《中心对称图形》旋转课件PPT
合集下载
人教版数学九年级上册23.2.2中心对称图形课件(29张PPT)
美丽的中心对称图形
你能设计出中心对称图形吗?
巩固训练
1. 剪纸是我国具有独特艺术风格的民间艺术,反 映了劳动人民对现实生活的深刻感悟. 下列剪纸 图案中,是中心对称图形的有( A )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
2. 下列图形是轴对称图形但不是中心对称 图形的是( D )
A
B
C
D
3. 如图,直线 a⊥b 于点O,曲线 c 关于点 О 成中心对称,点 A 的对称点是 A',AB⊥a 于点B,A'D⊥b 于点 D. 若 OB=3,OD=2,则 阴影部分的面积为___6___.
4. 图①②都是由边长为 1 的小等边三角形构成 的网格,每个网格图中有3个小等边三角形已涂上阴 影. 请在余下的空白小等边三角形中,分别按下列要 求选取一个涂上阴影: (1)使得4个阴影小等边三角形组成一个轴对称图形. (2)使得4个阴影小等边三角形组成一个中心对称图形.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
【画一画】
1. 下图是中心对称图形的一部分及对称中心,请你
补如全何它寻的找另中一心部对分称. A
B
图形的对称中心?
H G
C
D
F
E
2. 如图,请你用无刻度的直尺画一条直线,把下 面的平行四边形分成完全相等的两部分.
几何画板演示
【归纳】过对称中心的直线将中心对称图 形分成全等的两部分.
练习
如图,直线 EF 经过▱ABCD 的对角线的交 点O,若 AE=3,四边形 AEFB 的面积为15, 则 CF=__3___,四边形 EDCF 的面积为__1_5___.
后的图形能够与原来的图形重合,那么这个图形叫
九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)
(2)中心对称图形的对称点
O
连线被_对__称__中__心__平__分__
C
B
性质:中心对称图形上的每一对对称点的连线都经过对称
中心且被对称中心平分.
知识归纳
中心对称图形的性质
知识点二
中心对称与中心对称图形的区别与联系:
中心对称
中心对称图形
1.针对两个图形而言的
1.针对一个图形而言的
区 2.是指两个图形的(位置)关系2.是指具有某种性质的一个图形
探究新知
中心对称图形的概念
【问题】将下面的图形绕O点旋转,你有什么发现?
知识点一
AO B
O
O
O
共同点:(1)都绕一点旋转了180度; (2)都与原图形完全重合.
中心对称图形的定义 注意 中心对称图形是指一个图形.
把一个图形绕某个点旋转180º,如果旋转后的图形能与原来的图 形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
2.在线段、角、等腰三角形、等边三角形、等腰梯形、平行四 边形、矩形、菱形、正方形、正六边形、圆中,既是轴对称图形, 又是中心对称图形的图形有( D ) A.3个 B.4个 C.5个 D.6个
针对训练
中心对称图形的概念
知识点一
3.下列图形中,既是轴对称图形,又是中心对称图形的是( B )
分别交AD和BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为_3__.
A
ED
O
BF
C
针对训练
中心对称图形的性质
知识点二
1.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他
《中心对称图形》PPT优秀课件
书籍是巨大的力量。 ---列宁
好的书籍是最贵重的珍宝。 ---别林斯基 任何时候我也不会满足,越是多读书,就越是深刻地感到不满足,越感到自己知识贫乏。 ---马克思 书籍便是这种改造灵魂的工具。人类所需要的,是富有启发性的养料。而阅读,则正是这种养料。 ---雨果 喜欢读书,就等于把生活中寂寞的辰光换成巨大享受的时刻。 ---孟德斯鸠 如果我阅读得和别人一样多,我就知道得和别人一样少。 ---霍伯斯[英国作家] 读书有三种方法:一种是读而不懂,另一种是既读也懂,还有一种是读而懂得书上所没有的东西。 ---克尼雅日宁[俄国剧作家・诗人] 要学会读书,必须首先读的非常慢,直到最后值得你精读的一本书,还是应该很慢地读。 了解一页书,胜于匆促地阅读一卷书。 ---麦考利[英国作家] 读书而不回想,犹如食物而不消化。 ---伯克[美国想思家] 读书而不能运用,则所读书等于废纸。 ---华盛顿(美国政治家) 书籍使一些人博学多识,但也使一些食而不化的人疯疯颠颠。 ---彼特拉克[意大利诗人] 生活在我们这个世界里,不读书就完全不可能了解人。 ---高尔基 读书越多,越感到腹中空虚。 ---雪莱(英国诗人) 读书是我唯一的娱乐。我不把时间浪费于酒店、赌博或任何一种恶劣的游戏;而我对于事业的勤劳,仍是按照必要,不倦不厌。 ---富兰克林 书读的越多而不加思索,你就会觉得你知道得很多;但当你读书而思考越多的时候,你就会清楚地看到你知道得很少。 ---伏尔泰(法国哲学家、文学家) 读书破万卷,下笔如有神。---杜甫 读万卷书,行万里路。 ---顾炎武 读书之法无他,惟是笃志虚心,反复详玩,为有功耳。 ---朱熹 读书无嗜好,就能尽其多。不先泛览群书,则会无所适从或失之偏好,广然后深,博然后专。 ---鲁迅 读书之法,在循序渐进,熟读而精思。 ---朱煮 读书务在循序渐进;一书已熟,方读一书,勿得卤莽躐等,虽多无益。 ---胡居仁[明] 读书是学习,摘抄是整理,写作是创造。 ---吴晗 看书不能信仰而无思考,要大胆地提出问题,勤于摘录资料,分析资料,找出其中的相互关系,是做学问的一种方法。---顾颉刚 ---法奇(法国科学家)
《中心对称图形》旋转PPT课件3
A
D
O
B
C
如果一个图形绕一个点旋转180°后,能和原来的
图形互相重合,那么这个图形叫做中心对称图形;
这个点叫做它的对称中心;互相重合的点叫做对
称点.
图中_____A_B_C_D_是中心对称图形 对称中心是_点__O___
点A的对称点是__点__C__
点D的对称点是__点__B__
(1)平行四边形是中心对称图形吗?如果是, 请找出它的对称中心,并设法验证你的结论。 (2)根据上面的过程,你能验证平行四边形的 哪些性质?
性吗?今天我们先来学习只有二次项和常数项的二次函数 PPT模板:/moban/
PPT背景:/beiji ng/ PPT下载:/xiaz ai/ 资料下载:www. 1ppt.co m/zilia o/ 试卷下载:/shiti / 手抄报:/shouc haobao/ 语文课件:/keji an/yuwen/ 英语课件:/keji an/ying yu/
D
E
(A) 4
(B) 3
(C) 2
(D) 1
B
C
F
判断下列说法是否正确
(1)轴对称图形也是中心对称图形。(×)
(2)旋转对称图形也是中心对称图形。(× )
(3)平行四边形、长方形和正方形都是中心对称图
形,对角线的交点是它们的对称中心。(√ )
(4)角是轴对称图形也是中心对称图形。( × )
(5)在成中心对称的两个图形中,对应线段平行
(或在同一直线上)且相等。
(√ )
中心对称图形与轴对称图形有什么区别 与联系?
轴对称图形
中心对称图形
1 有一条对称轴——直线 有一个对称中心——点
2 图形沿轴对折(翻转180°) 图形绕对称中心旋转180°
《中心对称》旋转PPT精品课件
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
人教版 数学 九年级 上册
23.2 中心对称
23.2.1 中心对称
导入新知
观察下面的两组图形,看一看各组中两个图 形的形状、大小是否相同?怎样将一个图形旋转 得到另一个图形?
导入新知
观察图形,你发现了什么?
素养目标
3.掌握中心对称的性质及其应用. 2.探究中心对称的性质. 1.理解中心对称的定义.
用刻度尺找出BB′的中点O,则点O即为所求(如
图).
C A′
O B′
B
A
C′
巩固练习
解法2:根据观察,B、B′及C、C′应是两组对应 点,连接BB′、CC′,BB′、CC′相交于点O,则点 O即为所求(如图).
C A′
O B′ B A
C′ 【注意】如果限制只用直尺作图,我们用解法2.
探究新知
素养考点 2 利用中心对称的性质确定线段或角的值
例2 如图,已知△AOB与△DOC成中心对称, △AOB的面积是12,AB=3,则△DOC中CD边上 的高为___8_____.
中心对称图形课件(共20张PPT)人教版数学九年级上册
(中心对称图形的特点:绕某一点旋转180°后能与自身重合.中心对称图形 上每一对对称点所连线段都被对称中心平分(合理即可);中心对称图形是 指一个图形本身是中心对称的,反映了一个图形的本质特征,而中心对称 是指两个图形关于某一点对称,表示的是两个图形之间的一种关系)
小组讨论 1.我们已经知道,平行四边形是中心对称图形,你能根据中心 对称图形的性质验证平行四边形的哪些性质? (平行四边形的对边互相平行且相等; 平行四边形的对角相等; 平行四边形的对角线互相平分) 2.试着总结中心对称图形的性质
【题型二】中心对称与中心对称图形的区别和联系 例3: 下列说法中,正确的是( A) ①中心对称与中心对称图形是两个不同的概念;②中心对称与 中心对称图形都只有一个对称中心;③中心对称图形是指两个 图形之间的一种关系;④中心对称的两个图形 ,对称点所连线段 的中点刚好是对称中心. A.①②④ B.①②③ C.①③④ D.②③④
(点A,B,C,D的对应点分别是点C,D,A,B ; 重合)
③上述两个旋转的共同点是什么? (都是绕某一点旋转180°,旋转后的图形能与原图形重合)
自主探究
2.请同学们阅读课本67页,并勾画中心对称图形的概念. 3.你还能说出其他的中心对称图形吗?
(正方形 长方形 正六边形等) 4.说说中心对称图形具有哪些特点?它与中心对称有什么区 别和联系?
图形名称 线段 角 等腰三 等边三 直角三 平行四 矩形 菱形 正方 等腰 直角 圆
角形 角形 角形 边形
形 梯形 梯形
是否是轴对 是 是 是 是 否 否 是 是 是 是 否 是
称图形
是否是中心 是 否 否
对称图形
否 否是 是 是 是否 否 是
板书设计
联 ①把中心对称的两个图形看成一个“整体”,则为中心对称图形; 系 ②把中心对称图形的两部分看成两个图形,则它们中心对称
小组讨论 1.我们已经知道,平行四边形是中心对称图形,你能根据中心 对称图形的性质验证平行四边形的哪些性质? (平行四边形的对边互相平行且相等; 平行四边形的对角相等; 平行四边形的对角线互相平分) 2.试着总结中心对称图形的性质
【题型二】中心对称与中心对称图形的区别和联系 例3: 下列说法中,正确的是( A) ①中心对称与中心对称图形是两个不同的概念;②中心对称与 中心对称图形都只有一个对称中心;③中心对称图形是指两个 图形之间的一种关系;④中心对称的两个图形 ,对称点所连线段 的中点刚好是对称中心. A.①②④ B.①②③ C.①③④ D.②③④
(点A,B,C,D的对应点分别是点C,D,A,B ; 重合)
③上述两个旋转的共同点是什么? (都是绕某一点旋转180°,旋转后的图形能与原图形重合)
自主探究
2.请同学们阅读课本67页,并勾画中心对称图形的概念. 3.你还能说出其他的中心对称图形吗?
(正方形 长方形 正六边形等) 4.说说中心对称图形具有哪些特点?它与中心对称有什么区 别和联系?
图形名称 线段 角 等腰三 等边三 直角三 平行四 矩形 菱形 正方 等腰 直角 圆
角形 角形 角形 边形
形 梯形 梯形
是否是轴对 是 是 是 是 否 否 是 是 是 是 否 是
称图形
是否是中心 是 否 否
对称图形
否 否是 是 是 是否 否 是
板书设计
联 ①把中心对称的两个图形看成一个“整体”,则为中心对称图形; 系 ②把中心对称图形的两部分看成两个图形,则它们中心对称
《中心对称》旋转ppt课件
中心对称的定义
像这样把一个图形绕着某一点旋转180度, 如果它能够和另一个图形重合,那么,我们 就说这两个图形关于这个点对称或中心对称 .
中心对称是一种特殊的旋转.
这个点叫对称中心. 这两个图形中的对应点,如点A 和点C,点B 和点D, 叫做关于中心的对称点。
中心对称和旋转
中心对称与一般的旋转有什么联系和区别? 联系:中心对称和一般的旋转都是绕着某一点进行旋转. 区别:中心对称的旋转角度都是180°,一般的旋转的旋转角 度不固定,中心对称是特殊的旋转.
练习
如图,在平面直角坐标系中,若△ABC与△A’B ’C ’关于 E 点成中心对称,则对称中心 E 点的坐(标3是,-_1__)______.
常规总结 这节课我们学会了什么? 1.中心对称的定义:
像这样把一个图形绕着某一点旋转180度,如果它能够和另 一个图形重合,那么,我们就说这两个图形关于这个点对称 或中心对称.
常规总结
这节课我们学会了什么? 2.中心对称的性质: (1)中心对称的两个图形,对称点所连线段都经对__称___中__心___, 而且被对称中心_平__分___.
(2)中心对称的两个图形_全__等___.
常规总结 这节课我们学会了什么? 3.如何作图形关于点中心对称:
(1)作对称点 (2)连接对称点 (3)得到对称图形
△ABC 和△A’B ’C ’有什么关系? △ABC ≌△A’B ’C ’
归纳总结
中心对称的性质
1.中心对称的两个图形,对称点所连线段都经过_对___称__中__心____ ,而且被对称中心平__分______. 2.中心对称的两个图形__全__等____.
补充性质:对称线段_平__行___(__共__线__)___且__相__等__.
旋转对称图形和中心对称图形PPT课件
判断:这个图形
是旋转对称图形
A
还是中心对称图
形?
E
B
D
C
认真观察下列图案:
判断下列图形是旋转对称图形,还是中心对称图形?
找出中心对称图形
它们的边数有什么规律?
结论:中心对称的多边形很多,如边数为偶数 . 的正多边形都是中心对称图形。
你能再说出几个是中心对称图形的 正多边形吗?
在一次游戏当中,小明将下面左图的四张扑克牌中的一张 旋转180°后,得到右图,小亮看完很快知道小明旋转了哪 一张扑克,你知道为什么吗?
旋转的角度叫做旋转角。 (0。 360。)
讨论:旋转对称图形的旋转角能不能等于360?
旋转对称图形
1.以下四家银行行标中, 旋转对称图形的有 (A,C, D )
观察上面的几个图形,它们都是什么图形?如 果是旋转对称图形,旋转角是多少度?
这些图形都是旋转对称图形,而且都在绕着旋转
对称中心旋转 180 后和原来的图形重合
旋转对称图形
与
中心对称图形
回 忆:
1、什么叫做图形的旋转? 2、什么叫做旋转中心?
观察下列图形有什么特点吗?
问题与讨论
(1)
(2)
(3)
(4)
返回
旋转
返回
观察下列图案:
下列图形在运动时有哪些特征?
绕着一个定点旋转一个角度后,与原来的图形重合
你能说出它们旋转多少度能原来的图形重合?
在26个英文大写正体字母中,哪些字母是中心对 称图形?
ABCDEFGHIJK LM NOPQRSTUVWX YZ
原来中心对称图形是这样啊!!!
想一想
请以给定的图形○○△△=(两个圆,两个三角 形,两条平行线)为构件,尽可能多地构思有意义 的一些中心图形,并写上一两句贴切,诙谐的解 说词.如下图就是符合要求的图形,你能构思其 它图形吗?比一比,看谁想得多,看谁想得妙!
16.4 中心对称图形课件(共17张PPT)
A
3.如图,△ABO与△CDO关于点O成中心对称,点E,F在线段AC 上,且AF=CE.求证:FD=BE.
证明:∵△ABO与△CDO关于点O成中心对称∴AB=CD,∠A=∠C∵AF=CE∴AF+FE=CE+FE即AE=CF在△ABE和△CDF中∵AB=CE∠A=∠CAE=CF∴△ABE≌△CDF(SAS)∴FD=BE
知识点3 中心对称的性质
在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.
中心对称的性质
例题解析
例 如图,已知线段AB和点O,画出线段AB关于点O的中心对称图形.
解:如图.(1)连接AO,BO,并延长AO到点C,延长BO到点D,使得OC=OA,OD=OB.(2)连接CD.线段CD即为所求.
第十六章 轴对称和中心对称16.4 中心对称图形
学习目标
学习重难点
重点
难点
1.认识并能够辨析中心对称图形和两个图形成中心对称.2.理解中心对称的基本性质,并会利用性质作图.
能够辨析中心对称图形和两个图形成中心对称.
理解中心对称的基本性质,并会利用性质作图.
观察这几幅图片,将它们分别绕各自标示的“中心点”旋转180°后,能不能与它们自身重合?
知识点2 成中心对称
中心对称图形是指一个图形的中心对称性,两个图形之间往往也具有这种对称关系.
如果一个图形绕某一点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称,这个点叫做对称中心,其中成中心对称的点、线段和角,分别叫做对应点、对应线段和对应角.
随堂练习
1.下列图案都是由字母“m”经过变形、组合 而成的,其中不是中心对称图形的是( )A B C D
B
2.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AB=3,则AB'的长为 .
3.如图,△ABO与△CDO关于点O成中心对称,点E,F在线段AC 上,且AF=CE.求证:FD=BE.
证明:∵△ABO与△CDO关于点O成中心对称∴AB=CD,∠A=∠C∵AF=CE∴AF+FE=CE+FE即AE=CF在△ABE和△CDF中∵AB=CE∠A=∠CAE=CF∴△ABE≌△CDF(SAS)∴FD=BE
知识点3 中心对称的性质
在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.
中心对称的性质
例题解析
例 如图,已知线段AB和点O,画出线段AB关于点O的中心对称图形.
解:如图.(1)连接AO,BO,并延长AO到点C,延长BO到点D,使得OC=OA,OD=OB.(2)连接CD.线段CD即为所求.
第十六章 轴对称和中心对称16.4 中心对称图形
学习目标
学习重难点
重点
难点
1.认识并能够辨析中心对称图形和两个图形成中心对称.2.理解中心对称的基本性质,并会利用性质作图.
能够辨析中心对称图形和两个图形成中心对称.
理解中心对称的基本性质,并会利用性质作图.
观察这几幅图片,将它们分别绕各自标示的“中心点”旋转180°后,能不能与它们自身重合?
知识点2 成中心对称
中心对称图形是指一个图形的中心对称性,两个图形之间往往也具有这种对称关系.
如果一个图形绕某一点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称,这个点叫做对称中心,其中成中心对称的点、线段和角,分别叫做对应点、对应线段和对应角.
随堂练习
1.下列图案都是由字母“m”经过变形、组合 而成的,其中不是中心对称图形的是( )A B C D
B
2.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AB=3,则AB'的长为 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
① 对称点的连线必过对称中心;
② 这两个图形一定全等;
③ 对应线段一定平行且相等;
④ 将一个图形绕对称中心旋转180°必定与另一个图形重合。
其中正确的是(C)。
(A) ①②
(B) ①③
(C) ①②③
(D) ①②③④
2. 如图,如果正方形CDEF旋转后能与正
方形ABCD重合,那么图形所在的平面
上可以作为旋转中心的点共有(B)。 A
(或在同一直线上)且相等。
(√ )
中心对称图形与轴对称图形有什么区别 与联系?
轴对称图形
中心对称图形
1 有一条对称轴——直线 有一个对称中心——点
2 图形沿轴对折(翻转180°) 图形绕对称中心旋转180°
3 翻转前后的图形完全重合 旋转前后的图形完全重合
名称 定义
性质 区别
中心对称
把一个图形绕着某一个点旋转180,如果他能 够与另一个图形重合,那么就说这两个图形 关于这点对称,这个点叫做对称中心,两个图 形关于点对称也称中心对称,这两个图形中 的对应点叫做关于中心的对称点
旋转 1800
是中心对称图形
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?
旋转 2700
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?
旋转 3600
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?
①两个图形完全重合; ②对应点连线都经过对称中心,并且被对称 中心平分
①两个图形的关系 ②对称点在两个图形上
中心对称图形 如果一个图形绕着一个点旋 转180后的图形能够与原来 的图形重合,那么这个图形 叫做中心对称图形,这个点 就是它的对称中心
————-
①具有某种性质的一个图形 ②对称点在一个图形上
D
E
(A) 4
(B) 3
(C) 2
(D) 1
B
C
F
判断下列说法是否正确
(1)轴对称图形也是中心对称图形。(×)
(2)旋转对称图形也是中心对称图形。(× )
(3)平行四边形、长方形和正方形都是中心对称图
形,对角线的交点是它们的对称中心。(√ )
(4)角是轴对称图形也是中心对称图形。( × )
(5)在成中心对称的两个图形中,对应线段平行
A
D
O
B
C
如果一个图形绕一个点旋转180°后,能和原来的
图形互相重合,那么这个图形叫做中心对称图形;
这个点叫做它的对称中心;互相重合的点叫做对
称点.
图中_____A_B_C_D_是中心对称图形 对称中心是_点__O___
点A的对称点是__点__C__
点D的对称点是__点__B__
(1)平行四边形是中心对称图形吗?如果是, 请找出它的对称中心,并设法验证你的结论。 (2)根据上面的过程,你能验证平行四边形的 哪些性质?
正三角形是中心对称图形吗?正方形呢?正五边 形呢?正六边形呢?……你能发现什么规律?
边数为偶数的正多边形都是中心对称图形。
下面的扑克牌中,哪些牌面是中心对称图形?
在26个英文大写正体字母中,哪些字母 是中心对称图形?
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
1. 若两个图形关于某一点成中心对称,那么下列说法:
旋转 nx900
正方形是中心对称图形;它绕两条对角线的交点旋转 900或其整数倍,都能与原来的图形重合,因此,可以 验证正方形的四边相等、四角相等、对角线互相垂直平 分等性质。
下列图形是中心对称图形吗?
(1)
(2)
旋转图形(1)
旋转图形(3)
(3)
(4)
旋转图形(2)
旋转图形(4)
点击跳转
返回
旋转
若把中心对称图形的两部分分别看作两个图形,则它们成中心对称,若把中 联系 心对称的两个图形看作一个整体,则成为中心对称图形。
的是( C )
A 角 B 等边三角形 C 线段 D平行四边形
(2)下列多边形中,是中心对称图形而不是轴对称
图形的是( A )
A平行四边形 B矩形 C菱形 D正方形
下列图形中哪些是中心对称图形?
①
②
③
④
判断下列图形是不是中心对称图形 :
观察图形,并回答下面的问题:
(1)哪些只是轴对称图形? (3)(4)(6) (2)哪些只是中心对称图形?(1) (3)哪些既是轴对称图形,又是中心对称图形(? 2)(5)
(1)
(2)
(3)
(4)
(5)
(6)
下面图案是中心对称图形吗?若是请指出它们的 对称中心,。
(1)
(2)
(3)
(4)
(5)
(6)
它是轴对称图形吗? 它是中心对称图形吗?
B
2.在①线段、 ②角、 ③等腰三角形、 ④等腰梯 形、⑤平行四边形、 ⑥矩形、 ⑦菱形、 ⑧正方形 和⑨圆中,是轴对称图形的有①__②__③_④__⑥__⑦__⑧__⑨_,是 中心对称图形的有①__⑤__⑥__⑦__⑧_⑨___,既是轴对称图形 又是中心对称图形的有_①__⑥__⑦_⑧__⑨____.
返回
旋转
返回
旋转
学习永远 不晚。 JinTai College
感谢您的阅读! 为 了 便于学习和使用, 本文档下载后内容可 随意修改调整及打印。
返回
旋转
都是中心对称图形 其中心就是对称中心
判断下列图形是否是中心对称图形?如果 是,那么对称中心在哪?
选择题:
(1)下列图形中即是轴对称图形又是中心对称图形
中心对称图形
(1)这些图形有什么共同的特征? 都是旋转对称图形。
(2)这些图形的不同点在哪?分别绕旋转中心旋转 了多少度?
第一个图形的旋转角度为120°或240 °,第二个图形 的旋转角度为72°或144°或216°或288°。后三个图形 的旋转角度都为180°,第二,三个是轴对称图形。
后三个图形都是旋转1800后能与自身重合
O
(1)平行四边形是中心对称图形,对称中心是两条对角线 的交点。 (2)能验证平行四边形的对边相等、对角相等、对角线互 相平分等性质。
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?
旋转 900
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?