(浙江专用)2018版高中数学章末检测卷(二)点、直线、平面之间的位置关系新人教A版必修2
2018版数学课堂讲义浙江专用必修二学案:第二章 点、

2.1空间点、直线、平面之间的位置关系2.1.1平面目标定位 1.了解平面的概念,掌握平面的画法及表示方法.2.了解平面的基本性质,即公理1,2,3.3.会进行“文字语言”“符号语言”“图形语言”之间的转化.4.掌握空间中点与直线、点与平面位置关系的分类与表示.自主预习1.平面的概念(1)几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.几何里的平面是无限延展的.(2)平面的画法①水平放置的平面通常画成一个平行四边形,它的锐角通常画成45°,且横边长等于其邻边长的2倍,如图①.②如果一个平面被另一个平面遮挡住,为了增强它的立体感,把被遮挡部分用虚线画出来.如图②.(3)平面的表示法图①的平面可表示为平面α,平面ABCD,平面AC或平面BD.2.点、线、面之间的关系(1)直线在平面内的概念:如果直线l上的所有点都在平面α内,就说直线l在平面α内,或者说平面α经过直线l.(2)一些文字语言与数学符号的对应关系:3.1.判断题(1)A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α与β重合.(√)(2)梯形一定是平面图形.(√)(3)三个平面可以将空间分为4部分或6部分或8部分.(×)(4)空间中有四个点,如果其中任意三个点都不在同一直线上,那么过其中三个点的平面有四个.(×)提示(3)三个平面可以将空间分为4部分或6部分或7部分或8部分.(4)当这四个点共面时,只有一个平面;当这四个点不共面时,有四个平面.2.下列图形中,不一定是平面图形的是()A.三角形B.菱形C.梯形D.四条边相等的四边形解析三角形的三个顶点为不共线的三点,因此一定是平面图形;菱形、梯形分别有两组、一组对边平行,故为平面图形;四边相等的四边形可能为空间四边形. 答案 D3.用符号表示“点A在直线l上,直线l在平面α外”,正确的表示是()A.A∈l,l∉αB.A∈l,l⊄αC.A⊂l,l⊄αD.A⊂l,l∉α解析点与直线、点与平面之间的关系是元素与集合之间的关系,直线与平面之间的关系是集合与集合之间的关系,故选B.答案 B4.两两平行的三条直线最多可以确定________个平面.解析如图此时确定的平面个数最多.答案 3类型一三种语言的转换【例1】用符号语言表示下列语句,并画出图形.(1)三个平面α,β,γ相交于一点P,且平面α与平面β相交于P A,平面α与平面γ相交于PB,平面β与平面γ相交于PC;(2)平面ABD与平面BDC相交于BD,平面ABC与平面ADC相交于AC.解(1)符号语言表示:α∩β∩γ=P,α∩β=P A,α∩γ=PB,β∩γ=PC,图形表示如图①.(2)符号语言表示:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC,图形表示如图②.规律方法(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.【训练1】根据下列符号表示的语句,说明点、线、面之间的位置关系,并画出相应的图形:(1)A∈α,B∉α;(2)l⊂α,m∩α=A,A∉l;(3)P∈l,P∉α,Q ∈l,Q∈α.解(1)点A在平面α内,点B不在平面α内,如图①.(2)直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上,如图②.(3)直线l经过平面α外一点P和平面α内一点Q,如图③.类型二点线共面问题(互动探究)【例2】证明:两两相交且不过同一点的三条直线在同一平面内.[思路探究]探究点一确定平面的基本条件有哪些?提示确定平面的基本条件有4个:不在同一直线上的三点、两条相交直线、两条平行直线、直线及直线外一点.探究点二纳入法证明点、线共面的思路是什么?提示先由公理2确定一个平面,再由公理1证明有关点、线在此平面内.证明法一(纳入法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l2⊂α,∴B∈α.同理可证C∈α.又∵B∈l3,C∈l3,∴l3⊂α.∴直线l1、l2、l3在同一平面内.法二(重合法)∵l1∩l2=A,∴l1、l2确定一个平面α.∵l2∩l3=B,∴l2、l3确定一个平面β.∵A∈l2,l2⊂α,∴A∈α.∵A∈l2,l2⊂β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A、B、C既在平面α内,又在平面β内.∴平面α和β重合,即直线l1、l2、l3在同一平面内.规律方法在证明多线共面时,可用下面的两种方法来证明:(1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内.(2)重合法:即先证明一些元素在一个平面内,再证明另一些元素在另一个平面内,然后证明这两个平面重合,即证得所有元素在同一个平面内.【训练2】已知直线a∥b,直线l与a,b都相交,求证:过a,b,l有且只有一个平面.证明如图所示.由已知a∥b,所以过a,b有且只有一个平面α.设a∩l=A,b ∩l=B,∴A∈α,B∈α,且A∈l,B∈l,∴l⊂α.即过a,b,l有且只有一个平面.类型三点共线与线共点问题【例3】如图,在正方体ABCD-A1B1C1D1中,点M、N、E、F分别是棱CD、AB、DD1、AA1上的点,若MN与EF交于点Q,求证:D、A、Q三点共线.证明∵MN∩EF=Q,∴Q∈直线MN,Q∈直线EF,又∵M∈直线CD,N∈直线AB,CD⊂平面ABCD,AB⊂平面ABCD.∴M、N∈平面ABCD,∴MN⊂平面ABCD.∴Q∈平面ABCD.同理,可得EF⊂平面ADD1A1.∴Q∈平面ADD1A1.又∵平面ABCD∩平面ADD1A1=AD,∴Q∈直线AD,即D、A、Q三点共线.规律方法点共线与线共点的证明方法:(1)点共线:证明多点共线通常利用公理3,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在其上.(2)三线共点:证明三线共点问题可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证两条直线的交点在此直线上,此外还可先将其中一条直线看作某两个平面的交线,证明该交线与另两条直线分别交于两点,再证点重合,从而得三线共点.【训练3】如图所示,已知四面体A-BCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且BGGC=DHHC=2.求证:直线EG,FH,AC相交于同一点.证明∵E,F分别是AB,AD的中点,∴EF∥BD且EF=12BD.又∵BGGC=DHHC=2,∴GH∥BD且GH=13BD,∴EF∥GH且EF>GH,∴四边形EFHG是梯形,其两腰所在直线必相交,设两腰EG,FH的延长线相交于一点P,∵EG⊂平面ABC,FH⊂平面ACD,∴P∈平面ABC,P∈平面ACD,又∵平面ABC∩平面ACD=AC,∴P∈AC,故直线EG,FH,AC相交于同一点.[课堂小结]1.解决立体几何问题首先应过好三大语言关,即实现这三种语言的相互转换,正确理解集合符号所表示的几何图形的实际意义,恰当地用符号语言描述图形语言,将图形语言用文字语言描述出来,再转换为符号语言.文字语言和符号语言在转换的时候,要注意符号语言所代表的含义,作直观图时,要注意线的实虚.2.在处理点线共面、三点共线及三线共点问题时要体会三个公理的作用,体会先部分再整体的思想.1.下列命题中正确的个数是()①一个平面长4米,宽2米;②2个平面重叠在一起比一个平面厚;③一个平面的面积是25平方米;④将一个平面内的一条直线延长,它就会伸出这个平面.A.0B.1C.2D.3解析几何中的平面是无限延展的,不可进行所有类型的度量,容易判断所有命题都不对.答案 A2.若点Q在直线b上,b在平面β内,则Q,b,β之间的关系可记作()A.Q∈b∈βB.Q∈b⊂βC.Q⊂b⊂βD.Q⊂b∈β解析∵点Q(元素)在直线b(集合)上,∴Q∈b.又∵直线b(集合)在平面β(集合)内,∴b⊂β,∴Q∈b⊂β.答案 B3.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则直线AB∩β=________.解析∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.答案C4.用文字语言和符号语言表示如图.解文字语言:平面α内的两直线m和n相交于点A.符号语言:m⊂α,n⊂α,且m∩n=A.基础过关1.已知点A,直线a,平面α,以下命题表述正确的个数是()①A∈a,a⊄α⇒A∉α;②A∈a,a∈α⇒A∈α;③A∉a,a⊂α⇒A∉α;④A∈a,a⊂α⇒A⊂α.A.0B.1C.2D.3解析①不正确,如a∩α=A;②不正确,∵“a∈α”表述错误;③不正确,如图所示,A∉a,a⊂α,但A∈α;④不正确,“A⊂α”表述错误.答案 A2.在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线解析 A.不是公理,是个常用的结论,需经过推理论证;B、C、D都是平面的基本性质公理.答案 A3.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是()A.A∈a,A∈β,B∈a,B∈β⇒a⊂βB.M∈α,M∈β,N∈α,N∈β⇒α∩β=MNC.A∈α,A∈β⇒α∩β=AD.A、B、M∈α,A、B、M∈β,且A、B、M不共线⇒α、β重合解析∵A∈α,A∈β,∴A∈α∩β.由公理可知α∩β为经过A的一条直线而不是A.故α∩β=A的写法错误.答案 C4.(1)空间任意4点,没有任何3点共线,它们最多可以确定________个平面. (2)空间5点,其中有4点共面,它们没有任何3点共线,这5个点最多可以确定________个平面.解析(1)可以想象三棱锥的4个顶点,它们总共确定4个平面.(2)可以想象四棱锥的5个顶点,它们总共确定7个平面.答案(1)4(2)75.设平面α与平面β相交于l,直线a⊂α,直线b⊂β,a∩b=M,则M________l. 解析因为a∩b=M,a⊂α,b⊂β,所以M∈α,M∈β.又因为α∩β=l,所以M∈l.答案∈6.(1)用数学符号表示图中的点、直线、平面之间的位置关系.(2)画出满足下列条件的图形(其中α,β为平面,a,b,l为直线):α∩β=l,a⊂α,b⊂β,a∥l,b∩l=A,B∈a.解(1)α∩β=l,a⊂β,a∩l=A,b∩α=B,b∩β=C.(2)如图所示7.如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线.解很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上.由于AB>CD,则分别延长AC和BD交于点E,如图所示,∵E∈AC,AC⊂平面SAC,∴E∈平面SAC.同理,可证E∈平面SBD.∴点E在平面SBD和平面SAC的交线上,则连接SE,直线SE就是平面SBD和平面SAC的交线.能力提升8.空间四点A、B、C、D共面而不共线,那么这四点中()A.必有三点共线B.必有三点不共线C.至少有三点共线D.不可能有三点共线解析如图(1)(2)所示,A、C、D均不正确,只有B正确,如图(1)中A、B、D 不共线.答案 B9.如图所示,在正方体ABCD-A1B1C1D1中,O为DB的中点,直线A1C交平面C1BD于点M,则下列结论错误的是()A.C1,M,O三点共线B.C1,M,O,C四点共面C.C1,O,A,M四点共面D.D1,D,O,M四点共面解析在题图中,连接A1C1,AC,则AC∩BD=O,A1C∩平面C1BD=M.∴三点C1,M,O在平面C1BD与平面ACC1A1的交线上,即C1,M,O三点共线,∴选项A,B,C均正确,D不正确.答案 D10.若直线l与平面α相交于点O,A,B∈l,C,D∈α,且AC∥BD,则O,C,D三点的位置关系是________.解析∵AC∥BD,∴AC与BD确定一个平面,记作平面β,则α∩β=直线CD.∵l∩α=O,∴O∈α.又∵O∈AB⊂β,∴O∈直线CD,∴O,C,D三点共线.答案共线11.如图所示,在正方体ABCD-A1B1C1D1中,E为AB的中点,F为A1A的中点,求证:(1)E,F,D1,C四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,分别连接EF,A1B,D1C. ∵E,F分别是AB和AA1的中点,∴EF綉12A1B.又A1D1綉B1C1綉BC,∴四边形A1D1CB为平行四边形.∴A1B∥CD1,∴EF∥CD1.∴EF与CD1确定一个平面,∴E,F,D1,C四点共面.(2)∵EF綉12CD1,∴直线D1F和CE必相交.设D1F∩CE=P.∵D1F⊂平面AA1D1D,P∈D1F,∴P∈平面AA1D1D.又CE⊂平面ABCD,P∈EC,∴P∈平面ABCD.∴P是平面ABCD与平面AA1D1D的公共点.又平面ABCD∩平面AA1D1D=AD,∴P∈AD,∴CE,D1F,DA三线共点.探究创新12.在棱长是a的正方体ABCD-A1B1C1D1中,M,N分别是AA1、D1C1的中点,过D,M,N三点的平面与正方体的下底面相交于直线l.(1)画出交线l;(2)设l∩A1B1=P,求PB1的长;(3)求点D1到l的距离.解(1)如图,延长DM交D1A1的延长线于点Q,则点Q是平面DMN与平面A1B1C1D1的一个公共点.连接QN,则直线QN就是两平面的交线l.(2)∵M 是AA 1的中点,MA 1∥DD 1,∴A 1是QD 1的中点,又∵A 1P ∥D 1N ,∴A 1P =12D 1N .∵N 是D 1C 1的中点,∴A 1P =14D 1C 1=a 4,∴PB 1=A 1B 1-A 1P =34a .(3)过点D 1作D 1H ⊥PN 于点H ,则D 1H 的长度就是点D 1到l 的距离.∵QD 1=2A 1D 1=2a ,D 1N =a 2,∴D 1H =D 1Q ·D 1N QN =2a ·a 24a 2+a 24=21717a . 即点D 1到l 的距离是21717a .。
2018年浙江省高考数学试题及答案解析

绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则 若事件A ,B 相互独立,则 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高 锥体的体积公式其中表示锥体的底面积,表示锥体的高 球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则 A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线的焦点坐标是()()()P A B P A P B +=+()()()P AB P A P B =()C (1)(0,1,2,,)k k n k n n P k p p k n −=−=121()3V S S h =12,S S h V Sh =S h 13V Sh =S h 24S R =π343V R =πR =U A ð∅221 3=x y −A .,0),,0)B .(−2,0),(2,0)C .(0,),(0)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm3)是A .2B .4C .6D .84.复数(i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是俯视图正视图21i−||2x ⊄⊂则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小 8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A 1B +1C .2D .210.已知成等比数列,且.若,则 A .B .C .D .非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018版浙江《学业水平考试》数学-知识清单与冲A训练:7 空间点、直线、平面之间的位置关系 全国通用

知识点一 平面 1.平面的概念 (1)平面是没有厚度的. (2)平面是________的. 2.平面的表示通常用希腊字母α,β,γ表示,如平面α;也可以用两个相对顶点的字母来表示,如平面BC .知识点二 点、直线、平面的位置关系的符号表示 1.点与平面的关系⎩⎨⎧点A 在平面α内,记作点A 不在平面α内,记作2.点与直线的关系⎩⎨⎧点A 在直线l 上,记作点A 在直线l 外,记作3.直线与平面的关系⎩⎨⎧直线l 在平面α内,记作直线l 不在平面α内,记作知识点三 平面的基本性质公理1:如果一条直线上的________在一个平面内,那么这条直线在此平面内. 公理2:过________________的三点,有且只有一个平面.推论:一条直线与该直线外一点确定一个平面;两相交直线确定一个平面;两平行直线确定一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有_______过该点的公共直线.公理4:平行于________________的两条直线互相平行. 知识点四 直线与直线的位置关系 1.位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎨⎧异面直线:不同在一个平面内2.异面直线所成的角(1)定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的______________叫做异面直线a,b所成的角(或夹角).(2)范围:________________.知识点五直线与平面的位置关系(1)直线在平面内(有无数个公共点).(2)直线和平面相交(有且只有一个公共点).(3)直线与平面平行(没有公共点).知识点六平面与平面之间的位置关系(1)平行(没有公共点):α∥β.(2)相交(有一条公共直线):α∩β=b.知识点七等角定理空间中如果两个角的两边分别对应平行,那么这两角________________.例1(2016年10月学考)在空间中,下列命题正确的是()A.经过三个点有且只有一个平面B.经过一个点和一条直线有且只有一个平面C.经过一个点且与一条直线平行的平面有且只有一个D.经过一个点且与一条直线垂直的平面有且只有一个例2设A,B,C,D是空间四个不同的点,则下列命题不正确的是()A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD=BCD.若AB=AC,DB=DC,则AD⊥BC例3对两条不相交的空间直线a与b,必存在平面α,使得()A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α例4(2015年10月学考)如图,在菱形ABCD中,∠BAD=60°,线段AD,BD的中点分别为E,F,现将△ABD沿对角线BD翻折,则异面直线BE与CF所成角的取值范围是()A .(π6,π3)B .(π6,π2]C .(π3,π2]D .(π3,2π3)例5 如图所示,正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:(1)E 、C 、D 1、F 四点共面; (2)CE 、D 1F 、DA 三线共点.例6 如图,在空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,E 、F 分别为BC 、AD 的中点,求EF 与AB 所成角的大小.一、选择题1.在空间中,下列命题错误的是()A.圆上三点可确定一个平面B.圆心和圆上两点可确定一个平面C.四条平行线不能确定五个平面D.空间四点中,若四点不共面,则任意三点不共线2.若a和b是异面直线,b和c是异面直线,则a和c的位置关系是() A.异面或平行B.异面或相交C.异面D.相交、平行或异面3.如图,在正方体ABCD-A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C14.如图,在正方体ABCD-A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直5.如图所示,棱长都相等的四面体S -ABC 中,D 为SC 的中点,则BD 与SA 所成角的余弦值是( )A.33B.23C.36D.266.在正方体ABCD -A 1B 1C 1D 1中,下列几种说法正确的是( ) A .A 1C 1⊥AD B .D 1C 1⊥ABC .AC 1与DC 成45°角D .A 1C 1与B 1C 成60°角7.如图所示,平面α∩平面β=l ,A ∈α,B ∈α,AB ∩l =D ,C ∈β,C ∉l ,则平面ABC 与平面β的交线是( )A .直线ACB .直线ABC .直线CDD .直线BC8.如图,在空间四边形ABCD 中,点E 、H 分别是边AB 、AD 的中点,F 、G 分别是边BC 、CD 上的点,且CF CB =CG CD =23,则( )A .EF 与GH 互相平行B .EF 与GH 异面C .EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上D .EF 与GH 的交点M 一定在直线AC 上 二、填空题9.如图,在正方体ABCD -A 1B 1C 1D 1中,与直线BD 1异面的棱有________条.10.若a,b是两条异面直线,且a∥平面α,则b与α的位置关系是________.11.下列各图是正方体或三棱锥,P,Q,R,S分别是所在棱的中点,这四个点不共面的图象为________.(填写序号)三、解答题12.如图所示,四面体A-BCD中,E,F分别是AB,CD的中点,若BD,AC所成的角为60°,且BD=AC=2,求EF的长度.答案精析知识条目排查 知识点一 1.(2)无限延展 知识点二 1.A ∈α A ∉α 2.A ∈l A ∉l 3.l ⊂α l ⊄α 知识点三两点 不在一条直线上 一条 同一条直线 知识点四1.平行 相交 任何 2.(1)锐角(或直角) (2)⎝ ⎛⎦⎥⎤0,π2知识点七 相等或互补 题型分类示例 例1 D例2 C 选项A 中,若AC 与BD 共面, 则A ,B ,C ,D 四点共面,则AD 与BC 共面; 选项B 中,若AC 与BD 是异面直线,则A ,B ,C ,D 四点不共面,则AD 与BC 是异面直线; 选项C 中,若AB =AC ,DB =DC ,AD 不一定等于BC ; 选项D 中,若AB =AC ,DB =DC ,可以证明AD ⊥BC , 故选C.]例3 B 不相交的直线a ,b 有两种位置关系:平行或异面. 当直线a ,b 异面时,不存在平面α满足选项A ,C ; 又只有当a ⊥b 时,选项D 才可能成立,故选B.] 例4 C 由题意得△ABD ,△BCD 均为等边三角形, 取ED 的中点G ,连接FG ,则FG ∥BE , 所以∠GFC 或其补角就是直线BE 与CF 的夹角.由图易得在翻折过程中, 在△CGF 中,∠GFC 逐渐减小, 当平面ABD 不翻折时, ∠GFC =2π3;当平面ABD ⊥平面BCD 时, ∠GFC =π2;平面ABD 翻折到与平面BCD 重合时, ∠GFC =π3,所以直线BE 与CF 的夹角的取值范围是(π3,π2],故选C.] 例5 证明 (1)连接EF ,CD 1,A 1B . ∵E 、F 分别是AB 、AA 1的中点, ∴EF ∥A 1B .又A 1B ∥CD 1, ∴EF ∥CD 1,∴E 、C 、D 1、F 四点共面. (2)∵EF ∥CD 1,EF <CD 1, ∴CE 与D 1F 必相交,设交点为P ,则由P ∈CE ,CE ⊂平面ABCD ,得P ∈平面ABCD . 同理P ∈平面ADD 1A 1.又平面ABCD ∩平面ADD 1A 1=DA , ∴P ∈直线DA .∴CE 、D 1F 、DA 三线共点. 例6 解 取AC 的中点G ,连接EG 、FG , 则EG 綊12AB ,GF 綊12CD , 由AB =CD 知EG =FG ,∴∠GEF(或它的补角)为EF与AB所成的角,∠EGF(或它的补角)为AB与CD所成的角.∵AB与CD所成的角为30°,∴∠EGF=30°或150°.由EG=FG知△EFG为等腰三角形,当∠EGF=30°时,∠GEF=75°;当∠EGF=150°时,∠GEF=15°.故EF与AB所成的角为15°或75°.考点专项训练1.B 2.D3.D根据异面直线的概念可看出直线AA1,A1B1,A1D1都和直线EF异面,B1C1和EF在同一平面内,且这两直线不平行,∴直线B1C1和直线EF相交,故选D.]4.D∵正方体的对面平行,∴直线BD与A1C1异面,连接AC,则AC∥A1C1,AC⊥BD,∴直线BD与A1C1异面且垂直,故选D.]5.C如图,取AC边中点E,连接DE,BE,则DE∥SA,∴∠EDB或其补角为BD与SA所成角.设四面体的棱长为2,则在△BDE中,DE=1,BD=3,BE=3,∴cos∠BDE=36,故选C.]6.D由题意画出如下图形:对于A,因为AD∥A1D1,所以∠C1A1D1即为异面直线A1C1与AD所成的角,而∠C1A1D1=45°,所以A错;对于B,因为D1C1∥CD,由平行公理4可知,AB∥CD∥C1D1,所以B错;对于C,因为DC∥AB,所以∠C1AB即为这两异面直线所成的角,而在Rt△C1AB中,tan∠C1AB=2,所以C错;对于D,因为A1C1∥AC,所以∠B1CA即为异面直线A1C1与B1C所成的角,在正三角形B1CA中,∠B1CA=60°,所以D正确.故选D.]7.C由题意知,D∈l,l⊂β,∴D∈β.又D∈AB,∴D∈平面ABC,即D在平面ABC与平面β的交线上.又C∈平面ABC,C∈β,∴点C在平面β与平面ABC的交线上.从而有平面ABC∩平面β=CD.故选C.]8.D因为F、G分别是边BC、CD上的点,且CFCB=CGCD=23,所以GF∥BD,并且GF=23BD,因为点E、H分别是边AB、AD的中点,所以EH∥BD,并且EH=12BD,所以EH∥GF,并且EH≠GF,所以EF与GH相交,设其交点为M,所以M∈平面ABC,同理M∈平面ACD,又因为平面ABC∩平面ACD=AC,所以M在直线AC上,故选D.]9.6解析与BD1异面的棱有A1B1,B1C1,AD,DC,AA1,CC1.10.b⊂α,b∥α或b与α相交解析在正方体ABCD-A1B1C1D1中,设A1A为a,BC为b.若平面BCC1B1为α,则b⊂α;若平面CDD1C1为α,则b与α相交;若过AB,CD,C1D1,A1B1中点的截面为α,则b∥α.11.④解析如图,连接PR,交BC的延长线于G,交BA的延长线于K,连接GS,交BB1的延长线于H,连接HK,交AA1(A1B1)于Q,由图可知Q为AA1(A1B1)的中点,∴①②中的四点共面;对于③,如图,连接PQ,RS,则PQ∥RS∥AB,∴P、Q、R、S四点共面;对于④,∵RS⊂平面ACD,P∈平面ACD,Q∉平面ACD,∴PQ与RS异面.故四个点不共面的图象为④.故答案为④.12.解取BC的中点M,连接ME,MF,如图,则ME∥AC,MF∥BD,∴ME与MF所成的锐角(或直角)即为AC与BD所成的角,而AC,BD所成的角为60°,∴∠EMF=60°或∠EMF=120°.当∠EMF=60°时,EF=ME=MF=12BD=1;当∠EMF=120°时,取EF的中点N,连接MN,则MN⊥EF,∴EF=2EN =2EM·sin∠EMN=2×1×32= 3.故EF的长度为1或 3.。
专题八 立体几何 第二十三讲 空间中点、直线、平面之间的位置关系

专题八 立体几何第二十三讲 空间中点、直线、平面之间的位置关系一、选择题1.(2018全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A B C D2.(2018全国卷Ⅱ)在长方体1111-ABCD A B C D 中,1==AB BC ,1=AA 线1AD 与1DB 所成角的余弦值为A .15B C D 3.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.(2018浙江)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤5.(2017新课标Ⅱ)已知直三棱柱111ABC A B C -中,120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A B C D 6.(2017浙江)如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角D PR Q --,D PQ R --,D QR P --的平面角为α,β,γ,则R QPABC DA .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α7.(2016年全国I )平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,αI 平面ABCD =m ,αI 平面11ABB A =n ,则m ,n 所成角的正弦值为A.2 B.2 C.3 D .138.(2015福建)若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“l ∥α”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.(2015浙江)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆翻折成A CD '∆,所成二面角A CD B '--的平面角为α,则10.(2014广东)若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定 11.(2014浙江)设,m n 是两条不同的直线,,αβ是两个不同的平面A .若m n ⊥,//n α,则m α⊥B .若//m β,βα⊥则m α⊥C .若,,m n n ββα⊥⊥⊥则m α⊥D .若m n ⊥,n β⊥,βα⊥,则m α⊥ 12.(2014辽宁)已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥13.(2014浙江)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角).若15AB m =,25AC m =,30BCM ∠=︒则tan θ的最大值ABCD 14.(2014四川)如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A1A. B.C .D . 15.(2013新课标Ⅱ)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足,l m l n ⊥⊥,,l l αβ⊄⊄,则A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l16.(2013广东)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥17.(2012浙江)设l 是直线,,αβ是两个不同的平面A .若l ∥α,l ∥β,则α∥βB .若l ∥α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, l ∥α,则l ⊥β18.(2012浙江)已知矩形ABCD ,1AB =,BC =将ABD ∆沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 19.(2011浙江)下列命题中错误..的是 A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面αγ⊥平面,平面βγ⊥平面,=l αβ,那么l γ⊥平面D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β20.(2010山东)在空间,下列命题正确的是A .平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .垂直于同一平面的两条直线平行 二、填空题21.(2018全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为_____. 22.(2016年全国II )α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)23.(2015浙江)如图,三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是 .24.(2015四川)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,,E F 分别为,AB BC 的中点.设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为_________.25.(2017新课标Ⅲ)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最小值为60°;其中正确的是________.(填写所有正确结论的编号) 三、解答题26.(2018江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.D 11B 1A 1DCBA求证:(1)AB ∥平面11A B C ;(2)平面11ABB A ⊥平面1A BC .27.(2018浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=,14A A =,11C C =,12AB BC B B ===.C 1B 1A 1CBA(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成的角的正弦值.28.(2017浙江)如图,已知四棱锥P ABCD -,PAD ∆是以AD 为斜边的等腰直角三角形,BC AD ∥,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点. (Ⅰ)证明:CE ∥平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.EDCBAP29.(2017江苏)如图,在三棱锥A BCD -中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .FABCDE30.(2017山东)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点. (Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.31.(2017江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm . 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm . 现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.32.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E BC A --的余弦值.33.(2016全国II )如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将ΔDEF 沿EF折到ΔD EF '的位置,OD '= (I )证明:D H '⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.34.(2016全国III )如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ,=3AB AD AC ==,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.(Ⅰ)证明MN平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.BD35.(2014山东)如图,四棱锥P ABCD -中,AP PCD ⊥平面,AD BC ∥,1,,2AB BC AD EF ==分别为线段,AD PC 的中点.(Ⅰ)求证:AP BEF ∥平面; (Ⅱ)求证:BE PAC ⊥平面.36.(2014江苏)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证:(Ⅰ)直线PA ∥平面DEF ;(Ⅱ)平面BDE ⊥平面ABC .37.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD求三棱锥E ACD -的体积.38.(2014天津)如图四棱锥P ABCD -的底面ABCD是平行四边形,BA BD ==,2AD =,PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值.39.(2013浙江)如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,2AB BC ==,AD CD ==,PA =120ABC ∠=,G 为线段PC 上的点.PDB(Ⅰ)证明:BD ⊥面APC ;(Ⅱ)若G 是PC 的中点,求DG 与APC 所成的角的正切值; (Ⅲ)若G 满足PC ⊥面BGD ,求PGGC的值. 40.(2013辽宁)如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点.(Ⅰ)求证:BC PAC ⊥平面;(Ⅱ)设Q 为PA 的中点,G 为AOC ∆的重心,求证:QG ∥平面PBC .41.(2012江苏)如图,在直三棱柱111ABC A B C -中,1111AB AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.1求证:(Ⅰ)平面ADE ⊥平面11BCC B ;(Ⅱ)直线1//A F 平面ADE .42.(2012广东)如图所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//,AB CD PD AD =,E 是PB 中点,F 是DC 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高.(Ⅰ)证明:PH ⊥平面ABCD ; (Ⅱ)若1,1PH AD FC ===,求三棱锥E BCF -的体积;(Ⅲ)证明:EF ⊥平面PAB .43.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点.C求证:(Ⅰ)直线EF ∥平面PCD ; (Ⅱ)平面BEF ⊥平面PAD .44.(2011广东)如图在椎体P ABCD -中,ABCD是边长为1的棱形,且DAB ∠=60︒,PA PD ==2PB =,E ,F 分别是BC ,PC 的中点.(Ⅰ)证明:AD ⊥平面DEF ;(Ⅱ)求二面角P AD B --的余弦值.45.(2010天津)如图,在五面体ABCDEF 中,四边形ADEF 是正方形,FA ⊥平面ABCD ,BC∥AD ,CD =1,AD =,∠BAD =∠CDA =45°.(Ⅰ)求异面直线CE 与AF 所成角的余弦值; (Ⅱ)证明CD ⊥平面ABF ; (Ⅲ)求二面角B EF A --的正切值.46.(2010浙江)如图,在平行四边形ABCD 中,AB =2BC ,∠ABC =120°.E 为线段AB 的中点,将△ADE 沿直线DE 翻折成△A DE ',使平面A DE '⊥平面BCD ,F 为线段A C '的中点.(Ⅰ)求证:BF ∥平面A DE ';(Ⅱ)设M 为线段DE 的中点,求直线FM 与平面A DE '所成角的余弦值.。
高中数学必修2第二章点、直线、平面之间的位置关系测试题 答案综述

第二章 直线与平面的位置关系 测试题一、选择题 1.设,为两个不同的平面,l ,m 为两条不同的直线,且l ⊂,m ⊂β,有如下的两个命题:①若∥,则l ∥m ;②若l ⊥m ,则⊥.那么( ).A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题2.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ). A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1角为60° 3.关于直线m ,n 与平面,,有下列四个命题:①m ∥,n ∥且∥,则m ∥n ; ②m ⊥,n ⊥且⊥,则m ⊥n ; ③m ⊥,n ∥且∥,则m ⊥n ;④m ∥,n ⊥且⊥,则m ∥n .其中真命题的序号是( ). A .①②B .③④C .①④D .②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行 ②垂直于同一平面的两个平面互相平行③若直线l 1,l 2与同一平面所成的角相等,则l 1,l 2互相平行④若直线l 1,l 2是异面直线,则与l 1,l 2都相交的两条直线是异面直线 其中假.命题的个数是( ). A .1B .2C .3D .45.下列命题中正确的个数是( ).(第2题)①若直线l上有无数个点不在平面内,则l∥②若直线l与平面平行,则l与平面内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线l与平面平行,则l与平面内的任意一条直线都没有公共点A.0个B.1个C.2个D.3个6.两直线l1与l2异面,过l1作平面与l2平行,这样的平面( ).A.不存在B.有唯一的一个C.有无数个D.只有两个7.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为( ).A.90°B.60°C.45°D.30°8.下列说法中不正确的....是( ).A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直9.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面③如果两条直线都平行于一个平面,那么这两条直线互相平行④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直其中真命题的个数是( ).A.4 B.3 C.2 D.110.异面直线a ,b 所成的角60°,直线a ⊥c ,则直线b 与c 所成的角的范围为( ).A .[30°,90°] B.[60°,90°] C .[30°,60°]D .[30°,120°] 二、填空题11.已知三棱锥P -ABC 的三条侧棱PA ,PB ,PC 两两相互垂直,且三个侧面的面积分别为S 1,S 2,S 3,则这个三棱锥的体积为 .12.P 是△ABC 所在平面外一点,过P 作PO ⊥平面,垂足是O ,连PA ,PB ,PC .(1)若PA =PB =PC ,则O 为△ABC 的 心; (2)PA ⊥PB ,PA ⊥PC ,PC ⊥PB ,则O 是△ABC 的 心;(3)若点P 到三边AB ,BC ,CA 的距离相等,则O 是△ABC 的 心; (4)若PA =PB =PC ,∠C =90º,则O 是AB 边的 点; (5)若PA =PB =PC ,AB =AC ,则点O 在△ABC 的 线上. 13.如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点,将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为 .14.直线l 与平面 所成角为30°,l ∩=A ,直线m ∈,则m 与l 所成角的取值范围 是 .15.棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为d 1,d 2,d 3,d 4,则d 1+d 2+d 3+d 4的值为 .16.直二面角-l -的棱上有一点A ,在平面,内各有一条射线AB ,AC 与l 成45°,AB ⊂,AC ⊂,则∠BAC = .J(第13题)三、解答题17.在四面体ABCD 中,△ABC 与△DBC 都是边长为4的正三角形. (1)求证:BC ⊥AD ;(2)若点D 到平面ABC 的距离等于3,求二面角A -BC -D 的正弦值;(3)设二面角A -BC -D 的大小为,猜想为何值时,四面体A -BCD 的体积最大.(不要求证明)18. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB .(1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.(第18题)(第17题)19*.如图,在底面是直角梯形的四棱锥S-ABCD中,AD∥BC,∠ABC=90°,1.SA⊥面ABCD,SA=AB=BC=1,AD=(1)求四棱锥S—ABCD的体积;(2)求面SCD与面SBA所成的二面角的正切值.(提示:延长BA,CD相交于点E,则直线SE是所求二面角的棱.)(第19题)20*.斜三棱柱的一个侧面的面积为10,这个侧面与它所对棱的距离等于6,求这个棱柱的体积.(提示:在AA1上取一点P,过P作棱柱的截面,使AA1垂直于这个截面.)(第20题)第二章点、直线、平面之间的位置关系参考答案一、选择题1.D 解析:命题②有反例,如图中平面∩平面=直线n,l ⊂,m⊂,且l∥n,m⊥n,则m⊥l,显然平面不垂直平面,(第1题)故②是假命题;命题①显然也是假命题,2.D解析:异面直线AD与CB1角为45°.3.D解析:在①、④的条件下,m,n的位置关系不确定.4.D解析:利用特殊图形正方体我们不难发现①②③④均不正确,故选择答案D.5.B解析:学会用长方体模型分析问题,A1A有无数点在平面ABCD外,但AA1与平面ABCD相交,①不正确;A1B1∥平面ABCD,显然A1B1不平行于BD,②不正确;A1B1∥AB,A1B1∥平面ABCD,但AB⊂平面ABCD内,③不正确;l与平面α平行,则l与无公共点,l与平面内的所有直线都没有公共点,④正确,应选B. (第5题)6.B解析:设平面过l1,且l2∥,则l1上一定点P与l2确定一平面,与的交线l3∥l2,且l3 过点P. 又过点P与l2平行的直线只有一条,即l3有唯一性,所以经过l1和l3的平面是唯一的,即过l1且平行于l2的平面是唯一的.7.C解析:当三棱锥D-ABC体积最大时,平面DAC⊥ABC,取AC的中点O,则△DBO是等腰直角三角形,即∠DBO=45°.8.D解析:A.一组对边平行就决定了共面;B.同一平面的两条垂线互相平行,因而共面;C.这些直线都在同一个平面内即直线的垂面;D.把书本的书脊垂直放在桌上就明确了.9.B 解析:因为①②④正确,故选B .10.A 解析:异面直线a ,b 所成的角为60°,直线c ⊥a ,过空间任一点 P ,作直线 a ’∥a , b ’∥b , c ’∥c . 若a ’,b ’,c ’ 共面则 b ’ 与 c ’ 成 30° 角,否则 b ’ 与 c ’ 所成的角的范围为(30°,90°],所以直线b 与c 所成角的范围为[30°,90°] .二、填空题 11.313212S S S .解析:设三条侧棱长为 a ,b ,c .则 21ab =S 1,21bc =S 2,21ca =S 3 三式相乘: ∴ 81a 2 b 2 c 2=S 1S 2S 3, ∴ abc =23212S S S . ∵ 三侧棱两两垂直, ∴ V =31abc ·21=313212S S S .12.外,垂,内,中,BC 边的垂直平分.解析:(1)由三角形全等可证得 O 为△ABC 的外心;(2)由直线和平面垂直的判定定理可证得,O 为△ABC 的垂心; (3)由直线和平面垂直的判定定理可证得,O 为△ABC 的内心; (4)由三角形全等可证得,O 为 AB 边的中点;(5)由(1)知,O 在 BC 边的垂直平分线上,或说 O 在∠BAC 的平分线上. 13.60°.解析:将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为60°.14.[30°,90°].解析:直线l 与平面所成的30°的角为m 与l所成角的最小值,当m 在内适当旋转就可以得到l ⊥m ,即m 与l 所成角的的最大值为90°.15.36.解析:作等积变换:4331⨯×(d 1+d 2+d 3+d 4)=4331⨯·h ,而h =36. 16.60°或120°.解析:不妨固定AB ,则AC 有两种可能. 三、解答题17.证明:(1)取BC 中点O ,连结AO ,DO . ∵△ABC ,△BCD 都是边长为4的正三角形, ∴AO ⊥BC ,DO ⊥BC ,且AO ∩DO =O , ∴BC ⊥平面AOD .又AD ⊂平面AOD ,∴BC ⊥AD . (第17题) 解:(2)由(1)知∠AOD 为二面角A -BC -D 的平面角,设∠AOD =,则过点D 作DE ⊥AD ,垂足为E .∵BC ⊥平面ADO ,且BC ⊂平面ABC ,∴平面ADO ⊥平面ABC .又平面ADO ∩平面ABC =AO , ∴DE ⊥平面ABC .∴线段DE 的长为点D 到平面ABC 的距离,即DE =3. 又DO =23BD =23,在Rt △DEO 中,sin=DODE =23,故二面角A -BC -D 的正弦值为23.(3)当 =90°时,四面体ABCD 的体积最大.18.证明:(1)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC =45°.∴︒=∠90DEC ,即DE ⊥EC .在长方体ABCD -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D , ∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC .(2)解:如图,过E 在平面11DCC D 中作EO ⊥DC 于O .在长方体ABCD -1111D C B A 中,∵面ABCD⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO为二面角E -DB -C 的平面角.利用平面几何知识可得OF =51, (第18题)又OE =1,所以,tan ∠EFO =5.19*.解:(1)直角梯形ABCD 的面积是M 底面=AB AD BC ⋅)(+21=43=1221+1⨯,∴四棱锥S —ABCD 的体积是V =31·SA ·M 底面=31×1×43=41. (2)如图,延长BA ,CD 相交于点E ,连结SE ,则SE 是所求二面角的棱. ∵AD ∥BC ,BC =2AD , ∴EA =AB =SA ,∴SE ⊥SB∵SA ⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线. 又BC ⊥EB ,∴BC ⊥面SEB ,故SB 是SC 在面SEB 上的射影,∴CS ⊥SE ,∠BSC 是所求二面角的平面角. ∵SB =22+AB SA =2,BC =1,BC ⊥SB , ∴tan ∠BSC =22=SB BC , (第19题)即所求二面角的正切值为22. 20*.解:如图,设斜三棱柱ABC —A 1B 1C 1的侧面BB 1C 1C 的面积为10,A 1A 和面BB 1C 1C 的距离为6,在AA 1上取一点P 作截面PQR ,使AA 1⊥截面PQR ,AA 1∥CC 1,∴截面PQR ⊥侧面BB 1C 1C ,过P 作PO ⊥QR 于O ,则PO ⊥侧面BB 1C 1C ,且PO =6.∴V 斜=S △PQR ·AA 1=21·QR ·PO ·AA 1=21·PO ·QR ·BB 1 =21×10×6 =30.(第20题)。
浙江省杭州市2018届高三第二次高考科目教学质量检测数学试题(解析版)

1.A【解析】分析:根据集合交集的定义进行求解即可求出结果.详解:∵,,∴,故选A.点睛:本题主要考查集合的基本运算,根据交集的定义是解决本题的关键,比较基础.2.B【解析】分析:利用复数代数形式的乘法运算展开,根据实数的特征得虚部为0即可求得值.详解:,∵,∴,解得,故选:B点睛:本题考查复数代数形式的乘法运算,考查复数的基本概念,是基础题.点睛:本题考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.4.A【解析】分析:根据圆的方程的特征分别计算出两圆的圆心与半径,计算处圆心距,根据可得两圆位置关系.详解:由题意知,圆的圆心为,半径为,圆的圆心为,半径为,因为两圆心距为,又,则,所以两圆的位置关系为相离,故正确答案为A.点睛:此题主要考查解析几何中圆的标准方程,两圆的位置关系,以及两点间的距离公式的应用等有关方面的知识与技能,以属于中低档题型,也是常考考点.判断两圆的位置关系,有两种方法,一是代数法,联立两圆方程,消去其中一未知数,通过对所得方程的根决断,从而可得两圆关系;一是几何法,通计算两圆圆心距与两圆半径和或差进行比较,从而可得两圆位置关系.5.D【解析】分析:画出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过时,值最小,没有最大值.详解:由题意,先作出约束条件的可行域图,如图所示,将目标函数转化为,作出其平行直线,将其在可行域范围内上下平移,则当平移至顶点时,截距取得最小值,即,故正确答案为D.点睛:本题考查了画不等式组表示的平面区域,利用数形结合求函数最值的应用问题.点睛:本题考查了对数的运算性质,特值法在选择题中的应用,属于基础题7.A【解析】分析:由随机变量的分布列,推导出,从而当增大时,增大;,由,得到当增大时,增大.详解:由随机变量的分布列,得,∴当增大时,增大;,∵,∴当增大时,增大,故选A.点睛:本题考查命题真假的判断,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是基础题8.C【解析】分析:对函数求导,令,得或,根据函数的图象可得方程有解,由此根据函数的单调性和极值的关系得到函数既有极大值,又有极小值.详解:由题意,,由,得或,由方程,结合函数图象,作出和的图象,结合图象得和的图象有交点,∴方程有解,由此根据函数的单调性和极值的关系得到:函数既有极大值,又有极小值具有极大值,也有极小值,故选C.点睛:本题考查函数的极大值和极小值的判断,考查导数的几何意义、导数性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.点睛:此题主要考查平面向量的模、数量积的坐标表示及运算,以及坐标法、圆的方程的应用等有关方面的知识与技能,属于中高档题型,也是常考考点.在解决此类问题中,需要根据条件,建立合理的平面直角坐标系,将向量关系转化为点位置关系,通对坐标运算,将其结果翻译为向量结论,从而问题可得解.10.A【解析】分析:设三角形的高分别为,三棱锥的高为,易知,根据正弦函数的定义可得结果.详解:由题意,设三角形的高分别为,三棱锥的高为,易知,根据正弦函数的定义得,,所以,又均为锐角,所以,故正确答案为A.点睛:本题考查二面角的余弦值的求法的应用,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.11.【解析】由可得双曲线的渐近线方程是,且双曲线中,.点睛:本题考查了等比数列的通项公式求和公式及其性质,考查了推理能力与计算能力,属于中档题.13.【解析】分析:由已知中的三视图,可知该几何体左侧是球的四分之一,右侧是一个半圆锥,然后求解几何体的体积,求出底面面积,代入棱锥体积公式,可得几何体的体积,累加各个面的面积可得,几何体的表面积.学科&网详解:由三视图知,该几何体是由四分之一球与半个圆锥组合而成,则该组合体的体积为,表面积为,故答案为和.点睛:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状及熟记几何体的体积及表面积公式.14.【解析】分析:由正弦定理得,设,利用余弦定理能求出;当时,,根据的面积公式可求出结果.详解:由题意,根据正弦定理得,,设,根据余弦得,;由,则,又,根据三角形面积公式得,故答案为及.点睛:本题考查角余弦值的求法,考查三角形面积的求法等基础知识,考查运用求解能力,是中档题.15.32【解析】分析:根据题意,按6个球取出的数目分6种情况讨论,分析求出每一种情况的取法数目,由加法原理计算可得答案.详解:由题意,一次可以取球的个数为1,2,3,4,5,6个,则若一次取完可由1个6组成,有1种;二次取完可由1与5,2与4,3与3组成共5种;三次取完由1,1,4或1,2,3或2,2,2组成共10种;四次取完有1,1,1,3或1,1,2,2组成共10种;五次取完,由1,1,1,1,2个组成共5种;六次取完由6个1组成共有1种,综上得,共有32种,故答案为32.点睛:此题主要考查数学中计数原理在实际问题中的应用,属于中档题型,也是常考考点.计数原理是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解计数问题最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具.点睛:本题考查了绝对值不等式的性质与解法、函数的性质,考查了推理能力与计算能力,属于基础题.17.【解析】分析:由题意知,,所以,由此可知,当时取得最大值.详解:由题意知,,对任意,不等式恒成立恒成立边上的高大于等于恒成立,∵,∴,所以,由此可知,当时取得最大值.点睛:本题考查余弦定理及其应用,解题时要认真审题,不等式恒成立边上的高大于等于恒成立,是解题关键.18.(1)见解析;(2)(+2kπ,+2kπ)(k∈Z).【解析】试题分析:(Ⅰ)由已知,根据诱导公式,可将函数的解析式进行化简整理,再根据正弦函数周期的计算公式,可求出原函数的最小正周期,根据正弦函数的值域,可求出原函数的最大值;(Ⅱ)由(Ⅰ)可得函数的解析式,根据正弦函数的单调减区间,从而问题可得解.(Ⅱ)因为f (-x)=2sin(x-),所以单调递减区间为(+2kπ,+2kπ)(k∈Z).点睛:此题主要考查三角函数中诱导公式的应用,以及三角函数的最小正周期、单调区间、最值等有关方面的知识与技能,属于中档题型,也是常考考点.解决此类问题过程中,常需要通过诱导公式、三角恒等变换公式将函数解析式进行化归,即含一种三角函数名、一个角的解析式,再进行求解运算.19.(1)见解析;(2).【解析】分析:(Ⅰ)由题意,可根据面面垂直的判定定理进行求解,将问题转化为线面垂直,再转化为线线垂直,即先证,,则平面,从而问题可得解(Ⅱ)由题意,可作出所求线面角,再根据正弦函数值的定义进行求解,从而问题可得解,或可采用向量法进行求解亦可.详解:(Ⅰ)有题意知AM⊥BD,又因为AC′⊥BD,所以BD⊥平面AMC,因为BD平面ABD,所以平面AMC⊥平面ABD.(Ⅱ)在平面AC′M中,过C′作C′F⊥AM交AM于点F,连接F D.由(Ⅰ)知,C′F⊥平面ABD,所以∠C′DF为直线C′D与平面所成的角.解得,x=2-2,即AF=2-2.所以C′F=2.故直线与平面所成的角的正弦值等于=.点睛:本题考查面面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.20.(1);(2)见解析.【解析】分析:(Ⅰ)由题意,根据函数导数的计算公式、法则进行运算,从而问题可得解;(Ⅱ)由题意,可将不等式的证明转化为求函数的单调性、最值的问题,通过研究函数的单调性,求出函数的最值,再根据最值点的范围,从而问题可得解.详解:(I).(Ⅱ)设,则函数g(x)在单调递减,且,,所以存在,使g(x0)=0,即,所以x0+1-(2x0+1)ln x0=0,所以f′(x)=0,且f (x)在区间(0,x0)单调递增,区间(x0,+∞)单调递减.所以f (x)≤f (x0)==.点睛:本题考查函数的导数的求法,考查不等式的证明,考查导数的运算法则、导数性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,考查创新意识和应用意识,是中档题21.(1)y=2x0x-;(2).【解析】分析:(Ⅰ)由题意,根据导数的几何意义,求出切线的斜率,再根据直线的点斜式进行运算求解,从而问题可得解;(Ⅱ)由(Ⅰ)可根据切线的方程求线段的中点,联立直线与抛物线方程消去,根据韦达定理,可得点纵坐标的关系式,利用重心坐标性质建立关系式,从而求出点的纵坐标,从而问题可得解.详解:(Ⅰ)因为y′=2x,所以直线AB的斜率k=y′=2x0.所以直线AB的方程y-x0=2x0(x-x0),即y=2x0x-.由韦达定理,得y1+y2=4y2=,y1y2=3.所以,解得mx0=.所以点D的纵坐标y D=,故.点睛:本题考查了抛物线的性质,直线方程,联立直线与抛物线的方程,运用韦达定理是解题的关键,属于中档题. 22.(1)见解析;(2)见解析.【解析】试题分析:(Ⅰ)由题意,可采用数学归纳法,以及放缩法对不等式进行证明,从而问题可得解;(Ⅱ)在第(i)中,根据(Ⅰ)的结论,采用放缩法对数列的通项进行放大,再用累加法进行求解即可;在第(ii)中,对参数进行分段讨论,结合(i)中的结论,从而问题可得解.(Ⅱ)(ⅰ)当n≥m时,a n≥a m,=a n+≤a n+,所以a n+1所以a n-a n≤,累加得a n-a m≤(n-m),+1所以.(ⅱ)若,当时,,所以.所以当时,.所以当时,,矛盾.所以.因为,所以.点睛:此题主要考查数列中递推公式的应用,以及数学归纳法在证明有关数列不等式中的应用等有关方面的知识与技能,属于中高档题型,也是常考考点.数学归纳法是解决有关数列不等式问题的一种重要方法,只有理解数学归纳法中的递推思想,理解数学归纳法的原理与实质,掌握两个步骤,才能灵活地运用数学归纳法解决有关数列问题.。
点、直线、平面之间点位置关系测试题(含答案)

第二章测试(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解析由垂直同一直线的两平面平行知,B正确.答案 B2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是()A.平行B.相交C.平行或相交D.不相交解析由棱台的定义知,各侧棱的延长线交于一点,所以选B.答案 B3.一直线l与其外三点A,B,C可确定的平面个数是()A.1个B.3个C.1个或3个D.1个或3个或4个解析当A,B,C共线且与l平行或相交时,确定一个平面;当A,B,C共线且与l异面时,可确定3个平面;当A,B,C三点不共线时,可确定4个平面.答案 D4.若三个平面两两相交,有三条交线,则下列命题中正确的是()A.三条交线为异面直线B.三条交线两两平行C.三条交线交于一点D.三条交线两两平行或交于一点答案 D5.如图,在△ABC中,∠BAC=90°,P A⊥面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是()A.5 B.8C.10 D.6解析这些直角三角形是:△P AB,△P AD,△P AC,△BAC,△BAD,△CAD,△PBD,△PCD.共8个.答案 B6.下列命题正确的有()①若△ABC在平面α外,它的三条边所在直线分别交α于P,Q,R,则P,Q,R三点共线;②若三条平行线a,b,c都与直线l相交,则这四条直线共面;③三条直线两两相交,则这三条直线共面.A.0个B.1个C.2个D.3个解析易知①与②正确,③不正确.答案 C7.若平面α⊥平面β,α∩β=l,且点P∈α,P∉l,则下列命题中的假命题是()A.过点P且垂直于α的直线平行于βB.过点P且垂直于l的直线在α内C.过点P且垂直于β的直线在α内D.过点P且垂直于l的平面垂直于β答案 B8.如图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M,N分别是棱DD1,D1C1的中点,则直线OM()A.与AC,MN均垂直相交B.与AC垂直,与MN不垂直C.与MN垂直,与AC不垂直D.与AC,MN均不垂直解析易证AC⊥面BB1D1D,OM⊂面BB1D1D,∴AC⊥OM.计算得OM2+MN2=ON2=5,∴OM⊥MN.答案 A9.如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列四个命题:①过M点有且只有一条直线与直线AB,B1C1都相交;②过M 点有且只有一条直线与直线AB,B1C1都垂直;③过M点有且只有一个平面与直线AB,B1C1都相交;④过M点有且只有一个平面与直线AB,B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③解析将过点M的平面CDD1C1绕直线DD1旋转任意非零的角度,所得平面与直线AB,B1C1都相交,故③错误,排除A,B,D.答案 C10.已知平面α外不共线的三点A,B,C到α的距离相等,则正确的结论是()A.平面ABC必平行于αB.平面ABC必不垂直于αC.平面ABC必与α相交D.存在△ABC的一条中位线平行于α或在α内解析排除A、B、C,故选D.答案 D11.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,则一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④ 答案 D12.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点 E ,F ,且EF =12,则下列结论错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A —BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等解析 易证AC ⊥平面BB 1D 1D ,∴AC ⊥BE .∵EF 在直线B 1D 1上,易知B 1D 1∥面ABCD ,∴EF ∥面ABCD ,V A -BEF =13×12×12×1×22=224.∴A 、B 、C 选项都正确,由排除法即选D.答案 D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知A,B,C,D为空间四个点,且A,B,C,D不共面,则直线AB与CD的位置关系是________.解析如图所示:由图知,AB与CD为异面直线.答案异面14.在空间四边形ABCD的边AB,BC,CD,DA上分别取点E,F,G,H,如果EH,FG相交于一点M,那么M一定在直线________上.答案BD15.如图所示,以等腰直角三角形ABC斜边BC上的高AD为折痕.使△ABD和△ACD折成互相垂直的两个平面,则:(1)BD与CD的关系为________;(2)∠BAC=________.解析 (1)AB =AC ,AD ⊥BC ,∴BD ⊥AD ,CD ⊥AD ,∴∠BDC 为二面角的平面角,∠BDC =90°,∴BD ⊥DC .(2)设等腰直角三角形的直角边长为a ,则斜边长为2a .∴BD =CD =22a .∴折叠后BC =⎝ ⎛⎭⎪⎫22a 2+⎝ ⎛⎭⎪⎫22a 2=a . ∴折叠后△ABC 为等边三角形.∴∠BAC =60°.答案 (1)BD ⊥CD (2)60°16.在正方体ABCD —A ′B ′C ′D ′中,过对角线BD ′的一个平面交AA ′于E ,交CC ′于F ,则:①四边形BFD ′E 一定是平行四边形;②四边形BFD ′E 有可能是正方形;③四边形BFD ′E 在底面ABCD 内的投影一定是正方形;④平面BFD ′E 有可能垂直于平面BB ′D .以上结论正确的为__________.(写出所有正确结论的编号)解析 如图所示:∵BE =FD ′,ED ′=BF ,∴四边形BFD ′E 为平行四边形.∴①正确.②不正确(∠BFD ′不可能为直角).③正确(其射影是正方形ABCD).④正确.当E,F分别是AA′,CC′中点时正确.答案①③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图,已知点E,F,G,H分别为正方体ABCD-A1B1C1D1的棱AB,BC,CC1,C1D1的中点,求证:EF,HG,DC三线共点.证明∵点E,F,G,H分别为所在棱的中点,连接BC1,GF,如图.∴GF是△BCC1的中位线,∴GF∥BC1.∵BE∥C1H,且BE=C1H,∴四边形EBC1H是平行四边形.∴EH∥BC1,∴GF∥EH.∴E,F,G,H四点共面.∵GF≠EH,故EF与HG必相交.设EF∩HG=I.∵I∈GH,GH⊂平面CC1D1D,∴I∈平面CC1D1D.同理可证I∈平面ABCD.∴点I在交线DC上.即EF,HG,DC三线共点.18.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,P A⊥底面ABCD,P A=AB,点M在棱PD上,PB∥平面ACM.(1)试确定点M的位置,并说明理由;(2)求四棱锥P-ABCD的表面积.解 (1)点M 为PD 的中点.理由如下:连接BD ,设BD ∩AC =O ,则点O 为BD 的中点,连接OM ,∵PB ∥平面ACM ,∴PB ∥OM .∴OM 为△PBD 的中位线,故点M 为PD 的中点.(2)∵P A ⊥底面ABCD ,又底面是边长为1的正方形,∴S 正方形ABCD =1,S △P AB =S △P AD =12×1×1=12,S △PBC =12×1×2=22,S △PCD =12×1×2=22.故四棱锥P -ABCD 的表面积为S =1+2×12+22+22=2+ 2.19.(12分)已知正方体ABCD —A 1B 1C 1D 1的棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,如图.(1)求证:MN ∥面BB 1C 1C ;(2)求MN 的长.解 (1)证明:作NP ⊥AB 于P ,连接MP .NP ∥BC ,∴AP AB =AN AC =A 1M A 1B ,∴MP ∥AA 1∥BB 1, ∴面MPN ∥面BB 1C 1C . MN ⊂面MPN , ∴MN ∥面BB 1C 1C .(2)NP BC =AN AC =23a2a =13,NP =13a ,同理MP =23a . 又MP ∥BB 1,∴MP ⊥面ABCD ,MP ⊥PN . 在Rt △MPN 中MN =49a 2+19a 2=53a .20.(12分)如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.解(1)证明:因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,又PQ⊄平面ACD,从而PQ∥平面ACD.(2)如图,连接CQ,DP,因为Q为AB的中点,且AC=BC,所以CQ⊥AB.因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC,因此CQ⊥EB.故CQ⊥平面ABE.由(1)有PQ ∥DC ,又PQ =12EB =DC , 所以四边形CQPD 为平行四边形,故DP ∥CQ .因此DP ⊥平面ABE ,∠DAP 为AD 和平面ABE 所成的角, 在Rt △DP A 中,AD =5,DP =1, sin ∠DAP =55,因此AD 和平面ABE 所成角的正弦值为55.21.(12分)如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E ,F 分别是AB ,BD 的中点.求证:(1)直线EF ∥面ACD ; (2)平面EFC ⊥平面BCD . 证明 (1)在△ABD 中,∵E ,F 分别是AB ,BD 的中点, ∴EF ∥AD .又AD ⊂平面ACD ,EF ⊄平面ACD , ∴直线EF ∥平面ACD .(2)在△ABD 中,∵AD ⊥BD ,EF ∥AD , ∴EF ⊥BD .在△BCD中,∵CD=CB,F为BD的中点,∴CF⊥BD.∵CF∩EF=F,∴BD⊥平面EFC,又∵BD⊂平面BCD,∴平面EFC⊥平面BCD.22.(12分)已知四棱锥P-ABCD(图1)的三视图如图2所示,△PBC为正三角形,P A垂直底面ABCD,俯视图是直角梯形.(1)求正视图的面积;(2)求四棱锥P-ABCD的体积;(3)求证:AC⊥平面P AB.解(1)过A作AE∥CD,根据三视图可知,E是BC的中点,且BE=CE=1,AE=CD=1.又∵△PBC 为正三角形, ∴BC =PB =PC =2,且PE ⊥BC , ∴PE 2=PC 2-CE 2=3.∵P A ⊥平面ABCD ,AE ⊂平面ABCD ,∴P A ⊥AE . ∴P A 2=PE 2-AE 2=2,即P A = 2. 正视图的面积为S =12×2×2= 2.(2)由(1)可知,四棱锥P -ABCD 的高P A =2,底面积为S =AD +BC 2·CD =1+22×1=32,∴四棱锥P -ABCD 的体积为V P -ABCD =13S ·P A =13×32×2=22. (3)证明:∵P A ⊥平面ABCD ,AC ⊂平面ABCD ,∴P A ⊥AC . ∵在直角三角形ABE 中,AB 2=AE 2+BE 2=2, 在直角三角形ADC 中,AC 2=AD 2+CD 2=2, ∴BC 2=AA 2+AC 2=4,∴△BAC 是直角三角形. ∴AC ⊥AB .又∵AB ∩P A =A ,∴AC ⊥平面P AB .。
2018年高考数学浙江专用总复习教师用书:第九章 平面

第2讲 两直线的位置关系最新考纲 1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知 识 梳 理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行.(2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式(1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |(2)点到直线的距离公式平面上任意一点P0(x 0,y 0)到直线l :Ax +By +C =0的距离d (3)两条平行线间的距离公式一般地,两条平行直线l1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d 诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( )(3)若两直线的方程组成的方程组有唯一解,则两直线相交.( )(4)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( )(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 解析 (1)两直线l 1,l 2有可能重合.(2)如果l 1⊥l 2,若l 1的斜率k 1=0,则l 2的斜率不存在. 答案 (1)× (2)× (3)√ (4)√ (5)√2.(2016·北京卷)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( ) A.1 B.2 C. 2D.2 2解析 圆(x +1)2+y 2=2的圆心坐标为(-1,0),由y =x +3得x -y +3=0,则圆心到直线的距离d =|-1-0+3|12+(-1)2= 2.答案 C3.(2017·金华四校联考)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =( ) A.2 B.-3 C.2或-3D.-2或-3解析 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或-3.故选C. 答案 C4.直线2x +2y +1=0,x +y +2=0之间的距离是________. 解析 先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324.答案3245.(必修2P89练习2改编)已知P (-2,m ),Q (m ,4),且直线PQ 垂直于直线x +y +1=0,则m =________.解析 由题意知 m -4-2-m=1,所以m -4=-2-m ,所以m =1.答案 16.(2017·浙江五校联考)已知动点P 的坐标为(x ,1-x ),x ∈R ,则动点P 的轨迹方程为________,它到原点距离的最小值为________.解析 设点P 的坐标为(x ,y ),则y =1-x ,即动点P 的轨迹方程为x +y -1=0;原点到直线x +y -1=0的距离为d =|0+0-1|12+12=22,即为所求原点到动点P 的轨迹的最小值. 答案 x +y -1=022考点一 两直线的平行与垂直【例1】 (1)已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a 等于( ) A.-1 B.2 C.0或-2D.-1或2(2)已知两直线方程分别为l 1:x +y =1,l 2:ax +2y =0,若l 1⊥l 2,则a =________. 解析 (1)若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0;当a ≠0时,两直线平行,则有a -11=2a ≠13,解得a =-1或2. (2)因为l 1⊥l 2,所以k 1k 2=-1. 即(-1)·⎝ ⎛⎭⎪⎫-a 2=-1,解得a =-2.答案 (1)D (2)-2规律方法 (1)当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 【训练1】 (1)(2017·重庆一中检测)若直线l 1:(a -1)x +y -1=0和直线l 2:3x +ay +2=0垂直,则实数a 的值为( ) A.12B.32C.14D.34(2)(2017·诸暨模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析 (1)由已知得3(a -1)+a =0,解得a =34.(2)由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a +3b=1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝ ⎛⎭⎪⎫2a +3b =13+6a b +6b a≥13+26a b ·6ba=25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25. 答案 (1)D (2)25考点二 两直线的交点与距离问题【例2】 (1)已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.(2)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析 (1)法一 由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2, 解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴交点坐标为⎝⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限, ∴⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.法二 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k PA <k <k PB . ∵k PA =-16,k PB =12.∴-16<k <12.(2)法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.法二 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.答案 (1)⎝ ⎛⎭⎪⎫-16,12 (2)x +3y -5=0或x =-1规律方法 (1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数分别化为对应相等.【训练2】 (1)曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( ) A.722B.922C.1122D.91010(2)(2017·衢州模拟)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2B.823C. 3D.833解析 (1)曲线y =2x -x 3上横坐标为-1的点的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k =y ′|x =-1=2-3×(-1)2=-1,故切线l 的方程为y -(-1)=-1×[x -(-1)],整理得x +y +2=0.由点到直线的距离公式,得点P (3,2)到直线l 的距离为|3+2+2|12+12=722. (2)因为l 1∥l 2,所以1a -2=a 3≠62a ,所以⎩⎪⎨⎪⎧a (a -2)=3,2a 2≠18,a ≠2,a ≠0,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪⎪⎪6-232=823,故选B.答案 (1)A (2)B 考点三 对称问题【例3】 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程.解 (1)设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,∴A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上. 设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得M ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线方程为9x -46y +102=0. (3)法一 在l :2x -3y +1=0上任取两点, 如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0. 法二 设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.规律方法 (1)解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.(2)如果直线或点关于点成中心对称问题,则只需运用中点公式就可解决问题.(3)若直线l 1,l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上.【训练3】 光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解 法一 由⎩⎪⎨⎪⎧x -2y +5=0,3x -2y +7=0,得⎩⎪⎨⎪⎧x =-1,y =2.∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0), 由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,又Q 点在l 上,∴3·x 0-52-2·y 02+7=0.由⎩⎪⎨⎪⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎪⎨⎪⎧x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0. 法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ), 则y 0-y x 0-x =-23, 又PP ′的中点Q ⎝⎛⎭⎪⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y2+7=0,由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x2-(y +y 0)+7=0.可得P 点的横、纵坐标分别为x 0=-5x +12y -4213,y 0=12x +5y +2813,代入方程x -2y +5=0中,化简得29x -2y +33=0, ∴所求反射光线所在的直线方程为29x -2y +33=0.[思想方法]1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l 1,l 2,l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意.2.对称问题一般是将线与线的对称转化为点与点的对称.利用坐标转移法解决问题.[易错防范]1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率,要单独考虑.2.在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中x ,y 的系数分别化为相同的形式.。
点线面位置关系例题与练习(含答案)

点、线、面的位置关系● 知识梳理 (一).平面公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。
公理2:不共线...的三点确定一个平面. 推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面.公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线 (二)空间图形的位置关系1.空间直线的位置关系:相交,平行,异面1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。
1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
1.3异面直线定义:不同在任何一个平面内的两条直线——异面直线;1.4异面直线所成的角:(1)范围:(]0,90θ∈︒︒;(2)作异面直线所成的角:平移法.2.直线与平面的位置关系: 包含,相交,平行3.平面与平面的位置关系:平行,相交(三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点.②判定定理:////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭③性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭ 2.线面斜交: ①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。
范围:[]0,90θ∈︒︒ 3.面面平行:①定义://αβαβ=∅⇒;②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b ab O a b ααααβ⊂=⇒判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥⇒.③面面平行的性质:(1)////a a αββα⎫⇒⎬⊂⎭;(2)////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭(四)垂直关系(包括线面垂直,面面垂直)1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。
第二章点、直线、平面之间的位置关系练习题及答案

第二章 《点、直线、平面之间的位置关系》一、选择题1. 给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题: ①若不共面与则点m l m A A l m ,,,∉=⋂⊂αα;②若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ③若m l m l //,//,//,//则βαβα;④若.//,//,//,,,βαββαα则点m l A m l m l =⋂⊂⊂ 其中为假命题的是A .①B .②C .③D .④2.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:①若γα⊥,γβ⊥,则βα||;②若α⊂m ,α⊂n ,β||m ,β||n ,则βα||;③若βα||,α⊂l ,则β||l ;④若l =βα ,m =γβ ,n =αγ ,γ||l ,则m ||其中真命题的个数是A .1B .2C .3D .43.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若βαβα//,,则⊥⊥m m ;②若βααβγα//,,则⊥⊥; ③若βαβα//,//,,则n m n m ⊂⊂;④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂。
其中真命题是A .①和②B .①和③C .③和④D .①和④4.已知直线n m l 、、及平面α,下列命题中的假命题是A .若//l m ,//m n ,则//l n .B .若l α⊥,//n α,则l n ⊥.C .若l m ⊥,//m n ,则l n ⊥.D .若//l α,//n α,则//l n .5.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是 A .BC ∥平面PDF B .DF ⊥平面PAEC .平面PDF ⊥平面ABCD .平面PAE ⊥平面ABC 6.有如下三个命题:①分别在两个平面内的两条直线一定是异面直线; ②垂直于同一个平面的两条直线是平行直线;③过平面α的一条斜线有一个平面与平面α垂直. 其中正确命题的个数为A .0B .1C .2D .3 7.下列命题中,正确的是 A .经过不同的三点有且只有一个平面 B .分别在两个平面内的两条直线一定是异面直线 C .垂直于同一个平面的两条直线是平行直线D .垂直于同一个平面的两个平面平行8.已知直线m 、n 与平面βα,,给出下列三个命题:①若;//,//,//n m n m 则αα ②若;,,//m n n m ⊥⊥则αα ③若.,//,βαβα⊥⊥则m m其中真命题的个数是 A .0 B .1 C .2 D .3 9.已知a 、b 、c 是直线,β是平面,给出下列命题: ①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是 A .1 B .2 C .3 D .4 10.过三棱柱任意两个顶点的直线共15条,其中异面直线有A .18对B .24对C .30对D .36对 11.正方体1111ABCD A B C D -中,P 、Q 、R 分别是AB 、AD 、11B C的中点.那么,正方体的过P 、Q 、R 的截面图形是A .三角形B .四边形C .五边形D .六边形 12.不共面的四个定点到平面α的距离都相等,这样的平面α共有A .3个B .4个C .6个D .7个 13.设γβα、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是A .l m l ⊥=⋂⊥,,βαβαB .γβγαγα⊥⊥=⋂,,mC . αγβγα⊥⊥⊥m ,,D .αβα⊥⊥⊥m n n ,,14.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么A .①是真命题,②是假命题B . ①是假命题,②是真命题C . ①②都是真命题D .①②都是假命题 15.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③α内有不共线的三点到β的距离相等;④存在异面直线l 、m ,使得l //α,l //β,m //α,m //β, 其中,可以判定α与β平行的条件有A .1个B .2个C .3个D .4个二、填空题1.已知平面βα,和直线m ,给出条件:①α//m ;②α⊥m ;③α⊂m ;④βα⊥;⑤βα//.(i )当满足条件 时,有β//m ;(ii )当满足条件 时,有β⊥m (填所选条件的序号)2.在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号) 3.下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥. ②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥. ③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥. 其中,真命题的编号是____________.(写出所有真命题的编号)4.已知m 、n 是不同的直线,,αβ是不重合的平面,给出下列命题:①若//,,,m n αβαβ⊂⊂则//m n②若,,//,//,m n m n αββ⊂则//αβ③若,,//m n m n αβ⊥⊥,则//αβ④m 、n 是两条异面直线,若//,//,//,//,m m n n αβαβ则//αβ上面命题中,真命题的序号是____________(写出所有真命题的序号)5. 已知m 、n 是不同的直线,,αβ是不重合的平面,给出下列命题:① 若//m α,则m 平行于平面α内的任意一条直线② 若//,,,m n αβαβ⊂⊂则//m n③若,,//m n m n αβ⊥⊥,则//αβ④若//,m αβα⊂,则//m β上面命题中,真命题的序号是____________(写出所有真命题的序号)6.连接抛物线上任意四点组成的四边形可能是 (填写所有正确选项的序号) ①菱形 ②有3条边相等的四边形 ③梯形 ④平行四边形 ⑤有一组对角相等的四边形三、计算题1. 如图1所示,在四面体P —ABC 中,已知PA=BC=6,PC=AB=10,AC=8,PB=342.F 是线段PB 上一点,341715=CF ,点E 在线段AB 上,且EF ⊥PB. (Ⅰ)证明:PB ⊥平面CEF ; (Ⅱ)求二面角B —CE —F 的大小.2. 已知正三棱锥ABC P -的体积为372,侧面与底面所成的二面角的大小为 60。
高中数学--点、直线、平面之间的位置关系难题练习题带答案

高中数学点、直线、平面之间的位置关系一.选择题(共25小题)1.正三棱柱ABC﹣A1B1C1中,所有棱长均为2,点E,F分别为棱BB1,A1C1的中点,若过点A,E,F作一截面,则截面的周长为()A.2+2B.C.D.2.已知平面α与β所成的二面角为80°,P为α、β外一定点,过点P的一条直线与α、β所成的角都是30°,则这样的直线有且仅有()A.1条B.2条C.3条D.4条3.在三棱锥P﹣ABC中,平面PBC⊥平面ABC,∠ACB=90°,BC=PC=2,若AC=PB,则三棱锥P﹣ABC体积的最大值为()A.B.C.D.4.在正方体ABCD﹣A1B1C1D1中,E,F分别为线段A1B1,AB的中点,O为四棱锥E﹣C1D1DC的外接球的球心,点M,N分别是直线DD1,EF上的动点,记直线OC与MN所成角为θ,则当θ最小时,tanθ=()A.B.C.D.5.在正四面体ABCD中,已知E,F分别是AB,CD上的点(不含端点),则()A.不存在E,F,使得EF⊥CD B.存在E,使得DE⊥CDC.存在E,使得DE⊥平面ABC D.存在E,F,使得平面CDE⊥平面ABF6.正方体ABCD﹣A1B1C1D1的棱长为2,E,F,G分别为BC,CC1,BB1的中点,则()A.直线D1D与直线AF垂直B.直线A1G与平面AEF不平行C.平面AEF截正方体所得的截面面积为D.点C与点G到平面AEF的距离相等7.已知正三棱锥A﹣BCD的外接球是球O,正三棱锥底边BC=3,侧棱,点E在线段BD上,且2BE=DE,过点E作球O的截面,则所得截面圆面积的取值范围是()A.B.[2π,3π]C.[2π,4π]D.8.如图1,已知正方体ABCD﹣A1B1C1D1的棱长为2,P为棱AA1的中点,M、N、Q分别是线段A1D1、CC1、A1B1上的点,三棱锥P﹣MNQ的俯视图如图2所示.当三棱锥P﹣MNQ的体积最大时,异面直线PN与AD所成角的正切值为()A.B.C.D.19.已知三棱锥P﹣ABC的所有棱长为1.M是底面△ABC内部一个动点(包括边界),且M到三个侧面P AB,PBC,P AC的距离h1,h2,h3成单调递增的等差数列,记PM与AB,BC,AC所成的角分别为α,β,γ,则下列正确的是()A.α=βB.β=γC.α<βD.β<γ10.一正方体的棱长为a,作一平面α与正方体一条体对角线垂直,且α与正方体每个面都有公共点,记这样得到的截面多边形的周长为l,则()A.B.l=4a C.D.以上都不正确11.已知长方体ABCD﹣A1B1C1D1中,AB=2AD=2AA1,若点E是线段CD的中点,A1D与AD1相交于点F,则直线B1F与直线D1E夹角的余弦值为()A.B.C.D.12.已知二面角α﹣l﹣β为30°,AB⊂α,AB⊥l,A为垂足,a,b为平面β内两条互相垂直的直线,若AB与a所成角为60°,则直线AB与b所成角的余弦值为()A.B.C.D.13.如图,在△ABC中,AB=1,BC=2,B=,将△ABC绕边AB翻转至△ABP,使平面ABP⊥平面ABC,D 是BC的中点,设Q是线段P A上的动点,则当PC与DQ所成角取得最小值时,线段AQ等于()A.B.C.D.14.已知两异面直线a,b所成的角为80°,过空间一点P作直线,使得l与a,b的夹角均为50°,那么这样的直线有()条A.1B.2C.4D.315.设m,n是不同的直线,α,β,γ是不同的平面,下列命题正确的是()A.若m∥α,n⊂α,则m∥n B.若m∥β,n∥β,m⊂α,n⊂α,则α∥βC.若α⊥β,m⊥β,则m∥αD.若α⊥γ,β⊥γ,α∩β=m,n⊂γ,则m⊥n16.已知m、n是两条不同直线,α,β是两个不同平面,则下列说法正确的是()A.若m∥α,m∥β,则α∥βB.m∥β,n∥β,m⊂α,n⊂α,则α∥βC.若m∥n,m⊄α,n⊂α,则m∥αD.m∥α,n⊂a,则m∥n17.已知l,m,n为不同的直线,α,β,γ为不同的平面,则下列判断错误的是()A.若m⊥α,n⊥β,α∥β,则m∥n B.若m⊥α,n⊥β,m∥n,则α∥βC.若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n D.若α⊥γ,β⊥γ,则α∥β18.已知正方体ABCD﹣A1B1C1D1的棱长为,直线AC1⊥平面α,平面α截此正方体所得截面中,正确的说法是()A.截面形状可能为四边形B.截面形状可能为五边形C.截面面积最大值为D.截面面积最大值为19.如图,在长方体ABCD﹣A1B1C1D1中,底面ABCD为正方形,=,则异面直线BC1与D1C所成角的余弦值为()A.B.C.D.20.如图,在三棱柱ABC﹣A1B1C1中,M,N分别为棱AA1,BB1的中点,过MN作一平面分别交底面三角形ABC的边BC,AC于点E,F,则()A.MF∥NE B.四边形MNEF为梯形C.四边形MNEF为平行四边形D.A1B1∥NE21.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥α,m⊥n,则n∥αD.若m⊥β,n⊥β,n⊥α,则m⊥α22.一个正方体内接于一个球,过球心作一截面,如图所示,则截面的可能图形是()A.①②④B.②③C.①②D.②③④23.矩形ABCD中,AB=2,AD=1,E,F分别是边AB,CD的中点,将正方形ADFE沿EF折到A1D1FE位置,使得二面角A1﹣EF﹣B的大小为120°,则异面直线A1F与CE所成角的余弦值为()A.B.C.D.24.正三棱锥P﹣ABC中,若P A=6,∠APB=40°,点E、F分别在侧棱PB、PC上运动,则△AEF的周长的最小值为()A.36sin20°B.6C.12D.625.已知a,b,c为不同的直线,α,β,γ为不同的平面,则下列叙述中正确的个数是()①α⊥β,β⊥γ,则α⊥γ;②a⊥α,b∥β,α⊥β,则a∥β;③α⊥β,a⊂α,b⊂β,α∩β=c,a⊥b,则a⊥c;④a⊥α,a⊥β,b⊥α,则b⊥β.A.0B.1C.2D.3二.填空题(共10小题)26.在等腰梯形ABCD中,AB∥CD,AB=2BC=2CD=2,E是AB的中点,F是DE的中点,沿直线DE将△ADE翻折成棱锥A﹣BCDE,当棱锥A﹣BCDE的体积最大时,则直线AB与CF所成角的余弦值为.27.已知m,l是异面直线,那么:①必存在平面α,过m且与l平行;②必存在平面β,过m且与l垂直;③必存在平面γ,与m,l都垂直;④必存在平面π,与m,l的距离都相等.其中正确的结论是.28.已知正四棱锥P﹣ABCD的底面边长为,高为,其内切球与面P AB切于点M,球面上与P距离最近的点记为N,若平面α过点M,N且与AB平行,则平面α截该正四棱锥所得截面的面积为.29.已知四棱锥P﹣ABCD中,P A⊥平面ABCD,P A=2,底面ABCD是边长为2的正方形,用与直线P A、BD都平行的平面截此四棱锥,截面与AB、AD、PD、PC、PB分别交于F、G、H、M、E,则截面EFGHM面积的最大值为.30.如图,正四面体ABCD中,CD∥平面α,点E在AC上,且AE=2EC,若四面体绕CD旋转,则直线BE在平面α内的投影与CD所成角的余弦值的取值范围是.31.在三棱锥A﹣BCD中,AB=CD=4,AD=BC=5,AC=BD=6,E,F分别为棱AC和棱AD上的动点,则△BEF 的周长范围.32.已知矩形ABCD的长AB=4,宽AD=3,将其沿对角线BD折起,得到四面体A﹣BCD,如图所示,给出下列结论:①四面体A﹣BCD体积的最大值为;②四面体A﹣BCD外接球的表面积恒为定值;③当二面角A﹣BD﹣C的大小为60°时,棱AC的长为;④当二面角A﹣BD﹣C为直二面角时,直线AB、CD所成角的余弦值为.其中正确的结论有(请写出所有正确结论的序号).33.已知四棱锥S﹣ABCD的底面为矩形,SA⊥底面ABCD,点E在线段BC上,以AD为直径的圆过点E.若SA=AB =3,则△SED面积的最小值为.34.如图,在边长为2正方体ABCD﹣A1B1C1D1中,E为BC的中点,点P在正方体表面上移动,且满足B1P⊥D1E,则点B1和满足条件的所有点P构成的图形的面积是.35.如图,在四面体ABCD中,AB=CD=3,AD=BD=3,AC=BC=4,用平行于AB,CD的平面截此四面体,得到截面四边形EFGH,则该四边形EFGH面积的最大值为三.解答题(共5小题)36.在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,P A⊥平面ABCD,点E是PD的中点.(1)求证:PB∥平面AEC;(2)求证:平面EAC⊥平面P AB.37.如图所示,四边形EFGH为四面体ABCD的一个截面,若四边形EFGH为平行四边形.(1)求证:AB∥平面EFGH;(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.38.如图,在底面是直角梯形的四棱锥S﹣ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=.(1)求证:面SAB⊥面SBC;(2)求面SAD与面SDC所成角的余弦值.39.如图,四棱锥P﹣ABCD中,P A⊥平面ABCD,四边形ABCD是矩形,E,F分别是AB,PD的中点.若P A=AD =3,.(1)求证:AF∥平面PCE;(2)求直线FC平面PCE所成角的正弦值.40.已知正方形ABCD和矩形ACEF所在的平面互相垂直,,AF=1,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)求证:AM⊥平面BDF.参考答案与试题解析一.选择题(共25小题)1.【解答】解:如图将三棱柱ABC﹣A1B1C1扩大为如图的正三棱柱,其中AA''=2AA1=4,AH=2AB=4,则点E为AH'的中点,点F为AC''的中点.设H'F∩B1C1=I,所以EF∥H'C'',所以过点A,E,F的截面为AEIF,因为△ABE和△AA1F均为两直角边分别为2,1的直角三角形,∴AE=AF==,在△A1H'D'中,如图:连接HF,交B1C1于I,连接H'C1,则I为三角形A1H'C1的重心,所以B1I==,FI=,因为H'C1=4×sin60°=2,C1F=1,所以FI===.又因为B1E⊥平面A1B1C1,所以三角形EB1I为直角三角形,且EB1=1,B1I=,所以EI==,所以,截面的周长为:2+.故选:B.2.【解答】解:首先给出下面两个结论①两条平行线与同一个平面所成的角相等.②与二面角的两个面成等角的直线在二面角的平分面上.(1)如图1,过二面角α﹣l﹣β内任一点作棱l的垂面AOB,交棱于点O,与两半平面于OA,OB,则∠AOB为二面角α﹣l﹣β的平面角,∠AOB=80°设OP1为∠AOB的平分线,则∠P1OA=∠P1OB=40°,与平面α,β所成的角都是30°,此时过P且与OP1平行的直线符合要求,当OP1以O为轴心,在二面角α﹣l﹣β的平分面上转动时,OP1与两平面夹角变小,会对称的出现两条符合要求成30°情形.(2)如图2,设OP2为∠AOB的补角∠AOB′的平分线,则∠P2OA=∠P2OB=50°,与平面α,β所成的角都是50°.当OP2以O为轴心,在二面角α﹣l﹣β′的平分面上转动时,OP2与两平面夹角变小,对称地在图中OP2两侧会出现30°情形,有两条.此时过P且与OP2平行的直线符合要求,有两条.综上所述,直线的条数共有4条.故选:D.3.【解答】解:如图,取PB中点M,连结CM,∵平面PBC⊥平面ABC,平面PBC∩平面ABC=BC,AC⊂平面ABC,AC⊥BC,∴AC⊥平面PBC,设点A到平面PBC的距离为h=AC=2x,∵PC=BC=2,PB=2x,(0<x<2),M为PB的中点,∴CM⊥PB,CM=,解得=,V A﹣PBC==,设t=,(0<t<2),则x2=4﹣t2,∴V A﹣PBC==,(0<t<2),关于t求导,得,令V′(t)=0,解得t=或t=﹣(舍),由V(t)单调性得当t=时,(V A﹣PBC)max=.故选:D.4.【解答】解:如图,设P,Q分别是棱CD和C1D1的中点,则四棱锥E﹣C1D1DC的外接球即三棱柱DFC﹣D1EC1的外接球,∵三棱柱DFC﹣D1EC1是直三棱柱,∴其外接球球心O为上、下底面三角形外心G和H连结的中点,由题意,MN是平面DD1EF内的一条动直线,记直线OC与MN所成角为θ,则θ的最小值是直线OC与平面DD1EF所成角,即问题转化为求直线OC与平面DD1EF所成角的正切值,不妨设正方体ABCD﹣A1B1C1D1中棱长为2,则EQ=2,ED1=,∵△EC1D1为等腰三角形,∴△EC1D1外接圆直径为2GE===,则GE=,GQ=2﹣=PH,如图,以D为原点,DA,DC,DD1所在直线为x,y,z轴,建立空间直角坐标系,则D(0,0,0),D1(0,0,2),C(0,2,0),F(2,1,0),O(,1,1),=(0,0,2),=(2,1,0),=(﹣),设平面DD1EF的法向量=(x,y,z),则,取x=1,得=(1,﹣2,0),则sinθ==,tanθ=.故选:D.5.【解答】解:(1)对于A,D选项,取E,F分别为AB,CD的中点如图:因为A﹣BCD是正四面体,所以它的各个面是全等的等边三角形.所以CE=DE,所以EF⊥CD,同理可证EF⊥AB.故A错误;又因为AB⊥CE,AB⊥DE,且CE∩DE=E,故AB⊥平面CED,又AB⊂平面ABF,所以平面ABF⊥平面CED.故D正确.(2)对于B选项,将C看成正三棱锥的顶点,易知当E在AB上移动时,∠CDE的最小值为直线CD与平面ABD 所成的角,即(1)中的∠CDE,显然为锐角,最大角为∠CDB=∠CDA=60°,故当E在AB上移动时,不存在E,使得DE⊥CD.故B错误.(3)对于C选项,将D看成顶点,则由D向底面作垂线,垂足为底面正三角形ABC的中心,不落在AB上,又因为过空间中一点有且只有一条直线与已知平面垂直,故不存在E,使得DE⊥平面ABC,故C错误.故选:D.6.【解答】解:在A中,若D1D⊥AF,又因为D1D⊥AE且AE∩AF=A,所以DD1⊥平面AEF,所以DD1⊥EF,所以CC1⊥EF,不成立,故A错误;在B中,如图所示,取B1C1的中点Q,连接A1Q,GQ,由条件可知:GQ∥EF,A1Q∥AE,且GQ∩A1Q=Q,EF∩AE=E,所以平面A1GO∥平面AEF,又因为A1G⊂平面A1GQ,所以A1G∥平面AEF,故B错误;在C中,如图所示,连接D1F,D1A,延长D1F,AE交于点S,因为E,F为C1C,BC的中点,所以EF∥AD1,所以A,E,F,D1四点共面,所以截面即为梯形AEFD1,又因为,,所以,所以,故C正确;在D中,记点C与点G到平面AEF的距离分别为h1,h2,因为,又因为,所以h1≠h2,故D错误.故选:C.7.【解答】解:如图,设△BDC的中心为O1,球O的半径为R,连接oO1D,OD,O1E,OE,则O1D==,AO1==3,在Rt△OO1D中,R2=3+(3﹣R)2,解得R=2,∵BD=3BE,∴DE=2,在△DEO1中,O1E==1,∴OE==,过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,此时截面圆的半径为:r==,最小面积为2π当截面过球心时,截面面积最大,最大面积为4π.∴所得截面圆面积的取值范围是[2π,4π].故选:C.8.【解答】解:由俯视图知,M为A1D1的中点,Q为A1B1的中点,N为CC1上任意一点,如下图所示:由中位线可知:PQ∥AB1,MP∥AD1,PQ∩MP=P,PQ⊂平面PMQ,MP⊂平面PMQ,AB1∩AD1=A,AB1⊂平面AB1D1,AD1⊂平面AB1D1,∴平面PMQ∥平面AB1D1,由正方体中线面关系可知:A1C⊥平面AB1D1,∴A1C⊥平面PMQ,∴当N与C重合,点N到平面PMQ的距离最大,∴当N与C重合时,三棱锥P﹣MNQ的体积最大,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,当三棱锥P﹣MNQ的体积最大时,P(2,0,1),N(0,2,0),A(2,0,0),D(0,0,0),=(﹣2,2,﹣1),=(2,0,0),设异面直线PN与AD所成角为θ,则cosθ===,sinθ==.∴异面直线PN与AD所成角的正切值为=.故选:A.9.【解答】解:依题意知正四面体P﹣ABC的顶点P在底面ABC的射影是正三角形ABC的中心O,由余弦定理可知,cosα=cos∠PMO•cos<MO,AB>,其中<MO,AB>表示直线MO与AB的夹角,同理可以将β,γ转化,cosβ=cos∠PMO•cos<MO,BC>,其中<MO,BC>表示直线MO与BC的夹角,cosγ=cos∠PMO•cos<MO,AC>,其中<MO,AC>表示直线MO与AC的夹角,由于∠PMO是公共的,因此题意即比较OM与AB,BC,AC夹角的大小,设M到AB,BC,AC的距离为d1,d2,d3则d1=,其中θ是正四面体相邻两个面所成角,sinθ=,所以d1,d2,d3成单调递增的等差数列,然后在△ABC中解决问题由于d1<d2<d3,可知M在如图阴影区域(不包括边界)从图中可以看出,OM与BC所成角小于OM与AC所成角,所以β<γ,故选:D.10.【解答】解:连结A1B,A1D,BD,则AC1⊥平面A1BD,∴AC1⊥A1B设平面α与平面ABB1A1的交线为EF,则AC1⊥EF,∴EF∥A1B,同理可得平面α与其他各面的交线都与此平面的对角线平行,设,则=,得B1E=aλ,∴,∴EF+NE=+a(1﹣λ)=,同理可得六边形其他相邻两边的和为,∴六边形的周长l为定值3.故选:C.11.【解答】解:作出图形如下所示,连接AE,取AE的中点G,连接GF,则直线B1F与直线D1E夹角即为∠GFB1,不妨设AB=2AD=2AA 1=4,则,,,故,∴直线B1F与直线D1E夹角的余弦值为.故选:A.12.【解答】解:如图,平移直线a,b,使得两直线经过A,过B作BO⊥平面β,垂足为O,连接AO,则∠BAO=30°,过O分别作OE⊥a,OF⊥b,连接BE,BF,则BE⊥a,BF⊥b,设AB=2m,则AE=m,BO=m,AO=,在Rt△AEO中,有cos,则sin∠F AO=,∴cos.∴AF=OA•cos∠OAF=m,OF=OA•sin∠OAF=m,则BF=m,在△ABF中,由AB=2m,BF=AF=,得∠BAF=45°,∴直线AB与b所成角的余弦值为cos45.故选:A.13.【解答】解:过点P作PO⊥平面ABC,交BA延长线于点O,连结OC,以O为原点,OB为x轴,OC为y轴,OP为z轴,建立空间直角坐标系,在△ABC中,AB=1,BC=2,B=,将△ABC绕边AB翻转至△ABP,使平面ABP⊥平面ABC,D是BC的中点,设Q是线段P A上的动点,则B(2,0,0),A(1,0,0),O(0,0,0),C(0,2,0),P(0,0,2),设Q(x,y,z),==λ(﹣1,0,2),λ∈[0,1],即(x﹣1,y,z)=(﹣λ,0,2λ),∴Q(1﹣λ,0,2λ),D(1,1,0),=(﹣λ,﹣1,2λ),=(0,2,﹣2),|cos<,>|==,令f(λ)=,λ∈[0,1],∴f′(λ)=,由f′(λ)=0,λ∈[0,1],得,λ∈[0,)时,f′(λ)>0,λ∈(,1]时,f′(x)<0,∴当时,f(λ)取最大值,此时PC与DQ所成角取得最小值,|AQ|=||=.故选:C.14.【解答】解:在空间取一点P,经过点P分别作a∥a',b∥b',设直线a'、b'确定平面α,当直线PM满足它的射影PQ在a'、b'所成角的平分线上时,PM与a'所成的角等于PM与b'所成的角因为直线a,b所成的角为80°,得a'、b'所成锐角等于80°所以当PM的射影PQ在a'、b'所成锐角的平分线上时,PM与a'、b'所成角的范围是[40°,90°).这种情况下,过点P有两条直线与a',b'所成的角都是50°当PM的射影PQ在a'、b'所成钝角的平分线上时,PM与a'、b'所成角的范围是[50°,90°).这种情况下,过点P有且只有一条直线(即PM⊂α时)与a',b'所成的角都是50°综上所述,过空间任意一点P可作与a,b所成的角都是50°的直线有3条故选:D.15.【解答】解:由m,n是不同的直线,α,β,γ是不同的平面知,对于A,若m∥α,n⊂α,则m与n平行或异面,故A错误;对于B,若m∥β,n∥β,m⊂α,n⊂α,则α与β相交或平行,故B错误;对于C,若α⊥β,m⊥β,则m∥α或m⊂α,故C错误;对于D,若α⊥γ,β⊥γ,α∩β=m,n⊂γ,则由面面垂直的性质得m⊥n,故D正确.故选:D.16.【解答】解:由m、n是两条不同直线,α,β是两个不同平面,知:对于A,若m∥α,m∥β,则α与β相交或平行,故A错误;对于B,若m∥β,n∥β,m⊂α,n⊂α,则α与β相交或平行,故B错误;对于C,若m∥n,m⊄α,n⊂α,则由线面平行的判定定理得m∥α,故C正确;对于D,若m∥α,n⊂a,则m与n平行或异面,故D错误.故选:C.17.【解答】解:由l,m,n为不同的直线,α,β,γ为不同的平面,知:对于A,若m⊥α,n⊥β,α∥β,则由线面垂直的性质定理和面面平行的性质得m∥n,故A错误;对于B,若m⊥α,n⊥β,m∥n,则由线线平行的性质、面面平行的判定定理得α∥β,故B正确;对于C,若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则由线线平行的判定定理得m∥n,故C正确;对于D,若α⊥γ,β⊥γ,则α与β相交或平行,故D错误.故选:D.18.【解答】解:正方体ABCD﹣A1B1C1D1的棱长为,直线AC1⊥平面α,平面α截此正方体所得截面中,如图,截面形状可能为正三角形或正六边形,由对称性得截面图形不可能是四边形或五边形,故A和均B错误;如图,当截面形状为如图所示的正六边形时,截面面积最大,MN==2,GH=1,OE===,∴截面面积最大值为S=2×=,故C错误,D正确.故选:D.19.【解答】解:在长方体ABCD﹣A1B1C1D1中,底面ABCD为正方形,=,连结A1B,A1C1,则A1B∥D1C,BC1=A1B==2,A1C1==,∴∠A1BC1异面直线BC1与D1C所成角,cos∠A1BC1==.则异面直线BC1与D1C所成角的余弦值为.故选:C.20.【解答】解:∵在三棱柱ABC﹣A1B1C1中,M,N分别为棱AA1,BB1的中点,∴MN AB,∵MN⊄平面ABC,AB⊂平面ABC,∴MN∥平面ABC,∵过MN作一平面分别交底面三角形ABC的边BC,AC于点E,F,∴MN∥EF,∵EF<AB,∴MN与EF平行且不相等,∴四边形MNEF是梯形,∴MF与NE不平行,故A错误,B正确,C错误,∵A1B1∥MN,MN∩NE=N,∴A1B1与NE不可能平行,故D错误.故选:B.21.【解答】解:由m,n是两条不同的直线,α,β是两个不同的平面知,A.若m⊥n,n∥α,则m与α相交、平行或m⊂α,故A错误;B.若m∥β,β⊥α,则m与α相交、平行或m⊂α,故B错误;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错误;D.若m⊥β,n⊥β,n⊥α,则m∥n,故m⊥α,故D正确.故选:D.22.【解答】解:当截面不平行于任何侧面也不过对角线时得①,当截面过正方体的体对角线时得②,当截面平行于正方体的一个侧面时得④,但无论如何都不能得到截面③.故选:A.23.【解答】解:矩形ABCD中,AB=2,AD=1,E,F分别是边AB,CD的中点,将正方形ADFE沿EF折到A1D1FE位置,使得二面角A1﹣EF﹣B的大小为120°,以E为原点,在平面A1EB中,过E作EB的垂线为x轴,EB为y轴,EF为z轴,建立空间直角坐标系,A1(,﹣,0),F(0,0,1),C(0,1,1),E(0,0,0),=(﹣,,1),=(0,﹣1,﹣1),设异面直线A1F与CE所成角为θ,则cosθ===.∴异面直线A1F与CE所成角的余弦值为.故选:D.24.【解答】解:将三棱锥由P A展开,如图,∵正三棱锥P﹣ABC中,∠APB=40°,则图中∠AP A1=120°,当点A、E、F、A1位于同一条直线上时,△AEF的周长最小,故AA1为△AEF的周长的最小值,又∵P A=P A1,∴△P AA1为等腰三角形,∵P A=6,∴P A1=6,∴AA1==6,∴△AEF的最小周长为:6.故选:D.25.【解答】解:由α⊥β,β⊥γ,可知α与γ可能相交,可能平行,相交可能垂直,也可能不垂直,故①错误;a⊥α,b∥β,α⊥β,则a∥β或a⊂β,故②错误;由α⊥β,a⊂α,b⊂β,α∩β=c,a⊥b,不一定得到a⊥c,a与c也可能平行,也可能是相交不垂直,故③错误;a⊥α,a⊥β,则α∥β,又b⊥α,∴b⊥β,故④正确.∴正确命题的个数是1个.故选:B.二.填空题(共10小题)26.【解答】解:作出对应的图象,由题意知当棱锥A﹣BCDE的体积最大时,满足AF⊥底面BCDE,以F为坐标原点,以FD,FC,F A分别为x,y,z轴建立空间坐标系,∵AB=2BC=2CD=2,∴BC=CD=1,则F A=FC=,FE=FD=,即D(,0,0),E(﹣,0,0),C(0,,0),A(0,0,),设B(x,y,z),则,即(﹣,,0)=(x+,y,z),解得x=﹣1,y=,z=0,即B(﹣1,,0),则=(﹣1,,﹣),=(0,,0),则•=×=,||=,||==,则cos<,>===,故直线AB与CF所成角的余弦值为,故答案为:27.【解答】解:对于①:过m上任意一点做l的平行线,与m确定的平面即符合要求,所以①成立;对于②:若存在这样的平面a与l垂直,则a内的每一条直线都与l垂直,当然包括m,而题里没有说m与l垂直,所以不一定存在.对于③,若存在平面γ,与m,l都垂,因为垂直同一平面的两直线平行,则m,l平行,与前提矛盾;对于④,过他们的公垂线的中点做和两直线都平行的平面即为所求.成立.故正确的结论只有①④.故答案为:①④.28.【解答】解:取AB,CD中点Q,R,连结PQ,PR,QR,取QR中点S,连结PS,则RQ⊥AB,S为正方形ABCD的中心,四棱锥P﹣ABCD是正四棱锥,∴PS⊥平面ABCD,∴PS=6,在Rt△PSQ中,PQ===4,同理,PR=4,∴△PQR是正三角形,∴正四棱锥P﹣ABCD内切球的球心为正△PQR的内心O,内切球的半径是正△PQR的内切圆半径为2,内切球与平面P AB的切点M为正△PQR内切圆与直线PQ的切点,∴M为PQ中点,球面上与P距离最近的点为连结OP与球面的交点,即在OP之间,且ON=2,∴N为OP中点,连结MN并延长交PR于I,平面α过M,N,I与直线AB平行,设平面α分别与平面P AB,平面PCD交于EF,GH,∵AB⊂平面P AB,∴EF∥AB,又∵AB∥CD,∴CD⊄α,∴CD∥α,同理可证GH∥CD,∴EF∥GH,连结GF,HE,则梯形EFGH为所求的截面,∵RQ⊥AB,PS⊥AB,PS∩RQ=S,∴AB⊥平面PQR,∵IM⊂平面PQR,∴AB⊥IM,AB∥EF,∴EF⊥IM,连结OQ,则OQ为∠POS的角平分线,∴∠PQO=30°,∵M,N是PQ,PO的中点,∴MN∥OQ,∴∠PMI=∠PQO=30°,而∠MPI=60°,∴∠PIM=90°,∴MI=PM cos30°=3,PI=PM sin30°==,又HG∥CD,∴HG==,∴截面梯形EFGH的面积为S===9.故答案为:9.29.【解答】解:设=λ(0<λ<1),连接AC,BD,AC交BD,FG分别于O,N,连接NM,∵P A⊥平面ABCD,∴P A⊥BD,∵P A∥平面EFGHM,∴EF∥P A,MN∥P A,GH∥P A,∴===1﹣,∴EF∥GH∥MN,∴EF=2(1﹣λ),∵BD∥平面EFGHM,连接EH,∴FG∥BD,EH∥BD,∴===λ,FG∥EH,===1﹣,∴四边形EFGH为矩形,FG=λBD=2λ,MN=2﹣λ,MN⊥FG,∴S截面EFGHM=S矩形EFGH+S△MGH=2(1﹣λ)×2λ+×2λ[(2﹣λ)﹣2(1﹣λ)]=﹣3(λ﹣)2+,当λ=时,截面EFGHM面积的最大值为,故答案为:.30.【解答】解:考虑相对运动,让正四面体ABCD保持静止,平面α绕着CD旋转,故平面α的垂线也绕着CD旋转,在AD上取一点F,使AF=2FD,连接EF,则EF∥CD,所以也可等价于平面α绕着EF旋转.设正四面体ABCD的边长为3a,则EF=2a,CE=a在△BCE中,,即,解得BE=在△BEF中,BF=BE=,EF=2a所以cos∠BEF==.将原问题转化为几何模型:平面α的垂线可视为圆锥的底面半径EP,绕着圆锥的轴EF旋转,所以,所以≤sin∠PEB≤1.设直线BE在平面α内的投影与CD所成角为θ.∴0≤cosθ≤.故答案为:[0,].31.【解答】解:如图根据三角形的边长,得三棱锥的四个面均为直角三角形,∠BAD=90°,△ABC≌△CDA,∠BAC+∠CAD=90°将三棱锥侧面沿侧棱AB展开,如图∴B,A,B1共线,此时两点间的连接线BB1,即是△BEF的周长的最小值8,但此时E,F重合于A,不能构成三角形,所以取不到8.由图观察,当E,F分别在棱AC和棱AD上由A向下移动时,BE,B1F的长度先变小,移动至分别与AD,AC垂直时,BE,B1F的长度最小,再向下移动逐渐变大,所以△BEF的周长最大为BD+DC+CB1=15,故答案为:(8,15]32.【解答】解:①中四面体ABCD体积最大值为两个面互相垂直,三棱锥的高根据面积公式可得,h=,四面体A﹣BCD体积的最大值,所以正确;②中三棱锥A﹣BCD,外接球的半径为,所以三棱锥A﹣BCD外接球的表面积,所以是正确的;③中由二面角A﹣BD﹣C的大小为60°,棱AC的长为,在直角三角形ABD中,AB=4,AD=3,BD=5,作AE⊥BD,CF⊥BD则,,同理在直角三角形ABC中,则,在平面ABD内,过F作FH∥AE,且FH=AE,连接AH,易得四边形AEFH为矩形.则,AH∥EF,FH⊥DB,又CF⊥BD,即有∠CFH为二面角C﹣BD﹣A的平面角,即∠CFH=60°.即由BD⊥平面CFH,得到BD⊥CH,即有AH⊥CH则,故正确.④中当二面角A﹣BD﹣C为直二面角时,以C为原点CB,CD所在直线分别为x,y轴建立坐标系,则由向量的数量积可得到直线AB,CD所成的角的余弦值为,所以不正确的.综上可知正确命题的序号为①②③.故答案为:①②③.33.【解答】解:设BE=x,EC=y,则BC=AD=x+y,∵SA⊥平面ABCD,ED⊂平面ABCD,∴SA⊥ED,∵AE⊥ED,SA∩AE=A,∴ED⊥平面SAE,∴ED⊥SE,由题意得AE=,ED=,在Rt△AED中,AE2+ED2=AD2,∴x2+3+y2+3=(x+y)2,化简,得xy=3,在Rt△SED中,SE=,ED==,∴S△SED==,∵3x2+≥2=36,当且仅当x=,时,等号成立,∴=.∴△SED面积的最小值为.故答案为:.34.【解答】解:以D为坐标原点,DA所在直线为x轴,DC所在直线为y轴,DD1所在直线为z轴,建立空间直角坐标系,如图所示;则D1(0,0,2),E(1,2,0),B1(2,2,2),设点P(x,y,z),则=(x﹣2,y﹣2,z﹣2),=(1,2,﹣2),又B1P⊥D1E,∴•=(x﹣2)+2(y﹣2)﹣2(z﹣2)=0,即x+2y﹣2z﹣2=0.又点P在正方体的表面上,当z=0时,x+2y﹣2=0,是线段AM,点M(0,1,0);当z=1时,x+2y﹣4=0,是点B1(2,2,2);当x=0时,2y﹣2z﹣2=0,是线段MN,点N(0,2,1);当x=1时,2y﹣2z﹣1=0,是线段AB1;当y=0时,x﹣2z﹣2=0,是点A(2,0,0);当y=1时,x﹣2z=0,是线段B1N.如图所示,点P的轨迹构成的图形是四边形AB1NM.∵MN∥AB1,AB1=2,MN==,A(2,0,0),M(0,1,0),B1(2,2,2),=(﹣2,1,0),=(0,2,2),∴点M到AB1的距离d=||•==,∴点B1和满足条件的所有点P构成的图形的面积是:==.故答案为:.35.【解答】解:∵直线AB平行于平面EFGH,且平面ABC交平面EFGH于HG,∴HG∥AB,同理:EF∥AB,FG∥CD,EH∥CD,所以:FG∥EH,EF∥HG.故:四边形EFGH为平行四边形.又∵AD=BD,AC=BC的对称性,可知AB⊥CD.∴四边形EFGH为矩形.设BF:BD=BG:BC=FG:CD=x,(0≤x≤1)FG=3x,HG=3(1﹣x)S EFGH=FG×HG=9x(1﹣x)=﹣9()=﹣9(x﹣)2+,根据二次函数的性质可知:S EFGH面积的最大值为.故答案为:.三.解答题(共5小题)36.【解答】证明:(1)如图所示,连接BD交AC于F,连接EF,在△DPB中,EF为中位线,∴EF∥PB;又PB⊄平面EAC,EF⊂平面EAC,∴PB∥平面AEC;(2)∵P A⊥平面ABCD,AC⊂平面ABCD,∴P A⊥AC;又AB⊥AC,P A∩AB=A,∴AC⊥平面P AB;又AC⊂平面EAC,∴平面EAC⊥平面P AB.37.【解答】解:(1)证明:∵四边形EFGH为平行四边形,∴EH∥FG;∵EH⊄平面ABD,FG⊂平面ABD,∴EH∥平面ABD;又∵EH⊂平面ABC,平面ABC∩平面ABD=AB,∴EH∥AB;又∵EH⊂平面EFGH,AB⊄平面EFGH,∴AB∥平面EFGH;(2)设EH=x,EF=y,∵EH∥AB,EF∥CD,∴=,=,∴+=+==1;又∵AB=4,CD=6,∴+=1,∴y=6(1﹣),且0<x<4;∴四边形EFGH的周长为l=2(x+y)=2[x+6(1﹣)]=12﹣x,∴8<12﹣x<12;∴四边形EFGH周长的取值范围是(8,12).38.【解答】(1)证明:∵SA⊥面ABCD,BC⊂面ABCD,∴SA⊥BC,∵AB⊥BC,SA∩AB=A,∴BC⊥面SAB∵BC⊂面SBC∴面SAB⊥面SBC.(2)解:以A为原点,AD为x轴,AB为y轴,AS为z轴,建立空间直角坐标系,∵SA=AB=BC=1,AD=,∴S(0,0,1),D(,0,0),C(1,1,0),∴,=(1,1,﹣1),设平面SCD的法向量,则,取x=2,得=(2,﹣1,1),又面SAD的法向量=(0,1,0),cos<>==﹣,∴面SAD与面SDC所成角的余弦值为.39.【解答】(1)证明:取PC的中点G,连接EG,FG,又由F为PD中点,则FG.又由已知有,∴FG∥AE.∴四边形AEGF是平行四边形.∴AF∥EG.又∵AF⊄平面PEC,EG⊂平面PCE.∴AF∥平面PCE.(2)解:∵P A⊥平面ABCD,∴平面P AD⊥平面ABCD.由ABCD是矩形有CD⊥AD.∴CD⊥平面P AD.∴AF⊥CD又P A=AD=3,F是PD的中点,∴AF⊥PD.∵PD∩CD=D,∴AF⊥平面PCD.由EG∥AF,∴EG⊥平面PCD.∴平面PCD内,过F作FH⊥PC于H,由于平面PCD∩平面PCE=PC,故∠FCH为直线FC与平面PCE所成的角.由已知可得PD=,,.∵CD⊥平面P AD,∴∠CPD=30°.∴.∴.∴sin∠FCH=∴直线FC与平面PCE所成角的正弦值为.40.【解答】解:建立如图的直角坐标系,则各点的坐标分别为:O(0,0,0),A(0,1,0),B(﹣1,0,0),C(0,﹣1,0,),D(1,0,0,),E(0,﹣1,1),F(0,1,1),M(0,0,1).(1)∵∴,即AM∥OE,又∵AM⊄平面BDE,OE⊂平面BDE,∴AM∥平面BDE;(2)∵,∴,∴AM⊥BD,AM⊥DF,∴AM⊥平面BDF.第1页(共1页)。
高一数学点直线平面之间的位置关系试题答案及解析

高一数学点直线平面之间的位置关系试题答案及解析1.已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为()A.B.C.D.【答案】C【解析】设BC的中点为D,连接易知即为异面直线与所成的角,设三棱柱的侧棱与底面边长为1,则,由余弦定理可以求得【考点】本小题主要考查空间两条异面直线所成的角的求法,考查学生的空间想象能力和运算求解能力.点评:求空间两条异面直线所成的角,关键是先做出空间两条异面直线所成的角,另外需要注意空间两条异面直线所成的角的取值范围.2.在正方体中,E是棱的中点,F是侧面上的动点,且平面,则与平面所成角的正切值构成的集合是()A.B.C.D.【答案】D【解析】设分别为边上的中点,则四点共面,且平面平面,又因为平面,所以点落在线段上,设的中点为,则当与重合时,与平面所成角的正切值有最大值为,当与或重合时,与平面所成角的正切值有最小值为2,故与平面所成角的正切值构成的集合是【考点】本小题主要考查点是直线与平面所成的角,其中分析出F落在线段HI上,是解答本题的关键.点评:求线面角,关键是先作出所成的角.3.四棱锥中,底面是边长为的正方形,其他四个侧面都是侧棱长为的等腰三角形,则二面角的平面角为_____________。
【答案】【解析】如图:E、F分别是AB,CD中点,连VE,EF,VF;则就是二面角的平面角;又所以三角形VEF为正三角形,所以4.直角△ABC的斜边BC在平面a内,顶点A在平面a外,则△ABC的两条直角边在平面a内的射影与斜边BC组成的图形只能是()A.一条线段B.一个锐角三角形C.一个钝角三角形D.一条线段或一个钝角三角形【答案】D【解析】当面ABC⊥α时,射影为一条线段,当面ABC不垂于α时,射影为钝角三角形.5.如果△ABC的三个顶点到平面的距离相等且不为零,那么△ABC的()A.三边均与平面平行B.三边中至少有一边与平面平行C.三边中至多有一边与平面平行D.三边中至多有两边与平面平行【答案】B【解析】三个顶点正在平面同一侧,则三边都平行平面;两个顶点在同一侧,一个顶点在另一侧,则在同一侧的两个顶点所在的边平行平面.故选B6.过直线外一点作直线的垂线有条;垂面有个;平行线有条;平行平面有个.【答案】无数,一,一,无数【解析】过直线外一点作直线的垂线与该直线相交的只有一条,而与该直线异面的有无数条,所以过直线外一点作直线的垂线有无数条。
(浙江专版)18年高考数学二轮专题复习第一部分专题四第二讲点、直线、平面之间的位置关系课件

[解析] 法一:由正方体的性质,得 A1B1⊥BC1,B1C⊥ BC1,A1B1∩B1C=B1,所以 BC1⊥平面 A1B1CD. 又 A1E⊂平面 A1B1CD,所以 A1E⊥BC1. 法二:∵A1E 在平面 ABCD 上的投影为 AE,而 AE 不与 AC,BD 垂直,∴B、D 错; ∵A1E 在平面 BCC1B1 上的投影为 B1C,且 B1C⊥BC1, ∴A1E⊥BC1,故 C 正确; ∵A1E 在平面 DCC1D1 上的投影为 D1E, 而 D1E 不与 DC1 垂直,故 A 错. [答案] C
(3)平面 BEF⊥平面 PCD.
[证明] ∵AB⊥AD,而且四边形 ABED 为平行四边形. ∴BE⊥CD,AD⊥CD, 由(1)知 PA⊥底面 ABCD,∴PA⊥CD. ∴CD⊥平面 PAD.∴CD⊥PD. ∵E 和 F 分别是 CD 和 PC 的中点, ∴PD∥EF.∴CD⊥EF. 又 BE∩EF=E,∴CD⊥平面 BEF. 又 CD⊂平面 PCD,∴平面 BEF⊥平面 PCD.
[答案] ②③④
解决空间线面位置关系的判断问题的常用方法 (1)根据空间线面垂直、 平行关系的判定定理和性质定理逐 一判断来解决问题; (2)必要时可以借助空间几何模型, 如从长方体、 四面体等 模型中观察线面位置关系,并结合有关定理来进行判断.
三、预测押题不能少 1.如图,在下列四个正方体中,A,B 为正方体的两个顶点,M, N,Q 为所在棱的中点,则在这四个正方体中,直线 AB 与平面 MNQ 不平行的是 ( )
(2)(2016· 全国卷Ⅱ)α,β 是两个平面,m,n 是两条直线, 有下列四个命题: ①如果 m⊥n,m⊥α,n∥β,那么 α⊥β. ②如果 m⊥α,n∥α,那么 m⊥n. ③如果 α∥β,m⊂α,那么 m∥β. ④如果 m∥n, α∥β, 那么 m 与 α 所成的角和 n 与 β 所成 的角相等. 其中正确的命题有________.(填写所有正确命题的编号)
2018版数学课堂讲义浙江专用必修二学案:第二章 点、

2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定目标定位 1.理解直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理.3.理解直线与平面所成的角的概念,并能解决简单的线面角问题.自主预习1.直线与平面垂直的有关概念(1)定义:如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作l⊥α.(2)相关概念:若直线l与平面α垂直,其中直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足.(3)图形语言:(画直线与平面垂直时,通常把直线画成与平面的平行四边形的一边垂直)如图所示.(4)符号语言:任意a⊂α,都有l⊥a⇒l⊥α.其中“任意直线”等同于“所有直线”.2.直线和平面垂直的判定定理(1)文字语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(2)图形语言:如图所示.(3)符号语言:a⊂α,b⊂α,a∩b=A,l⊥a,l⊥b⇒l⊥α.3.直线和平面所成的角平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是90°;一条直线和平面平行,或在平面内,我们说它们所成的角是0°.综上,直线与平面所成的角的范围[0°,90°].即时自测1.判断题(1)若直线l与平面α内的无数条直线垂直,则l⊥α.(×)(2)若直线l与平面α内任意一条直线垂直,则l⊥α.(√)(3)若直线l不垂直于平面α,则α内没有与l垂直的直线.(×)(4)过一点和已知平面垂直的直线有且只有一条.(√)提示(1)当直线l与平面α内的无数条平行直线垂直时,l与α不一定垂直. (3)当l与α不垂直时,l可能与α内的无数条平行直线垂直.2.长方体ABCD-A1B1C1D1中,下列不是平面ABCD的垂线的是()A.AA1B.BB11D.AD1解析由长方体的性质可知AD1不垂直于平面ABCD.答案 D3.下列条件中,能判定直线l⊥平面α的是()A.l与平面α内的两条直线垂直B.l与平面α内的无数条直线垂直C.l与平面α内的某一条直线垂直D.l与平面α内的任意一条直线垂直解析根据线面垂直的定义,可知l垂直于α内的所有直线时,l⊥α.答案 D4.如图,在正方体ABCD-A1B1C1D1中,直线AB1与平面ABCD所成的角等于________.解析BB1⊥平面ABCD,∴∠BAB1即为直线AB1与平面ABCD所成的角,且∠BAB1=45°.答案45°类型一直线和平面垂直的定义【例1】下列命题中,正确的序号是________.①若直线l与平面α内的一条直线垂直,则l⊥α;②若直线l不垂直于平面α,则α内没有与l垂直的直线;③若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;④若平面α内有一条直线与直线l不垂直,则直线l与平面α不垂直.解析当l与α内的一条直线垂直时,不能保证l与平面α垂直,所以①不正确;当l与α不垂直时,l可能与α内的无数条平行直线垂直,所以②不正确,③正确;根据线面垂直的定义,若l⊥α则l与α的所有直线都垂直,所以④正确.答案③④规律方法 1.直线和平面垂直的定义是描述性定义,对直线的任意性要注意理解.实际上,“任何一条”与“所有”表达相同的含义.当直线与平面垂直时,该直线就垂直于这个平面内的任何直线.由此可知,如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直.2.由定义可得线面垂直⇒线线垂直,即若a⊥α,b⊂α,则a⊥b.【训练1】设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m解析对于A,直线l⊥m,m并不代表平面α内任意一条直线,所以不能判定线面垂直;对于B,因l⊥α,则l垂直α内任意一条直线,又l∥m,由异面直线所成角的定义知,m与平面α内任意一条直线所成的角都是90°,即m⊥α,故B正确;对于C,也有可能是l,m异面;对于D,l,m还可能相交或异面.答案 B类型二线面垂直的判定【例2】如图所示,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC =1,AA1=2,∠B1A1C1=90°,D为BB1的中点.求证:AD⊥平面A1DC1.证明∵AA1⊥底面ABC,平面A1B1C1∥平面ABC,∴AA1⊥平面A1B1C1,显然A1C1⊂平面A1B1C1,∴A1C1⊥AA1.又∠B1A1C1=90°,∴A1C1⊥A1B1而A1B1∩AA1=A1,∴A1C1⊥平面AA1B1B,AD⊂平面AA1B1B,∴A1C1⊥AD.由已知计算得AD=2,A1D=2,AA1=2.∴AD2+A1D2=AA21,∴A1D⊥AD.∵A1C1∩A1D=A1,∴AD⊥平面A1DC1.规律方法证线面垂直的方法有三类(1)线线垂直证明线面垂直:①定义法(不常用,但由线面垂直可得出线线垂直);②判定定理最常用:要着力寻找平面内哪两条相交直线(有时作辅助线);结合平面图形的性质(如勾股定理逆定理、等腰三角形底边中线等)及一条直线与平行线中一条垂直也与另一条垂直等结论来论证线线垂直.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.【训练2】如图,在正方体ABCD-A1B1C1D1中,E,F分别是棱AB,BC的中点,O是底面ABCD的中心,求证:EF⊥平面BB1O.证明∵ABCD为正方形,∴AC⊥BO.又∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1,又∵BO∩BB1=B,∴AC⊥平面BB1O,又EF是△ABC的中位线,∴EF∥AC,∴EF⊥平面BB1O.类型三直线与平面所成的角(互动探究)【例3】如图所示,三棱锥A-SBC中,∠BSC=90°,∠ASB=∠ASC=60°,SA=SB=SC.求直线AS与平面SBC所成的角.[思路探究]探究点一直线与平面所成角的范围是什么?提示直线和平面垂直时,直线与平面所成的角是直角,为90°;直线与平面平行或直线在平面内时,直线与平面所成角为0°;直线是平面的斜线时,直线与平面所成的角是锐角,范围(0°,90°).所以直线与平面所成角的范围是[0°,90°].探究点二求斜线与平面所成角的步骤是什么?提示求斜线与平面所成角的步骤:一作,找出射影,作出角;二证,证明作出的角即为所求;三算,在三角形中求角;四答,作答.解因为∠ASB=∠ASC=60°,SA=SB=SC,所以△ASB与△SAC都是等边三角形.因此AB=AC.如图所示,取BC的中点D,连接AD,SD,则AD⊥BC.设SA=a,则在Rt△SBC中,BC=2a,CD=SD=2 2a.在Rt△ADC中,AD=AC2-CD2=2 2a.则AD2+SD2=SA2,所以AD⊥SD.又BC∩SD=D,所以AD⊥平面SBC.因此∠ASD即为直线AS与平面SBC所成的角.在Rt△ASD中,SD=AD=22a,所以∠ASD=45°,即直线AS与平面SBC所成的角为45°.规律方法 1.求直线和平面所成角的步骤:(1)寻找过斜线上一点与平面垂直的直线;(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角即为所求的角;(3)把该角归结在某个三角形中,通过解三角形,求出该角.2.在上述步骤中,作角是关键,而确定斜线在平面内的射影是作角的关键,几何图形的特征是找射影的依据,图形中的特殊点是突破口.【训练3】如图所示,Rt△BMC中,斜边BM=5,它在平面ABC上的射影AB 长为4,∠MBC=60°,求MC与平面CAB所成角的正弦值.解由题意知,A是M在平面ABC内的射影,∴MA⊥平面ABC,∴MC在平面CAB内的射影为AC.∴∠MCA即为直线MC与平面CAB所成的角.又∵在Rt△MBC中,BM=5,∠MBC=60°,∴MC =BM sin ∠MBC =5sin 60°=5×32=532.在Rt △MAB 中,MA =MB 2-AB 2=52-42=3.在Rt △MAC 中,sin ∠MCA =MA MC =3532=235. 即MC 与平面CAB 所成角的正弦值为235.[课堂小结]1.直线和平面垂直的判定方法:(1)利用线面垂直的定义;(2)利用线面垂直的判定定理;(3)利用下面两个结论:①若a ∥b ,a ⊥α,则b ⊥α;②若α∥β,a ⊥α,则a ⊥β.2.线线垂直的判定方法:(1)异面直线所成的角是90°;(2)线面垂直,则线线垂直.3.求线面角的常用方法:(1)直接法(一作(或找)二证(或说)三计算);(2)转移法(找过点与面平行的线或面);(3)等积法(三棱锥变换顶点,属间接求法).1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( )A.平行B.垂直C.相交不垂直D.不确定解析 由题意可知,该直线垂直于三角形所确定的平面,故这条直线和三角形的第三边也垂直.答案 B2.如果一条直线垂直于一个平面内的下列各种情况,能保证该直线与平面垂直的是( )①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边.A.①③B.②C.②④D.①②④解析由线面垂直的判定定理知,直线垂直于①③图形所在的平面,对于②④图形中的两边不一定是相交直线,所以该直线与它们所在的平面不一定垂直.答案 A3.矩形ABCD中,AB=1,BC=2,P A⊥平面ABCD,P A=1,则PC与平面ABCD 所成的角是________.解析tan∠PCA=P AAC=13=33,∴∠PCA=30°.答案30°4.如图所示,在正方体ABCD-A1B1C1D1中,求证:AC⊥平面BDD1B1.证明∵在正方体ABCD-A1B1C1D1中,BB1⊥平面AC,又AC⊂平面AC,∴BB1⊥AC.∵四边形ABCD是正方形,∴BD⊥AC.∵BD⊂平面BDD1B1,BB1⊂平面BDD1B1,BB1∩BD=B,∴AC⊥平面BDD1B1.基础过关1.如图所示,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是()A.平行B.垂直相交C.垂直但不相交D.相交但不垂直解析连接AC,因为ABCD是菱形,所以BD⊥AC.又MC⊥平面ABCD,BD⊂平面ABCD,则BD⊥MC.因为AC∩MC=C,所以BD⊥平面AMC.又MA⊂平面AMC,所以MA⊥BD.显然直线MA与直线BD不共面,因此直线MA与BD的位置关系是垂直但不相交.答案 C2.下列表述正确的个数为()①若直线a∥平面α,直线a⊥b,则b⊥α;②若直线a⊄平面α,b⊂α,且a⊥b,则a⊥α;③若直线a平行于平面α内的两条直线,则a∥α;④若直线a垂直于平面α内的两条直线,则a⊥α.A.0B.1C.2D.3解析①中b与α还可能平行、斜交或b在平面α内;②中a与α还可能平行或斜交;③中a还可能在平面α内;由直线与平面垂直的判定定理知④错.答案 A3.线段AB的长等于它在平面α内的射影长的2倍,则AB所在直线与平面α所成的角为()A.30°B.45°C.60°D.120°解析如图,AC⊥α,AB∩α=B,则BC是AB在平面α内的射影,则BC=12AB,所以∠ABC=60°,它是AB与平面α所成的角.答案 C4.已知△ABC所在平面外一点P到△ABC三顶点的距离都相等,则点P在平面ABC内的射影是△ABC的________(填“重心”、“外心”、“内心”、“垂心”). 解析P到△ABC三顶点的距离都相等,则点P在平面ABC内的射影到△ABC 三顶点的距离都相等,所以是外心.答案外心5.如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数有________.解析 ⎭⎬⎫P A ⊥平面ABC BC ⊂平面ABC ⇒ ⎭⎬⎫P A ⊥BCAC ⊥BC P A ∩AC =A ⇒BC ⊥平面P AC ⇒BC ⊥PC ,∴直角三角形有△P AB 、△P AC 、△ABC 、△PBC .答案 46.如图,四棱锥P -ABCD 的底面是边长为1的正方形,PD ⊥BC ,PD =1,PC = 2.求证:PD ⊥平面ABCD.证明 ∵PD =DC =1,PC =2,∴PD 2+DC 2=PC 2,∴PD ⊥CD .又∵PD ⊥BC ,BC ∩CD =C ,且BC ⊂平面ABCD ,CD ⊂平面ABCD ,∴PD ⊥平面ABCD .7.如图,AB 为⊙O 的直径,P A 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN ⊥PM ,N 为垂足.(1)求证:AN ⊥平面PBM .(2)若AQ ⊥PB ,垂足为Q ,求证:NQ ⊥PB .证明 (1)∵AB 为⊙O 的直径,∴AM ⊥BM .又P A ⊥平面ABM ,BM ⊂平面ABM .∴P A ⊥BM .又∵P A ∩AM =A ,∴BM ⊥平面P AM .又AN ⊂平面P AM ,∴BM ⊥AN .又AN ⊥PM ,且BM ∩PM =M ,∴AN ⊥平面PBM .(2)由(1)知AN ⊥平 PBM ,PB ⊂平面PBM ,∴AN ⊥PB .又∵AQ ⊥PB ,AN ∩AQ =A ,∴PB ⊥平面ANQ .又NQ ⊂平面ANQ ,∴PB ⊥NQ .能 力 提 升8.空间四边形ABCD 的四边相等,则它的两对角线AC 、BD 的关系是( )A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交 解析 取BD 中点O ,连接AO ,CO ,则BD ⊥AO ,BD ⊥CO ,且AO ∩CO =O ,∴BD ⊥面AOC ,又AC ⊂平面AOC ,∴BD ⊥AC ,又BD 、AC 异面,∴选C.答案 C9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.63B.265C.155D.105解析 如右图,在长方体ABCD -A 1B 1C 1D 1中,连接A 1C 1、B 1D 1,交于O 点,连接OB ,由已知A 1B 1C 1D 1是正方形,∴A 1C 1⊥B 1D 1.又∵BB 1⊥平面A 1B 1C 1D 1,OC 1⊂平面A 1B 1C 1D 1,∴OC 1⊥BB 1.而BB 1∩B 1D 1=B 1,∴OC 1⊥平面BB 1D 1D .∴OB 是BC 1在平面BB 1D 1D 内的射影.∴∠C 1BO 是BC 1与平面BB 1D 1D 所成的角.在正方形A 1B 1C 1D 1中,OC 1=12A 1C 1=1222+22= 2.在矩形BB 1C 1C 中,BC 1=BC 2+CC 21=4+1= 5.∴sin ∠C 1BO =OC 1BC 1=25=105. 答案 D10.在正方体ABCD -A 1B 1C 1D 1中,E 为A 1B 1的中点,则AE 与平面ABC 1D 1所成角的正弦值为________.解析 如图,取CD 的中点F ,连接EF 交平面ABC 1D 1于O ,连接AO .由已知正方体易知EO ⊥平面ABC 1D 1,所以∠EAO 为AE 与平面ABC 1D 1所成的角,设正方体棱长为1,在Rt △EOA 中,EO =12EF =12A 1D =22,AE =⎝ ⎛⎭⎪⎫122+12=52,sin ∠EAO =EO AE =105.所以直线AE 与平面ABC 1D 1所成的角的正弦值为105.答案 10511.如图,P A ⊥矩形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点.(1)求证:MN ∥平面P AD ;(2)若PD 与平面ABCD 所成的角为45°,求证:MN ⊥平面PCD .证明 (1)如图,取PD 的中点E ,连接NE 、AE ,又∵N 是PC 的中点,∴NE 綊12DC .又∵DC綊AB,AM=12AB,∴AM綊12CD,∴NE綊AM,∴四边形AMNE是平行四边形,∴MN∥AE.∵AE⊂平面P AD,MN⊄平面P AD,∴MN∥平面P AD.(2)∵P A⊥平面ABCD,∴AD是PD在平面ABCD内的射影,∴∠PDA是PD与平面ABCD所成的角,∴∠PDA=45°,∴AP=AD,∴AE⊥PD.又∵MN∥AE,∴MN⊥PD.∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD.又∵CD⊥AD,P A∩AD=A,∴CD⊥平面P AD.∵AE⊂平面P AD,∴CD⊥AE.又MN∥AE,∴CD⊥MN.又CD∩PD=D,∴MN⊥平面PCD.探究创新12.在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上移动,并且总是保持AP⊥BD1,则动点P满足的条件是什么?并说明理由.解点P在线段B1C上时,可以总是保持AP⊥BD1.证明:因为ABCD-A1B1C1D1是正方体,所以BB1⊥平面ABCD.又AC⊂平面ABCD,所以BB1⊥AC.又四边形ABCD是正方形,所以BD⊥AC.又BD⊂平面BDD1B1,BB1⊂平面BDD1B1,BB1∩BD=B,所以AC⊥平面BDD1B1.又BD1⊂平面BDD1B1,所以BD1⊥AC.同理可证BD1⊥AB1.又AC⊂平面AB1C,AB1⊂平面AB1C,AC∩AB1=A,所以BD1⊥平面AB1C.因为点P在线段B1C上,所以AP⊂平面AB1C,所以AP⊥BD1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末检测卷(二)(时间:120分钟满分:150分)一、选择题1.在正方体ABCD-A1B1C1D1中,直线AC与直线BC1所成的角为( )A.30°B.60°C.90°D.45°解析连接A1C1,A1B,则AC∥A1C1,因为△A1BC1是正三角形,所以∠A1C1B=60°,即直线AC 与直线BC1所成的角为60°.答案 B2.设a、b为两条直线,α、β为两个平面,下列四个命题中,正确的命题是( )A.若a、b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则a∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b解析A中a、b可以平行、相交或异面;B中a、b可以平行、相交或异面;C中的α、β可以平行或相交.答案 D3.设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β解析A项,当m∥α,n∥α时,m,n可能平行,可能相交,也可能异面,故错误;B项,当m∥α,m∥β时,α,β可能平行也可能相交,故错误;C项,当m∥n,m⊥α时,n⊥α,故正确;D项,当m∥α,α⊥β时,m可能与β平行,可能在β内,也可能与β相交,故错误.故选C.答案 C4.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )1与B1E是异面直线B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1D.A1C1∥平面AB1E解析由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,C正确.答案 C5.设l为直线,α,β是两个不同的平面.下列命题中正确的是( )A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解析选项A,若l∥α,l∥β,则α和β可能平行也可能相交,故错误;选项B,若l⊥α,l⊥β,则α∥β,故正确;选项C,若l⊥α,l∥β,则α⊥β,故错误;选项D,若α⊥β,l∥α,则l与β的位置关系有三种可能:l⊥β,l∥β,l⊂β,故错误.故选B.答案 B6.(2015·安徽高考)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析对于A,α,β垂直于同一平面,α,β关系不确定,A错;对于B,m,n平行于同一平面,m,n关系不确定,可平行、相交、异面,故B错;对于C,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C错;对于D,若假设m,n垂直于同一平面,则m∥n,其逆否命题即为D选项,故D正确.答案 D7.(2014·浙江高考)设m,n是两条不同的直线,α,β是两个不同的平面.( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α解析选项A,若m⊥n,n∥α,则m⊂α或m∥α或m与α相交,错误;选项B,若m∥β,β⊥α,则m⊂α或m∥α或m与α相交,错误;选项C,若m⊥β,n⊥β,可得m∥n,又n⊥α,则m⊥α,正确;选项D,若m⊥n,n⊥β,β⊥α,则m与α相交或m⊂α或m ∥α,错误.答案 C8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=( )A.8B.9C.10D.11解析取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EF平行,其余4个平面与EF相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.答案 A9.正方体ABCD-A1B1C1D1中,过点A作平面A1BD的垂线,垂足为点H.以下结论中,错误的是( )A.点H是△A1BD的垂心B.AH⊥平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成的角为45°解析因为AH⊥平面A1BD,BD⊂平面A1BD,所以BD⊥AH.又BD⊥AA1,且AH∩AA1=A.所以BD⊥平面AA1H.又A1H⊂平面AA1H.所以A1H⊥BD,同理可证BH⊥A1D,所以点H是△A1BD的垂心,A正确;因为平面A1BD∥平面CB1D1,所以AH⊥平面CB1D1,B正确;易证AC1⊥平面A1BD.因为过一点有且只有一条直线与已知平面垂直,所以AC1和AH重合.故C 正确;因为AA1∥BB1,所以∠A1AH为直线AH和BB1所成的角.因为∠AA1H≠45°,所以∠A1AH≠45°,故D错误.答案 D10.已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( ) A.5π12B.π3C.π4D.π6解析 如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO ⊥平面ABC ,连接OA ,则∠PAO 即为PA 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3,则S =34×(3)2=334, V ABC -A 1B 1C 1=S ×PO =94,∴PO = 3.又AO =33×3=1,∴tan ∠PAO =PO AO =3,∴∠PAO =π3. 答案 B二、填空题11.矩形ABEF 和正方形ABCD 有公共边AB ,且它们所在的平面互相垂直,AB =BC =2a ,BE =a ,则DE =________,DE 与平面ABEF 所成的线面角的正弦值为________. 解析 如图,在Rt △DBE 中,BD =22a ,BE =a ,∴DE =(22a )2+a 2=3a ,∵DA ⊥平面ABEF ,∴∠DEA 即为DE 与平面ABEF 所成的角, 在Rt △DAE 中,sin ∠DEA =DA DE =23. 答案 3a 2312.如图所示为一个正方体的一种表面展开图,图中的四条线段AB ,CD ,EF ,GH 在原正方体中互为异面直线的有________对,成60°角的有________对.解析 正方体如图AB 与CD ,AB 与GH ,GH 与EF 互为异面直线,AB 与CD ,AB 与EF ,AB 与GH ,CD 与GH ,EF 与GH 成60°角.答案 3 513.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN 等于________.解析 ∵B 1C 1⊥平面A 1ABB 1,MN ⊂平面A 1ABB 1, ∴B 1C 1⊥MN ,又∠B 1MN 为直角. ∴B 1M ⊥MN 而B 1M ∩B 1C 1=B 1. ∴MN ⊥平面MB 1C 1又MC 1⊂平面MB 1C 1 ∴MN ⊥MC 1,∴∠C 1MN =90°. 答案 90°14.已知平面α∥平面β,点A ,C ∈α,点B ,D ∈β,直线AB ,CD 交于点S ,且SA =8,SB =9,CD =34.(1)若点S 在平面α,β之间,则SC =________. (2)若点S 不在平面α,β之间,则SC =________. 解析 根据题意得AS SB =SCSD.当点S 在α,β之间时,有89=CS 34-CS ,即CS =16;当点S 在α,β之外时,有89-8=SC34,即SC =272. 答案 16 27215.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若PA ⊥平面AC ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.解析 由题意知:PA ⊥DE , 又PE ⊥DE ,PA ∩PE =P , 所以DE ⊥面PAE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则AB CE =BE CD, 即3a -x =x 3.∴x 2-ax +9=0,由Δ>0,解得a >6. 答案 a >616.在正方体ABCD -A ′B ′C ′D ′中,E 为A ′D ′中点,则异面直线EC 与BC ′所成角的余弦值为________,二面角A ′-BC ′-D 的平面角的正切值为________.解析 如图,取BC ,CC ′中点F ,H ,连A ′F ,FH ,A ′H .∵A ′F ∥EC ,FH ∥BC ′,∴∠A ′FH 即为异面直线EC 与BC ′所成的角. 设正方体的棱长为2,FH =2,A ′F =3,A ′H =3, cos ∠A ′FH =223=26,取BC ′的中点O ,连A ′O ,DO ,则A ′O ⊥BC ′,DO ⊥BC ′,∠A ′OD 即为二面角A ′-BC ′-D 的平面角, A ′O =DO =6,A ′D =22,cos ∠A ′OD =6+6-826×6=13,tan ∠A ′OD =2 2.答案262 2 17.已知四棱锥P -ABCD 的底面ABCD 是矩形,PA ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在直线垂直;②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△PAB 的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号) 解析 由条件可得AB ⊥平面PAD , ∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而PA ∥PB ,这是不可能的,故②错;S △PCD =12CD ·PD ,S △PAB =12AB ·PA ,由AB =CD ,PD >PA 知③正确; 由E 、F 分别是棱PC 、PD 的中点, 可得EF ∥CD ,又AB ∥CD , ∴EF ∥AB ,故AE 与BF 共面,④错. 答案 ①③ 三、解答题18.如图,三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,AC =9,BC =12,AB =15,AA 1=12,点D 是AB 的中点.(1)求证:AC ⊥B 1C ; (2)求证:AC 1∥平面CDB 1. 证明 (1)∵C 1C ⊥平面ABC ,AC ⊂平面ABC ,∴C 1C ⊥AC .∵AC =9,BC =12,AB =15,∴AC 2+BC 2=AB 2, ∴AC ⊥BC .又BC ∩C 1C =C ,∴AC ⊥平面BCC 1B 1, 而B 1C ⊂平面BCC 1B 1,∴AC ⊥B 1C .(2)连接BC 1交B 1C 于O 点,连接OD .如图,∵O ,D 分别为BC 1,AB 的中点,∴OD ∥AC 1.又OD ⊂平面CDB 1,AC 1⊄平面CDB 1.∴AC 1∥平面CDB 1.19.如图所示,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC =22,M 为BC 的中点.(1)证明:AM ⊥PM ;(2)求二面角P -AM -D 的大小.(1)证明 如图所示,取CD 的中点E ,连接PE ,EM ,EA ,∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin 60°= 3.∵平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,PE ⊂平面PCD , ∴PE ⊥平面ABCD ,而AM ⊂平面ABCD ,∴PE ⊥AM .∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形. 由勾股定理可求得EM =3,AM =6,AE =3, ∴EM 2+AM 2=AE 2.∴AM ⊥EM .又PE ∩EM =E ,∴AM ⊥平面PEM ,而PM ⊂平面PEM ,∴AM ⊥PM . (2)解 由(1)可知EM ⊥AM ,PM ⊥AM , ∴∠PME 是二面角P -AM -D 的平面角. ∴tan ∠PME =PE EM=33=1,∴∠PME =45°.∴二面角P -AM -D 的大小为45°.20.(2016·全国Ⅲ)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ; (2)求四面体N -BCM 的体积.(1)证明 由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)解 因为PA ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12PA .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积 V N -BCM =13×S △BCM ×PA 2=453.21.(2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′-ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD,故AC ∥EF ,由此得EF ⊥HD ,折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.(2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4,所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2,故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H ,所以AC ⊥平面DHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC .又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′-ABCFE 的体积V =13×694×22=2322. 22.(2016·四川高考)如图,在四棱锥P -ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由. (2)证明:平面PAB ⊥平面PBD . (1)解取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点,理由如下: 因为AD ∥BC ,BC =12AD .所以BC ∥AM ,且BC =AM .所以四边形AMCB 是平行四边形,从而CM ∥AB .11 又AB ⊂平面PAB .CM ⊄平面PAB .所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明 由已知,PA ⊥AB ,PA ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以PA ⊥平面ABCD .从而PA ⊥BD .因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD .所以四边形BCDM 是平行四边形,所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB .又BD ⊂平面PBD ,所以平面PAB ⊥平面PBD .。