎪⎩或11(279)929()9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩. (Ⅱ)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是 2341357921122222n n n T --=++++++L , ① 2345113579212222222n n n T -=++++++L . ② ①-②可得221111212323222222n n n n n n T --+=++++-=-L ,故n T 12362n n -+=-. 17.【解析】(Ⅰ)2()()212,nn n F x f x x x x =-=+++-L 则(1)10,n F n =->1211111112()1220,12222212n nn nF +⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-=-=-< ⎪ ⎪⎝⎭⎝⎭-L 所以()n F x 在1,12⎛⎫⎪⎝⎭内至少存在一个零点n x . 又1()120n n F x x nx-'=++>L ,故在1,12⎛⎫⎪⎝⎭内单调递增,所以()n F x 在1(,1)2内有且仅有一个零点n x .因为n x 是()n F x 的零点,所以()=0n n F x ,即11201n n n x x +--=-,故111=+22n n n x x +.(Ⅱ)解法一:由题设,()()11().2nnn x g x ++=设()()211()()()1,0.2nnn n n x h x f x g x x x x x ++=-=+++->L当1x =时, ()()n n f x g x = 当1x ≠时, ()111()12.2n n n n x h x x nx--+'=++-L若01x <<,()11111()22n n n n n n h x x x nx x ----+'>++-L()()11110.22n n n n n n x x --++=-=若1x >,()11111()22n n n n n n h x x x nx x ----+'<++-L()()11110.22n n n n n n x x --++=-=所以()h x 在(0,1)上递增,在(1,)+∞上递减, 所以()(1)0h x h <=,即()()n n f x g x <.综上所述,当1x =时, ()()n n f x g x =;当1x ≠时()()n n f x g x <.解法二 由题设,()()211()1,(),0.2nnn nn x f x x x x g x x ++=+++=>L当1x =时, ()()n n f x g x =;当1x ≠时, 用数学归纳法可以证明()()n n f x g x <. 当2n =时, 2221()()(1)0,2f xg x x -=--<所以22()()f x g x <成立. 假设(2)n k k =≥时,不等式成立,即()()k k f x g x <.那么,当+1n k =时,()()111k+1k 11()()()2kk k k k k x f x f x xg x xx +++++=+<+=+()12112k k x k x k +++++=.又()()11k+121111()22k k k k x k x k kx k x g x ++++++-++-=令()1()11(x 0)k k k h x kx k x +=-++>, 则()()11()(k 1)11(x 1)kk k k h x k x k k xk k x --'=+-+=+-.所以当01x <<,()0kh x '<,()k h x 在(0,1)上递减; 当1x >,()0kh x '>,()k h x 在(1,)+∞上递增. 所以()(1)0k k h x h >=,从而()1k+1211()2k k x k x k g x +++++>.故11()()k k f x g x ++<.即+1n k =,不等式也成立. 所以,对于一切2n ≥的整数,都有()()n n f x g x <.解法三:由已知,记等差数列为{}k a ,等比数列为{}k b ,1,2,...,1k n =+.则111a b ==,11nn n a b x ++==,所以()11+1(2n)n k x a k k n-=-⋅≤≤,1(2),k k b x k n -=≤≤ 令()()111(x)1,0(2).n k k k k k x m a b x x k n n---=-=+->≤≤当1x =时, =k k a b ,所以()()n n f x g x =. 当1x ≠时, ()()12211()(k 1)11n k k n k k k m x nx x k x x n----+-'=--=--, 而2k n ≤≤,所以10k ->,11n k -+≥. 若01x <<, 11n k x -+<,()0k m x '<,当1x >,11n k x-+>,()0km x '>,从而()k m x 在(0,1)上递减,()k m x 在(1,)+∞上递增.所以()(1)0k k m x m >=, 所以当01(2),k k x x a b k n >≠>≤≤且时,又11a b =,11n n a b ++=,故()()n n f x g x < 综上所述,当1x =时, ()()n n f x g x =;当1x ≠时()()n n f x g x <18.【解析】(Ⅰ)由21=0=22()n n n a a a n N λμ++-=∈,,有.若存在某个0,n N +∈使得0,no a =则由上述递推公式易得10,no a -=重复上述过程可得10a =,此与13a =矛盾,所以对任意,0n n N a +∈≠.从而12(),n n a a n N ++=∈即{}n a 是一个公比2q =的等比数列.故11132n n n a a q --==⋅.(Ⅱ)由01,1k λμ==-,数列{}n a 的递推关系式变为211010n n n n a a a a k +++-=, 变形为2101()().n n n a a a n N k +++=∈由上式及130a =>, 归纳可得12130n n a a a a +=>>⋅⋅⋅>>>⋅⋅⋅>.因为22220010001111111n nn n n n n a a k k a a k k a a a k k +-+===-?+++, 所以对01,2,,n k =⋅⋅⋅求和得01010121()()k k k a a a a a a ++=+-+⋅⋅⋅+-010000102011111 =()111k a k k k k a k a k a -⋅+⋅++⋅⋅⋅++++0000011111>2+( )231313131k k k k k k ⋅++⋅⋅⋅+=+++++1444442444443. 另一方面,由上已证的不等式知001212k k a a a a +>>⋅⋅⋅>>>,得00110000102011111()111k k a a k k k k a k a k a +=-⋅+⋅++⋅⋅⋅++++0000011111<2+()221212121k k k k k k ⋅++⋅⋅⋅+=+++++1444442444443. 综上,0100112+23121k a k k +<<+++.19.【解析】(Ⅰ),64,2,,2141211d a S d a S a S d +=+===4122421,,S S S S S S =∴成等比Θ解得12,11-=∴=n a a n (Ⅱ))121121()1(4)1(111++--=-=-+-n n a a n b n n n n n ,当n 为偶数时11111(1)()()33557n T =+-+++-L L1111()()23212121n n n n ++-+---+ 1221211+=+-=∴n nn T n 11111(1)()()33557n n T =+-+++--L L 当为奇数时, 1111()()23212121n n n n +++---+12221211++=++=∴n n n T n ⎪⎪⎩⎪⎪⎨⎧+++=∴为奇数为偶数n n n n n nT n ,1222,122. 20.【解析】(Ⅰ)由题意,()()*∈=N n a a a nb n 221Λ,326b b-=,知3238b b a -==,又由12a =,得公比2q =(2q =-舍去),所以数列{}n a 的通项公式为2()n n a n N *=∈,所以()()1121232n n n n n a a a a ++==L ,故数列{}n b 的通项公式为,()1()n b n n n N *=+∈;(Ⅱ)(i )由(Ⅰ)知,11111()21n n n n c n N a b n n *⎛⎫=-=--∈ ⎪+⎝⎭, 所以11()12n n S n N n *=-∈+; (ii )因为12340,0,0,0c c c c =>>>; 当5n ≥时,()()11112n nn n c n n +⎡⎤=-⎢⎥+⎣⎦, 而()()()()()11112120222n n n n n n n n n ++++++--=>, 得()()51551122n n n ++≤<, 所以当5n ≥时,0n c <,综上对任意n N *∈恒有4n S S ≥,故4k =.21.【解析】(I )因为{}n a 是递增数列,所以11nn n n n a a a a p ++-=-=.而11a =,因此又123,2,3a a a 成等差数列,所以21343a a a =+,因而230p p -=, 解得1,03p p == 当0p =时,1n n a a +=,这与{}n a 是递增数列矛盾。
数列专题1教师版(复印4份)
数列专题1——基本概念,基本量,基本公式(2课时) 一体验浙江高考1.(2015,3)已知{〃〃}是等差数列,公差d不为零,前〃项和是S”,若〃广为,火成等比数列,则()A. a x d > 0, dS4 > 0B. a x d < 0, dS4 < 0C. a x d > 0, dS4 < 0D. a l d < 0, dS4 > 0【答案】B.【解析】・・♦等差数列{4} , %,% , 6成等比数列,J) 5(a∣ + 3d) = (”1 + 2d)(cι∣+ 7d)“∣ = — d ,2 5 2工S4=2(q+%) = 2(q+q+3d) = —d , Λ a i d = — J2 <0, dS4 =—d2<0,故选B.考点:1.等差数列的通项公式及其前〃项和;2.等比数列的概念2.(2012,7) 7.设S〃是公差为d(d≠O)的无穷等差数列{〃〃}的前〃项和,则下列命题错误的♦♦是A.若d<(),则数列{S〃}有最大项B.若数列{S“}有最大项,则dV0C.若数列{S“}是递增数列,则对任意的〃∈N*,均有S〃>0D.若对任意的〃wN*,均有S“>0,则数列{S〃}是递增数列【解析】选项C显然是错的,举出反例:一1, 0, 1, 2, 3,….满足数列{S.}是递增数列,但是S〃>()不成立.【答案】C3.(2012,13) 13.设公比为讥q>0)的等比数列{。
〃}的前〃项和为{S“}.若S2 = 3«, + 2 , S4 = 3a4 + 2 ,则q=.【解析】将S2 =3%+2, S4 =3q+2两个式子全部转化成用q ,4表示的式子.*即『+卬/ = 3"+ 2 3两式作差得:4∕+4∕=3αα(∕f,即:2qj-3 = 0,a1 + 44 + aq + a x q = 3qq + 2解之得:q or4=-1(舍去).【答案】I4.(2010, 3)设S〃为等比数列{。
(完整版)高考复习:数列的综合运用含解析答案(教师版+学生版)
数列的综合运用考点一等差数列与等比数列的综合问题例 1、在等比数列 { a n}( n∈N * )中, a1>1,公比 q>0 ,设 b n= log 2a n,且 b1+ b3+b5=6,b1b3b5= 0.(1)求证:数列{ b n} 是等差数列;(2) 求{ b n} 的前n 项和S n及 { a n} 的通项a n.考点二等差数列与等比数列的实质应用例 2、一位少儿园老师给班上k(k≥3) 个小朋友分糖果.她发现糖果盒中原有糖果数为a0,就先从别处抓 2 块糖加入盒中,而后把盒内糖果的1分给第一个小朋友;再从别处抓22 块糖加入盒中,而后把盒内糖果的13 分给第二个小朋友;,此后她老是在分给一个小朋友后,就从别处抓 2 块糖放入盒中,而后把盒内糖果的1分给第n+ 1n( n= 1,2,3,, k)个小朋友,分给第 n 个小朋友后 (未加入 2 块糖果前 )盒内剩下的糖果数为a n.(1)当 k= 3, a0= 12 时,分别求 a1, a2, a3;(2)请用 a n-1表示 a n,并令 b n=(n+1)a n,求数列{ b n}的通项公式;(3)能否存在正整数 k(k≥ 3)和非负整数 a0,使得数列{ a n} (n≤ k)成等差数列?假如存在,恳求出全部的 k 和 a0;假如不存在,请说明原因.考点三数列与不等式例 3、设数列 { a n} 的前 n 项和为 S n,已知 a1= a2= 1, b n= nS n+(n+2)a n,数列 { b n} 是公差为 d 的等差数列, n∈N * .(1) 求 d 的值;(2)求数列 { a n} 的通项公式;22n+ 1★(3) 求证: (a1a2· ·a n) ·(S1S2· ·S n)<n+1 n+2 .考点四数列与函数例 4、已知函数 f(x)=( x-1)2,g(x)= 10(x- 1),数列 { a n} 知足 a1= 2,(a n+1- a n)g(a n)+ f(a n)= 0,9b n=10(n+ 2)(a n- 1).(1)求证:数列 { a n- 1} 是等比数列;(2)当 n 取何值时, b n取最大值?并求出最大值;★(3)若 t m< t m+1对随意 m∈ N *恒成立,务实数t 的取值范围.b m b m+ 1数列的综合运用 ( 作业 )1. 已知等差数列{ a n } 的公差为- 2,且 a 1, a 3, a 4 成等比数列,则 a 20= ________.2.设等差数列 { a n } 的公差 d ≠0,a 1= 4d ,若 a k 是 a 1 与 a 2k 的等比中项, 则 k 的值为 ________.3.设 S n 是等比数列 { a n } 的前 n 项和, S 3, S 9, S 6 成等差数列,且 a 2+ a 5= 2a m ,则 m =________.4.某住所小区计划植树许多于100 棵,若第一天植2 棵,此后每日植树的棵数是前一天的 2 倍,则需要的最少天数n(n ∈ N * )等于 ________.5.某公司在第 1 年初购置一台价值为 120 万元的设施M ,M 的价值在使用过程中逐年减 少.从第 2 年到第 6 年,每年初 M 的价值比上年初减少 10 万元;从第 7 年开始,每年初 M的价值为上年初的75%. 则第 n 年初 M 的价值 a n = ________.6.植树节某班 20 名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中搁置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往 返所走的行程总和最小,这个最小值为________米.7.设数列 { a } 中,若 a= a + a*),则称数列 { a } 为“凸数列”,已知数列 { b }(n ∈ Nnn +1nn +2nn为“凸数列”,且b 1= 1, b 2=- 2,则数列 { b n } 的前 2 013 项和为 ________.n2+n 的数列 { a n }1234 5n > a n + 1对 n ≥ 88.通项公式为 a = an,若知足 a <a <a < a < a ,且 a恒成立,则实数 a 的取值范围是 ________.9.将正偶数摆列以下表,此中第i 行第 j 个数表示为 a(i , j ∈ N ),比如 a = 18,若 aij*43ij= 2 014,则 i + j________.246810121416182010.三个互不相等的实数成等差数列,适合互换这三个数的地点后, 变为一个等比数列,则此等比数列的公比是 ________.11.设数列 { a n } 的前 n 项和为 S n,知足 a n+ S n= An2+ Bn+ 1(A≠ 0).(1) 若 a1=3, a2=9,求证数列 { a n-n} 是等比数列,并求数列{ a n} 的通项公式;24B- 1(2)已知数列 { a n} 是等差数列,求的值.A12.已知数列 { a n} 中,a1=2,a2= 4,a n+1= 3a n- 2a n-1(n≥ 2,n∈ N* ).(1) 证明数列 { a n+1- a n} 是等比数列,并求出数列{ a n } 的通项公式;2a n-1(2)记 b n=( n∈N * ),数列 { b n} 的前 n 项和为 S n,求使 S n>2 013 成立的 n 的最小值. a n13.已知数列{ a n} 的前n 项和为S n.(1) 若数列{ a n} 是等比数列,知足2a1+a3= 3a2,a3+ 2 是a2,a4的等差中项,求数列{ a n}的通项公式;(2)能否存在等差数列 { a n} ,使对随意 n∈N*,都有 a n·S n= 2n2(n+ 1)?若存在,恳求出全部知足条件的等差数列;若不存在,请说明原因.14.已知数列 { a n} 中, a1= 2,n∈ N*, a n> 0,数列 { a n} 的前 n 项和为 S n,且知足2.a n+1=S n+1+S n-2(1)求 { S n} 的通项公式.(2)设 { b k} 是数列 { S n} 中按从小到大次序构成的整数数列.①求 b3;②若存在 N(N∈N * ),当 n≤ N 时,使得在数列{ S n} 中,数列 { b k} 有且只有20 项,求 N 的取值范围.数列的综合运用考点一等差数列与等比数列的综合问题例 1、在等比数列 { a n}( n∈N * )中, a1>1,公比 q>0 ,设 b n= log 2a n,且 b1+ b3+b5=6,b1b3b5= 0.(1)求证:数列{ b n} 是等差数列;(2) 求{ b n} 的前n 项和S n及 { a n} 的通项a n.解: (1) 证明:∵b n= log 2a n,a n+1∴b n+1- b n= log 2a n= log 2q 为常数,∴数列{ b n} 为等差数列且公差2 d= log q.(2)设数列 { b n} 的公差为 d,∵b1+ b3+ b5= 6,∴b3= 2. ∵a1>1,∴b1= log 2a1>0.∵b1b3 b5= 0,∴b5= 0.b1+ 2d= 2,b1= 4,∴解得b + 4d=0,d=- 1.1n n- 1× (-1)=9n- n2n.∴S = 4n+22log2q=- 1,q=1 2,∵∴log2a1= 4, a = 16.1∴a n= 25-n(n∈N* ).考点二等差数列与等比数列的实质应用例 2、一位少儿园老师给班上k(k≥3) 个小朋友分糖果.她发现糖果盒中原有糖果数为a0,就先从别处抓 2 块糖加入盒中,而后把盒内糖果的12分给第一个小朋友;再从别处抓2 块糖加入盒中,而后把盒内糖果的1 分给第二个小朋友;,此后她老是在分给一个小朋友后,就3从别处抓 2 块糖放入盒中,而后把盒内糖果的1分给第n+ 1n( n= 1,2,3,, k)个小朋友,分给第 n 个小朋友后(未加入 2 块糖果前)盒内剩下的糖果数为a n.(1) 当k= 3, a0= 12 时,分别求a1, a2, a3;(2)请用 a n-1表示 a n,并令 b n=(n+1)a n,求数列{ b n}的通项公式;(3)能否存在正整数 k(k≥ 3)和非负整数 a0,使得数列{ a n} (n≤ k)成等差数列?假如存在,恳求出全部的 k 和 a0;假如不存在,请说明原因.解: (1)当 k= 3, a0=12 时,1a1= (a0+ 2)-2(a0+2) =7,1a2= (a1+ 2)-3(a1+2) =6,1a3= (a2+ 2)-4(a2+2) =6.(2)由题意知1n a n= (a n-1+2) -(a n-1+ 2)=n+ 1(a n-1+ 2),n+ 1即( n+ 1)a n= n(a n-1+ 2)= na n-1+ 2n.因为 b n= (n+ 1)a n,所以 b n- b n-1= 2n,b n-1- b n-2= 2n-2,b1- b0= 2.2+2n n累加得 b n- b0==n(n+1).2又 b0= a0,所以 b n=n( n+ 1)+ a0.a0(3) 由 b n= n(n+1)+ a0,得 a n= n+.n+ 1若存在正整数k(k≥ 3)和非负整数 a 0,使得数列 { a n}( n≤ k)成等差数列,则a1+ a3= 2a2,即(1 +a20)+3+a40= 2(2+a30 ),解得 a0= 0,当 a0= 0n=n,对随意正整数n时, a k(k≥ 3) ,有 { a }( n≤ k)成等差数列.[类题通法 ]解数列应用题的建模思路从实质出发,经过抽象归纳成立数学模型,经过对模型的分析,再返回实质中去,其思路框图为:考点三数列与不等式例 3、设数列 { a n } 的前 n 项和为 S n ,已知 a 1= a 2= 1, b n = nS n +(n +2)a n ,数列 { b n } 是公差为 d 的等差数列, n ∈N * .(1) 求 d 的值;(2) 求数列 { a n } 的通项公式;(3) 求证:22n +1(a 1a 2· ·a n ) ·(S 1S 2· ·S n )< n + 1 n + 2 .解: (1) 因为 a 1= a 2= 1,所以 b 1= S 1+ 3a 1=4, b 2= 2S 2+ 4a 2= 8,所以 d = b 2- b 1= 4.(2) 因为数列 { b n } 是等差数列,所以 b n = 4n , 所以 nS n + (n + 2)a n = 4n ,即 n + 2S n +n a n = 4.①n + 1当 n ≥ 2 时, S n -1+ a n - 1= 4. ② n - 1由①-②得 (S n)+ n + 2n + 1n -1n nn - 1- S a -a= 0.n - 1所以 a n + n + 2 n n + 1 n -1,即 a n = 1 nn =· .n - 1a n - 1 2n - 1则a 2= 1 2, a 3= 1 3, ,a n = 1 na 1 ··a n - 1· .2 1 a 2 2 2 2n - 1以上各式两边分别相乘,得a n=1·n.a 1 2n -1因为 a 1= 1,所以 a n =n.2n -1n + 2(3) 证明:因为 S n + n a n = 4, a n > 0, S n > 0,所以S n n +2 n S + n + 2n a= 2.nn· n a ≤2则 0< a n nn1 2 n1 2nn1× 2S ≤4·.所以 (a a · ·a ) ·(S S· ·S )≤4·.③n + 2n + 1 n +2因为 n = 1 时, S n n + 2≠ na,所以③式等号取不到.22 n +1则( a 1a 2· ·a n ) ·(S 1S 2· ·S n )< .n + 1 n + 2 [类题通法 ]数列与不等式相联合问题的办理方法解决数列与不等式的综合问题时,假如是证明题要灵巧选择不等式的证明方法,如比较法、综合法、剖析法、放缩法等;假如是解不等式问题要使用不等式的各样不一样解法,如列表法、因式分解法、穿根法等.总之解决这种问题把数列和不等式的知识奇妙联合起来综合办理就行了.考点四数列与函数例 4、已知函数 f(x)=( x -1)2 ,g(x)= 10(x - 1),数列 { a n } 知足 a 1= 2,(a n + 1- a n )g(a n )+ f(a n )= 0,9b n = 10(n + 2)(a n - 1).(1) 求证:数列 { a n - 1} 是等比数列;(2) 当 n 取何值时, b n 取最大值?并求出最大值;(3)若t m<t m +1对随意m ∈N * 恒成立,务实数 t 的取值范围.b m b m + 1解: (1) 证明:因为 (a n +1- a n )g( a n )+ f(a n )= 0,f(a n )= (a n -1) 2, g(a n )= 10(a n - 1),所以 10(a n+1- a n)(a n- 1)+ (a n- 1)2= 0,整理得 (a n- 1)[10( a n+1- a n)+ a n- 1]= 0,所以 a n= 1n+ 1nn-1=0② .①或 10(a- a )+ a由①得数列 { a n} 是各项为 1的常数列,而1n+ 1- 1)=a = 2,不合题意.由②整理得10(a9(a n- 1),又 a1- 1= 1,9所以 { a n- 1} 是首项为1,公比为10的等比数列.(2)由 (1)可知 a n- 1= ( 9)n-1, n∈N*,10所以 b n=109(n+ 2)(a n- 1)= (n+ 2)(109)n> 0,9 nb n+1n+ 3+ 11091所以b n=n+ 29 n=10(1+n+2).10当 n= 7 时,b= 1,即 b788=b ;b7当 n< 7 时,b n+1> 1,即 b n+1> b n;b nb当 n> 7 时,n+1< 1,即 b n+1nb n< b .所以当 n=7 或 8 时, b n获得最大值,最大值为8798 b=b =107.t m t m+11-10t<0.(*)<得 t m9 m+3(3) 由b m b m+1m+ 2由题意知, (*) 式对随意m∈N*恒成立.①当 t= 0时, (*) 式明显不行立,所以t= 0 不合题意;②当 t< 0时,由 1 -10t> 0可知 t m< 0(m∈N * ),m+29 m+ 3而当 m 为偶数时, t m > 0, 所以 t < 0 不合题意;③当 t > 0 时,由 t m > 0(m ∈N *)知,1-10t< 0,m + 2 9 m +39 m + 3所以 t >(m ∈N * ).10 m +29 m + 3令 h(m)=(m ∈N * ).10 m + 29 m + 4 9 m + 3因为 h(m + 1)- h(m)= -10 m + 3 10 m + 2 9< 0,=-10 m + 2 m + 3所以 h(1) > h(2)> h(3)> > h(m - 1)> h(m) ,6所以 h(m)的最大值为h(1) = 5.6所以实数 t 的取值范围是 (5,+ ∞ ).数列的综合运用 ( 作业 )1. 已知等差数列{ a n } 的公差为- 2,且 a 1, a 3, a 4 成等比数列,则 a 20= ____ -30____.分析: 设 {an} 的首项为 a ,则 a , a - 4, a - 6 成等比数列,则 (a - 4)2= a(a - 6),解得 a= 8.又公差 d =- 2,所以 a 20=a + 19d =8+ 19× (- 2)=- 30.2.设等差数列 { a n } 的公差 d ≠0,a 1= 4d ,若 a k 是 a 1 与 a 2k 的等比中项, 则 k 的值为 ________.分析:由条件知 a n = a 1+* 2(n - 1)d =4d + (n - 1)d = (n + 3)d ,即 a n = (n + 3)d(n ∈N ).又 a k =1 2k 22= 4d ·(2k + 3)d ,且 d ≠ 0,所以 (k + 3)2=4(2k + 3),即 k 2- 2k - 3=0,解a ·a ,所以 (k + 3) d得 k = 3 或 k =- 1(舍去 ).答案: 33.设 S 是等比数列n的前 n 项和, S , S , S 成等差数列,且a + a = 2a ,则 m =n39625m{ a }________.分析:设等比数列 { an}a1 1-q9a1 1- q3936得 2·=+的公比为 q,明显 q≠ 1.由 2S = S+ S1-q1- qa1 1- q611 4=2a1m-1,即,所以 2q9=q3+ q6,即 1+q3=2q625=2a m1- q.因为 a+ a,所以 a q+ a q q1+ q3= 2q m-2,所以 m- 2= 6,所以 m= 8.4.某住所小区计划植树许多于100 棵,若第一天植 2 棵,此后每日植树的棵数是前一天的 2 倍,则需要的最少天数n(n∈ N* )等于 ________.分析:设每日植树的棵数构成的数列为{ a n} ,由题意可知它是等比数列,且首项为2,公比为 2,2 1- 2n所以由题意可得≥ 100,即 2n≥ 51,1-2而 25= 32,26= 64,n∈N*,所以 n≥ 6.答案: 65.某公司在第 1 年初购置一台价值为120 万元的设施 M ,M 的价值在使用过程中逐年减少.从第 2 年到第 6 年,每年初 M 的价值比上年初减少 10 万元;从第7 年开始,每年初 M 的价值为上年初的75%. 则第 n 年初 M 的价值 a n= ________.分析:当 n≤ 6 时,数列 { a n } 是首项为120,公差为- 10 的等差数列,a n= 120- 10(n- 1)=130- 10n;当 n≥ 7 时,数列 { a n} 是以 a6为首项,34为公比的等比数列,又 a6= 70,所以 a n= 70×34n-6.130- 10n,n≤ 6,答案: a n=3-70×4n6, n≥ 76.植树节某班20 名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中搁置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往返所走的行程总和最小,这个最小值为________米.分析:当放在最左边坑时, 行程和为 2× (0+ 10+20++ 190);当放在左边第 2 个坑时,行程和为 2× (10+0+ 10+ 20+ + 180)(减少了 360 米 ) ;当放在左边第 3 个坑时,行程和为2× (20+ 10+ 0+ 10+ 20+ + 170)( 减少了 680 米 );挨次进行,明显当放在中间的第 10、11个坑时,行程和最小,为2× (90+ 80+ + 0+10+ 20+ + 100)= 2 000 米.7.设数列 { a } 中,若 a= a + a* ),则称数列 { a } 为“凸数列”,已知数列 { b }(n ∈ Nnn +1 nn +2nn为“凸数列”,且 b 1= 1, b 2=- 2,则数列 { b n } 的前 2 013 项和为 ________.分析: 由 “凸数列 ”的定义, 可知, b 1=1,b 2=- 2,b 3=- 3,b 4 =- 1,b 5= 2,b 6= 3,b 7= 1,b 8=- 2, ,故数列 { b n } 是周期为 6 的周期数列,又 b 1+ b 2+ b 3 + b 4+ b 5+ b 6= 0,故数列 { b n }的前 2013 2 013 1 23项和 S = b + b + b = 1- 2- 3=- 4.8.通项公式为 n 2+n 的数列 { a n } 12 345n> a n + 1 对 n ≥ 8 a = an,若知足 a <a <a < a < a ,且 a 恒成立,则实数 a 的取值范围是 ________.分析: 因为 a 1< a 2< a 3<a 4<a 5,即 a + 1<4a + 2<9a + 3< 16a + 4< 25a + 5,所以 a >- 1.9 因为 a n n + 1对 n ≥ 8 恒成立,即 an 2+ n > a(n + 1)2+ (n + 1),所以 a <-1> a因为 2n2n + 1+ 1≥ 17,所以-1 ≥-1112n + 117.要使得 a <- 2n +1对 n ≥8 恒成立,则 a<-17.1 1 综上,-9< a <- 17.11答案: (- 9,- 17)9.将正偶数摆列以下表,此中第i 行第 j 个数表示为 a ij (i , j ∈ N * ),比如 a 43= 18,若 a ij= 2 014,则 i + j________.2468101214161820分析: 正偶数数列 {2 n} ,则 a ij = 2 014 为正偶数数列的第 1 007 项,设 a ij 在第 i 行,前 ii i - 1i i + 1i i - 1< 1 007≤ i i +1-1 行共有2 个正偶数,前 i 行共有 2个正偶数,于是有2 2 ,i ∈N *,得 i =45,前 i - 1 行有 990 个数,则 a ij = 2 014 是第 45 行第 17 个数,即 j = 17,所以 i+ j = 62.10.三个互不相等的实数成等差数列,适合互换这三个数的地点后, 变为一个等比数列,则此等比数列的公比是________.分析: 设这三个数分别为 a - d , a , a + d(d ≠ 0),因为 d ≠ 0,所以 a - d , a ,a + d 或 a+ d ,a , a -d 不行能成等比数列.若a - d ,a + d ,a 或 a ,a + d ,a - d 成等比数列,则 (a +d)2= a(a - d),即 d =- 3a ,此时 q =a1或 q=a -3a=- =- 2;若 a ,a - d , a + d 或 aa - 3a 2 aa - 3aa+ d ,a - d ,a 成等比数列, 则 (a - d)2= a(a + d),即 d = 3a ,此时, q =a =- 2 或 q =a - 3a11=- 2.故 q =- 2 或- 2.nnnn2+Bn + 1(A ≠ 0).11. (2014 苏·州质检 )设数列 { a } 的前 n 项和为 S ,知足 a + S = An13, a 29,求证数列 { a n-n} 是等比数列,并求数列 n(1) 若 a =2= 4{ a } 的通项公式;(2) 已知数列 n是等差数列,求B - 1的值.{ a }A解: (1) 证明:分别令 n = 1,2,2a 1= A + B + 1,代入条件得2a 2+ a 1= 4A + 2B + 1.A = 1,又 a 1= 3, a 2 = 9,解得22 43B = 2.所以 a nn12+3①+ S = 2n 2n + 1,则 a n+1+ S n+1=1(n+1) 2+3(n+ 1)+ 1. ②22②-①得2a n+1- a n= n+ 2.1则 a n+1- (n+ 1)=2(a n- n).1≠ 0,因为 a1- 1=211所以数列 { a n- n} 是首项为2,公比为2的等比数列.11所以 a n- n=2n,则 a n= n+2n.(2) 因为数列 { a n} 是等差数列,所以设a n= dn+ c,则S n=n d+c+dn+c=dn2+c+dn.222所以 a n n d2+c+3d+ S =2n2 n+ c.d3d B-1所以 A=2, B= c+2, c= 1.所以A= 3.12.已知数列 { a n} 中,a1=2,a2= 4,a n+1= 3a n-2a n-1(n≥ 2,n∈ N *).(1) 证明数列{ a n+1- a n} 是等比数列,并求出数列{ a n } 的通项公式;2a n-1(2)记 b n=( n∈N * ),数列 { b n} 的前 n 项和为 S n,求使 S n>2 013 成立的 n 的最小值. a n解: (1) 证明∵a n+1= 3a n- 2a n-1(n≥ 2, n∈N* ),∴a n+1- a n= 2(a n- a n-1)(n≥ 2, n∈N *).∵a1= 2, a2= 4,∴a2- a1= 2≠ 0,∴a n- a n-1≠ 0(n≥ 2,n∈N* ) ,故数列 { a n+1- a n} 是首项为2,公比为 2 的等比数列,∴a n+1- a n= 2n,∴a n= ( a n- a n-1)+ (a n-1- a n-2)+ (a n-2- a n-3) ++(a2-a1)+a1=2n-1+2n-2+2n-3+ +21+ 2=2× 1-2n -1+ 2= 2n (n ≥ 2,n ∈N *),1- 2又 a 1= 2 也知足上式,∴ a n =2n ( n ∈N * ).2 a - 11 11(2) 由 (1)知 b n =n=2 1- a n = 2 1- 2n = 2- n -1( n ∈N *),a n21n1+ 11 +12+ + n11- 2n = 2n - 2 1- 1n1 1,∴S = 2n -2 22 -1= 2n -1 2 = 2n -2+ n-21- 2 由 S n >2 01311 2 015得, 2n - 2+ 2n -1>2 013,即 n +2n > 2 ,∵n ∈N *,∴n +1n 的值随 n 的增大而增大,2∴n 的最小值为 1 008.13. (2014 ·州模拟扬 )已知数列 { a n } 的前 n 项和为 S n .(1) 若数列 { a n } 是等比数列,知足 2a 1+a 3= 3a 2,a 3+ 2 是 a 2,a 4 的等差中项,求数列{ a n }的通项公式;(2) 能否存在等差数列 { a n } ,使对随意 n ∈N * ,都有 a n ·S n = 2n 2(n + 1)?若存在,恳求出全部知足条件的等差数列;若不存在,请说明原因.解: (1) 设等比数列 { a n } 的首项为 a 1 ,公比为 q ,2a 1+ a 3= 3a 2,依题意有a 2+ a 4= 2 a 3+ 2 ,a 1 2+ q 21 ①= 3a q ,即32+4.a 1q + q 1②= 2a q由①得 q 2- 3q + 2= 0,解得 q = 1 或 q = 2.当 q = 1 时,不合题意,舍去;当 q = 2 时,代入②得 a 1= 2,所以 a n = 2·2n - 1= 2n .(2) 假定存在知足条件的数列 { a n } ,设此数列的公差为d.法一: [a1+ (n- 1)d]n n-1= 2n2(n+ 1),a n+d12d2322312即2 n2+2a1d- d n +a1-2a1d+2d= 2n2+ 2n对任意 n ∈N*恒成立,则d22=2,3a1d- d2=2,22312a1-2a1d+2d= 0,解得d= 2,d=- 2,n或此时 a n= 2n=- 2n.a = 2 a =- 2.或 a11故存在等差数列{ a n } ,使对随意n∈N*,都有 a n·S n= 2n2(n+ 1),此中 a n=2n 或 a n=- 2n.法二:令 n= 1, a2= 4 得 a =±2,1121 2令 n= 2 得 a2-24= 0,+ a a①当 a1= 2 时, a2= 4 或 a2=- 6,若 a2= 4,则 d= 2, a n= 2n, S n= n(n+ 1),对随意 n∈N *,都有 a n·S n= 2n2 (n+ 1);若 a2=- 6,则 d=- 8,a3=- 14, S3=- 18,不知足 a3·S3= 2× 32× (3+ 1),舍去.②当 a1=- 2 时, a2=- 4 或 a2= 6,若 a2=- 4,则 d=- 2,a n=- 2n,S n=- n(n+ 1),对随意 n∈N*,都有 a n·S n= 2n2(n+1);若 a2= 6,则 d= 8, a3= 14, S3= 18,不知足 a3·S3= 2× 32× (3+ 1),舍去.综上所述,存在等差数列 { a n} ,使对随意 n∈N *,都有 a n·S n=2n2( n+ 1),此中 a n= 2n 或a n=- 2n.14.(2014 ·锡模拟无 )已知数列 { a n} 中,a1= 2,n∈N *,a n> 0,数列 { a n} 的前 n 项和为 S n,2且知足a n+1=S n+1+S n-2.(1)求 { S n} 的通项公式.(完好版)高考复习:数列的综合运用含分析答案(教师版+学生版)(2)设 { b k} 是数列 { S n} 中按从小到大次序构成的整数数列.①求 b3;②若存在 N(N∈N * ),当 n≤ N 时,使得在数列 { S n} 中,数列 { b k} 有且只有 20 项,求 N 的取值范围.解: (1) 因为 a n+1= S n+1-S n,所以 (S n+1- S n)( S n+1+ S n- 2)= 2,22即 S n+1n n+ 1n所以 (S n+1- 1)2- (S n- 1)2=2,且 (S1- 1)2= 1,所以 {( S n- 1)2} 是首项为 1,公差为 2 的等差数列,所以 S n= 1+2n- 1.(2)①当 n= 1 时, S1= 1+ 1=2= b1;当 n= 5 时, S5= 1+ 3=4= b2;当 n= 13 时, S13=1+ 5= 6= b3.②因为 2n- 1 是奇数, S n= 1+2n- 1为有理数,则 2n- 1=2k- 1,所以 n= 2k2- 2k+ 1.当 k= 20 时, n= 761;当 k= 21 时, n= 841.所以存在 N∈[761,840] (N∈N * ),当 n≤ N 时,使得在 { S n} 中,数列 { b k} 有且只有20 项.。
数列测试题及答案解析
数列测试题及答案解析一、单项选择题(每题3分,共30分)1. 数列{an}是等差数列,且a1=2,公差d=3,则a5的值为:A. 11B. 14C. 17D. 20答案:B2. 下列数列中,不是等比数列的是:A. 1, 2, 4, 8, ...B. 2, 4, 8, 16, ...C. 1, 1/2, 1/4, 1/8, ...D. 3, 6, 12, 24, ...答案:D3. 数列{bn}的通项公式为bn=2n-1,该数列的前n项和Sn为:A. n^2B. n^2 - 1C. 2^(n+1) - 1D. 2^(n+1) - 2答案:C4. 等差数列{an}中,若a2+a4=10,则a3的值为:A. 2B. 3C. 4D. 5答案:C5. 数列{cn}的前n项和为Tn,若Tn=n^2+n,则c1+c2+c3+...+c10的值为:A. 100B. 110C. 120D. 130答案:B6. 数列{dn}的前n项和为Sn,若Sn=n^2-n,则dn的通项公式为:A. 2n-1B. 2nC. n-1D. n答案:C7. 数列{en}中,e1=1,e2=2,且对于任意的n∈N*,有en+1/en=n+1,则e3的值为:A. 3B. 4C. 5D. 6答案:A8. 数列{fn}是等比数列,且f1=1,f3=8,则f2的值为:A. 2B. 4C. 8D. 16答案:B9. 数列{gn}中,g1=1,g2=3,且对于任意的n∈N*,有gn+1=2gn+1,则g3的值为:A. 7B. 9C. 11D. 13答案:A10. 数列{hn}的前n项和为Tn,若Tn=2^n-1,则hn的通项公式为:A. 2^(n-1)B. 2^nC. 2^(n-1) - 1D. 2^n - 1答案:A二、填空题(每题4分,共20分)11. 等差数列{an}中,若a1=3,d=2,则a10=________。
答案:1512. 数列{bn}的前n项和为Tn,若Tn=n^2+2n,则bn的通项公式为bn=________。
高中数学数列专题训练6套含答案
目录第一套:等比数列例题精讲第二套:等差等比数列基础试题一第三套:等差等比数列基础试题二第四套:等差等比数列提升试题一第五套:等差等比数列提升试题二第六套:数列的极限拓展等比数列·例题解析【例1】 已知S n 是数列{a n }的前n 项和,S n =p n (p ∈R ,n ∈N*),那么数列{a n }.[ ]A .是等比数列B .当p ≠0时是等比数列C .当p ≠0,p ≠1时是等比数列D .不是等比数列分析 由S n =p n (n ∈N*),有a 1=S 1=p ,并且当n ≥2时, a n =S n -S n-1=p n -p n-1=(p -1)p n-1但满足此条件的实数p 是不存在的,故本题应选D .说明 数列{a n }成等比数列的必要条件是a n ≠0(n ∈N*),还要注【例2】 已知等比数列1,x 1,x 2,…,x 2n ,2,求x 1·x 2·x 3·…·x 2n . 解 ∵1,x 1,x 2,…,x 2n ,2成等比数列,公比q ∴2=1·q 2n+1x 1x 2x 3...x 2n =q .q 2.q 3...q 2n =q 1+2+3+ (2)式;(2)已知a 3·a 4·a 5=8,求a 2a 3a 4a 5a 6的值.故-,因此数列成等比数列≠-≠a =(p 1)p {a }p 0p 10(p 1)p 2n n 1⇔--=-⎧⎨⎪⎪⎪⎩⎪⎪⎪--()()p pp p p n 212意对任∈,≥,都为同一常数是其定义规定的准确含义.n *n 2N a a nn -1=q2n(1+2n)2==+q n n n ()212【例3】 {a }(1)a =4a n 25等比数列中,已知,=-,求通项公12解 (1)a =a q q =5252-∴-12∴a 4=2【例4】 已知a >0,b >0且a ≠b ,在a ,b 之间插入n 个正数x 1,x 2,…,x n ,使得a ,x 1,x 2,…,x n ,b 成等比数列,求证明 设这n +2个数所成数列的公比为q ,则b=aq n+1【例5】 设a 、b 、c 、d 成等比数列,求证:(b -c)2+(c -a)2+(d -b)2=(a -d)2.证法一 ∵a 、b 、c 、d 成等比数列∴b 2=ac ,c 2=bd ,ad =bc∴左边=b 2-2bc +c 2+c 2-2ac +a 2+d 2-2bd +b 2 =2(b 2-ac)+2(c 2-bd)+(a 2-2bc +d 2) =a 2-2ad +d 2 =(a -d)2=右边证毕.证法二 ∵a 、b 、c 、d 成等比数列,设其公比为q ,则: b =aq ,c =aq 2,d=aq 3∴==-=∵·=··=a a q 4()()(2)a a a a a a a =8n 2n 2n 2n 4354234543----1212又==∴a a a a a a a a a a =a =322635423456452证…<.x x x a bn n 122+∴∴……<q b ax x x aqaq aq aqab a bn n n nn n ++====+1122122∴a b b c c d==∴左边=(aq -aq 2)2+(aq 2-a)2+(aq 3-aq)2 =a 2-2a 2q 3+a 2q 6 =(a -aq 3)2 =(a -d)2=右边证毕.说明 这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b 、c 的特点,走的是利用等比的条件消去左边式中的b 、c 的路子.证法二则是把a 、b 、c 、d 统一化成等比数列的基本元素a 、q 去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性.【例6】 求数列的通项公式:(1){a n }中,a 1=2,a n+1=3a n +2(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0 思路:转化为等比数列.∴{a n +1}是等比数列 ∴a n +1=3·3n-1 ∴a n =3n -1∴{a n+1-a n }是等比数列,即 a n+1-a n =(a 2-a 1)·2n-1=3·2n-1再注意到a 2-a 1=3,a 3-a 2=3·21,a 4-a 3=3·22,…,a n -a n-1=3·2n-2,这些等式相加,即可以得到说明 解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n +1}是等比数列,(2)中发现{a n+1-a n }是等比数列,这也是通常说的化归思想的一种体现.解 (1)a =3a 2a 1=3(a 1)n+1n n+1n +++⇒(2)a 3a 2a =0a a =2(a a )n+2n+1n n+2n+1n+1n -+--⇒a =3[1222]=3=3(21)n 2n-2n 1+++…+·-21211n ----证 ∵a 1、a 2、a 3、a 4均为不为零的实数∴上述方程的判别式Δ≥0,即又∵a 1、a 2、a 3为实数因而a 1、a 2、a 3成等比数列∴a 4即为等比数列a 1、a 2、a 3的公比.【例8】 若a 、b 、c 成等差数列,且a +1、b 、c 与a 、b 、c +2都成等比数列,求b 的值.解 设a 、b 、c 分别为b -d 、b 、b +d ,由已知b -d +1、b 、b +d 与b -d 、b 、b +d +2都成等比数列,有整理,得∴b +d=2b -2d 即b=3d 代入①,得9d 2=(3d -d +1)(3d +d) 9d 2=(2d +1)·4d 解之,得d=4或d=0(舍) ∴b=12【例7】 a a a a (a a )a 2a (a a )a a a =0a a a a 1234122242213422321234若实数、、、都不为零,且满足+-+++求证:、、成等比数列,且公比为.∴+-+++为实系数一元二次方程等式+-+++说明上述方程有实数根.(a a )x 2a (a a )x a a =0(a a )a 2a (a a )a a a =0a 122222132232122242213422324[2a (a a )]4(a a )(a a )=4(a a a )0(a a a )02132122222322213222132-+-++--≥∴-≤∴-≥必有-即(a a a )0a a a =0a =a a 2213222132213又∵a =2a 42()()()a a a a a a a a a a a a 1312222131213212++=++=b =(b d 1)(b d)b =(b d)(b d 2)22-++①-++②⎧⎨⎪⎩⎪b =b d b db =b d 2b 2d 222222-++-+-⎧⎨⎪⎩⎪【例9】 已知等差数列{a n }的公差和等比数列{b n }的公比都是d ,又知d ≠1,且a 4=b 4,a 10=b 10:(1)求a 1与d 的值; (2)b 16是不是{a n }中的项? 思路:运用通项公式列方程(2)∵b 16=b 1·d 15=-32b 1∴b 16=-32b 1=-32a 1,如果b 16是{a n }中的第k 项,则 -32a 1=a 1+(k -1)d ∴(k -1)d=-33a 1=33d∴k=34即b 16是{a n }中的第34项.解 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d解 (1)a =b a =b 3d =a d a 9d =a da (1d )=3d a (1d )=9d4410101131191319由++----⎧⎨⎩⇒⎧⎨⎪⎩⎪⇒⎧⎨⎪⎩⎪a ⇒⇒==-=-==-d d 2=063+-舍或∴d d a d d 1231331222()且+·--∴a =a 3d =22=b b =b d =2b =22b =a =2413441313113-【例10】 {a }b =(12)b b b =218b b b =18n n a n 123123设是等差数列,,已知++,,求等差数列的通项.∴·b =(12)b b =(12)(12)=(12)b n a 13a a +2d 2(a +d)221111+-()n d1解这个方程组,得∴a 1=-1,d=2或a 1=3,d=-2∴当a 1=-1,d=2时,a n =a 1+(n -1)d=2n -3 当a 1=3,d=2时,a n =a 1+(n -1)d=5-2n【例11】 三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.解法一 按等比数列设三个数,设原数列为a ,aq ,aq 2 由已知:a ,aq +4,aq 2成等差数列 即:2(aq +4)=a +aq 2①a ,aq +4,aq 2+32成等比数列 即:(aq +4)2=a(aq 2+32)解法二 按等差数列设三个数,设原数列为b -d ,b -4,b +d由已知:三个数成等比数列 即:(b -4)2=(b -d)(b +d)b -d ,b ,b +d +32成等比数列由,解得,解得,代入已知条件整理得+b b b =18b =18b =12b b b =18b b =14b b =1781232321231313b b b 123218++=⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎩⎪⎪b =2b =18b =18b =21313,或,⇒aq 2=4a +②①,②两式联立解得:或-∴这三数为:,,或,,.a =2q =3a =29q =52618⎧⎨⎩⎧⎨⎪⎩⎪-29109509⇒8b d =162-①即b 2=(b -d)(b +d +32)解法三 任意设三个未知数,设原数列为a 1,a 2,a 3 由已知:a 1,a 2,a 3成等比数列a 1,a 2+4,a 3成等差数列 得:2(a 2+4)=a 1+a 3②a 1,a 2+4,a 3+32成等比数列 得:(a 2+4)2=a 1(a 3+32)③说明 将三个成等差数列的数设为a -d ,a ,a +d ;将三个成简化计算过程的作用.【例12】 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.分析 本题有三种设未知数的方法方法一 设前三个数为a -d ,a ,a +d ,则第四个数由已知条⇒32b d 32d =02--②①、②两式联立,解得:或∴三数为,,或,,.b =269d =83b =10d =82618⎧⎨⎪⎪⎩⎪⎪⎧⎨⎩-29109509得:①a =a a 2213①、②、③式联立,解得:或a =29a =109a =509a =2a =6a =18123123-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎩⎪等比数列的数设为,,或,,是一种常用技巧,可起到a aq aq (a aq)2aq方法二 设后三个数为b ,bq ,bq 2,则第一个数由已知条件推得为2b -bq . 方法三 设第一个数与第二个数分别为x ,y ,则第三、第四个数依次为12-y ,16-x .由这三种设法可利用余下的条件列方程组解出相关的未知数,从而解出所求的四个数,所求四个数为:0,4,8,16或15,9,3,1.解法二 设后三个数为:b ,bq ,bq 2,则第一个数为:2b -bq所求四个数为:0,4,8,16或15,9,3,1.解法三 设四个数依次为x ,y ,12-y ,16-x .这四个数为0,4,8,16或15,9,3,1.【例13】 已知三个数成等差数列,其和为126;另外三个数成等比数列,把两个数列的对应项依次相加,分别得到85,76,84.求这两个数列.解 设成等差数列的三个数为b -d ,b ,b +d ,由已知,b -d +b +b +d=126 ∴b=42这三个数可写成42-d ,42,42+d .再设另三个数为a ,aq ,aq 2.由题设,得件可推得:()a d a+2解法一 a d a a d 设前三个数为-,,+,则第四个数为.()a d a+2依题意,有-+++a d =16a (a d)=12()a d a+⎧⎨⎪⎩⎪2解方程组得:或-a =4d =4a =9d =61122⎧⎨⎩⎧⎨⎩依题意有:-++2b bq bq =16b bq =122⎧⎨⎩解方程组得:或b =4q =2 b =9q =131122⎧⎨⎩⎧⎨⎪⎩⎪依题意有+-·--x (12y)=2yy (16x)=(12y)2⎧⎨⎩解方程组得:或x =0y =4x =15y =91122⎧⎨⎩⎧⎨⎩解这个方程组,得 a 1=17或a 2=68当a=17时,q=2,d=-26从而得到:成等比数列的三个数为17,34,68,此时成等差的三个数为68,42,16;或者成等比的三个数为68,34,17,此时成等差的三个数为17,42,67.【例14】 已知在数列{a n }中,a 1、a 2、a 3成等差数列,a 2、a 3、a 4成等比数列,a 3、a 4、a 5的倒数成等差数列,证明:a 1、a 3、a 5成等比数列.证明 由已知,有 2a 2=a 1+a 3①即 a 3(a 3+a 5)=a 5(a 1+a 3)所以a 1、a 3、a 5成等比数列.a 42d =85ap 42=76aq 42d =842+-+++⎧⎨⎪⎩⎪整理,得-①②+③a d =43aq =34aq d =422⎧⎨⎪⎩⎪当时,,a =68q =12d =25a =a a 3224·②③211435a a a =+由③,得·由①,得代入②,得··a =2a a a +a a =a +a 2a =a +a 243535213321323535a a a a +整理,得a =a (a +a )a +a 351235a a a =a a a a a =a a 323515353215++∴·【例15】已知(b-c)log m x+(c-a)log m y+(a-b)log m z=0.(1)设a,b,c依次成等差数列,且公差不为零,求证:x,y,z成等比数列.(2)设正数x,y,z依次成等比数列,且公比不为1,求证:a,b,c成等差数列.证明(1)∵a,b,c成等差数列,且公差d≠0∴b-c=a-b=-d,c-a=2d代入已知条件,得:-d(log m x-2log m y+log m z)=0∴log m x+log m z=2log m y∴y2=xz∵x,y,z均为正数∴x,y,z成等比数列(2)∵x,y,z成等比数列且公比q≠1∴y=xq,z=xq2代入已知条件得:(b-c)log m x+(c-a)log m xq+(a-b)log m xq2=0变形、整理得:(c+a-2b)log m q=0∵q≠1 ∴log m q≠0∴c+a-2b=0 即2b=a+c即a,b,c成等差数列高一数学数列练习【同步达纲练习】 一、选择题1.已知数列1,21,31,…,n1…,则其通项的表示为( ) A.{a n }B.{n 1}C. n1D.n2.已知数列{a n }中,a n =4n-13·2n+2,则50是其( )A.第3项B.第4项C.第5项D.不是这个数列的项3.已知数列的通项公式a n =2n-1,则2047是这个数列的( ) A.第10项 B.第11项 C.第12项 D.第13项 4.数列-1,58,-715,924,…的通项公式是( ) A.a n =(-1)n 122++n nnB.a n =(-1)n12)3(++n n nC.a n =(-1)n1222-+n nnD.a n =(-1)n12)2(++n n n5.在数列a 1,a 2,a 3,…,a n ,…的每相邻两项中插入3个数,使它们与原数列构成一个新数列,则新数列的第29项( )A.不是原数列的项B.是原数列的第7项C.是原数列的第8项D.是原数列的第9项6.已知数列的通项公式为a n =1213+-n n ,则a n 与a n+1的大小关系是( ) A.a n <a n+1 B.a n >a n+1C.a n =a n+1D.大小不能确定7.数列{a n }中,a n =-2n 2+29n+3,则此数列的最大项的值是( ) A.107B.108C.10881 D.1098.数列1,3,6,10,15,…的通项公式a n ,等于( ) A.n 2-(n-1) B.2)1(-n n C.2)1(+n n D.n 2-2n+2二、填空题1.数列-31,91,-271,…的一个通项公式是 .2.数列1,1,2,2,3,3,…的一个通项公式是 .3.数列1×3,2×4,3×5,…,n(n+2),…,问120是否是这个数列的项 .若是,120是第 项.4.已知数列{a n }满足a 1=1,a n+1=pa n +q ,且a 2=3,a 4=15,则p= ,q= .5.一个数列的前n 项之和是n n,则此数列的第4项为 .6.-1103,4203,-7403,10803,-131603,…的一个通项公式为 . 三、解答题1.已知数列{a n }的通项a n =)1(1+-n n n ,207、1207是不是这个数列的项?如果是,则是第几项?2.写出以下数列的一个通项公式.①-31,256,-499,274,-12115…; ②9,99,999,9999,99999,….3.已知下列数列{a n }的前n 项和S n ,求数列{a n }的通项公式.①S n =3+2n ; ②S n =2n 2+n+3【素质优化训练】1.已知数列的前4项如下,试写出下列各数列的一个通项公式:(1) 21,61,121,201; (2)-1,23,-45,87;(3)0.9,0.99,0.999,0.9999; (4)35,810,1517,2426.2.已知数列的通项公式为a n =-0.3n 2+2n+732,求它的数值最大的项.3.若数列{a n }由a 1=2,a n+1=a n +2n(n ≥1)确定,求通项公式a n .【生活实际运用】参加一次国际商贸洽谈会的国际友人居住在西安某大楼的不同楼层内,该大楼共有n 层,每层均住有参会人员.现要求每层指派一人,共n 人集中到第k 层开会,试问k 如何确定,能使n 位参加会议人员上、下楼梯所走路程总和最少?(假定相邻两层楼楼长都相等)【知识探究学习】某人从A 地到B 地乘坐出租车,有两种方案:第一种方案:利用起步价10元,每千米价为1.2元的汽车.第二种方案:租用起步价是8元,每千米价为4元的汽车.按出租车管理条例,在起步价内,不同型号车行驶的里程是相等的.则此人从A 地到B 地选择哪一种方案比较合适.解:设起步价内行驶里程为a 千米,A 地到B 地的距离是m 千米. 当m ≤a 时,选起步价8元的出租车比较合适. 当m >a 时,设m=a+x(x >0)乘坐起步价10元的出租车费用为P(x)元,乘坐起步价为8元的费用为Q(x)元, 则:P(x)=10+1.2x Q(x)=8+1.4x令P(x)=Q(x)得10+1.28+1.4x 解得x=10(千米) 此时两种出租车任选.当x >10时,P(x)-Q(x)=2-0.2x <0,故P(x)<Q(x) 此时选起步价为10元合适.当x <10时,P(x)-Q(x)=2-0.2x >0,故P(x)>Q(x) 此时选起步价为8元的出租车合适.参考答案:【同步达纲练习】一、1.C 2.B 3.B 4.D 5.C 6.A 7.B 8.C二、1.a n =nn3)1(- 2.a n =⎪⎪⎩⎪⎪⎨⎧+为偶数为奇数n n n n ,2,213.是,104.2或-3,1或65.2296.a n =(-1)n[(3n-2)+12103-∙n ] 三、1.207不是{a n }中的项,1207是{a n }中的第15项. 2.①a n =(-1)n2)12(3+n n ;②a n =10n-1.3.①a n =⎪⎩⎪⎨⎧≥=2)(n 21)(n 51-n ②a n =⎩⎨⎧≥-=2)(n 1n 41)(n 6。
教师考试数学卷及答案
教师考试数学卷及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 函数f(x) = 2x + 3的反函数是什么?A. f^(-1)(x) = (x - 3) / 2B. f^(-1)(x) = (x + 3) / 2C. f^(-1)(x) = (x - 2) / 3D. f^(-1)(x) = (x + 2) / 3答案:A4. 以下哪个选项是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = x^2 - 1答案:A5. 集合{1, 2, 3}和{2, 3, 4}的交集是什么?A. {1, 2, 3}B. {2, 3}C. {1, 3, 4}D. {1, 2, 4}答案:B6. 一个数列的前三项分别是1, 2, 4,从第四项开始,每一项都是前三项的和,那么这个数列的第五项是多少?A. 7B. 8C. 9D. 10答案:A7. 以下哪个选项是复数?A. 3 + 4iB. 5C. πD. -2答案:A8. 函数y = x^2 - 4x + 4的顶点坐标是什么?A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A9. 以下哪个选项是无理数?A. √2B. 0.5C. √4D. 3/4答案:A10. 一个圆的半径是5,那么它的周长是多少?A. 10πB. 15πC. 20πD. 25π答案:C二、填空题(每题4分,共20分)11. 一个等差数列的首项是2,公差是3,那么它的第五项是________。
答案:1712. 函数f(x) = sin(x)在区间[0, π]上的最大值是________。
答案:113. 一个正方体的体积是27立方厘米,那么它的边长是________。
高考数学数列复习 题集附答案
高考数学数列复习题集附答案高考数学数列复习题集附答案1. 数列基本概念数列是数学中重要的概念之一,在高考数学中也占有重要的地位。
数列是按照一定的规律排列的一系列数的集合。
在数列中,每个数称为该数列的项,而规律则决定了数列的特征。
在高考中,数列的考查形式多样,掌握数列的基本概念对于解题至关重要。
2. 等差数列等差数列是一种常见的数列形式,在解题中经常出现。
等差数列的特点是每一项与前一项之差都相等。
假设等差数列的首项为a₁,公差为d,第n项为aₙ,则数列的通项公式是aₙ = a₁ + (n-1)d。
在考试中,理解等差数列的通项公式以及应用等差数列的性质解题是必要的。
3. 等比数列等比数列是另一种常见的数列形式,也经常出现在高考数学试题中。
等比数列的特点是每一项与前一项之比都相等。
假设等比数列的首项为a₁,公比为q,第n项为aₙ,则数列的通项公式是aₙ = a₁ * q^(n-1)。
了解等比数列的通项公式、性质以及应用等比数列解题的方法对于解答高考试题非常关键。
4. 递推数列递推数列是数列中常见的一种类型,其中每一项通过前一项计算得出。
递推数列的求解常常需要列出前几项进行观察。
在解题时,可以通过观察数列的规律,推导出数列的通项公式,从而求解特定项。
练习题:1. 给定等差数列的首项a₁ = 3,公差d = 2,求该等差数列的第10项。
答:根据等差数列的通项公式,第10项的计算公式为 a₁₀ = a₁ + (n-1)d = 3 + (10-1)2 = 21。
2. 给定等比数列的首项a₁ = 2,公比q = 3,求该等比数列的第5项。
答:根据等比数列的通项公式,第5项的计算公式为 a₅ = a₁ *q^(n-1) = 2 * 3^(5-1) = 162。
3. 已知递推数列的前两项分别为a₁ = 1,a₂ = 2,且每一项都等于前两项之和,求该递推数列的第6项。
答:观察数列的前几项,发现每一项都等于前两项的和,即aₙ =aₙ₋₁ + aₙ₋₂。
新高考数学数列经典题型专题提升-第19讲 数列的取整问题(原卷版)
第19讲 数列的取整问题一、单选题1.(2021·全国·高三专题练习)设正项数列的前n 项和满足,记表示不超过x 的最大整数,.若数列的前n 项和为,则使得成立的n 的最小值为()A .1179B .1178C .2019D .20202.(2021·全国·高三专题练习)设[x ]表示不超过x 的最大整数,如[-3.14]=-4,[3.14]=3.已知数列{a n }满足:a 1=1,a n +1=a n +n +1(n ∈N *),则=()A .1B .2C .3D .43.(2021·江西省吉水县第二中学高一期中)高斯函数,也称为取整函数,即表示不超过x 的最大整数. 如: 已知正项数列的前项和为,且满足,则( )A .3B .14C .15D .164.(2021·江西·南昌市八一中学高一月考)对于实数,表示不超过的最大整数.已知数列的通项公式项和为,则( ).A .155B .167C .173D .1795.(2021·河南·高二月考(理))定义函数,其中表示不超过的最大整数,例如,,,,当时,的值域为,记集合中元素的个数为,数列的前项和为,则( )A .B .2C .D .6.(2021·四川射洪·模拟预测(文))定义函数,其中表示不超过的最大整数,例如:,,.当时,的值域为.记集合中元素的个数为,则{}n a n S ()2114n n S a =+[]x 212020n n a b ⎡⎤=+⎢⎥⎣⎦{}n b n T 2020n T ≥12320201111a a a a ⎡⎤++++⎢⎥⎣⎦ []x []x []2.32=,[]1.5 2.-=-{}n a n n S 112n n n S a a ⎛⎫=+ ⎪⎝⎭1264111S S S ⎡⎤++⋅⋅⋅+=⎢⎥⎣⎦1x []x x {}n a n a =n n S [][][]1250S S S +++=L ()[]f x x x ⎡⎤=⎣⎦[]x x []21.1-=-[]1.11=[]33=[)()0,x n n *∈∈N ()f x n A n A n a 111n a +⎧⎫⎨⎬-⎩⎭n n S 2021S =202110104040202120211011()[[]]f x x x =[]x x [1.3]1=[ 1.5]2-=-[2]2=*[))0,(x n n N ∈∈()f x n A n A n a的值为( )A .B .C .D .7.(2021·全国·高三月考(理))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设用表示不超过的最大整数,则称为高斯函数,也称取整函数.在数列中,记为不超过的最大整数,则称数列为的取整数列,设数列满足,,记数列的前项和为,则数列的前项和为( )A .B .C .D .8.(2021·浙江省杭州第二中学模拟预测)定义表示不超过的最大整数,若数列的通项公式为,则满足等式( )A .30B .29C .28D .279.(2021·全国·高三专题练习(理))已知各项均为正数的数列的前n 项和为,且,.若表示不超过x 的最大整数,,则数列的前2021项和()A .1010B .1011C .2021D .202210.(2021·全国·高三专题练习(文))已知数列满足,,其中表示不超过实数的最大整数,则下列说法正确的是()A .存在,使得B .是等差数列C .的个位数是4D .的个位数是311.(2021·青海西宁·一模(理))若是函数的极值点,数列2020211i ia =-∑40402021201920212019202020191010x =R []x x []y x={}n a []n a n a []{}n a {}n a {}n a 11a =1213n n a a +⎡⎤⎡⎤+⎢⎥⎢⎥⎣⎦⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦{}n a n n S 21211n n S S -+⎧⎫⎨⎬⎩⎭101050420215052021101020215042022[]x x {}n a 31n a n =-310125555a a a a ⎡⎤⎡⎤⎡⎤⎡⎤++++=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ {}n a n S 11a =()()1111n n n n a a a a ++-=+[]x 2(1)2n n n b S ⎡⎤+=⎢⎥⎣⎦{}n b 2021T ={}n a 11a =()1*N n a n +=∈⎢⎥⎣⎦[]x x *N n ∈132n n a -≤12n a ⎧⎫-⎨⎬⎩⎭2020a 2021a 1x =()()4312 1n n n f x a x a x a x n N *++=--+∈{}n a满足,,设,记表示不超过的最大整数.设,若不等式,对恒成立,则实数的最大值为( )A .B .C .D .12.(2021·全国·高三专题练习(理))已知函数(,),其中表示不超过的最大整数,如,,.定义是函数的值域中的元素个数,数列的前项和为,数列对均成立,则最小正整数的值为( )A .B .C .D .13.(2021·浙江·高三专题练习)如果,,,就称表示的整数部分,表示的小数部分.已知数列满足,,则等于( )A .B .C .D .二、多选题14.(2021·重庆南开中学高三月考)已知数列满足,,其中表示不超过实数的最大整数,则下列说法正确的是()A .存在,使得B .是等比数列C .的个位数是5D .的个位数是1三、填空题15.(2021·上海·华师大二附中高三月考)设数列满足,,,数列前n 项和为,且(且),若表示不超过x 的最大整数,数列的前n 项和为,则_____________.16.(2021·重庆·西南大学附中高三开学考试)设数列满足,,,数列前n11a =23a =31log n n b a+=[]x x 12231202020202020n n n S b b b b b b +⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦n S t ≥n N *∀∈t 2020201910101009()[[]]f x x x =1n x n <<+n ∈+N []x x [ 2.1]3-=-[3]3-=-[2.5]2=n a ()f x {}n a n n S 1110ni i mS =<∑n ∈+N m 17181920{}[]x x x =+[]x Z ∈{}01x ≤<[]x x {}x x {}n a 1a ={}12[]n n n a a a +=+20192018a a-2019201866{}n a 11a =()1n a n *+=∈⎢⎥⎣⎦N []x []x n *∈N 132n n a -≤12n a ⎧⎫-⎨⎬⎩⎭2020a 2021a {}n a 12a =26a =312a =n S 211131n n n n S S S S +-+-+=-+*n N ∈2n ≥[]x ()21n n n b a ⎡⎤+=⎢⎢⎥⎣⎦{}n b n T 2020T ={}n a 12a =26a =312a ={}n a项和为,且(且).若表示不超过x 的最大整数,,数列的前n 项和为,则的值为___________.17.(2021·江西省石城中学高一月考(文))已知正项数列的前项和为,且满足,则_______.(其中表少不超过的最大整数).18.(2021·江西省铜鼓中学高一月考(理))已知正项数列的前n 项和为,且,则不超过的最大整数是_____________.19.(2021·全国·高三专题练习(文))已知表示不超过的最大整数,例如:,在数列中,,记为数列的前项和,则 ___________.20.(2021·四川·石室中学一模(文))已知数列的前项和为,点在上,表示不超过的最大整数,则_______________________.21.(2021·全国全国·模拟预测)黎曼猜想由数学家波恩哈德·黎曼于1859年提出,是至今仍未解决的世界难题.黎曼猜想研究的是无穷级数,我们经常从无穷级数的部分和入手.已知正项数列的前项和为,且满足,则______(其中表示不超过的最大整数).22.(2021·上海·位育中学三模)已知正项等比数列中,,,用表示实数的小数部分,如,,记,则数列的前15项的和为______.四、双空题23.(2021·北京师大附中高一月考)定义函数,其中表示不超过x 的最大整数,例如:,, 当时,的值域为(1)____________.n S 211131n n n n S S S S +-+-+=-+n N ∈g 2n ≥[]x 2(1)n n n b a ⎡⎤+=⎢⎥⎣⎦{}n b n T 2022T {}n a n n S 112n n n S a a ⎛⎫=+ ⎪⎝⎭2132109111S S S S S S ⎡⎤+=⎢⎥+++⎣⎦[]x x {}n a n S 11()2n n na S a +=122025111S S S +++ []x x [2.3]2=[]1.52-=-{}n a []lg ,n a n n N +=∈n T {}n a n 2021T ={}n a n n S (),n n a y x =[]x x 122021202120212021222S S S ⎡⎤++⋯+=⎢⎥⎣⎦()1111123ss s sn s n ξ∞-===+++⋅⋅⋅∑1111123s s s s n +++⋅⋅⋅+{}n a n n S 112nn n S a a ⎛⎫=+ ⎪⎝⎭12100111S S S ⎡⎤++⋅⋅⋅+=⎢⎥⎣⎦[]x x {}n a 3123a a a =42563a ={}x x {}1.50.5={}2.40.4={}n n b a ={}n b 15S ()[[]]f x x x =[]x [1.3]1=[ 1.5]2-=-[2] 2.=*[))0,(x n n N ∈∈()f x .n A 7(2f =(2)集合中元素的个数为__________.24.(2021·福建·三明一中模拟预测)黎曼猜想由数学家波恩哈德∙黎曼于1859年提出,是至今仍未解决的世界难题.黎曼猜想研究的是无穷级数,我们经常从无穷级数的部分和入手.已知正项数列的前n 项和为﹐且满足,则__________,__________.(其中表示不超过x 的最大整数)25.(2021·广东珠海·高三月考)定义函数,其中表示不超过x 的最大整数,例如,,当时,的值域为,记集合中元素的个数为,则(1)_________;(2)_________.五、解答题26.(2021·河南·高三月考(文))已知公比大于的等比数列满足,,定义为不超过的最大整数,例如,,,,记在区间()上值域包含的元素个数为.(1)求数列和的通项公式;(2)求数列的前项和.27.(2021·福建·高三月考)等差数列中,,.(1)求的通项公式;(2) 设,求数列的前10项和,其中表示不超过的最大整数,如,.28.(2021·福建·泉州五中高二期中)已知函数的最小值为0,其中.(1)求的值(2)若对任意的,有恒成立,求实数的最小值;(3)记,为不超过的最大整数,求的值.29.(2021·广东南海·高三开学考试)已知数列的前项和,令,其中10A 1111()123ss s sn n nξ∞-===+++∑ 1111123s s s sn ++++ {}n a nS 11()2n n n a S a +=n S =12100111S S S ⎡⎤++=⎢⎥⎣⎦ []x ()][][f x x x =[]x [][][]1.31, 1.52,22=-=-=[)0,,N x n n *∈∈()f x n A n A n a 2a =211nk ka ==-∑1{}n a 5115a a -=2416a a ⋅=[]x x []1.31=[]1.52-=-[]22=()[]f x x =[)1,n n -*n ∈N n b {}n a {}n b {}n n a nb +n n S {}n a 344a a +=576a a +={}n a []n n b a ={}n b []x x []0.90=[]2.62=()()ln f x x x a =-+0a >a [)0,x ∈+∞2()f x kx ≤k 12ln(21)21nn i S n i ==-+-∑[]x x []n S {}n a n (1)2n n n S +=3log na nb ⎡⎤=⎣⎦[]x表示不超过的最大整数,,.(1)求;(2)求;(3)求数列的前项之和.30.(2021·全国·高二课时练习)已知各项均为正数的无穷数列的前项和为,且,.(1)求数列的通项公式;(2)记表示不超过的最大整数,如,. 令,求数列的前项和.31.(2021·浙江·模拟预测)已知数列满足,,数列满足,.(1)数列,的通项公式;(2)若,求使成立(表示不超过的最大整数)的最大整数的值.32.(2021·全国·高三专题练习(理))高斯函数中用表示不超过的最大整数,对应的为的小数部分,已知数列的前项和为,数列满足.已知函数在上单调递减.(1)若数列,其前项为,求.(2)若数列(即为的小数部分),求的最大值.33.(2021·广东汕头·三模)已知数列的前n 项和为,数列是首项为,公差为的等差数列,若表示不超过x 的最大整数,如,.(1)求数列的通项公式;(2)若,求数列的前2020项的和.34.(2021·全国·高三专题练习)已知各项均为正数的数列的前n 项和为,,x []0.90=83log 1⎡⎤=⎣⎦n a 100b {}n b ()*31m m N -∈{}n a n n S 11a =1(1)(1)n n nS n S n n +=+++*()N n ∈{}n a []x x [0.99]0=[3.01]3=n b ={}n b 5151T {}n a 112a =123n n a a ++={}nb 11b =()211n n nb n b n n +-+=+{}n a {}n b ()1n n n nc b b a +=-[][][][]1222021n c c c c +++⋅⋅⋅+≤[]n c n c n []x x {}[]x x x =-x n a n 112n-n b 2n n b n a =()22x x f x =[)4,+∞[]n n c b =n n S 10S {}n n d b =n d n b n d {}n a n S n S n ⎧⎫⎨⎬⎩⎭1214[]x []0.50=[]lg 4992={}n a []lg n n b a ={}n b {}n a n S 11a =.(1)求证;数列是等差数列,并求的通项公式;(2)若表示不超过的最大整数,如,,求证:.35.(2021·浙江·温岭中学高三月考)正项等差数列和等比数列{b n }满足.(1)求数列,的通项公式;(2)若数列,,求最大整数,使得.36.(2021·全国·高三专题练习)在①;②;③是与的等比中项,三个条件中任选一个,补充在下面问题中,并给出解答.问题:已知为公差不为零的等差数列,其前项和为为等比数列,其前项和为常数,,(1)求数列的通项公式;(2)令其中表示不超过的最大整数,求的值.注:如果选择多个条件分别解答,按第一个解答计分.37.(2021·全国·高三专题练习)已知等比数列的公比为,且,数列满足,.(1)求数列的通项公式.(2)规定:表示不超过的最大整数,如,.若,,记求的值,并指出相应的取值范围.)*,2n a n n =∈≥N {}n a []x x []122-=-,[]2,12=222121111n a a a ⎡⎤+++=⎢⎥⎣⎦ {}n a 1211221,22n n n a a a n a b b b +=+++=- {}n a {}n b ()()111n n n n n n b c b a b a ++-=--12n n S c c c =+++ 0n 020202021n S <3514a a +=428S =8a 5a 13a {}n a n {},n n S b n 2,nn T λλ=+11a b ={}{}n n a b ,[]lg n n c a =,[]x x 123100c c c c +++⋯+{}n a ()1λλ>11a ={}n b 11n n n b b a λ++-=-111b λ=-{}n b []x x []1.22-=-[]2.12=2λ=122n n c b n =+-()1232n n T c c c c n =+++⋅⋅⋅+≥2221n n n T T T ⎡⎤-+⎢⎥-⎣⎦n。
数列解答题基础50题(适合学困生,超基础)
1.(1)
(2)
【来源】河南省新未来2023届高三5月联考文科数学试题
【分析】(1)利用递推式得出 是以1为首项,3为公比的等比数列,求出 ,进而求解 即可.
(2)利用错位相减法求解数列前 项和即可.
【详解】(1)由 ,得 ,
又 , 是以1为首项,3为公比的等比数列,
, ,
即数列 的通项公式为 .
(1)求 的通项公式;
(2)求数列 的前 项和 .
12.在数列 中, , , .
(1)设 ,求证:数列 是等比数列;
(2)求数列 的前 项和 .
13.已知数列 的首项为 ,且满足 ,数列 满足 ,且 .
(1)求 , 的通项公式;
(2)设数列 的前n项和为 ,求 .
14.已知数列 是公比为2的等比数列, , , 成等差数列.
38.写出一个分别满足下列条件的数列 的通项公式:
(1)从第2项起,每一项都比它的前一项大2;
(2)各项均不为0,且从第二项起,每一项都是它的前一项的3倍.
39.设等差数列 的前n项和为 .
(1)已知 , ,求 ;
(2)已知 ,公差 ,求 .
40.记 为数列 的前 项和,且 .
(1)求 的通项公式;
(2)设 ,求数列 的前 项和 .
41.已知等差数列 的前三项依次为 ,4, ,前 项和为 ,且 .
(1)求 的通项公式及 的值;
(2)设数列 的通项 ,求证 是等比数列,并求 的前 项和 .
42.已知等比数列 的首项 ,公比 ,在 中每相邻两项之间都插入3个正数,使它们和原数列的数一起构成一个新的等比数列 .
(1)求 的通项公式及前 项和 ;
(2)设 ,求数列 的前 项和 .
全国卷数学数列 专题测试参考答案
数列 专题测试参考答案1.C【分析】根据条件求出数列的首项和公比后再求和即可.【详解】由题意,设数列{}n a 的公比为0q >,则11312182a q a a q q ==⎧⎧⇒⎨⎨==⎩⎩, 所以771(12)12712S ⨯-==-. 故选:C 2.D【分析】设等比数列{}n a 的公比为q ,由35212a a q ⨯==,求得公比即可. 【详解】设等比数列{}n a 的公比为q ,则35212a a q ⨯==, 解得38q =,即2q ,所以3581842a a q =⨯⨯==,故选:D. 3.B【分析】根据等比数列通项公式列方程计算即可. 【详解】等比数列{}n a 中,34a =,2748a a a =,则212731148a q a q a q ⎧=⎨=⎩,解得212,2q a ==, 故选:B . 4.C【解析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列,有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=.故选:C【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和; (4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 5.D【分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+, ∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-,当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++,()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.【点睛】本题主要考查等差数列的性质应用,属于基础题. 6.C【分析】由2(1)()nn S a n n N n*=+-∈得{}n a 为等差数列,求得()43n a n n N *=-∈,得1111132(1)21n S n n n n n ⎛⎫==- ⎪+++⎝⎭利用裂项相消求解即可【详解】由()2(1)nn S a n n N n*=+-∈得2(1)n n S na n n =--, 当2n ≥时,11(1)4(1)n n n n n a S S na n a n --=-=----,整理得14n n a a --=, 所以{}n a 是公差为4的等差数列,又11a =,所以()43n a n n N *=-∈,从而()2133222(1)2n n n a a S n n n n n n ++=+=+=+, 所以1111132(1)21n S n n n n n ⎛⎫==- ⎪+++⎝⎭,数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和115121111S ⎛⎫=-= ⎪⎝⎭.故选C .【点睛】本题考查递推关系求通项公式,等差数列的通项及求和公式,裂项相消求和,熟记公式,准确得{}n a 是等差数列是本题关键,是中档题 7.C【解析】由等差数列性质求出m a ,由等差数列前n 项可求得m . 【详解】∴{}n a 是等差数列,∴11315m m m m a a a a -+++==,5m a =,∴1()(15)2722m m m a a m S ++===,9m =. 故选:C .【点睛】本题考查等差数列的性质与前n 项公式,掌握等差数列的性质是解题基础. 8.B【解析】设其公比为q ,由等比数列通项公式得34a =,进而得2333221a a a q q ++=,解得2q =±或12q =±,再根据数列单调性即可得2q ,进而得12n na【详解】{}n a 为等比数列,设其公比为q ,()3362312611364a a a a q a q a ∴====,则34a =,13521a a a ∴++=,2333221a a a q q∴++=, 即2244421q q++=, 解得2q =±或12q =±, 又{}n a 各项为正且递增,2q ∴=,3313422n n n n a a q ---∴==⨯=.故选:B .【点睛】本题解题的关键是先根据题意得34a =,进而将13521a a a ++=转化为2333221a a a q q++=求q ,考查运算求解能力,是中档题. 9.C【分析】当n=1时,求出a 1;当n ≥2时,an=Sn -Sn -1=(an -1)-(an -1-1)=an -an -1=an -1(a -1) 然后对a -1是否为0讨论即可 【详解】当n=1时,a 1=S 1=a -1;当n ≥2时,an=Sn -Sn -1=(an -1)-(an -1-1)=an -an -1=an -1(a -1).当a -1=0,即a=1时,该数列为等差数列,当a ≠1时,该数列为等比数列. 故选:C【点睛】等比数列各项都不等于0.10.B【分析】先求出1,211,2n m n n k a m n n k +-=-⎧=⎨-++=⎩()*k N ∈,由此容易判断∴∴,对于∴,当n 为偶数时,(1)2n n n S +=,当n 为奇数时,(1)(2)2n n n S m -+=+,若存在*k N ∈,使得155k k S S +==,则55k S =,且10k a +=,由此可分k 为奇数和偶数讨论即可判断. 【详解】解:因为121++=+n n a a n ,所以1212321n n n n a a n a a n ++++=+⎧⎨+=+⎩,则22n n a a +-=,所以数列{}2n a 、{}21n a -为等差数列,且公差为2, 由123a a +=,1a m =得,23a m =-,所以1,211,2n m n n k a m n n k+-=-⎧=⎨-++=⎩()*k N ∈, ∴当1m =时,n a n =,所以11n n a a +-=,所以{}n a 为等差数列,∴对;∴若存在实数m ,使得{}n a 为等比数列,则21322243a a a a a a ⎧⨯=⎨⨯=⎩,即()()()()()2223235m m m m m m ⎧+=-⎪⎨+=--⎪⎩, 因为方程组无解,所以{}n a 不可能为等比数列,∴错; ∴当n 为偶数时,(1)2n n n S +=,当n 为奇数时,11(1)(2)2n n m n n n S S m -++-=-+=+,若存在*k N ∈,使得155k k S S +==,所以55k S =,且10k a +=,当k 为偶数时,(1)552110k k m k +⎧=⎪⎨⎪++-=⎩,解得1010m k =-⎧⎨=⎩;当k 为奇数时,(1)(2)552110k k m m k -+⎧+=⎪⎨⎪-+++=⎩,解得119m k =⎧⎨=⎩,所以m 不唯一,∴错. 故选:B . 11.A【分析】由n S 与n a 的关系1(1)n n n a S S n -=->化简即可求出n S 及n a ,可得n b ,分析单调性即可求解. 【详解】∴1(1)n n n a S S n -=->,∴1n n n S a S --=,则21(1)n S n -=-,即2*(N )n S n n =∈, ∴22(1)21n a n n n =--=-. 易知0n b >,∴212+1+14422+1n n n n b b n n -==,(),244142()(1)1n n b n b n n +∴==++1>时, 1n >, ∴当13n ≤<时, 1n n b b +>, 当3n ≥时,1n n b b +<, 又23132,281b b ==, ∴当3n =时, n b 有最小值. 故选:A【点睛】本题主要考查了数列n S 与n a 的关系,数列的单调性,属于中档题. 12.C【分析】依次判断每个选项的正误,得到答案. 【详解】111111112n n n n n n n n na a a a a a a a a +++++=+∴-+-=即111()(1)n n n n n a a a a a ++--= 当01n a <<时,1110n na a +-<,故1n n a a +<,A 错误当1n a >时,1110n na a +->,故1n n a a +>,B 错误对于D 选项,当1n =时,12a =,212111922a a a a +=+=<D 错误 用数学归纳法证明选项C 易知0n a >恒成立 当1n =时,21211123a a a a +=+=> 假设当n k =时成立,111k k a a +++>2121122k k a k a +++>+ 当1n k =+时:222222111122211111112443426k k k k k k k k k a a a a a k a a a a +++++++++⎛⎫⎛⎫+=+=++=+++>+ ⎪ ⎪⎝⎭⎝⎭即221k k a a +++>成立故111n n a a +++> 故答案选C【点睛】本题考查了数列的单调性,数学归纳法,综合性强,技巧高,意在考查学生对于数学知识,方法,性质的灵活运用. 13.1213【分析】根据等比数列的前n 项和公式,计算即可求得答案.【详解】由题意可得,551(13)1213133S -==- , 故答案为:121314.10【分析】由190S >,200S <,结合等差数列的前n 项和公式得到第10项大于0,第10项和第11项的和小于0,得到第10项大于0,这样前10项的和最大. 【详解】由190S >,200S <,可知{}n a 为递减的等差数列, 设其公差为d ,则0d <, 由1191919()02a a S +=>,2012010()0S a a =+<, 得1191020a a a +=>,12010110a a a a +=+<, 所以100a >,110a <,所以使n S 取得最大值的n 为10, 故答案为:10.【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质: (1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+; (2)()1,1,2,,2k n k n n a a S k n +-+== 且()2121n n S n a -=- ;(3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列;(4)232,,,n n n n n S S S S S -- 为等差数列.15.27n ⨯【分析】根据1个月后的老鼠为原来雌雄两只老鼠和新出生的小鼠有(16)227+⨯=⨯只,类似的方法得到2个月后有22(16)727+⨯=⨯只,3个月后有327⨯只,根据以上分析进行归纳推理即可得n 个月后老鼠的只数n a .【详解】由题意可得1个月后的老鼠的只数1(16)227a =+⨯=⨯, 2个月后老鼠的只数222(16)727a =+⨯=⨯, 3个月后老鼠的只数2332(16)727a =+⨯=⨯…, n 个月后老鼠的只数27n n a =⨯. 故答案为:27n ⨯.【点睛】本题考查利用不完全归纳法求数列的通项公式,考查运算求解能力.16.20212##1010.5 【分析】根据1211121n nS S S n ++⋅⋅⋅+=+可求n S ,从而可求n a .易验证()()11f x f x +-=,故可采用倒序相加法求题设式子的值.【详解】∴1211121n n S S S n ++⋅⋅⋅+=+∴, ∴当2n ≥时,()12121111n n S S S n--++⋅⋅⋅+=∴, ∴-∴得()121n S n n =+,∴()()122n n n S n +=≥; 当1n =时,111S =,∴11S =,此时()12n n n S +=仍然成立,∴()()*12n n n S n +=∈N .∴当n =1时,111a S ==; 当2n ≥时,()()11122n n n n n n na S S n -+-=-=-=, 当n =1时,上式也成立,故n a n =()*n ∈N .由于()()()111cos πcos ππ122f x f x x x +-=++-+=,设32021122022202220222022a a a a S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 12320212022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭则1202122020202112202220222022202220222022S f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦2021=, ∴20212S =. 故答案为:20212. 【点睛】本题关键是熟练掌握利用前n 项和与通项公式的关系求得n a ,观察猜测并发现()()1f x f x +-为定值,从而利用倒序相加法即可求和. 17.(1)2n a n =-;(2)1n nT n =+. 【解析】(1)由30S =,55S =-,可得113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩求出1,a d ,从而可得{}n a 的通项公式;(2)由(1)可得n b n =,从而可得11111(1)1n n b b n n n n +==-++,然后利用裂项相消求和法可求得n T 【详解】解:(1)设等差数列{}n a 的公差为d , 因为30S =,55S =-.所以113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩,化简得11021a d a d +=⎧⎨+=-⎩,解得111a d =⎧⎨=-⎩,所以1(1)1(1)(1)2n a a n d n n =+-=+--=-, (2)由(1)可知2(2)2n n b a n n =-+=--+=, 所以11111(1)1n n b b n n n n +==-++, 所以111111(1)()()1223111n nT n n n n =-+-+⋅⋅⋅+-=-=+++ 【点睛】此题考查等差数列前n 项和的基本量计算,考查裂项相消求和法的应用,考查计算能力,属于基础题18.(1)243a =,387a =,41615a =;(2)221nn na =-. 【分析】(1)由已知可得:121+=+nn n a a a ,代入12a =,即可求得2a ,3a ,4a 的值;(2)由{}n a 前4项的值即可归纳. 【详解】(1)因为点()1,n n a a +在函数()21xf x x=+的图象上, 所以121+=+nn na a a , 又12a =,所以1212413a a a ==+, 2324228341713a a a ⨯===++, 343822167811517a a a ⨯===++. (2)由(1)中数列{}n a 的前4项的规律, 可归纳出数列{}n a 的一个通项公式为221nn na =-. 19.(1)21n a n =+;(2)21n nT n =+. 【分析】(1)设等差数列{}n a 的公差为d ,依题意得到方程组,解得即可; (2)由(1)可得()11112122121n n b a n n n ⎛⎫==- ⎪--+⎝⎭,再利用裂项相消法求和即可;【详解】解:(1)设等差数列{}n a 的公差为d ,由题意得2515312516551035a a a d S a a d +=+=⎧⎨==+=⎩,解得13,2,a d =⎧⎨=⎩∴()32121n a n n =+-=+. (2)由(1)得()()()1111121212122121n n b a n n n n n ⎛⎫===- ⎪--+-+⎝⎭121111111213352121n n T b b b n n ⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+- ⎪-+⎝⎭111212121n n n ⎛⎫=-= ⎪++⎝⎭. 【点睛】本题考查等差数列通项公式的计算以及裂项相消法求和,属于中档题.20.(1)3nn a =,1332n n S +-=;(2)证明见解析.【分析】(1)根据等比数列的通项公式结合前n 项和公式,即可求得结果; (2)利用错位相减法求得{}n b 的前n 项和,再证明即可. (1)因为点()1,n n a a +在直线3y x =上,所以13n na a +=,又13a =, 故数列{n a }是以3为公比,3为首项的等比数列,所以3nn a =,()31313n n S -==-1332n +-. (2)由题可知3n nnb =,记12n n T b b b =+++,所以212333n nn T =+++∴ ∴13⨯,得2311123333n n n T +=+++∴∴-∴,得2111211111132133333233223n n n n n n n n nT ++++⎛⎫=+++-=--=- ⎪⨯⎝⎭,故332443n n n T +=-⨯,又32043nn+>⨯,故34n T <,即证. 21.(1)2302x y ππ---=;(2)证明见解析.【分析】(1)当2a =时,求得()sin f x x x '=-,得到()232f ππ=-,()f ππ'=,结合直线的点斜式,即可求解;(2)求得()[]sin ,0,22af x x x x '=-∈,令()sin 2a x x g x =-,得到()cos 2a x x g '=-,当2a ≥时,得到()f x 为增函数,得到()()2cos20f x f =<≤;当[)1,2a ∈时,存在()00,2x ∈,使()00cos 02ax g x =-=',结合函数()g x 的单调性得出()f x 单调性,得到()0f x <.【详解】(1)当2a =时,函数()212cos 2f x x x =-+, 可得()sin f x x x '=-,则()232f ππ=-,()f ππ'=,所以曲线()y f x =在点()(),f ππ处的切线方程为()232y x πππ-+=-, 即2302x y ππ---=.(2)由函数()211cos 4f x a x x ⎛⎫=-+ ⎪⎝⎭,可得()[]sin ,0,22a f x x x x '=-∈,令()sin 2a x x g x =-,则()cos 2ax x g '=-, 当2a ≥时,()0g x '≥,所以()g x 为增函数,()()00g x g ≥=, 所以()0f x '≥,()f x 为增函数,所以()()2cos20f x f =<≤.当[)1,2a ∈时,1,122a ⎡⎫∈⎪⎢⎣⎭,又因为[]0,2x ∈,所以[]cos cos2,1x ∈,所以存在()00,2x ∈,使0cos 2ax =,即()00cos 02a x g x =-=',所以函数()g x 在[)00,x 上为减函数,在()02x ,上为增函数, 因为()00g =,所以()00g x <,而()2sin 20g a =->, 所以存在()10,2x x ∈,使()10g x =, 当()10,x x ∈时,()0g x <,即()0f x '<; 当()1,2x x ∈时,()0g x >,即()0f x '>,所以()f x 在()10,x 上单调递减,在()1,2x 上单调递增, 又因为()010f a =-≤,()2cos20f =<,所以()0f x <. 综上可得,当1a ≥时,对任意[]0,2x ∈,都有()0f x ≤. 【点睛】利用导数证明不等式问题:(1)直接构造法:证明不等式()()()()()f x g x f x g x ><转化为证明()()0f x g x ->()()(0)f x g x -<,进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.22.(1)121b =(2)6213n n b -=,*n ∈N【分析】(1)根据题意这6项中包含2个1或5个1,其余均为2,这样的数列共有256621C C +=个,即可得解;(2)这6n 项中包含2个1或5个1……或61n -个1,其余均为2,所以2561666n n n n n b C C C -=+++,结合6nS 除以3余数为2,0的数列1a ,2a ,…,6n a 的个数构成的数列分别为{}n c ,n d ,根据规律猜想6213nn b -=,并用数学归纳法证明.【详解】解:(1)因为前六项的和除以3余数为1 所以这6项中包含2个1或5个1,其余均为2,所以这样的数列共有256621C C +=个,故121b =(2)因为1a ,2a ,…,6n a 和6n S 除以3余数为1,所以这6n 项中包含2个1或5个1……或61n -个1,其余均为2,所以2561666n n n n n b C C C -=+++,设6n S 除以3余数为2,0的数列1a ,2a ,…,6n a 的个数构成的数列分别为{}n c ,n d同理,1462666n n n n nc C C C -=+++,036666nn n n n d C C C =+++∴146261642666666n n n n n n n n n n n c C C C C C C b ---=++⋯+=++⋯+=∴66222n n n n n n n b c d d b ++=⇒=- 结合(1)猜想6213n n b -=,*n ∈N下面用数学归纳法证明当1n =时,6121213b -==,成立 假设当n k =时,有6213k k b -=,*k ∈N 成立,且6213k k k c b -==,6223k k d += 则当1n k =+时,数列共()66k +项,分两步看,第一步先看前6k 项,前6k 项的和除以3余数为1,2,0的数列的个数分别为k b ,k c ,k d ,第二步看后6项,最后6项的和除以3众数为0,2,1的数列的个数分别为22,21,21∴6666(1)1212122212221212221213333k k k k k k k k b b c d ++--+-=⨯+⨯+⨯=⨯+⨯+⨯=所以当1n k =+时,猜想也成立 综上,6213n n b -=,*n ∈N【点睛】此题考查数列相关新定义问题,关键在于读懂题意,建立恰当模型求解,涉及排列组合问题,利用数学归纳法证明猜想,综合性强,难度较大.。
专题13 数列(解答题)(教师版)
专题13 数列(解答题)1.【2022年全国甲卷】记S n为数列{a n}的前n项和.已知2S nn+n=2a n+1.(1)证明:{a n}是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【答案】(1)证明见解析;(2)−78.【解析】【分析】(1)依题意可得2S n+n2=2na n+n,根据a n={S1,n=1S n−S n−1,n≥2,作差即可得到a n−a n−1=1,从而得证;(2)由(1)及等比中项的性质求出a1,即可得到{a n}的通项公式与前n项和,再根据二次函数的性质计算可得.(1)解:因为2S nn+n=2a n+1,即2S n+n2=2na n+n①,当n≥2时,2S n−1+(n−1)2=2(n−1)a n−1+(n−1)②,①−②得,2S n+n2−2S n−1−(n−1)2=2na n+n−2(n−1)a n−1−(n−1),即2a n+2n−1=2na n−2(n−1)a n−1+1,即2(n−1)a n−2(n−1)a n−1=2(n−1),所以a n−a n−1=1,n≥2且n∈N*,所以{a n}是以1为公差的等差数列.(2)解:由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即(a1+6)2=(a1+3)⋅(a1+8),解得a1=−12,所以a n=n−13,所以S n=−12n+n(n−1)2=12n2−252n=12(n−252)2−6258,所以,当n=12或n=13时(S n)min=−78.2.【2022年新高考1卷】记S n为数列{a n}的前n项和,已知a1=1,{S na n }是公差为13的等差数列.(1)求{a n }的通项公式; (2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n (n+1)2(2)见解析 【解析】 【分析】(1)利用等差数列的通项公式求得S na n=1+13(n −1)=n+23,得到S n =(n+2)a n3,利用和与项的关系得到当n ≥2时,a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,进而得:a nan−1=n+1n−1,利用累乘法求得a n =n (n+1)2,检验对于n =1也成立,得到{a n }的通项公式a n =n (n+1)2;(2)由(1)的结论,利用裂项求和法得到1a 1+1a 2+⋯+1a n=2(1−1n+1),进而证得.(1)∵a 1=1,∴S 1=a 1=1,∴S1a 1=1,又∵{S na n}是公差为13的等差数列,∴S na n=1+13(n −1)=n+23,∴S n =(n+2)a n3,∴当n ≥2时,S n−1=(n+1)a n−13,∴a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,整理得:(n −1)a n =(n +1)a n−1, 即a nan−1=n+1n−1,∴a n =a 1×a2a 1×a3a 2×…×an−1a n−2×ana n−1=1×32×43×…×n n−2×n+1n−1=n (n+1)2,显然对于n =1也成立, ∴{a n }的通项公式a n =n (n+1)2;(2)1a n=2n (n+1)=2(1n −1n+1),∴1a 1+1a 2+⋯+1a n=2[(1−12)+(12−13)+⋯(1n −1n+1)]=2(1−1n+1)<23.【2022年新高考2卷】已知{a n }为等差数列,{b n }是公比为2的等比数列,且a 2−b 2=a 3−b 3=b 4−a 4. (1)证明:a 1=b 1;(2)求集合{k |b k =a m +a 1,1≤m ≤500}中元素个数. 【答案】(1)证明见解析; (2)9. 【解析】 【分析】(1)设数列{a n }的公差为d ,根据题意列出方程组即可证出; (2)根据题意化简可得m =2k−2,即可解出. (1)设数列{a n }的公差为d ,所以,{a 1+d −2b 1=a 1+2d −4b 1a 1+d −2b 1=8b 1−(a 1+3d ) ,即可解得,b 1=a 1=d2,所以原命题得证. (2)由(1)知,b 1=a 1=d2,所以b k =a m +a 1⇔b 1×2k−1=a 1+(m −1)d +a 1,即2k−1=2m ,亦即m =2k−2∈[1,500],解得2≤k ≤10,所以满足等式的解k =2,3,4,⋯,10,故集合{k |b k =a m +a 1,1≤m ≤500}中的元素个数为10−2+1=9.4.【2021年甲卷文科】记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列{}n S 是等差数列,证明:{}n a 是等差数列. 【答案】证明见解析. 【解析】 【分析】21S S {}n S 的公差d ,进一步写出{}n S 的通项,从而求出{}n a 的通项公式,最终得证. 【详解】∵数列{}n S 是等差数列,设公差为d 212111a a a a S S +111(1)n S a n a a n =-,()n *∈N∴12n S a n =,()n *∈N∴当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=- 当1n =时,11121=a a a ⨯-,满足112n a a n a =-, ∴{}n a 的通项公式为112n a a n a =-,()n *∈N ∴()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦ ∴{}n a 是等差数列. 【点睛】在利用1n n n a S S -=-求通项公式时一定要讨论1n =的特殊情况.5.【2021年甲卷理科】已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:②数列{}n S 是等差数列;③213a a =. 注:若选择不同的组合分别解答,则按第一个解答计分. 【答案】证明过程见解析 【解析】 【分析】n S ,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.n S 选②③作条件证明①时,n S an b =+,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论. 【详解】选①②作条件证明③:[方法一]:待定系数法+n a 与n S 关系式 (0)n S an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.[方法二] :待定系数法设等差数列{}n a 的公差为d ,等差数列{}n S 的公差为1d , 11(1)n S a n d -,将1(1)2n n n S na d -=+11(1)n S a n d -, 化简得())222221111111222d d n a n d n a d d n a d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有2121111112,2440,d d a d a d d a d ⎧=⎪⎪-=-⎨=,解得111,2d a d a =.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列, 所以公差2112d a a a =-=, 所以()21112n n n S na d n a -=+=1n S a n =, )11111n n S S a n a n a +=+ 所以{}n S 是等差数列. 选②③作条件证明①: [方法一]:定义法(0)n S an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-; 当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列; 当43a b =-4=3n S an b an a =+-103aS =-<不合题意,舍去. 综上可知{}n a 为等差数列. [方法二]【最优解】:求解通项公式因为213a a =11S a =21212S a a a +{}n S 也为等差数列,所以公差1211d S S a ()1111n S a n d n a -=21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n 的一次函数,直接设出(0)n S an b a =+>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S 的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系11d a =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S n S 进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,直接设出(0)n S an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数n S 1211d S S a ==nS 的通项公式,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.6.【2021年乙卷文科】设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n n n n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n .所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n n S n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n nn nT --=++++,① 231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.7.【2021年乙卷理科】记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=. (1)证明:数列{}n b 是等差数列; (2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【解析】 【分析】 (1)由已知212n n S b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n n b bb b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】 (1)[方法一]:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠, 取1n =,由11S b =得132b =, 由于n b 为数列{}n S 的前n 项积, 所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---, 所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---, 所以111221n n n nb bb b +++=-,由于10n b +≠ 所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈所以数列{}n b 是以132b =为首项,以12d =为公差等差数列; [方法二]【最优解】: 由已知条件知1231-⋅=⋅⋅⋅⋅n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥n n b S S S S n . ②由①②得1nn n b S b -=. ③又212n nS b +=, ④ 由③④得112n n b b --=. 令1n =,由11S b =,得132b =. 所以数列{}n b 是以32为首项,12为公差的等差数列. [方法三]: 由212n n S b +=,得22=-nn n S b S ,且0n S ≠,0n b ≠,1n S ≠. 又因为111--=⋅⋅=⋅n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S . 故数列{}n b 是以32为首项,12为公差的等差数列. [方法四]:数学归纳法 由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+. 下面用数学归纳法证明. 当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S k 331(1)1222k k k k ++⋅==+++. 综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列. (2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列, ()3111222n n b n ∴=+-⨯=+, 22211n n n b n S b n+==-+,当n =1时,1132a S ==, 当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立, ∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【整体点评】 (1)方法一从212n n S b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论; 方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解; 方法三由212n n S b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论. (2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;8.【2021年新高考1卷】已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.【答案】(1)122,5,31n b b b n ===-;(2)300. 【解析】【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可; (2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和. 【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+, 所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===, 所以{}n b 是以2为首项,3为公差的等差数列, 于是122,5,31n b b b n ===-. [方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=. 由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知, 数列从第一项起,若n 为奇数,则其后一项减去该项的差为1, 若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N .所以11213(1)11222b a a -==++=+=,322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-. (2)[方法一]:奇偶分类讨论 20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+, 所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为: 201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=. 【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.9.【2021年新高考2卷】记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值. 【答案】(1)26n a n =-;(2)7. 【解析】 【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-, 从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7. 【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.10.【2020年新课标1卷理科】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9nn n S -+-=. 【解析】 【分析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论;(2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论. 【详解】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-=,1,2q q ≠∴=-;(2)设{}n na 的前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++-,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+-,②①-②得,2131(2)(2)(2)(2)n n n S n -=+-+-++---1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--, 1(13)(2)9nn n S -+-∴=. 【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.11.【2020年新课标3卷理科】设数列{an }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{an }的通项公式并加以证明; (2)求数列{2nan }的前n 项和Sn .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可. 【详解】 (1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; [方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+. [方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=. 由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯, (111)4(1)(2)333n n nn n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯++-⨯⎢⎥⎣⎦,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n nS a a a a =++++()()()()2132431n n b b b b b b b b +=-+-+-++-11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122nn n pn q p S S ----=+⋅,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n n x x f x x x x x x x-=++++=≠-,()121211(1)()1231(1)nn n n x x nx n x f x x x nx x x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦', 所以12n b b b +++21122322n n -=+⋅+⋅++⋅1(2)12(1)2n nf n n +==+-+'⋅.故234(2)2222nn S f =++'+++()1212412(1)212n n nn n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解; 方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式; 方法三:由134n n a a n +=-化简得1114333n n n n n a a n+++-=-,根据累加法即可求出数列{}n a 的通项公式; 方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式. (2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法; 方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n n x x f x x x x x x x-=++++=≠-的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.12.【2020年新课标3卷文科】设等比数列{an }满足124a a +=,318a a -=. (1)求{an }的通项公式;(2)记n S 为数列{log 3an }的前n 项和.若13m m m S S S +++=,求m . 【答案】(1)13-=n n a ;(2)6m =. 【解析】【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果. 【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13-=n n a ;(2)令313log log 31n n n b a n -===-, 所以(01)(1)22n n n n n S +--==, 根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =, 【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.13.【2020年新高考1卷(山东卷)】已知公比大于1的等比数列{}n a 满足24320,8a a a +==. (1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S . 【答案】(1)2n n a =;(2)100480S =. 【解析】 【分析】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式.(2)方法一:通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S .【详解】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍), 所以2n n a =,所以数列{}n a 的通项公式为2n n a =. (2)[方法一]:规律探索由于123456722,24,28,216,232,264,2128=======,所以 1b 对应的区间为(0,1],则10b =;23,b b 对应的区间分别为(0,2],(0,3],则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为(0,4],(0,5],(0,6],(0,7],则45672b b b b ====,即有22个2; 8915,,,b b b 对应的区间分别为(0,8],(0,9],,(0,15],则89153b b b ====,即有32个3;161731,,,b b b 对应的区间分别为(0,16],(0,17],,(0,31],则1617314b b b ====,即有42个4; 323363,,,b b b 对应的区间分别为(0,32],(0,33],,(0,63],则3233635b b b ====,即有52个5; 6465100,,,b b b 对应的区间分别为(0,64],(0,65],,(0,100],则64651006b b b ====,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.[方法二]【最优解】:由题意,2n m ≤,即2log n m ≤,当1m =时,10b =.当)12,21k k m +⎡∈-⎣时,,m b k k *=∈N ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.[方法三]:由题意知)1,2,2k k m b k m +⎡=∈⎣,因此,当1m =时,10b =;[2,4)m ∈时,1m b =;[4,8)m ∈时,2m b =;[8,16)m ∈时,3m b =;[16,32)m ∈时,4m b =;[32,64)m ∈时,5m b =;[64,128)m ∈时,6m b =.所以1001234100S b b b b b =+++++ 0(11)(222)(666)=++++++++++0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.所以数列{}n b 的前100项和100480S =. 【整体点评】(2)方法一:通过数列{}n a 的前几项以及数列{}m b 的规律可以得到12100,,,b b b 的值,从而求出数列{}m b 的前100项和,这是本题的通性通法;方法二:通过解指数不等式可得数列{}m b 的通项公式,从而求出数列{}m b 的前100项和,是本题的最优解;方法三,是方法一的简化版.14.【2020年新高考2卷(海南卷)】已知公比大于1的等比数列{}n a 满足24320,8a a a +==. (1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +-- 【解析】 【分析】(1)由题意得到关于首项、公比的方程组,求解方程组得到首项、公比的值即可确定数列的通项公式;(2)首先求得数列(){}111n n n a a -+-的通项公式,然后结合等比数列前n 项和公式求解其前n 项和即可. 【详解】(1) 设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩, 整理可得:22520q q -+=, 11,2,2q q a >==,数列的通项公式为:1222n nn a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512nn n +⎡⎤--⎢⎥⎣⎦==----. 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,等差数列与等比数列求和公式是数列求和的基础. 15.【2019年新课标1卷文科】记Sn 为等差数列{an }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{an }的通项公式;(2)若a 1>0,求使得Sn ≥an 的n 的取值范围. 【答案】(1)210n a n =-+; (2)110()n n *≤≤∈N . 【解析】 【分析】(1)首项设出等差数列的首项和公差,根据题的条件,建立关于1a 和d 的方程组,求得1a 和d 的值,利用等差数列的通项公式求得结果;(2)根据题意有50a =,根据10a >,可知0d <,根据n n S a >,得到关于n 的不等式,从而求得结果. 【详解】(1)设等差数列{}n a 的首项为1a ,公差为d ,根据题意有111989(4)224a d a d a d ⨯⎧+=-+⎪⎨⎪+=⎩,解答182a d =⎧⎨=-⎩,所以8(1)(2)210n a n n =+-⨯-=-+,所以等差数列{}n a 的通项公式为210n a n =-+; (2)由条件95S a =-,得559a a =-,即50a =,因为10a >,所以0d <,并且有5140a a d =+=,所以有14a d =-, 由n n S a ≥得11(1)(1)2n n na d a n d -+≥+-,整理得2(9)(210)n n d n d -≥-, 因为0d <,所以有29210n n n -≤-,即211100n n -+≤, 解得110n ≤≤,所以n 的取值范围是:110()n n *≤≤∈N 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.16.【2019年新课标2卷理科】已知数列{an }和{bn }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-.(1)证明:{an +bn }是等比数列,{an –bn }是等差数列; (2)求{an }和{bn }的通项公式. 【答案】(1)见解析;(2)1122nn a n,1122nnb n.【解析】 【分析】(1)可通过题意中的1434n n n a a b +-=+以及1434n n n b b a +-=-对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;(2)可通过(1)中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果.【详解】(1)由题意可知1434n n n a a b +-=+,1434n n n b b a +-=-,111a b ,111a b -=, 所以1144323442n n n n n n n n a b a b b a a b ,即1112n n n n a b a b ,n n 22n n 因为11443434448n n n n n n n n a b a b b a a b ,所以112n n n n a b a b ,数列{}n n a b -是首项1、公差为2的等差数列,21n na b n .(2)由(1)可知,112n n n a b ,21n na b n ,所以111222nnn n n na ab a b n,111222nn n n n nb a b a b n.【点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.17.【2019年新课标2卷文科】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+. (1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【答案】(1)212n n a -=;(2)2n S n =.【解析】 【分析】(1)本题首先可以根据数列{}n a 是等比数列将3a 转化为21a q ,2a 转化为1a q ,再然后将其带入32216a a 中,并根据数列{}n a 是各项均为正数以及12a =即可通过运算得出结果;(2)本题可以通过数列{}n a 的通项公式以及对数的相关性质计算出数列{}n b 的通项公式,再通过数列{}n b 的通项公式得知数列{}n b 是等差数列,最后通过等差数列求和公式即可得出结果. 【详解】(1)因为数列{}n a 是各项均为正数的等比数列,32216a a ,12a =, 所以令数列{}n a 的公比为q ,2231=2a a q q ,212a a qq ,所以22416q q =+,解得2q =-(舍去)或4,n n (2)因为2log n n b a =,所以21n b n =-,+121n b n ,12n nb b , 所以数列{}n b 是首项为1、公差为2的等差数列,21212n n S nn .【点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.18.【2018年新课标1卷文科】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.【答案】(1)11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列.理由见解析;(3)12n n a n -=⋅.【解析】 【分析】(1)根据题中条件所给的数列{}n a 的递推公式()121n n na n a +=+,将其化为()121n n n a a n++=,分别令1n =和2n =,代入上式求得24a =和312a =,再利用nn a b n=,从而求得11b =,22b =,34b =;(2)利用条件可以得到121n na a n n+=+,从而 可以得出12n n b b +=,这样就可以得到数列{}n b 是首项为1,公比为2的等比数列; (3)借助等比数列的通项公式求得12n na n-=,从而求得12n n a n -=⋅. 【详解】(1)由条件可得()121n n n a a n++=.将1n =代入得,214a a =,而11a =,所以,24a =. 将2n =代入得,323a a =,所以,312a =.从而11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即12n n b b +=,又11b =, 所以{}n b 是首项为1,公比为2的等比数列; (3)由(2)可得11122n n nn a b n--==⨯=,所以12n n a n -=⋅. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列{}n b 的通项公式,借助于{}n b 的通项公式求得数列{}n a 的通项公式,从而求得最后的结果.19.【2018年新课标2卷理科】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)an =2n –9,(2)Sn =n 2–8n ,最小值为–16. 【解析】 【详解】分析:(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n 项和公式得n S 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{an }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{an }的通项公式为an =2n –9. (2)由(1)得Sn =n 2–8n =(n –4)2–16. 所以当n =4时,Sn 取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.20.【2018年新课标3卷理科】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)()12n n a -=-或12n n a -= .(2)6m =. 【解析】 【详解】分析:(1)列出方程,解出q 可得;(2)求出前n 项和,解方程可得m .详解:(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故()12n n a -=-或12n n a -=.(2)若()12n n a -=-,则()123nn S --=.由63m S =得()2188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.点睛:本题主要考查等比数列的通项公式和前n 项和公式,属于基础题.。
高中数列经典习题(含答案)(K12教育文档)
高中数列经典习题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数列经典习题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数列经典习题(含答案)(word版可编辑修改)的全部内容。
1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和, (1)70≤n ≤200;(2)n 能被7整除。
2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由。
3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d ;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值。
4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S 。
5、已知数列{n a }的前n 项和31=n S n(n +1)(n +2),试求数列{n a 1}的前n 项和.6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程。
回答:(1)求所有这些方程的公共根; (2)设这些方程的另一个根为i m ,求证111+m ,112+m ,113+m ,…, 11+n m ,…也成等差数列.7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n nc nx x ++32=0(n=1,2,3…)的两个根,当a 1=2时,试求c 100的值.8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n ,都有1+n a ,试求这两个数列的首项和公比.9、有两个各项都是正数的数列{n a },{n b }。
数列专题复习及答案
数列、数列极限、数学归纳法综合复习一、填空题l、已知a n=n E N*)'则数列忆}的最大项是旷+1562、在等差数列{a J中,若a4+a6十Gio+ a12 = 90'则知0-—a l4=3、酰廿等比数列包},若Gi= l a5 = 4, 则a3的值为4、数列{a J中,a3= 2, a5 = l, 则数列{}是等差数列,则a ll=a n +l5、在数列{a J和{九}中,b n是a n与a n+I的等差中项,a1=2且对任意nEN*都有3a n+I -a n = Q , 则数列{九}的通项公式为6、设等差数列{a n}的公差d不为O,a1 = 9d, a k是a,与a2k的等比中项,则k=7、等差数列{a J的前n项和为S n,若S4�10,S5sl5,则a4的最大值为8、正数数列{a J中,已知a1= 2, 且对任意的s,t EN*, 都有a s+a t= a s+t成立,则1 1+ + +a l a2 a2a3 a n a n+I s9、等差数列{a J的前n项和为S n,且a4-a2 = 8,a3 + a5 = 26 , 记兀=号-,如果存在正整数M,使得对一切正整数n,T n sM都成立.则M的最小值是10、已知无穷等比数列{a n}中,各项的和为s,且lim[3(a1+a尸+a n)—S]=4,则实n今OO数a l的范围11、设正数数列{a J的前n项和为S n,且存在正数t'使得对千所有自然数n,有寂=n a +t 成立,若lim 瓦< t'则实数t的取值范围为2 n➔ 00a n12、数列{a,)的通项公式为a,={�::3(1:::; n:::; 2),则lirn s = n之3,n EN*) nn➔oo13、已知数列[a,}的通项三式为a,�2•-1+I, 则a立+a立+a立+a,, 立=12a n 0:::;;a n<—)14、数列{a }满足a= 2 6n+l � l '若a l=—,则a2001的值为2a n -I —:::;;a n< I)7215、在数列{a J中,如果对任意nEN*都有a n+2—a n+l= k (k为常数),则称{a J为等a n+l -a n差比数列,k称为公差比.现给出下列命题:(1)等差比数列的公差比一定不为0;(2)等差数列一定是等差比数列;(3)若a n=-3勹2,则数列{aJ是等差比数列;(4)若等比数列是等差比数列,则其公比等千公差比.其中正确的命题的序号为二、选择题16、等差数列{a n}的公差为d,前n项的和为S n,当首项a l和d变化时a2+as+a11是一个定值,则下列各数中也为定值的是( )A. s7B. SsC. s l3D. s l517、在等差数列{aJ中,Cli> 0, 5a5 = 17 a10 , 则数列{aJ前n项和凡取最大值时,n的值为()A.12B.llC.10D.918、设{a n}为等差数列,若生)_<—1,且它的前n项和S n有最小值,那么当凡取得最小正值时,n=a l O()A 11 B.17 C.19 D. 2019、等差数列{a n}的前n项和为S n,且Ss< S6, S6 = S1 > Ss,则下列结论中错误的是()A d<O C. S9 > SB. a7 = 0D. S6和S7均为S n的最大值20、已知数列{a J、{九}都是公差为1的等差数列,其首项分别为a l、b l'且a1+ b1 = 5, a1 ,b1 EN*. 设e n= a b,, (n E N勹,则数列{e n}的前10项和等千()A. 55B. 70C.85D.10021、已知等差数列{a J的前n项和为S n,若OB=CliOA十生OO OC,且A,B,C三点共线(该直线不过原点0),则s200= c )A. 100B. 101C. 200D. 201A 7n+4522、已知两个等差数列{aJ和{仇}的前n项和分别为A n和B n,且_____!!.='则使B n+3a得二为整数的正整数n的个数是(b nA. 2三、解答题B. 3C. 4D. 523、设数列忆}的前n项和为S n,已知a l=a'a n+I =凡+3n,n E N*.(1)设九=凡_3n,求忱}的通项公式;(2)若a*n+I� 化,nEN,求a的取值范围.24、数列曰}满足a 1=a , a 2 = -a (a > 0) , 且{a n }从第二项起是公差为6的等差数列,凡是{a n }的前n项和.(1)当n �2时,用a与n表示a n 与S n (2)若在s 6与趴两项中至少有一项是凡的最小值,试求a的取值范围;125、数列{aJ中,a l=—,点(n,2a n+l -aJ在直线y =x 上,其中nEN *2(1)设九=a n +l -a n -1, 求证数列{九}是等比数列;(2)求数列{a n }的通项;(3)设S n 、Tn 分别为数列{a小{九}的前n项和,是否存在实数入,使得数列{凡:入T"}为等差数列?若存在,试求出入;若不存在,则说明理由。
数学高考总复习:数列的应用之知识讲解、经典例题及答案
14
( 1)分别求 2007 年底和 2008 年底的住房面积; ( 2)求 2026 年底的住房面积 .(计算结果以万平方米为单位,
且精确到 0.01)
【答案】 ( 1) 2007 年底的住房面积为 1200(1+5%) -20=1240 (万平方米),
2008 年底的住房面积为 1200(1+5%) 2- 20(1+5%) -20=1282 (万平方米), ∴ 2007 年底的住房面积为 1240 万平方米; 2008 年底的住房面积为 1282 万平方米 . ( 2) 2007 年底的住房面积为 [1200(1+5%) - 20]万平方米, 2008 年底的住房面积为 [1200(1+5%) 2- 20(1+5%) - 20]万平方米, 2009 年底的住房面积为 [1200(1+5%) 3- 20(1+5%) 2- 20(1+5%) - 20]万平方米, ………… 2026 年底的住房面积为 [1200(1+5%) 20― 20(1+5%) 19―……― 20(1+5%) ― 20]万平方米 即 1200(1+5%) 20― 20(1+5%) 19― 20(1+5%) 18―……― 20(1+5%) ― 20
,
( 2)求出当 n≥2时的 ,
( 3)如果令 n≥2时得出的 中的 n=1 时有 一个形式, 否则就只能写成分段的形式 .
成立, 则最后的通项公式可以统一写成
1
知识点二:常见的由递推关系求数列通项的方法 1.迭加累加法:
,
则
,
, …,
2.迭乘累乘法: ,
则
,
高中数学数列复习 题集附答案
高中数学数列复习题集附答案高中数学数列复习题集附答案一、选择题1. 设数列 {an} 的通项公式为 an = 3n + 2,则 {an} 的首项是:A. 1B. 2C. 3D. 4答案:B2. 数列 {an} 的通项公式为 an = 2^n,则 {an} 的前5项分别是:A. 1, 2, 3, 4, 5B. 2, 4, 8, 16, 32C. 1, 4, 9, 16, 25D. 2, 3, 4, 5, 6答案:B3. 已知数列 {an} 的首项是 a1 = -5,公差是 d = 3,求 {an} 的通项公式。
A. an = -5 + 3nB. an = -5 - 3nC. an = -5n + 3D. an = -5 - 3^n答案:A二、填空题1. 求等差数列 {an} 的前5项和,已知首项 a1 = 3,公差 d = 4。
答案:S5 = 752. 求等差数列 {an} 的第10项,已知首项 a1 = 2,公差 d = -3。
答案:a10 = -253. 若等差数列 {an} 的第7项是 20,末项是 74,求首项和公差。
答案:a1 = -16,d = 6三、解答题1. 求等差数列 {an} 的通项公式,已知前三项分别是:a1 = 3,a2 = 7,a3 = 11。
解答:设通项公式为 an = a + (n-1)d,代入前三项得到以下等式:3 = a + 0d7 = a + 1d11 = a + 2d解上述方程组可得,a = 3,d = 4。
因此,该数列的通项公式为an = 3 + 4(n-1)。
2. 若等差数列 {bn} 的前5项的和为 40,已知首项 b1 = 1,公差 d = 2,求数列的前n项和 Sn。
解答:首先确定数列的通项公式为 bn = 1 + (n-1)2 = 2n-1。
因此,前n项和 Sn = (b1 + bn) * n / 2 = (1 + (2n-1)) * n / 2 = n^2。
10.19数列解答题专题-学生用卷
数列解答题专题一、解答题(本大题共8小题,共96.0分)1.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.2.已知数列{a n}的前n项和s n,点(n,s n)(n∈N∗)在函数y=12x2+12x的图象上.(1)求{a n}的通项公式;(2)设数列{1a n a n+2}的前n项和为T n,不等式T n>13log a(1−a)对任意的正整数n恒成立,求实数a的取值范围.3.在等差数列{a n}中,a1=1,a n+1=(1+1n )a n+n+12,(1)设b n=a nn,求数列{b n}的通项公式(2)求数列c n=(2−b n)n的前n项和公式4.已知各项均为正实数的数列{a n}的前n项和为S n,4S n=a n2+2a n−3对于一切n∈N∗成立.(Ⅰ)求a1;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)设b n=√2a n−1,T n为数列{a nb n }的前n项和,求证Tn<5.5.若数列{a n}是递增的等差数列,它的前n项和为T n,其中T3=9,且a1,a2,a5成等比数列.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,数列{b n}的前n项和为S n,若对任意n∈N∗,4S n≤a2−a恒成立,求a的取值范围.6.已知数列{a n}前n项和为S n,且S n=n2+3n2(n∈N∗).(1)求数列{a n}的通项公式;(2)若T n为数列{1a n a n+1}的前n项和,且存在n∈N∗,使得T n−λa n+1≥0成立,求实数λ的取值范围.7.在数列{a n}中a1=2,a n+1=2−1a n ,记b n=1a n−1,其中n∈N∗.(1)求证:数列{b n}是等差数列;(2)求数列{a n}的通项公式;(3)若λa n+a n≥λ对任意n≥1的整数恒成立,求实数λ的取值范围.8.已知数列{a n}中,a1=1,其前n项的和为S n,且满足a n=2S n22S n−1(n≥2).(1)求证:数列{1S n}是等差数列;(2)证明:当n≥2时,S1+12S2+13S3+⋯+1nS n<32.。
教师公开招聘考试中学数学(数列)模拟试卷3(题后含答案及解析)
教师公开招聘考试中学数学(数列)模拟试卷3(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题1.下列说法中正确的一项是( ).A.若数列{an}中第9项可表示为a9=2×9+1,则此数列的通项公式可表示为an=2n+1B.数列5,4,3,2,1和数列1,2,3,4,5是同一个数列C.数列1,0,1,0,…的通项公式一定是D.数列1,1,1和数列1,1,1,…不是同一个数列正确答案:D解析:A项中,通过数列中的某一项无法确定其通项公式,故错误;B项中,根据数列的有序性判断两数列为不同的数列,故错误;C项中,通项公式还可能为故错误;D项中,两数列分别是有穷数列和无穷数列,故正确.知识模块:数列2.已知数列的通项公式为则下列哪一项不在此数列中?( )A.6.26B.12.16C.25.01D.100.01正确答案:B解析:将选项中各数代入通项公式中计算,若计算后得到一个正整数n,则该数在此数列中.A项,解得n=50∈N*;B项,C项,解得n=100∈N*;D项,解得n=200∈N*.所以数字12.16不在此数列中。
知识模块:数列3.已知等差数列{an}满足a2+a7=15,则a3+a6=( ).A.15B.10C.5D.18正确答案:A解析:已知{an}为等差数列,则a3+a6=(a2+d)+(a7-d)=a2+a7=15.知识模块:数列4.数列{an}是首项为a1,公比为q的等比数列,前n项和为Sn,则A.q2B.qnC.1+qnD.1-q2n正确答案:B解析:已知Sn是等比数列{an}的前n项和,且公比不为1,知识模块:数列5.已知数列{an}是等比数列,若a4-a2=18,a3-a1=9,则此数列的通项公式an=( ).A.3.2n+3B.2n+1C.3.2n-1D.2n-1正确答案:C解析:因为{an}是等比数列,所以a4-a2=a1.q(q2-1),a3-a1=a1(q2-1),故因此an=3.2n-1.知识模块:数列6.已知等差数列{an}的前n项和若第i项满足0<ai<1,则i=( ).A.9B.10C.11D.12正确答案:D解析:解得11<i<13,即i=12.知识模块:数列7.若a、b、c成等差数列,且(a,c)为曲线y=x2+6x+15的最低点,则b=( ).A.B.5C.D.3正确答案:A解析:y=x2+6x+15=(x+3)2+6,当x=-3时,y取得最小值为6.故a=-3,c=6.因为a、b、c成等差数列,所以知识模块:数列8.若{an}是公差d不为0的等差数列,且a1=7d,ai为a1与a22的等比中项,则i=( ).A.8B.9C.10D.11正确答案:A解析:a22=a1+21d=28d,又ai为a1与a22的等比中项,故ai2=a1×a22=7d ×28d=196d2,因为{an}为等差数列,则a1、a22与ai同号,故ai=14d=7d+(i一1)d,解得i=8.知识模块:数列9.等比数列{an}中,前三项依次是则此数列的通项公式为an=( ).A.3n+1B.3n+3C.3n-1D.3n-3正确答案:D解析:已知前三项的代数式,则根据等比数列的性质可知解得x=1.则此数列的前三项依次是数列{an)是以为首项,3为公比的等比数列,所以通项公式知识模块:数列10.某汽车厂去年汽车的年产量为x万辆,经过统计发现,今年年产量增长率为r,若保持这种增速,则三年之后的年产量为( )万辆.A.xr3B.x(1+r)3C.xr4D.x(1+r)4正确答案:D解析:今年和去年相比增长率为r,去年汽车年产量为x万辆,则今年的年产量为x(1+r)万辆,保持这种增速,则应在每年的产量上乘以(1+r),三年后汽车的年产量为x(1+r)4.知识模块:数列填空题11.若{an}为等比数列,且a2、a7为方程x2-12x+8=0的两根,正确答案:12解析:已知a2、a7为方程x2一12x+8=0的两根,则a2a7=8.{an}为等比数列,则a2a7=a3a6=a4a5=8,故知识模块:数列12.已知等差数列{an}和等比数列{bn}(q>0),其中则q=_____________.正确答案:2解析:已知由题意可将其转化为整理可得到b1+(b1+b1g)=b1q2,即q2-q-2=0,解得q=-1或2.又因为q>0,所以q=2.知识模块:数列13.平面内两条直线相交,交点为1个,当有三条直线时,交点最多为3个,有四条直线时,交点最多为6个,依此规律,则当有n条直线时,交点的个数m最多为_________.正确答案:解析:依题意有n≥2.当n=2时,m=1;当n=3时,m=3;当n=4时,m=6.即n增加1时,m增加(n-1).因此当有n条直线时,交点个数知识模块:数列14.设等比数列的首项为a1,公比为q(q≠0),要使此数列中奇偶项异号,则q_________0(填“>”“<”或“=”).正确答案:<解析:要使此数列中奇偶项异号,则只有公比为负的情况,即q<0.知识模块:数列15.若a、b、c为等比数列,且公比不为1,a、2b、3c成等差数列,则正确答案:解析:已知a、b、c为等比数列,则ac=b2.a、2b、3c成等差数列,则4b=a+3c.联立两式,有解得a=c或a=9c.题中已知等比数列的公比不为1,则a=9c,知识模块:数列解答题16.已知等差数列{an},a6、a7、a8依次加上-2、14、66后,成为等比数列{bn)中的b3、b4、b5,且b3=3a2.求数列{an)和{bn)的通项公式.(0<d<10)正确答案:{an}为等差数列,则a6=a1+5d,a7=a1+6d,a8=a1+7d.所以b3=a1+5d-2,b4=a1+6d+14,b5=a1+7d+66.根据题干条件及等比数列的性质由②式可得,a1=d-1③,将③代入①化简得d2-184d+364=0,解得d=182或2,又0 数列{bn}为首项为1,公比为3的等比数列,所以bn=1×3n-1=3n-1.涉及知识点:数列现有数列{an}和{bn},已知求:17.b1·b3·b5·b7的值;正确答案:涉及知识点:数列18.数列{an}的通项公式an及其前n项和Sn.正确答案:涉及知识点:数列数列求和:19.若数列{an}的通项公式为an=(-1)n·(2n+1),求其前2n项和S2n;正确答案:已知an=(-1)n·(2n+1),则a1=-3,a2=5,a3=-7,…S2n=(-3)+5+(-7)+9+…+(-1)2n-1·(4n-1)+(-1)2n·(4n+1)=[(-3)+5]+[(-7)+gj+…+[(-1)2n-1·(4n-1)+(-1)2n·(4n+1)]=2n.涉及知识点:数列20.若数列{bn}的通项公式为bn=(-1)n·(2n+1)+n·2n,求其前2n项和T2n.正确答案:已知bn=(-1)n·(2n+1)+n·2n,即bn=an+n·2n,故有T2n=S2n+(21+2·22+…+2n·22n),令m=21+2·22+…+2n·22n,2m=22+2·23+…+2n·22n+1。
数列an与Sn之间关系-教师用卷
数列an与Sn之间关系学校:___________姓名:___________班级:___________考号:___________一、解答题(本大题共7小题,共84.0分)1.已知数列的前n项和为,且Ⅰ求数列的通项公式;Ⅱ若,设数列的前n项和为,证明.【答案】解:Ⅰ当时,,得,当时,,得,数列是公比为3的等比数列,.Ⅱ由得:,又两式相减得:,故,.【解析】本题考査了等比数列的通项公式与求和公式、“错位相减法”、数列的递推关系,考查了推理能力与计算能力,属于中档题.Ⅰ利用时,即可得出.Ⅱ利用“错位相减法”、等比数列的求和公式即可得出.2.已知数列的前n项和为,且满足Ⅰ求的通项公式;Ⅱ求证:.【答案】解:,,解得,时,,,,时也成立,;证明:由可得:,,,,,,.【解析】本题考查了数列递推关系、“裂项求和”方法,考查了推理能力与就计算能力.,可得,解得时,.由可得:可得,利用“裂项求和”方法即可得出.3.设数列的前n项和为,,满足,,.求证:数列为等比数列;求数列的前n项和.【答案】证明:因为,,,,,,,数列是以1为首项,以2为公比的等比数列解:由知,,,,由错位相减得,.【解析】本题考查了向量的平行和等比数列的定义和错位相减法求和,属于中档题.先根据向量的平行得到,继而得到,问题得以证明,由可得以,由错位相减法即可求出数列的前n项和.4.已知为数列的前n项和,且Ⅰ求和;Ⅱ若,求数列的前n项和.【答案】解:Ⅰ,时,,解得;当时,,,,,数列是首项为2,公比为3的等比数列,,,Ⅱ,,,,.【解析】Ⅰ由可求得;当时,,从而可知数列是首项为2,公比为3的等比数列,继而可得和;Ⅱ由Ⅰ知,从而可得,,利用等差数列的求和公式即可求得数列的前n项和.本题考查数列的求和,着重考查等比数列的判定与通项公式、求和公式的应用,突出考查等差数列的求和,属于中档题.5.已知数列的前n项和满足,其中.Ⅰ求证:数列为等比数列;Ⅱ设,求数列的前n项和.【答案】Ⅰ证明:因为,所以当时,,解得;时,,得,当时,,由,得,所以,满足由,得,故是首项为2,公比为4的等比数列.Ⅱ解:由Ⅰ,得.所以,则的前n项和.【解析】Ⅰ根据数列的递推关系利用作差法即可证明数列成等比数列;Ⅱ求出数列的通项公式,利用累加法即可求出的通项公式.本题主要考查数列的通项公式的应用,等比数列的证明,注意利用时,必须验证的情形,以及等比数列和等差数列的前n项和公式,属于中档题.6.已知数列的前n项的和为,且,其中.Ⅰ求数列的通项公式;Ⅱ若数列满足,求数列的前n项和.【答案】Ⅰ当时,,故:.当时,,且符合上式.故数列的通项公式为:.Ⅱ由题可知,,则:,,得:,整理得:,则:.【解析】本题考查的知识要点:数列的通项公式的求法,乘公比错位相减法在数列求和中的应用.Ⅰ直接利用递推关系式求出数列的通项公式.Ⅱ利用乘公比错位相减法求出数列的和.7.已知数列的前n项和,其中k为常数,.求k的值及数列的通项公式;若,求数列的前n项和.【答案】解:,时,.时,,解得.时,.当时,,上式也成立..,数列的前n项和.【解析】,时,时,,解得进而得出.,利用“裂项求和”方法即可得出.本题考查了递推关系、数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列解答题专题一、解答题(本大题共8小题,共96.0分)1. 已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.【答案】解:(1)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列,由b 2=3,b 3=9,可得q =b 3b 2=3,b n =b 2q n−2=3⋅3n−2=3n−1;即有a 1=b 1=1,a 14=b 4=27, 则d =a 14−a 113=2,则a n =a 1+(n −1)d =1+2(n −1)=2n −1;(2)c n =a n +b n =2n −1+3n−1,则数列{c n }的前n 项和为:[1+3+⋯+(2n −1)]+(1+3+9+⋯+3n−1) =12n ⋅2n +1−3n 1−3 =n 2+3n −12.【解析】本题考查等差数列和等比数列的通项公式和求和公式的运用,同时考查数列的求和方法:分组求和,考查运算能力,属于基础题.(1)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列,运用通项公式可得q =3,d =2,进而得到所求通项公式;(2)求得c n =a n +b n =2n −1+3n−1,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.2. 已知数列{a n }的前n 项和s n ,点(n,s n )(n ∈N ∗)在函数y =12x 2+12x 的图象上.(1)求{a n }的通项公式; (2)设数列{1a n a n+2}的前n 项和为T n ,不等式T n >13log a (1−a)对任意的正整数n 恒成立,求实数a 的取值范围. 【答案】解:(1)∵点(n,s n )在函数y =12x 2+12x 的图象上,∴S n =12n 2+12n①,当n ≥2时,S n−1=12(n −1)2+12(n −1)②,①−②得a n =n , 当n =1时,a 1=S 1=12+12=1,符合上式,∴a n =n ; (2)由(1)知a n =n ,则1a n a n+2=12(1n −1n+2), ∴T n =1[(1−1)+(1−1)+(1−1)+⋯+(1−1)] =12(1+12−1n +1−1n +2) =34−12(1n+1+1n+2),∵T n+1−T n =1(n+1)(n+3)>0,∴数列{T n }单调递增, ∴(T n )min =T 1=13.要使不等式T n >13log a (1−a)对任意正整数n 恒成立,只要13>13log a (1−a),∵1−a >0,∴0<a <1, ∴1−a >a ,即0<a <12.【解析】本题考查数列的通项与求和,着重考查等差关系的确定及数列{T n }的单调性的分析,突出裂项法求和,突出转化思想与综合运算能力的考查,属于难题.(1)根据题意可得S n =12n 2+12n ,可得S n−1=12(n −1)2+12(n −1),从而即可求{a n }的通项公式;(2)由(1)知a n =n ,利用裂项法可求1a n a n+2=12(1n −1n+2),从而可求得T n =12[(1−13)+(12−14)+(13−15)+⋯+(1n −1n+2)],由T n+1−T n =1(n+1)(n+3)>0,可判断数列{T n }单调递增,从而可求得a 的取值范围.3. 在等差数列{a n }中,a 1=1,a n+1=(1+1n )a n +n+12n , (1)设b n =a n n ,求数列{b n }的通项公式(2)求数列c n =(2−b n )n 的前n 项和公式【答案】解:(1)∵数列{a n },a 1=1,a n+1=(1+1n )a n +n+12n , ∴由已知得b 1=a 1=1,且a n+1n+1=a n n+12n , 即b n+1=b n +12n ,从而b 2=b 1+12,b 3=b 2+122,(n ≥2)b n =b n−1+12n−1,(n ≥2).∴b n+1−b n =12n .∴b n =b 1+12+122+...+12n+1=2−12n−1(n ≥2). (2)由(1)知a n =2n −n 2n−1,2n −a n =n 2n−1,故S n =1+22+32+42+...+n 2,12S n=12+222+323+424+...+n 2n , S n −12S n 得,12T n =1+12+222+323+424+...+12n−1−n 2n ,=1−12n1−12−n 2,∴S n =4−n+22n−1.【解析】(1)由已知得b 1=a 1=1,且a n+1n+1=a n n +12n ,由此能推导出b n+1−b n =12n .有累加法得b n =b 1+12+122+...+12n+1=2−12n−1(n ≥2),由此能求出b n =2−12n−1.(2)由(1)知a n =2n −n 2n−1,2n −a n =n 2n−1,由此利用裂项求和法能求出数列{C n }的前n 项和S n .4. 已知各项均为正实数的数列{a n }的前n 项和为S n ,4S n =a n 2+2a n −3对于一切n ∈N ∗成立. (Ⅰ)求a 1;(Ⅱ)求数列{a n }的通项公式; (Ⅲ)设b n =√2a n −1,T n 为数列{a n b n }的前n 项和,求证T n <5.【答案】解:(Ⅰ)当n =1时,4S 1=4a 1=a 12+2a 1−3,,得a 12−2a 1−3=0,a 1=3或a 1=−1,由条件a n >0,所以a 1=3.(Ⅱ)当n ≥2时,4S n =a n 2+2a n −3,4S n−1=a n−12+2a n−1−3;则4S n −4S n−1=a n 2+2a n −3−a n−12−2a n−1+3,所以4a n =a n 2+2a n −a n−12−2a n−1,a n 2−2a n −a n−12−2a n−1=0,(a n +a n−1)(a n −a n−1−2)=0,由条件a n +a n−1>0,所以a n −a n−1=2,故正实数列{a n }是首项为3,公差为2的等差数列,所以a n =2n +1. (Ⅲ)由(Ⅰ)b n =√2a n −1=√22n+1−1=2n ,a n b n =2n+12n ,∴T n =32+522+⋯+2n−12n−1+2n+12n ,①将上式两边同乘以12,得 12T n =322+523+⋯+2n −12n +2n +12n+1② ①−②,得 12T n =32+222+223+⋯+22n −2n+12n+1=52−2n+52n+1, 即T n =5−2n+52n. ∵n ∈N ∗,∴2n+52n >0∴T n <5.【解析】本题主要考查了数列的递推关系,等差数列的通项公式,错位相减法,考查学生的计算能力和推理能力,难度较大.(Ⅰ)直接把n =1代入4S n =a n 2+2a n −3再结合各项均为正实数即可求出a 1;(Ⅱ)直接根据4S n =a n 2+2a n −3以及4s n−1=a n−12+2a n−1−3;作差整理求出a n −a n−1=2,得到数列的规律,即可求出结论; (Ⅲ)先求出数列{a n b n }的通项公式,在利用错位相减法求和,进而证明结论.5. 若数列{a n }是递增的等差数列,它的前n 项和为T n ,其中T 3=9,且a 1,a 2,a 5成等比数列.(1)求{a n }的通项公式; (2)设b n =1a n a n+1,数列{b n }的前n 项和为S n ,若对任意n ∈N ∗,4S n ≤a 2−a 恒成立,求a 的取值范围.【答案】解:(1)数列{a n }是递增的等差数列,公差设为d(d >0),T 3=9,即a 1+a 2+a 3=9,即有3a 1+3d =9,即a 1+d =3①,又a 1,a 2,a 5成等比数列,可得a 22=a 1a 5,即有(a 1+d)2=a 1(a 1+4d)②,由①②解得a 1=1,d =2,则a n =1+2(n −1)=2n −1.(2)b n =1a n a n+1=1(2n −1)(2n +1) =12(12n−1−12n+1), 前n 项和为S n =12(1−13+13−15+⋯+12n−1−12n+1)=12(1−12n+1)=n 2n+1. 对任意n ∈N ∗,4S n ≤a 2−a 恒成立,只需S n 的最大值小于或等于a 2−a 4,而S n <12, 可得a 2−a ≥2,解得a ≤−1或a ≥2.所以a 的取值范围是(−∞,−1]∪[2,+∞).【解析】本题考查数列的通项公式的求法,考查等差数列的通项公式和等比数列的性质,以及数列的求和方法:裂项相消求和,考查不等式恒成立问题解法,注意运用转化思想,考查化简整理的运算能力,属于中档题.(1)公差设为d(d >0),运用等差数列的通项公式和等比数列中项性质,解方程可得首项和公差,即可得到所求通项公式; (2)求得b n =1a n a n+1=1(2n−1)(2n+1),运用裂项相消求和,化简即可得到所求和,求得S n 的范围,可得a 的不等式,即可得到所求范围.6. 已知数列{a n }前n 项和为S n ,且S n =n 2+3n 2(n ∈N ∗). (1)求数列{a n }的通项公式;(2)若T n 为数列{1a n a n+1}的前n 项和,且存在n ∈N ∗,使得T n −λa n+1≥0成立,求实数λ的取值范围.【答案】解:(1)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n −S n−1=n 2+3n 2−(n−1)2+3(n−1)2=n +1.∵n =1时,a 1=2也满足上式,∴a n =n +1. (2)因为1a n a n+1=1(n+1)(n+2)=1n+1−1n+2, 所以T n =12−13+13−14+⋯+1n+1−1n+2=12−1n+2=n 2(n+2).因为存在n ∈N ∗,使得T n −λa n+1≥0成立, 所以存在n ∈N ∗,使得n 2(n+2)−λ(n +2)⩾0成立,即有在n ∈N ∗,使得λ⩽n 2(n+2)2成立.又n 2(n+2)2=12(n+4n +4)⩽116(当且仅当n =2时取等号),所以λ⩽116.即实数λ的取值范围是.【解析】本题主要考查的是数列的综合应用.(1)结合数列的前n 项和与第n 项的关系求解即可;(2)先利用裂项消项求和法求T n ,再分离参数结合最值求实数λ的取值范围. 7. 在数列{a n }中a 1=2,a n+1=2−1a n ,记b n =1a n −1,其中 n ∈N ∗.(1)求证:数列{b n }是等差数列;(2)求数列{a n }的通项公式;(3)若λa n +a n ≥λ对任意n ≥1的整数恒成立,求实数λ的取值范围.【答案】解:(1)a n+1=2−1a n ,可得a n+1a n =2a n −1,b n =1an −1,即b n+1−b n =1a n+1−1−1a n −1=(a n −1)−(a n+1−1)(a n −1)(a n+1−1)=a n −a n+1a n a n+1−a n −a n+1+1=a n −a n+1a n −a n+1=1.b 1=1a 1−1=1, 故数列{b n }是首项为1,公差为1的等差数列. (2)由(1)得b n =n ,故1a n −1=n ,1=n(a n −1),得a n =1+1n .(3)将数列{a n }的通项公式代入λa n +a n ≥λ, 得λ+λ1n +1+1n ≥λ, 故λ+n +1≥0,所以λ≥−n −1,且n ≥1,所以λ≥−2. 故实数λ的取值范围为λ≥−2.8. 已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S n 22S n −1(n ≥2).(1)求证:数列{1S n }是等差数列; (2)证明:当n ≥2时,S 1+12S 2+13S 3+⋯+1n S n <32.【答案】证明:(1)当n ≥2时,S n −S n−1=2S n 22Sn −1, 整理可得S n−1−S n =2S n S n−1,即1S n−1S n−1=2, 从而{1S n }构成以1为首项,2为公差的等差数列.(2)由(1)可知,1S n =1S 1+(n −1)×2=2n −1,∴S n =12n−1,∴当n ≥2时,1n S n =1n(2n−1)<1n(2n−2)=12(1n−1−1n ),从而S 1+12S 2+13S 3+⋯+1n S n <1+12(1−12+12−13+⋯+1n−1−1n )=32−12n <32.。