公务员考试粉笔国考模考第十季数量关系解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【1】为准备英语四级考试,小明从5月1日开始背一本有900个单词的词汇书,计划当月背完,如果他要求自己每天背的单词都要比前一天多,同时每天最多背单词不超过45个,那么他5月30日这一天至少要背多少个单词?
A.42
B.43
C.44
D.45
【解析】首先要注意5月有31天。5月30背最少,则其余日期背最多,5月31日最多45,则其余日期按等差分布。设5月30日背x个,则5月1日-5月29日分别背x-29、x-28...x-1个。则5月1日-5月30日单词之和为30*(x-14.5)=30x-435=900-45=855,则x=(855+435)/30=43。
【2】里约奥运会开幕式电视直播在甲、乙、丙三个城市的收视率分别为3.6%、4.8%、6.4%,在甲乙两个城市的总收视率为4.0%,已知丙城电视观众总人数是甲城的一半,问开幕式电视直播在这三个城市的总收视率是多少?
A.5.6%
B.4.6%
C.4.5%
D.4.2%
【解析】3.6% 4.0% 4.8%,则甲乙观众人数之比=(4.8-4):(4-3.6)=2:1,丙为甲一半=1,则甲乙:丙=3:1=(6.4-x):(x-4)可知和为4份=6.4-x+x-4=2.4,则丙=1份为0.6=4.6-4,因此x=4.6。
【3】某企业共有120名员工,现成立业余兴趣活动小组,报名参加羽毛球活动的有58人,报名参加毽球活动的有33人,报名参加徒步行走活动的有84人,仅报名参加两项活动的人数是三项全部都参加的6倍多,不参加任何一项活动的有7人,则至多有多少人三项活动全部都报名参加:
A.5
B.6
C.7
D.8
【解析】参加三项的x,只参加两项的>6x,可知参与人数=58+33+84-只参加两项-2*参加三项=120-7<58+33+84-8x→x<62/8=31/4=7+,则x最大取7。
【4】里约奥运会要赶制一批吉祥物,甲、乙、丙三家制造商分别用20天、30天、40天可独立完成。现由三家合作生产,合作过程中甲厂商受罢工影响,每开工半天就要停工半天。当任务完成时,甲、丙所生产吉祥物之和比乙多1200个。问这批吉祥物共有多少个?
A.6000
B.7200
C.8400
D.9600
【解析】甲开半天停半天,相当于两天才做一天的量,效率减半。赋值总量120,甲效率为6/2=3,乙效率4,丙效率3。工作量之比=效率比=3:4:3,甲丙6比乙4多2份为1200,则一共10份为6000。
【5】班主任决定用50元买笔记本奖励班上同学,奖品分两种且要求两种笔记本差价不小于4元。班主任发现笔记本的价格恰好均为质数,问在保证总数量最多的情况下,可以买多少笔记本?
A.14
B.16
C.18
D.20
【解析】买最多,则单价尽量少,且都为质数,最小质数2,则另一种笔记本要大于6元,最小取质数7。因此有2x+7y=50,保证数量多,则尽量买便宜的,贵的少买,但又必须要买。根据奇偶特性,可知y至少为2,此时x=18。一共买了20个笔记本。
【6】某超市进口了50件A商品和100件B商品。现将A商品按25%的利润定价销售,B 商品按20%的利润定价销售。一段时间后,A商品还剩20%未售出,B商品全部售完,发现此时已收回全部成本且赚了240元。那么每件B商品的进口价格是多少元:
A.12 B.16 C.20 D.24
【解析】A商品卖了50*80%=40件,每件价格为成本的1.25倍,则总售价=40*1.25=50倍成本=50件商品成本,可知A商品刚好收回成本。因此B商品要赚240元,平均每件赚2.4元。利润率为2.4/成本=20%,则成本=12元。
【7】某人在统计考勤的时候无意中发现,今年二月只有4个星期一,而一月与三月也只有4个星期一,请问今年的儿童节是星期几?()
A.星期五 B.星期五或星期六 C.星期六 D.星期六或星期日
【解析】一月-三月一共有31+28+31=90天或31+29+31=91天。91天的情况排除,因91=13*7为13个完整星期,必然有13个星期一,而这三个月一共只有4+4+4=12个星期一。因此必然为90天,且还差一天就是13个完整性期,可知差一点就到星期一了,则4月1日星期一,+29+31+1=61天后是儿童节,61/7=8余5,则儿童节星期六。
【8】某单位有A、B两个科室,B科室人数比A科室多1.5倍。现上级单位从A科室调走5人,为保证工作正常进行,将B科室的2人调入A科室,此时A、B科室人数比为1:3。那么在调动之前B科室比A科室多多少人:
A.11 B.18 C.28 D.21
【解析】1:(1+1.5)=2:5,调动前人数差为3倍数,排除AC→1:3,A科室走5进2少3,B科室走2少2,A科室多走1人。则调动后人数差多1,且1:3说明人数差为偶数,可知调动前的人数差为偶数+1=奇数,排除B。
要做的话怎么做呢?2:5→1:3, (2x-5+2):(5x-2)=(2x-3):(5x-2)=1:3,则5x-2=6x-9,解得x=7,因此调动前分别为14人、35人。
【9】甲乙两人练习跑步,从环形跑道的A、B两点同时同向出发,若干分钟后,甲追上乙(未超过A点),之后甲立即变向,最终在A点与乙迎面相遇。假设甲乙两人速度恒定且走过的总路程分别为560米和240米,则环形跑道的长度为()米。
A.800
B.600
C.400
D.200
【解析】甲从A到C再从C到A,两段路程相等、则时间相等,且从追上到相遇,甲乙合走一个全程,因为比例相等,因此从出发到追上两人也是合走一个全程。则两人分别跑560+240就是两个全程,则S=(560+240)/2=400。
【10】某公司有50名员工,在新录用10名本科生后,本科以上员工所占比重比原来增加了4个百分点,则原来有本科生多少人?
A.36
B.34
C.40
D.38
【解析】原来有x,则x/50 +2/50=(x+2)/50=(x+10)/60,分母多10,分子多8,分式不变。则(x+10)/60=8/10,则x=38。
【11】棱长为7.5厘米的正方体木块六面涂成黑色后,锯成棱长为2.5厘米的小正方体。从小正方体中随机抽取一个,只观察一面,该面为黑色的概率:
A.1/3 B.2/9 C.26/27 D.2/3
【解析】一共有3*3*3=27个小正方体,一共27*6个面。其中大正方体一共6面,每个面有3*3=9块区域黑色,则一共有6*9块区域为黑色。概率6*9/27*6=1/3。
【12】某学院2016级新生男女各有几百人,辅导员发现,男生人数的十位数字恰为百位与