分式方程的概念-解法及应用

合集下载

第五课时:一元二次方程(分式方程)及应用

第五课时:一元二次方程(分式方程)及应用

知识梳理:知识点1 分式方程的概念及解法1.分式方程的概念;分母中含有 的方程叫做分式方程 【名师提醒:分母中是否含有未知数是区分分式方程和整式方程根本依据】2.分式方程的解法步骤(1)去分母:给方程两边都乘以________,把它化为整式方程;(2)解这个整式方程;(3)________.3.增根(无解):在进行分式方程去分母的变形时,有时可产生使原方程分母为 的根称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为 的根是增根应舍去。

【名师提醒:分式方程解法中的验根是一个必备的步骤,不能省略】提分必练:1.分式方程3x =2x -1的解是( )A .x =-3B .x =-35C .x =3D .无解2.若分式方程x x -1-m 1-x=2有增根,则这个增根是________.m=___________。

3.解分式方程2x -1+x +21-x=3知识点 2 分式方程的应用(高频考点) 1.列分式方程解应用题的六个步骤 (1)审:弄清题目中涉及的已知量和未知量以及量与量之间的等量关系;(2)设:设未知数,根据等量关系用含未知数的代数式表示其他未知量;(3)列:根据等量关系,列出方程; (4)解:求出所列方程的解; (5)检:双检验.A .检验是否是分式方程的解; B .检验是否符合实际问题; (6)答:写出答案. 2.常见关系 分式方程的应用题主要涉及工作量问题,行程问题等常见的公式及数量关系. 知识点3 一元二次方程的概念 1. 概念:只含有_____个未知数,未知数的最高次数是_____的________方程叫一元二次方程.2.一般形式是:_______________________. ____________________________________。

【名师提醒:1、在一元二次方程的一般形式要特别注意强调a ≠o 这一条件2、将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并且一般首项为正】知识点4 一元二次方程的解法 直接开平方法:这种方法适合于左边是一个完全平方式,而右边是一个非负数的一元二次方程,即形如ax 2=b 或(x +m)2=n(n>0)的方程. 配方法:1、化二次项系数为 即方程两边都 二次项的系数。

分式方程

分式方程

中小学教育资源站 1.25222345326235221224563522142451,得解这个整式方程)()()(,得)(方程两边同时乘以)()()(=+=-+---+=+---+=+--x x x x x x x x x x x x x 的值。

,即可求出然后再令,的字母系数方程,得。

可解关于根为原方程有增根,说明增m x m mx x x 11341=-==分式方程【知识要点】1、分式方程的定义2、解法3、为什么验根4、解分式方程与分式的化简要区别开来,切不可混为一体。

5、分式方程的应用 【典型例题】例1(1)05131=-+-x x (2)41451-=--+x x x 分析:去分母把分式方程转化成整式方程,求解后验根. 解:(1)方程两边同乘以)3(5+x ,得 0)3()1(5=+--x x ,解得 x =2 检验:把x=2代入方程左边, 得 . ∵左边=右边,∴x=2是原方程的解. (2)方程两边同乘以(x-4).∴检验:把x=5代入方程左边, 得 ; 把x=5代入方程右边, 得145141=-=-x . ∵左边=右边,∴x=5是原方程的解.点评: 1.解分式方程的思想是转化为整式方程.其一般方法是方程两边同乘以各2.所得结果是否为原方程的解,需要检验. 例2、解下列方程.25615251583263522142451222-=--+++-+=+--x x x x x x x x x )(;)(分析:解分式方程的关键是去分母,所以化分式方程为整式方程时,要找出各分母的最简公分母,找最简公分母时,要注意把各分母按同一个字母作降幂排列,能因式分解的一定要先进行因式分解。

解: .4.063)55344365553553556535533256152515832222是原方程的解()()时,(检验:当,得解这个整式方程)()()(,得)()()方程两边同乘以()()()()()()()(=∴≠-=-++==+=++--++-+=-++++-=--+++x x x x x x x x x x x x x x x x x x x x x x x点评:检验是解分式方程的必要步骤,检验的方法是将整式方程得到的根代入最简公分母检验,使最简公分母不等于0的根是原方程的根,使最简公分母等于零的根是原方程的增根,应舍去。

分式方程解法的原理及应用

分式方程解法的原理及应用

分式方程解法的原理及应用1. 分式方程的定义和形式分式方程即含有分式的方程,通常以分式形式表达,一般的形式为:\\frac{P(x)}{Q(x)} = R(x)其中,P(x)、Q(x) 和 R(x) 分别表示多项式函数,分子和分母的系数和幂次。

2. 分式方程的解法原理解决分式方程的方法主要包括化简、等式法、代换法等。

2.1 化简方法化简是解决分式方程的基本思路之一。

通过对方程的分子和分母进行因式分解、约分或通分等操作,将分式方程转化为较简单的形式,以便于求解。

2.2 等式法等式法是解决分式方程的常用方法之一。

通过设法使方程中的各项相等,从而建立一个等式,通过求解等式得到方程的解。

2.3 代换法代换法是解决分式方程的另一种常用方法。

通过引入合适的变量或代换,将复杂的分式方程转化为较简单的形式,从而求解方程。

3. 分式方程的应用分式方程在实际生活和工作中具有广泛的应用,包括但不限于以下几个方面:3.1 金融领域在金融领域,分式方程可以用来计算利息、贷款等金融问题。

例如,可以通过解析贷款利率的分式方程,计算每月的还款额,帮助借款人做出合理的还款计划。

3.2 物理学和工程学领域在物理学和工程学领域,分式方程常常用于描述复杂的物理现象和工程问题。

例如,分式方程可以用来描述弹性力学中的受力和变形关系,帮助工程师设计合适的结构和材料。

3.3 统计学和经济学领域在统计学和经济学领域,分式方程经常用于描述经济和社会现象的变化规律。

例如,在经济学中,可以通过分式方程来描述供求关系、价格变化等。

3.4 生活中的实际问题除了以上领域,分式方程还可以应用于日常生活中的实际问题。

例如,分式方程可以用来求解食物烹饪过程中的配方比例、化妆品的混合比例等。

4. 总结分式方程的解法原理主要包括化简、等式法和代换法。

这些方法可以帮助我们解决实际生活和工作中的问题。

分式方程在金融、物理学、工程学、统计学和经济学等领域有着广泛的应用。

了解分式方程的解法原理和应用,有助于我们更好地理解和运用数学知识解决实际问题。

分式方程的解法与应用

分式方程的解法与应用

分式方程的解法与应用分式方程是指含有分数形式的方程,其中包含了分数的加减乘除运算。

解决分式方程需要运用一些特定的解法和技巧,以及理解分式方程在实际生活中的应用。

本文将介绍分式方程的解法和应用,并讨论其在数学和日常生活中的重要性。

一、分式方程的解法分式方程的解法有多种方法,以下是其中常见的几种:1. 清除分母法:当分式方程中存在分母时,可以通过乘以适当的整数或者多项式的方法,将方程的分母消除,从而转化为含有整数或多项式的方程。

通过进行这样的清除分母操作,可以简化方程的求解过程。

2. 相同分母法:当分式方程中存在多个分式且分母相同的情况时,可以通过将这些分式相加或相减,生成一个分子相加或相减的新分式,从而将分式方程转化为一个更简单的方程。

然后,可以继续使用其他解方程的方法求解。

3. 倒数法:当分式方程的分子或分母中含有复杂的表达式时,可以通过倒数的方式,将方程进行转化。

将方程的分母转化为分子,分子转化为分母,然后利用等式的性质进行化简,最后得到一个更为简单的方程。

二、分式方程的应用分式方程在实际生活中有着广泛的应用。

以下是一些常见的应用场景:1. 比例问题:比例问题是分式方程的常见应用之一。

在计算比例时,常常需要解决分式方程。

例如,在商业领域中,计算销售增长率、成本与利润的关系等问题,都需要运用分式方程进行计算。

2. 涉及面积和体积的问题:分式方程在计算面积和体积相关问题时也很有用。

例如,计算不规则形状的面积、计算容器中液体的体积等都可能涉及到分式方程的应用。

3. 财务问题:在处理财务问题时,分式方程同样发挥着重要的作用。

例如,在计算股票交易、利息计算以及贷款还款等问题时,常常需要解决分式方程来进行计算。

总结:分式方程是一种特殊的方程类型,运用特定的解法和技巧可以解决。

掌握分式方程的解法不仅在数学学科中重要,也在实际生活中具有广泛的应用。

通过应用不同的解法,我们能够更好地理解和解决涉及分数运算的各类问题,提高解决实际问题的能力。

分式方程的解法与应用

分式方程的解法与应用

分式方程的解法与应用分式方程是含有至少一个分式的方程,其解法与整式方程有一定的区别。

本文将介绍分式方程的解法及其应用。

一、分式方程的解法解分式方程的关键在于将方程化简为整式方程,以下是常见的几种解法:1. 通分法:当分式方程中含有多个分母时,可以通过通分的方式将其转化为整式方程。

首先找到所有分母的公倍数,然后将方程两边都乘以公倍数,从而得到一个整式方程。

最后求解整式方程,即可得到分式方程的解。

2. 消去法:当分式方程中存在相同的因式时,可以通过消去的方式将其化简为整式方程。

首先找出方程中的公因式,然后将其约去,从而得到一个整式方程。

最后求解整式方程,即可得到分式方程的解。

3. 倒数法:当分式方程中含有一个分式的倒数时,可以通过倒数的方式将其转化为整式方程。

首先将方程两边的分式取倒数,然后将其化简为整式方程。

最后求解整式方程,即可得到分式方程的解。

二、分式方程的应用分式方程在实际问题中具有广泛的应用,以下是几个常见的例子:1. 比例问题:比例问题通常可以表示为分式方程。

例如,某商品的原价为x元,打折后的价格为x/2元,求折扣后的价格是多少。

可以建立分式方程x/2 = 折扣后的价格,然后通过解方程求得折扣后的价格。

2. 水箱问题:水箱问题中常涉及到进水速度、出水速度等概念,可以通过分式方程求解。

例如,一个水箱的进水口每小时进水1/3箱,出水口每小时排水1/4箱,求水箱在多长时间内装满。

可以建立分式方程1/3 - 1/4 =水箱装满的时间,然后通过解方程求得水箱装满的时间。

3. 工作效率问题:工作效率问题中常涉及到多个人或物共同工作时的效率关系,可以通过分式方程求解。

例如,甲、乙两人共同完成一项任务需要5小时,如果甲的效率是乙的2倍,那么甲独自完成此任务需要多长时间。

可以建立分式方程1/甲的效率 - 1/乙的效率 = 5,然后通过解方程求得甲独自完成任务的时间。

总之,分式方程的解法与整式方程有一定的区别,可以通过通分法、消去法、倒数法等方式来解决。

数学知识点分式方程的解法和应用

数学知识点分式方程的解法和应用

数学知识点分式方程的解法和应用数学知识点:分式方程的解法和应用分式方程是指方程中含有分式的数学等式。

解分式方程需要运用一些特定的方法和策略,以找到变量的值满足方程的条件。

本文将介绍分式方程的解法和应用。

首先,我们将讨论如何解一元分式方程。

一元分式方程的解法解一元分式方程的方法主要分为两个步骤:首先将分式方程转化为整式方程,然后求解整式方程得到变量的值。

步骤一:转化为整式方程为了将分式方程转化为整式方程,我们可以通过两种方法:通分或消去分母。

例子 1:解方程: 5/x - 2/(3x) = 1/4通分即可得到:15/(3x) - 2/(3x) = 3/(12x)化简为:13/(3x) = 3/(12x)例子 2:解方程: (2x - 1)/3 - (x + 1)/(2x) = 2/3将所有分式通分得到:2(2x - 1)/(6x) - 3(x + 1)/(6x) = 4/6整理化简为:4x - 2 - 3x - 3 = 4/6步骤二:求解整式方程得到整式方程后,我们可以使用常规的方程求解方法,将变量的值计算出来。

例子 1的继续:13/(3x) = 3/(12x)通过交叉相乘可得:39x = 36x整理化简为:x = 0例子 2的继续:4x - 2 - 3x - 3 = 4/6化简为:x - 5 = 2/6继续整理可得:x = 3到此为止,我们已经学习了解一元分式方程的方法。

接下来,我们将探讨分式方程的应用。

分式方程的应用分式方程在实际问题中具有广泛的应用。

下面将介绍两个常见的应用场景:比例问题和物体混合问题。

应用一:比例问题比例问题是指涉及到数量比例关系的问题。

通过设立分式方程,我们可以解决这类问题。

例子 3:甲、乙、丙三个人的年龄比例为5:3:2。

如果乙的年龄比甲大9岁,而丙的年龄比乙大8岁,求三个人的年龄。

设甲的年龄为5x岁,则乙的年龄为3x岁,丙的年龄为2x岁。

乙的年龄比甲大9岁,可以设立方程:3x = 5x - 9通过解方程可得:x = 4因此,甲的年龄为20岁,乙的年龄为12岁,丙的年龄为8岁。

第6讲分式方程(讲义)解析版

第6讲分式方程(讲义)解析版

第6讲分式方程模块一:分式方程及其解法知识精讲1、分式方程的概念分母中含有未知数的方程叫做分式方程.2、解分式方程的方法通过去分母把分式方程转化为整式方程,再求解.3、增根的概念分式方程在化整式方程求解过程中,整式方程的解如果使得分式方程中的分母为0,那么这个解就是方程的增根.4、解分式方程的一般步骤(1)方程两边都乘以最简公分母,去分母,化成整式方程;(2)解这个整式方程,求出整式方程的根;(3)检验.有两种方法:①将求得的整式方程的根代入最简公分母,如果最简公分母等于0,则这个根为增根,方程无解;如果最简公分母不等于0,则这个根为原方程的根,从而解出原方程的解;②直接代入原方程中,看其是否成立.如果成立,则这个根为原方程的根,从而解出原方程的解;如果不成立,则这个根为增根,方程无解.5、分式方程组的概念由两个或两个以上的分式方程构成的方程组叫做分式方程组.6、解分式方程组的方法找出分式方程组中相同的分式进行换元,将分式方程组转化为整式方程组,解方程组,然后进行检验.例题解析例1.(1)下列方程中,是分式方程的为( )A .12x -=B 1=C 10-=D 1=【答案】C【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】A. 是整式方程,故选项错误;B. 是整式方程,故选项错误;分母中含有未知数x ,所以是分式方程,故选项正确;D. 是整式方程,故选项错误.故选C.【点睛】此题考查分式方程的判定,掌握分式方程的定义是解题的关键.(2)在3253x +=;11(1)(1)432x x ++-=;21x -=;2371x x x ++=-;1(37)x x-中,分式方程有().A .1个B .2个C .3个D .4个【难度】★【答案】B【解析】根据分式方程的定义,分母中含有未知数的方程是分式方程,(1)(2)两个方程分 母中不含未知数,(5)不是方程,(3)(4)满足定义,故选B .【总结】考查分式方程的定义,注意前提是方程,且方程分母中必含有字母.例2.(1)用换元法解分式方程251x x +21x x+-+1=0,如果设21x x +=y ,那么原方程可以化为( )A .2+y y -5=0B .2y -5y+1=0C .25y y 10++=D .25y 10y +-=【答案】D【分析】直接把21xx +换成y ,整理即可.【详解】解:设21xy x =+,则原方程化为1510y y -+=,去分母得,25y 10y +-=,故选:D .【点睛】本题考查的是换元法解分式方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.(2).用换元法解方程221165380x x x x æöæö+++-=ç÷ç÷èøèø,设1y x x =+,则方程变为()A .265380y y +-=B .265400y y +-=C .265260y y +-=D .265500y y +-=【难度】★【答案】D【解析】1y x x =+,则有22221122x x y x x æö+=+-=-ç÷èø,原方程即为()2625380y y -+-=,展开整理即为265500y y +-=,故选D .【总结】考查分式方程中换元法的应用,注意含有未知数部分的恒等变形转化.例3.分式方程2227381x x x x x +=+--的最简公分母是____________.【难度】★【答案】3x x -.【解析】分式方程中三个分母位置上分别为2x x +,2x x -,21x -,分解因式的结果分别为()1x x +,()1x x -,()()11x x +-,由此可得方程的最简公分母为()()311x x x x x +-=-.【总结】考查分式方程的最简公分母,将每个分母因式分解,取相同因式的最高次数乘积即为分式方程的最简公分母.例4.直接写出下列分式方程的根:(1)11211x x x -=---:_________________;(2)11111x x x -=---:_________________;(3)2121x x -=-:_________________;(4)2111x x -=-:_________________.【难度】★【答案】(1)2x =;(2)无解;(3)无解;(4)0x =.【解析】(1)根据等式性质,两边同时加上分式部分,即得2x =, 检验得2x =是原分式方程的根;(2)根据等式性质,两边同时加上分式部分,即得1x =,检验得1x =为方程的增根, 即方程无解;(3)约分得12x +=,解得1x =,检验得1x =为方程的增根,即方程无解;(4)约分得11x +=,解得0x =,检验得0x =是原分式方程的根.【总结】考查根据等式的性质求解简单的分式方程,注意求解结果是否是增根.例5.解方程:(1)3363142x x -=-+;(2)43252x xx x =++;(3)23312222x x x x x ++=--+-.【难度】★★【答案】(1)123x =,29x =-;(2)10x =,267x =-;(3)无解.【解析】(1)方程两边同乘()()43123x x -+,得()()()()42312831x x x x +--+=-,整理得2325180x x +-=,解得123x =,29x =-,经检验,123x =,29x =-都是原方程的根;(2)方程两边同乘()()3252x x ++,得()()52432x x x x +=+,整理得2760x x +=,解得:10x =,267x =-,经检验,10x =,267x =-都是原方程的根;(3)方程两边同乘()()212x x +-,得()()()63221x x x ++-=+,整理得220x x --=,解得:11x =-,22x =,经检验,11x =-,22x =都是原方程的增根,即原方程无解.例6.解方程:(1)2213211x x x x -=+--; (2)24221422x x x x =++--+;(3)23211214124x x x x++=+--.【难度】★★【答案】(1)13x =-;(2)6x =;(3)54x =.【解析】(1)方程两边同乘21x -,得()221213x x x x +=-+-,整理得23210x x --=, 解得:113x =-,21x =,经检验,21x =是原方程的增根,即原方程的根为13x =-;(2)方程两边同乘24x -,得()()2442222x x x x =--++-,整理得24120x x --=,解得:16x =,22x =-,经检验,22x =-是原方程的增根,即原方程的根为6x =;(3)两边同乘()2241x -,得()()()2621421241x x x x -+-+=-,整理得281450x x -+=,解得:112x =,254x =,经检验,112x =是原方程的增根,即原方程的根为54x =.【总结】考查分式方程的解法,注意检验所求是否为增根.例7.已知关于x 的方程22312x m x x x +-=-+-有增根,求m 的值.【难度】★★【答案】12m =或3m =.【解析】分式方程两边同乘22x x +-,得()223x m +=-,分式方程有增根,由220x x +-=,解得:11x =,22x =-,即为原分式方程的增根,代入相应整式方程得39m -=或30m -=,解得12m =或3m =.【总结】考查分式方程的增根,代入相应的整式方程可使得方程成立且使得分式分母为0的未知数的值.例8.已知关于x 的方程7155x m xx x--=---无解,求m 的值.【难度】★★【答案】3m =.【解析】分式方程两边同乘5x -,得()75x x m x -=---,整理解得:2x m =+,因为原分式方程无解,则相应解应为分式方程的增根,即得25x m =+=,解得3m =.【总结】考查分式方程的无解,即由相应整式方程求得的解是分式方程的增根.例9.已知关于x 的方程301a xx +-=+的根是负数,求a 的取值范围.【难度】★★【答案】3a <且1a ≠.【解析】分式方程两边同乘1x +,得()310a x x +-+=,整理解得:32a x -=,方程的根是 负数,则有302a x -=<,得3a <,同时分式方程的根不能为相应增根,即312a x -=≠-, 得1a ≠,由此即得3a <且1a ≠.【总结】考查分式方程的解满足条件的求解,注意方程的解不能为相应的增根.例10.解方程:(1)2220383x x x x+-=+;(2)2191502x x x x æöæö+-++=ç÷ç÷èøèø.【难度】★★【答案】(1)15x =-,22x =,31x =-,42x =-;(2)11x =,22x =,312x =.【解析】(1)令23x x a +=,原方程即为208a a-=,两边同乘a 整理得28200a a --=,解得:110a =,22a =-;由2310x x +=,解得:15x =-,22x =;由232x x +=-,解得:11x =-,22x =-;经检验,15x =-,22x =,31x =-,42x =-都是原方程的根;(2)令1x a x +=,原方程即为29502a a -+=,解得12a =,252a =;由12x x+=,整理得2210x x -+=,解得:121x x ==;由152x x +=,整理得22520x x -+=,解得12x =,212x =;经检验,11x =,22x =,312x =都是原方程的根.【总结】考查用换元法求解具有特殊形式的分式方程,注意对方法的总结.例11.解方程:(1)225(16(1)1711x x x x +++=++);(2)2216104()933x x x x+=-.【难度】★★【答案】(1)1x =2x =(2)13x =,23x =,32x =-,46x =.【解析】(1)令211x a x +=+,原方程即为6517a a +=,两边同乘a 整理得251760a a -+=,解得:125a =,23a =;由21215x x +=+,整理得25230x x -+=,方程无解;由2131x x +=+,整理得2320x x --=,解得:1x 2x =经检验,1x =2x = (2)令43x a x -=,则有2222164889333x x a x x æö+=-+=+ç÷èø,原方程即为281033a a +=,整理得231080a a -+=,解得:12a =,243a =;由423x x-=,整理得26120x x --=,解得:13x =,23x =;由4433x x -=,整理得24120x x --=,解得:12x =-,26x =;经检验,13x =+23x =-,32x =-,46x =都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程.例12.解方程组:(1)413538x y x y x y x y ì+=ï+-ïíï-=ï+-î;(2)132013251x y x y ì+=ï-ïíï-=-ï-î.【难度】★★【答案】(1)01x y =ìí=î;(2)565x y =ìïí=ïî.【解析】(1)令1a x y =+,1b x y =-,原方程组即为43538a b a b +=ìí-=î,解得:11a b =ìí=-î,由此可得11x y =+,11x y =--,由此得11x y x y +=ìí-=-î,解得:01x y =ìí=î,经检验,01x y =ìí=î是原分式方程的根;(2)令11a y =-,原方程组即为320235x a x a +=ìí-=-î,解得:55x a =ìí=î,由此可得:151y =-, 解得:65y =, ∴565x y =ìïí=ïî, 经检验,565x y =ìïí=ïî是原分式方程的根.【总结】考查利用换元法求分式方程组的解,注意解完之后要检验.例13.解方程组:(1)253489156x x x x +=+++++;(2)11212736x x x x x x ++-=-++++.【难度】★★【答案】(1)16x =,2334x =-;(2)92x =-.【解析】(1)对分式方程移项通分得()()()()()()()()21538495681569x x x x x x x x +-++-+=++++,展开即得2266231201554x x x x x x -+-+=++++,由此即得60x -+=或22231201554x x x x ++=++,解得:16x =,2334x =-, 经检验,16x =,2334x =-都是原分式方程的根; (2)对分式方程变形得1111112736x x x x --=--++++,由此得11112736x x x x +=+++++,两边分别通分即得222929914918x x x x x x ++=++++, 两边分母不同,则必有290x +=,解得92x =-,经检验,92x =-是原分式方程的根.【总结】考查特殊形式分式方程的解法,注意相应分母的关系,分组两边分别通分计算.例14.解方程:226205x x +-=+.【难度】★★【答案】11x =,21x =-.【解析】令25x a +=,则有25x a =-,原方程即为6520a a+--=,两边同乘a 整理,得2760a a -+=,解得:11a =,26a =;由251x +=,方程无解; 由256x +=,解得:11x =,21x =-;经检验,11x =,21x =-都是原方程的根.【总结】考查用换元法解分式方程,注意取值范围和增根.例15.a 为何值时,关于x 的方程211a a x +=+无解?【难度】★★【答案】12a =-或0a =.【解析】分式方程两边同乘1x +,得:()211a a x +=+,展开移项得1ax a =+,当0a =时,方程无解; 当0a ≠时,1a x a +=,方程无解,即得11a x a+==-,解得12a =-;综上,12a =-或0a =.【总结】考查分式方程的无解,即由相应整式方程求得的解是分式方程的增根,注意考虑未知项系数为0的情况.例16.已知关于x 的方程222022x x x k x x x x-+++=--只有一个解,求k 的值及这个解.【难度】★★★【答案】72k =-时,1212x x ==或4k =-时,1x =或8k =-时,1x =-.【解析】方程两边同乘22x x -,得()22220x x x k +-++=,展开整理得:22240x x k -++=,分式方程可能产生增根,即当相应整式方程有两解时,分式方程仅有一解,由此需进行 分类讨论:①当整式方程有两相等实数根时,()()224240k ∆=--⨯+=,解得:72k =-,此时方程为212202x x -+=,解得:1212x x ==,此时分式方程只有一个解,符合题意;②当整式方程有一根为分式方程增根0x =时,此时有40k +=,解得:4k =-,此时方程为2220x x -=,解得:10x =,21x =,此时分式方程只有一个解1x =,符合题意;③当整式方程有一根为分式方程增根2x =时,此时有2222240k ⨯-⨯++=,解得:8k =-,此时方程为22240x x --=,解得:12x =,21x =-,此时分式方程只有一个解1x =-,符合题意; 综上,72k =-或4k =-或8k =-.【总结】考查分式方程只有一个解的情况,方程为二次方程时,注意包含方程有一个根为分式方程的增根的情形.例17.解关于x 的方程:22112(3()1x x x x+-+= 【难度】★★★【答案】12x =,212x =.【解析】令1x a x +=,则有22221122x x a x x æö+=+-=-ç÷èø,原方程即为()22231a a --=,展开整理得22350a a --=,解得:11a =-,252a =;由11x x+=-,整理得210x x ++=,方程无解;由152x x +=,整理得22520x x -+=,解得:12x =,212x =; 经检验,12x =,212x =都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程,注意解完之后进行检验.例18.解关于x 的方程()()450b x a xa b b x a x+-=-+≠+-.【难度】★★★【答案】12a b x -=,245a bx -=.【解析】令a x kb x -=+,原方程即为45k k=-,两边同乘k 整理,得2540k k -+=,解得:11k =,24k =; 由1a x b x -=+,又0a b +≠,可解得:2a bx -=;由4a x b x -=+,又0a b +≠,可解得:45a bx -=;经检验,12a b x -=,245a bx -=都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程.例19.已知方程22222(1)21()x ax a a x a +-++=+有实数根,求实数a 的取值范围.【难度】★★★【答案】1122a -≤≤且0a ≠.【解析】展开得()()22222222121x ax a ax a a x a +--+++=+,根据等式性质移项得()()222220x ax a ax x a +-+=+,即为()20x a x a x a ⎡⎤+-=⎢⎥+⎣⎦,由此得()0xa x a x a+-=+, 移项得()2a x a x +=,展开整理得()223210ax a x a +-+=,当0a =时,方程有实数根0x =是分式方程的增根,应舍去;当0a ≠时,方程为一元二次方程,此时根据韦达定理可得2122112a x x a a a-+=-=-,可知1x 、2x 不可能同时为a -,分式方程有实数根,则相应的整式方程应满足()2232214410a a a a ∆=--⋅=-+≥,得1122a -≤≤;综上,实数a 的取值范围为:1122a -≤≤且0a ≠.【总结】考查分式方程有实数根的情形,对分式方程整理变形满足相应的条件即可.模块二分式方程应用题知识精讲1、列方程(组)解应用题时,如何找“相等关系”(1)利用题目中的关键语句寻找相等关系;(2)利用公式、定理寻找相等关系;(3)从生活、生产实际经验中寻找相等关系.例题解析例1.要在规定日期内完成一项工程,如甲队单独做,刚好按期完成;如乙队单独做,则要超过规定时间3天才能完成;甲、乙两队合作2天,剩下的工程由乙队单独做,则刚好按期完成.那么求规定日期为x天的方程是().A.2213xx x-+=+B.233x x=+C.2213xx x++=+D.213xx x+=+【难度】★【答案】D【解析】设工作总量为“1”,则甲工作量+乙工作量=1,根据工作总量=工作效率×工作天数,乙工作天数为x天,由此可知选D.【总结】考查工程问题中的单位“1”,注意分清对应的工作效率和工作时间.例2.某车间加工300个零件,在加工80个以后,改进了操作方法,每天能多加工15个,一共用6天完成了任务.如果设改进操作后每天加工x个零件,那么下列根据题意列出的方程中,错误的是()A.8030080615x x-+=-B.30080615x-=-C.80(6)8030015xx-+=-D.8015300806xx-=--【难度】★【答案】B 【解析】略【总结】考查根据题意列方程的应用,根据工作量和工作效率、工作时间之间的相互关系进行列方程的应用.例3.甲、乙两个工程队合做一项工程,6天可以完成.如果单独工作,甲队比乙队少用5天完成.两队单独工作各需多少天完成?【难度】★★【答案】甲单独需10天完成,乙单独需15天完成.【解析】设甲单独需用x天完成,则乙单独需用()5x+天完成,依题意可得11615x xæö+=ç÷+èø,整理得27300x x--=,解得:13x=-,210x=,经检验,13x=-,210x=都是原方程的根,但13x=-不合题意应舍去,即得10x=,即甲单独需10天完成,乙单独需10515+=天完成.【总结】考查工程问题中的列方程解应用题,把工作总量当作单位“1”解题.例4.登山比赛时,小明上山时的速度为a米/分,下山的速度是b米/分,已知上山和下山的路径是一样的,求小明在全程中的平均速度?【难度】★★【答案】2aba b+.【解析】设小明上山的路程为sm,则整个过程中小明总行程为2sm,根据平均速度=总行程÷总时间,即得平均速度22s abvs s a ba b==++.【总结】考查平均速度的求取,平均速度==总行程÷总时间,与行程远近无关,注意平均速度的求法.例5.甲、乙两人分别从相距9千米的A、B两地同时出发,相向而行,1小时后相遇.相遇后,各自继续以原有的速度前进,已知甲到B地比乙到A地早27分钟,求两人的速度各是多少?【难度】★★★【答案】甲速度为5/km h,乙速度为4/km h.【解析】设甲速度为/xkm h,则乙速度为()9/x km h-,927min20h=,依题意可得999920x x-=-,整理得2311800x x+-=,解得:136x=-,25x=,经检验,136x=-,25x=都是原方程的根,但136x=-不合题意应舍去,即得5x=,即甲速度为5/km h,乙速度为954/km h-=.【总结】考查行程问题中的列方程解应用题,根据相遇问题的基本关系一个条件作设一个条件列式进行求解.例6.甲、乙两辆车同时从A地出发开往距A地240千米的B地,结果甲车比乙车早到了60分钟;第二次,乙车提速30千米/时,结果比甲车早到了20分钟,求第一次甲、乙两车的速度各是多少?【难度】★★★【答案】甲速度为80/km h,乙速度为60/km h.【解析】设甲车xh到达B地,60min1h=,120min3h=,依题意可得24024030113xx-=+-,整理得232330x x+-=,解得1113x=-,23x=,经检验,111 3x=-,23x=都是原方程的根,但111 3x=-不合题意应舍去,即得3x=,可得甲速度为24080/3km h=,乙速度为24060/31km h=+.【总结】考查行程问题中的列方程解应用题,根据行程问题的基本等量关系一个条件作设一个条件列式进行求解,注意本题中用时间作设速度列式解题更方便.例7.某服装厂接到一宗生产13万套衣服的业务,在生产了4万套后,接到了买方急需货物的通知,为满足买方的要求,该厂改进了操作方法,每月能多生产1万套,一共5个月完成了这宗业务.求改进操作方案后每月能生产多少万套衣服?【难度】★★★【答案】3万套.【解析】设改进操作方案后每月能生产x 万套衣服,则改进之前每月生产()1x -万套,依题意可得413451x x -+=-,整理得251890x x -+=,解得:135x =,23x =,经检验,135x =,23x =都是原方程的根,但135x =不合题意应舍去,即得:3x =,即改进操作方案后每月能生产3万套衣服.【总结】考查工作总量问题,一个条件作设一个条件列式进行求解.随堂检测1.已知方程:(1)2412x x -=-;(2)221x x =-;(3)11x x x æö-=ç÷èø;(43x -=,其中是分式方程的有_____________.【难度】★【答案】(1)、(2)、(3).【解析】根据分式方程的定义,分母中含有未知数的方程是分式方程,(1)、(2)、(3)满足 条件,(4)方程中不含有分式,故答案为(1)、(2)、(3).【总结】考查分式方程的定义,注意前提是方程,且方程分母中必含有字母.2.当x 取何值时,分式方程1112x x x +=--的最简公分母的值等于0?【难度】★【答案】1x =或2x =.【解析】分式方程的最简公分母为()()12x x --,最简公分母值为0,即()()120x x --=,解得:1x =或2x =.【总结】考查分式方程的最简公分母,将每个分母因式分解,取相同因式的最高次数乘积即为分式方程的最简公分母.3.分式方程22228(2)331112x x x x x x +-+=-+,如果设2221x xy x +=-,那么原方程可以化为关于y 的整式方程为 .【难度】★【答案】281130y y -+=.【解析】2221x x y x +=-,则有22112x x x y-=+,原方程即为3811y y +=,整理化作关于y 的整式方 程即为281130y y -+=.【总结】考查利用换元法对复杂形式的分式方程进行转化,注意最终要化成整式方程的形式.4.解方程:(1)26531111x x x x =++--+;(2)22161242x x x x +-=--+; (3)243455121760x x x x x x --+=---+.【难度】★★【答案】(1)9x =;(2)5x =-;(3)12x =,29x =.【解析】(1)方程两边同乘21x -,得()()2615131x x x x =--++-,整理得2890x x --=,解得:11x =-,29x =,经检验,11x =-是原方程的增根,即原方程的根为9x =;(2)方程两边同乘24x -,得()22162x x +-=-,整理得23100x x +-=,解得:12x =,25x =-,经检验,12x =是原方程的增根,即原方程的根为5x =-;(3)两边同乘21760x x -+,得()()()4123545x x x x ----=-,整理得211180x x -+=,解得“”12x =,29x =,经检验,12x =,29x =都是原方程的根.【总结】考查分式方程的解法,注意检验所求是否为增根.5.解方程:221313x x x x ++=+.【难度】★★【答案】11x =,21x =+.【解析】令1x a x =+,原方程即为2133a a +=,整理即为231060a a -+=,解得:1a =2a =由1x x =+,解得:1x =;由1x x =+,解得:1x =+经检验11x =,21x =【总结】考查利用换元法解分式方程.6.解方程组311332412463324x y x y x y y x ì+=ï+-ïíï-=ï+-î【难度】★★【答案】1011711x y ì=ïïíï=ïî.【解析】令132a x y =+,14b x y =-,原方程组即为13312463a b a b ì+=ïíï+=î,解得:1413a b ì=ïïíï=ïî,由此可得113241143x y x y ì=ï+ïíï=ï-î, 去分母得32443x y x y +=ìí-=î,解得:1011711x y ì=ïïíï=ïî,经检验,1011711x y ì=ïïíï=ïî是原分式方程的根.【总结】考查用换元法解有特殊形式的分式方程组,注意验根.7.若分式方程22111x m x x x x x++-=++产生增根,求m 的值.【难度】★★【答案】2m =-或1m =.【解析】方程两边同乘2x x +,得()()22211x m x -+=+,展开整理得2220x x m ---=,分式方程产生增根,即当相应整式方程有两解时,分式方程仅有一解,由此需进行分类 讨论:①整式方程有一根为分式方程增根0x =时,此时有20m --=,解得:2m =-;②整式方程有一根为分式方程增根1x =-时,此时有()()212120m --⨯---=,解得:1m =;综上,2m =-或1m =.【总结】考查分式方程有增根的情况,即对应的整式方程有一个根为分式方程的增根.8.甲、乙两地间铁路长400千米,现将火车的行驶速度每小时比原来提高了45千米,因此,火车由甲地到乙地的行驶时间缩短了2小时.求火车原来的速度.【难度】★★【答案】75/km h .【解析】设火车原来的速度为/xkm h ,依题意可得400400245x x -=+,整理得24590000x x +-=,解得:1120x =-,275x =,经检验,1120x =-,275x =都是原方程的根,但1120x =-不合题意应舍去,即得75x =,即可得火车原来速度为75/km h .【总结】考查行程问题中的列方程解应用题,根据行程问题的基本等量关系一个条件作设一个条件列式进行求解.9.某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加20%,而且要提前1年完成任务.经测算,要完成新的计划,平均每年的绿化面积必须比原计划多20万亩,求原计划平均每年的绿化面积.【难度】★★★【答案】原计划平均每年绿化面积40万亩.【解析】设原计划平均每年的绿化面积为x 万亩,则新计划每年()20x +万亩,依题意可得()200120%200120x x ⨯+-=+,整理得26040000x x +-=,解得:1100x =-,240x =,经检验,1100x =-,240x =都是原方程的根,但1100x =-不合题意应舍去,即得40x =,即原计划平均每年的绿化面积为40万亩.【总结】考查工作量的问题,根据相应的等量关系式列方程求解.10.解方程:221114(4)12()12433x x x -=-++.【难度】★★★【答案】11x =+,21x =,33x =+,43x =【解析】方程两边同乘12展开得22364881616x x x x-+=--+,根据等式的性质移项变形得2668120x x x x æöæö---+=ç÷ç÷èøèø,因式分解得:66260x x x x æöæö----=ç÷ç÷èøèø,由此可得620x x --=或660x x --=;由620x x--=,整理得2260x x --=,解得:11x =+21x =-;由660x x --=,整理得2660x x --=,解得:13x =+23x =经检验,11x =21x =-33x =43x =-都是原方程的根.【总结】考查用整体思想先对分式方程变形,然后求解分式方程的根,注意对方法的总结.11.解方程:596841922119968x x x x x x x x ----+=+----.【难度】★★★【答案】12314x =.【解析】对分式方程变形得1155514219968x x x x -++=++-----,根据等式的性质可变形得115519986x x x x -=-----,两边分别通分即得221010281711448x x x x =-+-+,由此可得22281711448x x x x -+=-+, 解得:12314x =,经检验,12314x =是原分式方程的根.【总结】考查特殊形式分式方程的解法,注意相应分母的关系,分组两边分别通分计算.12.已知关于x 的方程21221232a a x x x x ++=---+有增根,求a .【难度】★★★【答案】32a =-或2a =-.【解析】方程两边同乘232x x -+,得()2122x a x a -+-=+,展开整理得()134a x a +=+,当10a +≠,即1a ≠-时,得341a x a +=+,分式方程可能产生增根,由此进行分类讨论:①整式方程根为分式方程增根1x =时,此时有3411a a +=+,解得32a =-;②整式方程有一根为分式方程增根2x =时,此时有3421a a +=+,解得2a =-;综上,32a =-或2a =-.【总结】考查分式方程有增根的情况,即对应的整式方程根为分式方程的增根.13.已知:关于x 的方程227()72120a a x x a x x+--++=只有一个实数根,求a .【难度】★★★【答案】94a =或4a =.【解析】整理原方程得27120a a x x x x æöæö+-++=ç÷ç÷èøèø,因式分解得340a a x x x x æöæö+-+-=ç÷ç÷èøèø,由此可得30a x x +-=或40a x x +-=,分别整理得:230x x a -+=和240x x a -+=,两方程根的判别式分别为194a ∆=-,2164a ∆=-.因为方程仅有一实数根,所以940a -=或1640a -=,解得:94a =或4a =.【总结】考查分式方程的根与对应整式方程的根相结合的问题,根据实际题目进行问题的分析转化,解决问题.。

分式方程的解法与应用

分式方程的解法与应用

分式方程的解法与应用在数学中,分式方程是含有分数的方程,通常形式为一个或多个包含有未知数的分式等于一个已知数或者另一个分式。

解分式方程的过程需要注意一些特殊的技巧和方法。

本文将介绍解分式方程的常用方法,并探讨分式方程在现实生活中的应用。

一、一次分式方程的解法对于一次分式方程,即含有一个未知数的分式方程,我们可以通过以下步骤来求解:1. 将分式方程的分母清零,即使分子等于0。

这样可以排除分母为0的情况。

2. 化简方程。

将方程两端的分式进行通分,并将分式约简到最简形式。

3. 消去分母。

将方程两端的分母消去,得到一个一次方程。

4. 求解一次方程。

将消去分母后的方程进行移项和合并同类项的运算,得到未知数的解。

二、二次分式方程的解法对于二次分式方程,即含有未知数的平方的分式方程,我们可以通过以下步骤来求解:1. 将方程的分母清零,使分子等于0。

2. 化简方程,将方程两端的分式通分,并将分式约简到最简形式。

3. 进行配方法。

对于二次分式方程,我们可以通过配方法将方程转化为一次分式方程。

4. 解一次分式方程。

按照一次分式方程的解法,求解配方法后得到的一次分式方程。

5. 核对解的有效性。

将求得的解代入原分式方程,并检查是否成立。

三、分式方程的应用分式方程在现实生活中有着广泛的应用,下面举几个例子:1. 比例问题:分式方程可以用于解决比例问题,比如某个产品的销售量与价格之间的关系。

2. 浓度计算:在化学领域,分式方程可用于计算溶液的浓度,如溶液A中含有5%的某种物质,溶液B中含有10%的同种物质,问如何将溶液A和溶液B混合得到含有8%的溶液。

3. 财务分析:在财务领域,分式方程可用于计算财务指标,如利润率、毛利率等。

4. 随机问题:分式方程可以用于解决随机问题,如抛硬币的概率问题、抽奖问题等。

通过上述例子,我们可以看到分式方程在实际生活中的应用十分广泛。

综上所述,解分式方程的方法根据方程的次数和具体形式有所区别,但总体思路是将方程转化为一次方程进行求解。

分式方程的解法及应用(基础)

分式方程的解法及应用(基础)

分式方程的解法及应用(基础)【要点梳理】要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.要点四、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.【典型例题】类型一、判别分式方程例1 下列方程中,是分式方程的是( ). A .3214312x x +--= B .124111x x x x x -+-=+-- C .21305x x += D .x a x a b +=,(a ,b 为非零常数)类型二、解分式方程例2 解分式方程:(1)10522112x x +=--; (2)225103x x x x -=+-.变式 解方程:21233x x x-=---;类型三、分式方程的增根例3 m 为何值时,关于x 的方程223242mx x x x +=--+会产生增根?变式 如果方程11322x x x-+=--有增根,那么增根是________.类型四、分式方程的应用例4 甲、乙两班参加绿化校园植树活动,已知乙班每小时比甲班多种2棵树,甲班种60 棵树所用的时间与乙班种66棵树所用的时间相等.求甲、乙两班每小时各种多少棵树?变式两个工程队共同参与一个建筑工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?。

四分式方程

四分式方程

四、 可化为一元二次方程的方程——分式方程1、分式方程定义: 中含有未知数的方程叫分式方程。

2、分式方程的解法:解分式方程时一般把 转化为 再解 ,在方程变形时有可能产生不适合 原方程的根,这种根叫做原方程的 ,(使方程的分母为 的解称为原方程的增根。

)因此,解分式方程必须例1、解方程:x 32-x 1=例2、22121--=--x x x例3、(2008数理报)分式方程0111=+--+-x xx kx x有增根x =1,求k 的值。

3、分式方程的应用例4、(2008数理报)某公路上一路段的道路维修工程准备对外招标,现有甲、乙两个工程队竞标,竞标资料显示:若由两对合作6天可以完成,共需工程费10200元,若甲单独完成此工程甲对比乙队少用5天,但几甲队每天的工程费用比乙队多300元,工程指挥部决定从这两个队中选一个队单独完成此项工程,若从节省资金角度考虑应该选择哪一个队?为什么?练习题:1、(2007重庆市)分式方程1321=-x 的解为( )(A )2=x (B )1=x (C )1-=x (D )2-=x2、(2007年甘肃省白银)将方程132142+-=+-x x x 去分母并化简后,得到的方程是( ) A .0322=--x x B .0522=--x x C .032=-x D .052=-x3、(2007山东省潍坊市)解分式方程81877x x x --=--,可知方程( ) A .解为7x =B .解为8x =C .解为15x =D .无解 4、若分式方程7667=----xxx x 有增根,则增根是: 5、(2007泸州市)方程11262213x x =+--的解x= 。

6、(2007江西省南昌市)方程212x x =-的解是 . 7、(2007年天津市)方程)1(56)1(2-=+-x x x x 的整数..解是 。

8、(2007岳阳市).分式方程3x+4-1=0的解是____________ 9、(2007资阳市)方程21044xx x --=--的解是____________ .10、(2007湖北省荆门市)若方程322x mx x -=--无解,则m =______.11、(2007年山东省青岛市)某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 ()240024008120%x x -=+12、(2007年上海市)解方程:22321011x xx x x --+=-- 13、(2007年河南省实验区)解方程:32322x x x +=+- 14、(2007山东省滨州市)解方程:22111x x x -=--. 15、(2007年浙江省)解方程21124x x x -=--. 16、(2006陕西省)解分式方程:22322=--+x x x 17、(2007年连云港市)解方程:11322x x x -=---. 18、解分式方程:1223x x =+.19、(2007年广东省中山市)某文具厂加工一种学生画图工具2500套,在加工了1000套后,采用了新技术,使每天的工作效率是原来的1.5倍,结果提前5天完成任务,求该文具厂原来每天加工多少套这种学生画图工具。

分式方程的运算

分式方程的运算

分式方程的运算分式方程是含有分式的方程,它通常涉及到分式的运算,是数学中的一个重要概念。

本文将介绍分式方程的定义、性质、解法以及常见应用等内容。

一、分式方程的定义分式方程是指方程中含有一个或多个分式的方程。

它的一般形式可以表示为:f(x) = g(x)其中,f(x)和g(x)是以x为变量的分式函数。

例如,下面是一些常见的分式方程的例子:1. x + 2/x = 32. (x + 1)/x + (x + 3)/(x + 2) = 43. 1/(x - 1) + 2/(x - 2) + 3/(x - 3) = 4二、分式方程的性质1.变量的定义域对于分式方程中的变量,需要找出它的定义域,即使方程成立。

例如,在第一个例子中,由于分母不能为0,所以x不能等于0。

2.通解和特解解分式方程可以得到通解,通解是指包括所有满足方程的解的一个集合。

特解是满足方程的具体解。

通过求解,可以得到方程的通解,然后再根据实际情况求得特解。

3.分式方程的等价性分式方程和分式的等价性也是分式方程的一个重要性质。

如果两个分式在除去分母后相等,那么它们就是等价的。

利用这个性质,可以对分式方程进行变形和简化,方便求解。

三、分式方程的解法解分式方程的一般步骤如下:1.整理方程将方程中的各项整理到等式的一侧,形成一个整式等于一个分式的形式。

2.求公倍数对于分式方程中的分母,需要求取它们的最小公倍数。

这是因为只有最小公倍数的整数倍采用相同的分母,才能进行分式的相加或相减。

3.消去分母通过乘以适当的公倍数,将分母消去。

4.化简方程将方程进行化简,使得方程的形式更简单明了。

5.求解方程对于消去分母后得到的等式,利用方程的性质进行求解。

6.检查解将求解得到的解代入原方程,检查是否满足方程。

四、分式方程的应用分式方程在实际问题中具有广泛的应用。

其中一个重要的应用是在物理学中,特别是在电路分析中。

例如,使用分式方程可以求解电路中的电流、电压等问题。

分式方程的解法与应用

分式方程的解法与应用

分式方程的解法与应用分式方程是数学中的一种常见形式,它包含有分数的方程。

解决分式方程的过程需要运用一些特定的方法和技巧,同时,分式方程在实际生活中也有着广泛的应用。

本文将介绍分式方程的解法以及其在实际问题中的应用。

一、分式方程的解法解决分式方程的关键是将其转化为简单的等式,然后求解。

下面将介绍几种常用的分式方程解法。

1. 通分法当分式方程中含有多个分母时,可以使用通分法来简化方程。

首先找到方程中所有分母的最小公倍数,然后将方程两边同时乘以最小公倍数,将分母消去,得到一个简化的等式。

最后,通过移项和化简,求得方程的解。

2. 倒数法倒数法是解决分式方程中含有倒数的情况。

首先将方程中的倒数部分转化为分数形式,然后通过移项和化简,求得方程的解。

3. 分解法对于一些特殊的分式方程,可以使用分解法来解决。

例如,对于形如$\frac{1}{x}+\frac{1}{y}=1$的方程,可以将其分解为$\frac{x+y}{xy}=1$,然后通过移项和化简,求得方程的解。

二、分式方程的应用分式方程在实际生活中有着广泛的应用。

下面将介绍几个典型的应用案例。

1. 比例问题比例问题是分式方程的一种常见应用。

例如,某商品原价为$x$元,现在打折后的价格为原价的$\frac{2}{3}$,求打折后的价格。

通过建立方程$\frac{2}{3}x=x-\frac{1}{3}x$,可以求得打折后的价格为$\frac{1}{3}x$。

2. 浓度问题浓度问题也是分式方程的一种常见应用。

例如,某种饮料中含有$30\%$的果汁,现在要制作$1$升含有$20\%$果汁的饮料,需要加入多少升的纯果汁?通过建立方程$\frac{x}{1+x}=0.2$,可以求得需要加入的纯果汁的升数。

3. 财务问题财务问题中也常常涉及到分式方程的应用。

例如,某人的年收入为$x$元,他的生活开销占年收入的$\frac{1}{4}$,求他的生活开销。

通过建立方程$\frac{1}{4}x=x-\frac{3}{4}x$,可以求得他的生活开销为$\frac{3}{4}x$。

分式方程的解法及应用

分式方程的解法及应用

分式方程的解法及应用分式方程是数学中常见的一类方程,其特点是方程中含有分式表达式。

解决分式方程的关键是找到合适的方法,以求得方程的解。

本文将介绍几种常见的分式方程解法,并探讨其在实际应用中的一些案例。

一、通分法通分法是解决分式方程的基本方法之一。

当方程中含有多个分式时,我们可以通过通分的方式,将其转化为一个分子为0的分式方程。

例如,对于方程$\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$,我们可以通过通分得到$yz+xz=xy$,进而得到$xy-xz-yz=0$。

这样,我们就将原方程转化为了一个分子为0的分式方程,可以更方便地求解。

二、代换法代换法是解决分式方程的另一种常用方法。

通过合理的代换,可以将方程转化为一个更简单的形式。

例如,对于方程$\frac{1}{x}+\frac{1}{y}=2$,我们可以令$u=\frac{1}{x}$,$v=\frac{1}{y}$,则原方程可以转化为$u+v=2$。

这样,我们就将原方程转化为了一个线性方程,可以通过求解线性方程的方法得到解。

三、消元法消元法是解决分式方程的另一种常见方法。

通过巧妙地选择消元的方式,可以将方程转化为一个更简单的形式。

例如,对于方程$\frac{x}{y}+\frac{y}{x}=3$,我们可以通过乘以$x$和$y$的方式,得到$x^2+y^2=3xy$。

这样,我们就将原方程转化为了一个二次方程,可以通过求解二次方程的方法得到解。

在实际应用中,分式方程的解法有着广泛的应用。

以下是几个具体的案例:案例一:物体的速度假设一个物体以速度$v$匀速运动,经过时间$t$后的位移为$s$。

根据运动学公式,位移与速度和时间的关系可以表示为$s=vt$。

现在假设物体的速度是变化的,速度与时间的关系可以表示为$v=\frac{a}{t}$,其中$a$是一个常数。

我们可以通过求解分式方程$\frac{s}{t}=\frac{a}{t}$,得到物体的位移与时间的关系。

分式方程的解法与技巧知识精讲

分式方程的解法与技巧知识精讲

分式方程的解法与技巧知识精讲
一、分式方程定义
分式方程就是把一个式子分解为两部分,分别是分母和分子,然后在
分母和分子上共享一些变量,最后用特定的方法求解出来。

二、求解方法
1、归约法
首先将分式方程中的分子和分母都归约成最简形式,以减少其中的因子。

随后,将归约好的分式方程化简为最简形式,再从最简形式中提取出解。

2、对式子求倒数法
当分式方程的分子和分母都是一元二次方程的时候,就可以将分子和
分母分别求其倒数,然后将其相乘,即可得出原分式方程的解。

3、先分析分式方程构成的结构
在分析分式方程之前,首先要分析分式方程构成的结构,将其分为分母、分子和共同项三部分,通过分析其构成结构,以有效地求解分式方程。

4、使用代数法
代数法是指将分式方程的分子和分母分别乘以同一个数,使得分子和
分母均变为有理数,然后求解原分式方程。

三、技巧
1、把共同项提出来
在解决分式方程的过程中,可以将原来的分式方程中的共同项提出来,以便于更好地求解。

2、多次化简
在处理分式方程的过程中,会有很多步骤,而每一步都有可能出现一
些错误,所以可以多次化简,以确保求解结果的正确性。

3、分析分母和分子
在解决分式方程的过程中。

分式方程的解法与应用实例讨论

分式方程的解法与应用实例讨论

分式方程的解法与应用实例讨论一、分式方程的定义与性质1.1 分式方程的概念:分式方程是含有未知数的分式等式。

1.2 分式方程的性质:分式方程的解与方程的系数、常数项有密切关系。

二、分式方程的解法2.1 去分母法:将分式方程中的分母消去,使方程变为整式方程。

2.2 代入法:将分式方程中的未知数表示为其他变量的函数,然后代入整式方程求解。

2.3 加减法:通过对分式方程进行加减运算,消去分式中的分母。

2.4 乘除法:通过对分式方程进行乘除运算,将分式方程转化为整式方程。

三、分式方程的解法实例3.1 去分母法实例:解方程x−12=3−x4。

3.2 代入法实例:解方程x+23=5x−1。

3.3 加减法实例:解方程x3−2x=1。

3.4 乘除法实例:解方程2x−13⋅x+14=12。

四、分式方程的应用实例4.1 实际问题:某商品的原价是100元,打八折后的价格是多少?4.2 实际问题:甲、乙两地相距300公里,甲地到乙地的客车每小时行驶60公里,客车行驶2小时后离甲地还有多少公里?4.3 实际问题:一个长方形的长比宽多5cm,且长方形的面积是30cm²,求长方形的宽是多少cm?五、分式方程的拓展与提高5.1 含有多个未知数的分式方程:解方程组x+y3=2和x−y4=1。

5.2 不等式与分式方程的综合:解不等式组x−12>1和3−x4≤0。

5.3 函数与分式方程的综合:已知函数f(x)=x+2x−1,求函数的值域。

六、分式方程的综合训练6.1 给出一个分式方程,要求解方程并检验解的正确性。

6.2 给出一个实际问题,要求用分式方程表示问题,并求解方程。

6.3 结合函数、不等式等知识,解决一个涉及分式方程的综合问题。

以上是关于分式方程的解法与应用实例讨论的知识点总结。

希望对您的学习有所帮助。

习题及方法:一、去分母法习题1.1 解方程x+12=3−x4。

答案:将方程两边同乘以4,得到2(x+1)=3−x,然后解得x=13。

第6讲 分式方程及其应用

第6讲 分式方程及其应用

经检验,x=40 是分式方程的根.
∴B 采样点送检车的平均速度为 40×1.5=60(km/h),
∴B 采样点送检车的行驶时间为 45÷60=0.75(h).
∵3.2+0.75=3.95<4,∴B 采样点采集的样本不会失效.
1.(2021 恩施)分式方程
A.x=1

C.x=


+1=
-

的解是( D )



A.x=
B.x=
C.x=
D.x=






[变式 2](2021 连云港)解方程:
+
(x+1)2-4=(x+1)(x-1),
整理,得2x-2=0,解得x=1.
检验:当x=1时,(x+1)(x-1)=0,
∴原方程无解.

=1.
- -
解:方程两边同乘(x+1)(x-1),得
∴x=1是增根,应舍去.
-
8.(2021 潍坊)若 x<2,且

0
+|x-2|+x-1=0,则 x=
-
.
1 .
9.(2021 东营)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展
荒山绿化,打造美好家园,促进旅游发展.某工程队承接了 90 万平方米的荒山绿化任务,为了迎接雨
季的到来,实际工作时每天的工作效率比原计划提高了 25%,结果提前 30 天完成了任务.设原计划每
1.(2022 方城期中)给出下列方程:
-

+


+

分式方程的认识与解法

分式方程的认识与解法

分式方程的认识与解法一、分式方程的定义分式方程是指在方程中含有未知数的分式表达式的方程。

其一般形式可以表示为:分子和分母都含有未知数的代数式的方程。

二、分式方程的解法1. 清除分母当分式方程中存在分母时,我们首先要通过求通分的方式将分母消去,以便更方便地求解方程。

举例说明:解方程:$\frac{1}{x}+\frac{2}{x-1}=1$首先,我们可以将方程两边的分式的分母进行通分,得到:$\frac{x-1}{x(x-1)}+\frac{2x}{x(x-1)}=\frac{x(x-1)}{x(x-1)}$化简后得到:$x-1+2x=x(x-1)$接着,按照一般方程的求解方法,将方程化简为一般的多项式方程:$3x-1=x^2-x$整理后得到:$x^2-4x+1=0$然后,我们可以使用因式分解、配方法、求根公式等方法求解多项式方程,得到方程的解:$x_1=2+\sqrt{3}$$x_2=2-\sqrt{3}$2. 分式方程的整理和化简有时,分式方程可能非常复杂,我们需要对方程进行整理和化简,以便更方便地进行后续的求解。

举例说明:解方程:$\frac{x^2+1}{x-2}-1=\frac{3x+4}{x-2}$首先,我们可以对方程进行整理和化简,得到:$\frac{x^2+1-x+2}{x-2}=\frac{3x+4}{x-2}$化简后得到:$\frac{x^2-x+3}{x-2}=\frac{3x+4}{x-2}$接着,我们可以将方程两边的分式进行合并,得到:$x^2-x+3=3x+4$化简后得到:$x^2-4x+1=0$然后,我们可以使用因式分解、配方法、求根公式等方法求解多项式方程,得到方程的解:$x_1=2+\sqrt{3}$$x_2=2-\sqrt{3}$3. 分式方程的检验在求得分式方程的解后,我们还需要将解代入方程进行验证,以确认解的可行性。

举例说明:解方程:$\frac{x-2}{2x+3}=\frac{x+1}{3x-1}$假设解为$x=1$,我们将解代入方程中进行检验:$\frac{1-2}{2(1)+3}=\frac{1+1}{3(1)-1}$计算结果为:$\frac{-1}{5}=\frac{2}{2}$显然,左右两边不相等,所以$x=1$不是方程的解。

分式方程的解法与应用

分式方程的解法与应用

分式方程的解法与应用分式方程是指方程中含有分式的方程,通常形式为分子中含有未知数的方程。

解决分式方程问题的关键是找到其中的未知数的值,使等式成立。

本文将介绍常见的分式方程解法以及其在实际问题中的应用。

一、基本解法1. 消去分母将分数方程中的分母通过乘以最小公倍数或通分的方法消去,从而得到一个等式。

然后继续将未知数移到方程的一边,常数移到另一边,最终求得未知数的值。

2. 通分并整理将分式方程的分子进行通分,并整理为一个等式。

然后通过移项和整理,将未知数移到一边,常数移到另一边,继而求解未知数的值。

3. 求最小公倍数对于一些特殊的分式方程,我们可以先求出方程中分母的最小公倍数,然后将方程中的所有分式统一化。

接着,将分母消去,得到一个整式方程,进而解决。

二、分式方程的应用1. 比例问题分式方程经常用于解决比例相关的问题。

比如,A车和B车以不同的速度驶向一个目的地,已知A车比B车快1小时到达目的地,而A 车比B车慢1小时赶上B车。

求A车和B车单独行驶到达目的地所需的时间。

通过建立分式方程可得到两车的速度比,从而解决问题。

2. 涉及水池、容器等物理问题假设有一个水池,一根管子可以独立进行排水,另一根管子可以独立进行注水。

已知两根管子独立工作时分别需要6小时和8小时将水池排干或注满。

求填满一半的水池所需的时间。

通过建立分式方程可得到两根管子的工作效率,进而解决问题。

3. 财务问题分式方程在解决财务问题时也具有重要应用。

例如,某人通过两种不同的投资方式投资了一笔钱,两种方式的年利率分别为4%和6%。

已知一年后获得的总收益为800元。

求该人分别投资了多少钱。

通过建立分式方程可得到两种投资的金额比例,从而解决问题。

4. 混合液体问题当涉及到两种不同浓度的液体混合时,我们可以利用分式方程解决问题。

例如,混合含有30%盐的溶液和50%盐的溶液,已知混合后的溶液含有40%盐。

求两种溶液的混合比例。

通过建立分式方程可得到两种溶液的体积比例,进而解决问题。

分式方程及其应用

分式方程及其应用

分式方程及其应用一、分式方程的基本解法:1.分式方程的概念:分母中含有未知数的方程叫作分式方程.2.可化为一元一次方程的分式方程的解法:(1)解分式方程的基本思想是:把分式方程转化为整式方程.(2)解可化为一元一次方程的分式方程的一般方法和步骤:①去分母,即在方程的两边同时乘以最简公分母,把原方程化为整式方程;②解这个整式方程;③验根:把整式方程的根代入最简公分母中,使最简公分母不等于零的值是原方程的根;使最简公分母等于零的值是原方程的增根.注意:(1)增根能使最简公分母等于0;(2)增根是去分母后所得整式方程的根.3.解分式方程产生增根的原因:增根的产生是在解分式方程的第一步“去分母”时造成的,根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得的方程是原方程的同解方程,如果方程的两边都乘以的数是0 ,那么所得的方程与原方程不是同解方程,这时求得的根就是原方程的增根.【例1】解下列分式方程:(1)131x x+=-(2)31244xx x-+=--(3)21122xx x=---(4)11222xx x-=---(5)212xx x+=+(6)2216124xx x--=+-【例2】(1)若关于x 的方程1233mx x=+--有增根,则m =________.(2)解关于x 的方程2224222x a a x x+-=--会产生增根,则a 的值是________.(3)若关于x 的分式方程11044a xx x---=--无解,则a 的值为________.(4)若关于x 的分式方程2111m x x+=--的解为整数,则m 的取值范围是________.(5)若关于x 的分式方程311x a x x--=-无解,则a =________.二、巧解分式方程: 【例3】(1)111141086x x x x +=+---- (2)2263503x x x x-++=-(3)()()()()()1111111220212022x x x x x x x +++=------…(4)方程222313x x x x-+=-中,如设23y x x =-,原方程可化为整式方程:________.【拓1】观察下列方程及其解的特征:①12x x+=的解为121x x ==; ②152x x +=的解为12x =,212x =;③1103x x +=的解为13x =,213x =;…… 解答下列问题: ①请猜想:方程1265x x +=的解为________; ②请猜想:关于x 的方程1x x +=________的解为1x a =,21x a=(0a ≠); ③上题中的结论可以证明是正确的,请用该结论来解方程:315132x x x x -+=-.【拓2】24111181111x x x x +++=-+++.三、分式方程的应用:【例4】(20宝应模拟)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( ) A .600060001520x x -=+ B .600060001520x x -=+ C .600060002015x x -=- D .600060002015x x-=-【拓3】某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?在这个问题中,设原计划每天加工x 套,则根据题意可得方程为( ) A .()16040018120%x x +=+ B .()16040016018120%x x -+=+ C .1604001601820%x x -+= D .()40040016018120%x x-+=+【例5】一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度行驶,一小时后加速为原来的1.5倍,并比原计划提前40分钟到达目的地,求前一小 时的平均速度.【拓4】有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独 完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队 先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超 过79000元,则两工程队最多可以合作施工多少天?四、真题演练:1.(21扬州三模)若关于x 的分式方程21mx x=-有正整数解,则整数m 的值是( ) A .3 B .5 C .3或5 D .3或42.(19仪征期中)定义:如果一个关于x 的分式方程a b x=的解等于1a b -,我们就说这个方程叫差解方程.比如:243x =就是个差解方程.如果关于x 的分式方程2mm x =-是一个差解方程,那么m 的值是( ) A .2 B .12 C .12- D .2-3.(20邗江月考)扬州轨道交通线网规划2020年由4条线路组成,其中1号线一期工程全长30千米,预计运行后的平均速度是原来乘公交车的1.5倍,行驶时间则缩短半小时.设原来公交车的平均速度为x 千米/时,则下列方程正确的是( ) A .30301.50.5x x +=B .30301.50.5x x -= C .30300.5 1.5x x +=D .30300.5 1.5x x-=4.(21高邮期末)如果关于x 的不等式组521113()22m x x x -≥⎧⎪⎨-<+⎪⎩有且仅有四个整数解,且关于y的分式方程28122my y y --=--有非负数解,则符合条件的所有整数m 的和是( ) A .13 B .15 C .20 D .225.(21仪征期末)若关于x 的分式方程312mx -=+的解为负数,则m 的取值范围为________.6.(21邗江期末)关于x 的方程1122m x x-=--有增根,则m 的值为________.7.(19宝应月考)若关于x 的分式方程21011m x x -=-+无解,则m =________.8.(18高邮期中)已知关于x 的分式方程111x k kx x +-=+-的解为负数,则k 的取值范围是________.9.(19江都期中)若关于x 的方程4122ax x x =+--无解,则a 的值是________.10.(20广陵期中)要使方程121x x a=--有正数解,则a 的取值范围是________.11.(21仪征期末)若关于x 的分式方程12221(2)(1)x x x ax x x x --+-=-+-+的解为负数,则a 的取值范围是________.12.(19邗江月考)对于非零实数a 、b ,规定21a ab b a⊗=-.若(21)1x x ⊗-=,则x 的值为________.13.(20仪征期中)对于两个不相等的实数a 、b ,我们规定{in }m h a b 、表示a 、b 中较小的数的一半,如min 2{}31h =、,那么方程22{i }m n h x x xx=-+、的解为________.14.(20仪征期中)定义运算“※”: , , aa b a ba b b a b b a⎧>⎪⎪-=⎨⎪<⎪-⎩※,若52x =※,则x 的值为________.15.(20仪征期中)若32248168224816321111111a x x x x x x x =+++++--+++++,则a 的值是________.16.(2021·扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问:原先每天生产多少万剂疫苗?17.(20邗江月考)疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数比第一批多50%,每包口罩的进价比第一批每包口罩的进价多0.5元,请解答下列问题: (1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持了一致,若售完这两批口罩的总利润不高于3500元钱,那么药店销售该口罩每包的最高售价是多少元?18.(21邗江期末)对于两个不等的非零实数a ,b ,若分式()()x a x b x--的值为0,则x a =或x b =.因为2()()()()x a x b x a b x ab abx a b x x x---++==+-+,所以关于x 的方程abx a b x+=+的两个解分别为1x a =,2x b =.利用上面建构的模型,解决下列问题: (1)若方程px q x+=的两个解分别为11x =-,24x =.则p =________,q =________;(2)已知关于x 的方程222221n n x n x +-+=+两个解分别为1x ,2x (12x x <).求12223x x -的值.19.(21高邮期末)八年级学生去距学校12km 的珠湖小镇游玩,一部分学生骑自行车先走,其余学生20min 后乘汽车出发,结果他们同时到达、已知汽车的速度是骑车学生速度的3倍.(1)求骑车学生的速度;(2)游玩中八(4)班班主任为增强班级凝聚力决定让全班学生在户外拓展区参加一次户外拓展活动,班主任根据该项目收费标准支付了1575元,请根据该项目收费信息确定全班人数.户外拓展收费标准:人数 收费 不超过30人 人均收费50元超过30人每增加1人,人均收费降低1元,但人均收费不低于40元20.(2020·扬州)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染. 进货单:商品 进价(元/件)数量(件)总金额(元)甲7200 乙3200李阿姨:我记得甲商品进价比乙商品进价每件高50%. 王师傅:甲商品比乙商品的数量多40件. 请你求出乙商品的进价,并帮助他们补全进货单.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程的解法及应用一、目标与策略爭抡明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:分式方程的概念以及解法;分式方程产生增根的原因;分式方程的应用题。

重点难点:重点:分式方程转化为整式方程的方法及其中的转化思想,用分式方程解决实际问题,能从实际问题中抽象岀数量关系.难点:检验分式方程解的原因,实际问题中数量关系的分析.学习策略:经历“实际问题一一分式方程一一整式方程”的过程,发展分析问题、解决问题的能力,渗透数学的转化思想,培养数学的应用意识。

二、学习与应用“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对知识回顾一一复习学习新知识之前,看看你的知识贮备过关了吗?*答:含有的叫做方程.使方程两边相等的............... …的值,叫做方程的解.(二)分式的基本性质:分式的分子与分母同乘(或除以)同一个,分式的值不变,这个性质叫做分式的基本性质•用式子表示是:A A M A A M(其中M是不等于0的整式)(三)等式的基本性质:等式的两边都乘(或除以)同一个数或 ................... (除数不能为0),所得的结果仍是等式。

(四)解下列方程:(1)9—3x= 5x+ 5;(2)y y 12 y 22 5I --知识要点一一预习和课堂学习■认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。

请在虚线部分填写预习内容,在实线部分填写课堂学习内容。

课堂笔记或者其它补w充填在右栏。

详细内容请参看网校资源ID : #tbjx5#233542 - 知识点一:分式方程的定义.......... 里含有未知数的方程叫分式方程。

要点诠释:(1)分式方程的三个重要特征:①是_______________ ;②含有 ____________ ;③分母里含(2 )分式方程与整式方程的区别就在于分母中是否含有__________________ (不是一般的字母系数),分母中含有未知数的方程是__________________ ,不含有未知数的方程是 _方程,女口:关于X的方程1 2 x和—卫7都是_____________ 方程,而关于X的x x 2 2x 1方程Lx 2 x和x 1d都是_______________________ 方程。

a be粒:|知识点二:分式方程的解法(一)解分式方程的基本思想把分式方程化为_________ 方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。

(二)解分式方程的一般方法和步骤(1)________ ,即在方程的两边都乘以最简公分母,把原方程化为整式方程。

(2)解这个______ 方程。

(3) _____ :把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的 ________________ 。

注:分式方程必须_____________ ;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的________ 为零。

(三)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着____________________________________________________________________不为零的条件当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会岀现增根。

◎知识点三:分式方程的应用分式方程的应用主要就是_______________ ,它与学习一元一次方程时列方程解应用题的基本思路和方法是一样的,不同的是,表示关系的代数式是分式而已。

一般地,列分式方程(组)解应用题的一般步骤:(1)______ 题意;(2 )设___________ ;(3)___________________ 根据题意找关系,列岀分式方程;(4)解分式方程,并验根;(5)检验分式方程的根是否符合题意,并根据检验结果写岀答案.◎ 知识点四:常见的实际问题中等量关系(一)工程问题(1)工作量= X工作时间,工作效率一---------------.... . .......... 工作时间一工作量;一工作效率'(2)完成某项任务的各工作量的和一总工作量一1.(二)营销问题(1 )商品利润一商品............. 一商品.......... ;(2)商品利润率一——100% ;(3)商品销售额一商品销售价x商品销售量;(4)商品的销售利润一(销售价一成本价)x ___________________ .(三)行程问题(1 )路程一.............. X时间,速度一------------ ,一路程;时间-------------- 速度(2)在航行问题中,其中数量关系是:顺水速度= +水流速度,逆水速度=静水速度-(3)航空问题类似于航行问题.经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。

若有其它补充可填在右栏空白处。

更多精彩请参看网校资源ID : #jdlt0#233542內类型一:分式方程的定义例1 .下列各式中,是分式方程的是( )A. x y 5B. L3C. 1D.丄05 3 x x 5思路点拨:要逐个检查是否符合分式方程的三个特征:A. x y 5因为方程里没有,所以分式方程;B. —2y z虽然有分母,但是分母里没有..... .. .. 5 3 "". .......... ,所以_____ ..... 一分式方程;C .-没有_____ .......... _,所以不是__■…一…,x具备分式方程的三个特征,是............... .它只是一个.......... ;D •丄x 5总结升华:_____________________________________________________________________________举一反三:【变式】方程x3 x2中,x为未知量,a,b为已知数,且a b,则这个方程a b( )A .分式方程B . 一元一次方程C .二元一次方程D .三元一次方程类型二:分式方程解的概念例2•请选择一组a,b的值,写出一个关于x的形如a b的分式方程,使它的解x 2是x = 0这样的分式方程可以是___________________ .思路点拨:分式方程是........ .. 中含有.............. 的. ......... ,能够使分式方程成立的未知数的值叫分式方程的总结升华:举一反三:3【变式】在x 0, x 1,x 1中,哪个是分式方程X X 0的解,为什么?直I类型三:分式方程的解法例3 . (2011北京房山一模)解方程:思路点拨:在解分式方程的时候,要把分式方程变为X 113 x_________ 方程。

原方程的两边都要乘,方程等号右边的常数1也必须乘。

在找最简公分母的时候有时需要先把分式方程变形。

总结升华:____ ________________________________________________________________________2x a例4.已知分式方程------------ 1的解为非负数,求a的取值范围?x 1思路点拨:解这个分式方程即可,注意去分母后所得整式方程的解是非负数,且不等例5.当m 为何值时,关于 x 的方程mx会产生增根?会无解?x 2悔:|类型四:增根的应用思路点拨:增根是分式方程去分母后的整式方程的根,它使最简公分母得 _________________ 且只适合 ____________________ ,所以只需把可能出现的增根代入该整式方程中,就可以求得对应的 m 的值•而分式方程无解有两种情况,一是去分母后的整式方程的根都是 ___________ 二是此整式方程 ______________ •于1.举一反三:【变式1】解方程:(i )丄=4,x 1 x(2)10+5 2x 11 2x【变式2】当a 为何值时,关于 x 的方程2a 3的解是0 ?a 5总结升华:_____________________________________________________________________________【变式1】当m为何值时,方程2“』-会产生增根()A. 2B. - 1C. 3D. - 3―-——=分析:分式方程二■■[,去分母得,将增根代入,【变式2】.若方程—=x 2 2 x无解,则m举一反三:得m。

|:§:类型五:分式方程的应用(一)工程类应用性问题例6.某项工程限期完成,甲队独做正好按期完成,乙队独做则要误期3天,现两队合作2天后,留下的工程再由乙队独做,也正好在限期内完成,问该工程期限是多少天?思路点拨:若设工期为x天,将总工程量设为“ 1”,则甲效为________________________ ;乙单独做需(x+3)天,乙效为_________ .(法1)甲共做2天,乙共做x天,可将工作完成;(法2)乙独做多用的—天完成的工作量,相当于甲__________ 天做的。

举一反三:☆【变式1】两个工程队共同参与一项筑路工程, 甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?分析:甲1个月完成1/3,即甲效率为1/3,或理解为甲单独做3个月完成,所以甲实际做1.5个月完成了1/2的工程,另外的1/2的工程由乙半个月完成,可见乙的效率为甲的3倍,显见乙的工效快。

上述是计算的方法,以下为方程方法。

【变式2】今年某大学在招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位教师向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知教师甲的输入速度是教师乙的2倍,结果甲比乙少用2小时输完.问这两位教师每分钟各能输入多少名学生的成绩?(二)行程中应用性问题例7.甲、乙两地相距828km, —列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的 1.5倍.直达快车比普通快车晚岀发2h,比普通快车早4h到达乙地,求两车的平均速度.思路点拨:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是:路程=速度x时间,应根据题意,找岀追击问题中的等量关系.总结升华:_____________________________________________________________________________举一反三:☆【变式1】一队学生去校外参观•他们岀发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校岀发,按原路追赶队伍•若骑车的速度是队伍行进20千米所用的时间相等,速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校岀发到追上队伍用了多少时间? 【变式2】轮船在顺水中航行 30千米的时间与在逆水中航行已知水流速度为2千米/时,求船在静水中的速度. (三)营销类的应用性问题例8 .某校办工厂将总价值为 2000元的甲种原料与总价值为 4800元的乙种原料混合 后,其平均价比原甲种原料每 0.5kg 少3元,比乙种原料每0.5kg 多1元,问混合后的单价每0.5kg 是多少元?思路点拨:市场经济中,常遇到营销类应用性问题,与价格有关的是:单价、总价、 平均价等,要了解它们的意义,建立它们之间的关系式. 总结升华: _____________________________________________________________________________举一反三:☆【变式】A 、B 两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同•其中,采购员 A 每次购买1000千克,购贷员0,因此应如下检验:将整式方程的解代入B 每次用去800元,而不管购买饲料多少,问选用谁的购货方式合算?三、总结与测评要想学习成绩好,总结测评少不了!课后复习是学习不可或缺的环节,它可以帮助我们巩固学习效果,弥补知识缺漏,提高学习能力。

相关文档
最新文档