专题研究因式分解总结归纳及典型例题

合集下载

因式分解精选总结(含答案)

因式分解精选总结(含答案)

因式分解【知识精读】1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;7. 因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。

即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;下面我们一起来回顾本章所学的内容。

【分类解析】1. 通过基本思路达到分解多项式的目的例1. 分解因式xx xx x 54321-+-+- 原式=-+--+()()x x x x x 543212. 通过变形达到分解的目的例1. 分解因式x x 3234+- 3. 在证明题中的应用例:求证:多项式()()x x x 2241021100--++的值一定是非负数分析:现阶段我们学习了两个非负数,它们是完全平方数、绝对值。

本题要证明这个多项式是非负数,需要变形成完全平方数.4. 因式分解中的转化思想例:分解因式:()()()a b c a b b c ++-+-+2333分析:本题若直接用公式法分解,过程很复杂,观察a+b ,b+c 与a+2b+c 的关系,努力寻找一种代换的方法。

解:设a+b=A ,b+c=B ,a+2b+c=A+B中考点拨:例1.在∆A B C中,三边a,b,c 满足a b c ab bc 222166100--++= 求证:a c b+=2 证明: ab c a b b c 222166100--++= 例2. 已知:x x x x+=+=12133,则__________ 说明:利用x xx x 222112+=+-()等式化繁为易。

因式分解经典例题

因式分解经典例题

因式分解经典例题一、提取公因式法例1:分解因式ax + ay。

解析:公因式为a,所以ax+ay = a(x + y)。

例2:分解因式3x^2-6x。

解析:公因式为3x,3x^2-6x=3x(x - 2)。

例3:分解因式5a^2b - 10ab^2。

解析:公因式为5ab,5a^2b-10ab^2=5ab(a - 2b)。

二、运用平方差公式a^2-b^2=(a + b)(a - b)分解因式例4:分解因式x^2-9。

解析:x^2-9=x^2-3^2=(x + 3)(x-3)。

例5:分解因式16y^2-25。

解析:16y^2-25=(4y)^2-5^2=(4y + 5)(4y-5)。

例6:分解因式(x + p)^2-(x + q)^2。

解析:根据平方差公式a=(x + p),b=(x+q),则(x + p)^2-(x + q)^2=[(x + p)+(x + q)][(x + p)-(x + q)]=(2x + p + q)(p - q)。

三、运用完全平方公式a^2±2ab + b^2=(a± b)^2分解因式例7:分解因式x^2+6x + 9。

解析:x^2+6x + 9=x^2+2×3x+3^2=(x + 3)^2。

例8:分解因式4y^2-20y+25。

解析:4y^2-20y + 25=(2y)^2-2×5×2y+5^2=(2y - 5)^2。

例9:分解因式x^2-4xy+4y^2。

解析:x^2-4xy + 4y^2=x^2-2×2xy+(2y)^2=(x - 2y)^2。

四、综合运用多种方法分解因式例10:分解因式x^3-2x^2+x。

解析:先提取公因式x,得到x(x^2-2x + 1),而x^2-2x + 1=(x - 1)^2,所以原式=x(x - 1)^2。

例11:分解因式2x^2-8。

解析:先提取公因式2,得到2(x^2-4),再利用平方差公式x^2-4=(x + 2)(x-2),所以原式=2(x + 2)(x - 2)。

中考数学必考考点专题5因式分解含解析

中考数学必考考点专题5因式分解含解析

专题05 因式分解专题知识回忆1. 分解因式:把一个多项式化成几个整式的积的形式, 这种变形叫做把这个多项式分解因式.2. 分解因式的一般方法:〔1〕提公共因式法.〔2〕运用公式法.①平方差公式: 2 2a b a b a b②完好平方公式: 2 2 2a ab b a b2〔3〕十字相乘法。

利用十字交织线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.①关于二次三项式 2x bx c,假设存在p q cp q b,那么 2x bx c x p x q②首项系数不为 1 的十字相乘法在二次三项式 2ax bx c ( a ≠0) 中,若是二次项系数a 能够分解成两个因数之积,即a a1a2 ,常数项c 能够分解成两个因数之积,即 c c c ,把a1,a2,c1,c2 排列以下:1 2按斜线交织相乘,再相加,获取 a c a c ,假设它正好等于二次三项式1 2 2 12ax bx c的一次项系数b,即a c a c b ,那么二次三项式就可以分解为两个因式a1x c1 与a2 x c2 之积,即1 2 2 12ax bx c a x c a x c .1 12 2〔4〕分组分解法关于一个多项式的整体,假设不能够直接运用提公因式法和公式法进行因式分解时,可考虑分步办理的方法,即把这个多项式分成几组,先对各组分别分解因式,尔后再对整体作因式分解——分组分解法. 即先对题目进行分组,尔后再分解因式.3. 分解因式的步骤:1(1) 先看各项有没有公因式, 假设有, 那么先提取公因式;(2) 再看能否使用公式法;(3) 用分组分解法, 即经过分组后提取各组公因式或运用公式法来到达分解的目的;(4) 因式分解的最后结果必定是几个整式的乘积, 否那么不是因式分解;(5) 因式分解的结果必定进行到每个因式在有理数范围内不能够再分解为止.2 2假设有公因式,先提公因式;尔后再考虑用公式法〔平方差公式:a -b =( a+b)( a-b), 完好平方公式:2 2a ± 2ab+b =( a±b) 2〕或其他方法分解;直到每个因式都不能够再分解为止.专题典型题考法及剖析【例题1】〔2021?江苏无锡〕分解因式4x 2 2 -y的结果是〔〕A.〔4x+y〕〔4x﹣y〕B .4〔x+y〕〔x﹣y〕C.〔2x+y〕〔2x﹣y〕D .2〔x+y〕〔x﹣y〕【答案】 C【剖析】此题主要观察了公式法分解因式,正确应用公式是解题要点.直接利用平方差公式分解因式得出答案.4x 2 2 -y =〔2x〕 22 = 〔2x+y〕〔2x﹣y〕.-y4【例题2】〔2021 贵州省毕节市〕分解因式:x ﹣16=.2【答案】〔x +4〕〔x+2〕〔x﹣2〕.【剖析】运用公式法.4 2+4〕〔x+2〕〔x﹣2〕.2+4〕〔x2x ﹣16=〔x ﹣4〕=〔x2【例题3】〔2021 广东深圳〕分解因式:ab -a=____________.【答案】a〔b+1〕〔b-1〕【剖析】提公因式法与公式法的综合运用2原式=a〔b -1〕=a〔b+1〕〔b-1〕.【例题4】〔2021 黑龙江哈尔滨〕分解因式: 3 6a 2b 9ab 2a = .【答案】a〔a﹣3b〕2.【剖析】先提取公因式,再用完好平方公式。

初中数学专题复习资料-----多项式的因式分解

初中数学专题复习资料-----多项式的因式分解
分解因式要求结果到不能再分解为止。 【例题 7】、把下列各式因式分解:
1、(08 年沈阳)
2、(08 年浙江绍兴)
3、(08 年山东)
【练习】
一、填空题:
1、分解因式 2x2 4x
; 4x2 9
; x2 4x 4

2、分解因式; a(x y)2 b( y x)2 _______________ ;
完 公 因 式 后 , 另 一 因 式 的 项 数 与 原 多 项 式 的 项 数 相 同 ); ③、将多项式写成等于两个因式相乘(公因式与余式的积)的形势。
第1页共4页
【例题 3】、把下列各式因式分解:
1、 14abc 7ab 49ab2c ;
2、 xx y yy x; 3、 mx y2 x y
①确定公因式的系数:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;
②确定公因式的字母:公因式的字母取各项都含有的相同的字母(相同的多项式);
③ 确 定 公 因 式 的 指 数 :各 字 母 的 指 数 取 各 项 中 字 母 次 数 最 低 的( 多 项 式 的 次 数 取 最 低 的 )。如
(1) x2 7x 6 ;
(2) x2 13x 36 ;
(3) x2 5x 24 ;
(4) x2 2x 15 ;
(5) x2 xy 6 y2 ;
(6) (x2 x)2 8(x2 x) 12
【例题 6】、把下列各式因式分解:
(1) 12x2 5x 2
(2) 8a 4a2 4;
初中数学专题复习资料-----多项式的因式分解
【知识点归纳 1】 一、因式分解的定义:
把 一 个 多 项 式 化 为 几 个 整 式 的 积 的 形 式 ,这 种 变 形 叫 做 把 这 个 多 项 式 因 式 分 解 ,也 叫 作 分 解 因 式。

专题04 因式分解篇(解析版)

专题04 因式分解篇(解析版)

专题04 因式分解考点一:因式分解1. 因式分解的概念:把一个多项式写成几个整式的乘法的形式,这种变形叫做因式分解。

2. 因式分解的方法:①提公因式法:()cbamcmbmam++=++公因式的确定:公因式=各项系数的最小公倍数×相同字母(式子)的最低次幂。

若多项式首项是负的,则公因式为负。

用各项除以公因式得到另一个式子。

②公式法:平方差公式:()()bababa-+=-22。

完全平方公式:()2222bababa±=+±③十字相乘法:利用十字交叉线将二次三项式进行因式分解的方法叫做十字相乘法。

对于一个二次三项式cbxax++2,若满足21aaa⋅=,21ccc⋅=,且bcaca=+1221,那么二次三项式cbxax++2可以分解为:()()22112cxacxacbxax++=++。

当1=a时,二次三项式是cbxx++2,此时只需21ccc⋅=,且bcc=+21,则cbxx++2可分解为:()()212cxcxcbxx++=++。

④分组分解法:对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解--分组分解法.即先对题目进行分组,然后再分解因式。

(分组分解法一般针对四项及以上的多项式)3. 因式分解的具体步骤:(1)先观察多项式是否有公因式,若有,则提取公因式。

(2)观察多项式的项数,两项,则考虑平方差公式;三项则考虑完全平方式与十字相乘法。

四项及以上则考虑分组分解。

(3)检查因式分解是否分解完全。

必须分解到不能分解位置。

再无特比说明的情况下,任何因式分解的题目都必须在有理数范围内进行分解。

1.(2022•济宁)下面各式从左到右的变形,属于因式分解的是( )A.x2﹣x﹣1=x(x﹣1)﹣1B.x2﹣1=(x﹣1)2C.x2﹣x﹣6=(x﹣3)(x+2)D.x(x﹣1)=x2﹣x【分析】根据因式分解的定义判断即可.【解答】解:A选项不是因式分解,故不符合题意;B选项计算错误,故不符合题意;C选项是因式分解,故符合题意;D选项不是因式分解,故不符合题意;故选:C.2.(2022•永州)下列因式分解正确的是( )A.ax+ay=a(x+y)+1B.3a+3b=3(a+b)C.a2+4a+4=(a+4)2D.a2+b=a(a+b)【分析】根据因式分解的定义和因式分解常用的两种方法:提公因式法和公式法判断即可.【解答】解:A选项,ax+ay=a(x+y),故该选项不符合题意;B选项,3a+3b=3(a+b),故该选项符合题意;C选项,a2+4a+4=(a+2)2,故该选项不符合题意;D选项,a2与b没有公因式,故该选项不符合题意;故选:B.3.(2022•湘西州)因式分解:m2+3m= .【分析】直接利用提取公因式法分解因式即可.【解答】解:原式=m(m+3).故答案为:m(m+3).4.(2022•广州)分解因式:3a2﹣21ab= .【分析】直接提取公因式3a,进而分解因式得出答案.【解答】解:3a2﹣21ab=3a(a﹣7b).故答案为:3a(a﹣7b).5.(2022•常州)分解因式:x2y+xy2= .【分析】直接提取公因式xy,进而分解因式得出答案.【解答】解:x2y+xy2=xy(x+y).故答案为:xy(x+y).6.(2022•柳州)把多项式a2+2a分解因式得( )A.a(a+2)B.a(a﹣2)C.(a+2)2D.(a+2)(a﹣2)【分析】直接提取公因式a,进而分解因式得出答案.【解答】解:a2+2a=a(a+2).故选:A.7.(2022•菏泽)分解因式:x2﹣9y2= .【分析】直接利用平方差公式分解因式得出答案.【解答】解:原式=(x﹣3y)(x+3y).故答案为:(x﹣3y)(x+3y).8.(2022•烟台)把x2﹣4因式分解为 .【分析】利用平方差公式,进行分解即可解答.【解答】解:x2﹣4=(x+2)(x﹣2),故答案为:(x+2)(x﹣2).9.(2022•绥化)因式分解:(m+n)2﹣6(m+n)+9= .【分析】将m+n看作整体,利用完全平方公式即可得出答案.【解答】解:原式=(m+n)2﹣2•(m+n)•3+32=(m+n﹣3)2.故答案为:(m+n﹣3)2.10.(2022•苏州)已知x+y=4,x﹣y=6,则x2﹣y2= .【分析】直接利用平方差公式将原式变形,代入得出答案.【解答】解:∵x+y=4,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=4×6=24.故答案为:24.11.(2022•衡阳)因式分解:x2+2x+1= .【分析】本题运用完全平方公式进行因式分解即可.【解答】解:x2+2x+1=(x+1)2,故答案为:(x+1)2.12.(2022•济南)因式分解:a2+4a+4= .【分析】利用完全平方公式进行分解即可.【解答】解:原式=(a+2)2,故答案为:(a+2)2.13.(2022•宁波)分解因式:x2﹣2x+1= .【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.14.(2022•河池)多项式x2﹣4x+4因式分解的结果是( )A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)2【分析】原式利用完全平方公式分解即可.【解答】解:原式=(x﹣2)2.故选:D.15.(2022•荆门)对于任意实数a,b,a3+b3=(a+b)(a2﹣ab+b2)恒成立,则下列关系式正确的是( )A.a3﹣b3=(a﹣b)(a2+ab+b2)B.a3﹣b3=(a+b)(a2+ab+b2)C.a3﹣b3=(a﹣b)(a2﹣ab+b2)D.a3﹣b3=(a+b)(a2+ab﹣b2)【分析】把所给公式中的b换成﹣b,进行计算即可解答.【解答】解:∵a3+b3=(a+b)(a2﹣ab+b2),∴a3﹣b3=a3+(﹣b3)=a3+(﹣b)3=[a+(﹣b)][(a2﹣a•(﹣b)+(﹣b)2]=(a﹣b)(a2+ab+b2)故选:A.16.(2022•绵阳)因式分解:3x3﹣12xy2= .【分析】先提取公因式,再套用平方差公式.【解答】解:原式=3x(x2﹣4y2)=3x(x+2y)(x﹣2y).故答案为:3x(x+2y)(x﹣2y).17.(2022•丹东)因式分解:2a2+4a+2= .【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2.故答案为:2(a+1)2.18.(2022•辽宁)分解因式:3x2y﹣3y= .【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:3x2y﹣3y=3y(x2﹣1)=3y(x+1)(x﹣1),故答案为:3y(x+1)(x﹣1).19.(2022•恩施州)因式分解:a3﹣6a2+9a= .【分析】先提公因式a,再利用完全平方公式进行因式分解即可.【解答】解:原式=a(a2﹣6a+9)=a(a﹣3)2,故答案为:a(a﹣3)2.20.(2022•黔东南州)分解因式:2022x2﹣4044x+2022= .【分析】原式提取公因式2022,再利用完全平方公式分解即可.【解答】解:原式=2022(x2﹣2x+1)=2022(x﹣1)2.故答案为:2022(x﹣1)2.21.(2022•常德)分解因式:x3﹣9xy2= .【分析】利用提公因式法和平方差公式进行分解,即可得出答案.【解答】解:x3﹣9xy2=x(x2﹣9y2)=x(x+3y)(x﹣3y),故答案为:x(x+3y)(x﹣3y).22.(2022•怀化)因式分解:x2﹣x4= .【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x2(1﹣x2)=x2(1+x)(1﹣x).故答案为:x2(1+x)(1﹣x).23.(2022•台湾)多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?( )A.﹣12B.﹣3C.3D.12【分析】根据十字相乘法可以将多项式39x2+5x﹣14分解因式,然后再根据多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),即可得到a、b、c的值,然后计算出a+2c的值即可.【解答】解:∵39x2+5x﹣14=(3x+2)(13x﹣7),多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),∴a=2,b=13,c=﹣7,∴a+2c=2+2×(﹣7)=2+(﹣14)=﹣12,故选:A.24.(2022•内江)分解因式:a4﹣3a2﹣4= .【分析】先利用十字相乘法因式分解,再利用平方差公式进行因式分解.【解答】解:a4﹣3a2﹣4=(a2+1)(a2﹣4)=(a2+1)(a+2)(a﹣2),故答案为:(a2+1)(a+2)(a﹣2).25.(2022•广安)已知a+b=1,则代数式a2﹣b2+2b+9的值为 .【分析】方法一:直接将a2﹣b2进行因式分解为(a+b)(a﹣b),再根据a+b=1,可得a2﹣b2=a﹣b,由此可得原式=a+b+9=10.方法二:将原式分为三部分,即a2﹣(b2﹣2b+1)+10,把前两部分利用平方差进行因式分解,其中得到一因式a+b﹣1=0.从而得出原式的值.【解答】方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9=a2﹣(b2﹣2b+1)+10=a2﹣(b﹣1)2+10=(a﹣b+1)(a+b﹣1)+10.又∵a+b=1,∴原式=10.26.(2022•黔西南州)已知ab=2,a+b=3,求a2b+ab2的值是 .【分析】将a2b+ab2因式分解,然后代入已知条件即可求值.【解答】解:a2b+ab2=ab(a+b),∵ab=2,a+b=3,∴原式=2×3=6.故答案为:6.。

专题07因式分解(4个知识点13种题型)(解析版)

专题07因式分解(4个知识点13种题型)(解析版)

专题07因式分解(4个知识点13种题型)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.提公因式法因式分解知识点2.公式法因式分解知识点3.十字相乘法法因式分解知识点4.分组分解法法因式分解【方法二】实例探索法题型1.因式分解的概念题型2.用提公因式法分解因式(公因式为单项式)题型3.用提公因式法分解因式(公因式为多项式)题型4.用提公因式法分解因式的简单应用题型5.利用平方差公式分解因式题型6.综合利用提公因式法与平方差公式分解因式题型7.完全平方式题型8.利用完全平方公式分解因式题型9.综合利用提公因式法与完全平方公式分解因式题型10.十字相乘法题型11.十字相乘法的灵活应用题型12.利用分组分解法分解因式题型13.分组分解法的灵活应用【方法三】成果评定法【倍速学习四种方法】【方法一】脉络梳理法知识点1.提公因式法因式分解一.因式分解的意义1、分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.2、因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.例如:3、因式分解是恒等变形,因此可以用整式乘法来检验.二.公因式1、定义:多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.2、确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.三.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.知识点2.公式法因式分解1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a 2﹣b 2=(a +b )(a ﹣b );完全平方公式:a 2±2ab +b 2=(a ±b )2;2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.知识点4.十字相乘法法因式分解十字相乘法:如果二次三项式2x px q ++中的常数项q 能分解成两个因式a 、b 的积,而且一次项系数p 又恰好是a b +,那么2x px q ++就可以进行如下的分解因式,即:()()()22x px q x a b x ab x a x b ++=+++=++要将二次三项式2x px q ++分解因式,就需要找到两个数a 、b ,使它们的积等于常数项q ,和等于一次项系数p ,满足这两个条件便可以进行如下分解因式,即:22()()()x px q x a b x ab x a x b ++=+++=++.由于把2x px q ++中的q 分解成两个因数有多种情况,怎样才能找到两个合适的数,通常要经过多次的尝试才能确定采用哪种情况来进行分解因式.知识点5.分组分解法法因式分解如何将多项式am an bm bn +++因式分解?分析:很显然,多项式am an bm bn +++中既没有公因式,也不好用公式法.怎么办呢?由于()am an a m n +=+,()bm bn b m n +=+而:()()()()a m n b m n m n a b +++=++.这样就有:()()()()()()am an bm bn am an bm bn a m n b m n m n a b +++=+++=+++=++将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.说明:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.【方法二】实例探索法题型1.因式分解的概念1.(2022秋•闵行区校级期末)下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答即可.【解答】解:A.等式右边不是乘积形式,故选项错误,不合题意;B.等式右边不是乘积形式,故选项错误,不合题意;C.等式右边不是乘积形式,故选项错误,不合题意;D.符合定义,故选项正确,符合题意.故选:D.【点评】本题考查了因式分解,解题的关键是理解因式分解的定义.2.(2022秋•浦东新区校级期末)下列等式从左到右是因式分解,且结果正确的是()A.a2+8a+16=(a+4)2B.(a+4)2=a2+8a+16C.a2+8a+16=a(a+8)+16D.a2+8(a+2)=a2+8a+16【分析】根据因式分解的定义逐个判断即可.【解答】解:A.等式由左边到右边的变形属于因式分解,并且正确,故本选符合题意;B.等式由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.等式由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:A.【点评】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.题型2.用提公因式法分解因式(公因式为单项式)3.(2022秋•嘉定区期中)多项式6x3y2﹣3x2y2+12x2y3的公因式是.【分析】直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【解答】解:多项式6x3y2﹣3x2y2+12x2y3的公因式是3x2y2.故答案为:3x2y2.【点评】此题主要考查了公因式,正确把握确定公因式的方法是解题的关键.4.(2022秋•嘉定区期中)分解因式:3x3﹣9x2﹣3x=.【分析】提取公因式后即可因式分解.【解答】解:3x3﹣9x2﹣3x=3x(x2﹣3x﹣1),故答案为:3x(x2﹣3x﹣1).【点评】本题考查因式分解,熟练掌握提取公因式法因式分解的方法是解题的关键.5.(2022秋•宝山区校级期末)分解因式:4x2y﹣12xy=.【分析】直接提取公因式4xy进行分解因式即可.【解答】解:4x2y﹣12xy=4xy(x﹣3),故答案为:4xy(x﹣3).【点评】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.6.(2022秋•嘉定区校级期中)因式分解:﹣15a﹣10ab+5abc=.【分析】直接提取公因式﹣5a,进而分解因式即可.【解答】解:原式=﹣5a(3+2b﹣bc).故答案为:﹣5a(3+2b﹣bc).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.题型3.用提公因式法分解因式(公因式为多项式)7.(2022秋•徐汇区期末)分解因式:(x﹣5)(3x﹣2)﹣3(x﹣5)=.【分析】将原式的公因式(x﹣5)提出即可得出答案.【解答】解:(x﹣5)(3x﹣2)﹣3(x﹣5)=(x﹣5)(3x﹣2﹣3)=(x﹣5)(3x﹣5).故答案为:(x﹣5)(3x﹣5).【点评】本题考查因式分解﹣提公因式法,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.8.(2022秋•宝山区校级期中)分解因式:a(a﹣b)+b(b﹣a)=.【分析】首先把式子变形为:a(a﹣b)﹣b(a﹣b),再找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:a(a﹣b)+b(b﹣a)=a(a﹣b)﹣b(a﹣b)=(a﹣b)(a﹣b)=(a﹣b)2.故答案为:(a﹣b)2.【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.9.(2022秋•浦东新区校级期中)2m(a﹣c)﹣5(a﹣c).【分析】直接提取公因式a﹣c即可.【解答】解:原式=(a﹣c)(2m﹣5).【点评】此题主要考查了提公因式法分解因式,关键是正确找到公因式.10.(2022秋•嘉定区期中)因式分解:6(x+y)2﹣2(x+y)(x﹣y)【分析】直接提取公因式进而分解因式得出答案.【解答】解:6(x+y)2﹣2(x+y)(x﹣y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y).【点评】此题主要考查了提取公因式法分解因式,正确掌握公因式是解题关键.11.(2022秋•杨浦区期中)分解因式:a2(a+2b)﹣ab(﹣4b﹣2a).【分析】原式变形可得a2(a+2b)+2ab(a+2b),再提公因式a(a+2b)因式分解即可.【解答】解:a2(a+2b)﹣ab(﹣4b﹣2a)=a2(a+2b)+2ab(a+2b)=a(a+2b)(a+2b)=a(a+2b)2.【点评】本题考查了提公因式法因式分解,正确找出公因式是解答本题的关键.题型4.用提公因式法分解因式的简单应用12.(2022秋•嘉定区期中)当a=3,b=时,代数式﹣a2+4ab的值为.【分析】将原式变形为﹣a(a﹣4b),把a与b的值分别代入计算即可得到结果.【解答】解:当a=3,b=时,﹣a2+4ab=﹣a(a﹣4b)=﹣3×(3﹣4×)=﹣3×2=﹣6.故答案为:﹣6.【点评】此题考查了代数式求值和因式分解,熟练掌握运算法则是解本题的关键.题型5.利用平方差公式分解因式13.(2022秋•徐汇区期末)分解因式:x2﹣=.【分析】运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣=(x+)(x﹣).故答案为:(x+)(x﹣).【点评】本题考查因式分解.当被分解的式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解.14.(2022秋•嘉定区校级期中)因式分解:x4﹣16=.【分析】利用平方差公式:a2﹣b2=(a+b)(a﹣b),进行两次分解.【解答】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).【点评】此题主要考查了用公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(2022秋•黄浦区期中)分解因式:﹣(a+b)2+1=.【分析】直接利用平方差公式分解因式,进而得出答案.【解答】解:原式=[1﹣(a+b)][1+(a+b)]=(1﹣a﹣b)(1+a+b).故答案为:(1﹣a﹣b)(1+a+b).【点评】此题主要考查了公式法分解因式,正确运用平方差公式分解因式是解题关键.16.(2022•黄浦区校级二模)分解因式:x2﹣4y2=.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4y2=(x+2y)(x﹣2y).故答案为:(x+2y)(x﹣2y).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.17.(2022秋•上海期末)分解因式:9a2﹣25(a+b)2.【分析】根据平方差公式因式分解即可.【解答】解:9a2﹣25(a+b)2=[3a﹣5(a+b)][3a+5(a+b)]=(﹣2a﹣5b)(8a+5b)=﹣(2a+5b)(8a+5b).【点评】本题考查了公式法进行因式分解,熟练掌握因式分解的方法是解题的关键.18.(2022秋•黄浦区期中)分解因式:25(m+n)2﹣9(m﹣n)2.【分析】直接利用平方差公式分解因式.【解答】解:25(m+n)2﹣9(m﹣n)2=[5(m+n)﹣3(m﹣n)][5(m+n)+3(m﹣n)]=(2m+8n)(8m+2n)=4(m+4n)(4m+n).【点评】本题考查了因式分解﹣公式法:掌握a2﹣b2=(a+b)(a﹣b)是解题的关键.题型6.综合利用提公因式法与平方差公式分解因式19.(2022秋•浦东新区校级期末)分解因式:4x2﹣16=.【分析】先提取公因式4,再对剩余项x2﹣4利用平方差公式继续进行因式分解.【解答】解:4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2).故答案为:4(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式继续进行二次因式分解,分解因式一定要彻底.20.(2022秋•青浦区校级期中)因式分解:3a(a+b)2﹣27ab2.【分析】先提取公因式,再套用平方差公式.【解答】解:原式=3a[(a+b)2﹣9b2]=3a(a+b+3b)(a+b﹣3b)=3a(a+4b)(a﹣2b).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.题型7.完全平方式21.(2022秋•青浦区校级期中)下列多项式中可以用完全平方公式进行因式分解的()A.x2+x+1B.x2﹣2x﹣1C.x2+2x+4D.x2﹣x+【分析】根据完全平方公式的结构特征逐项进行判断即可.【解答】解:A.x2+x+1,不能利用完全平方公式进行因式分解,因此选项A不符合题意;B.x2﹣2x﹣1,不能利用完全平方公式进行因式分解,因此选项B不符合题意;C.x2+2x+4,不能利用完全平方公式进行因式分解,因此选项C不符合题意;D.x2﹣x+=(x﹣)2,能利用完全平方公式进行因式分解,因此选项D符合题意;故选:D.【点评】本题考查了因式分解﹣运用公式法,掌握完全平方公式的结构特征是正确判断的前提.题型8.利用完全平方公式分解因式22.(2022秋•黄浦区期中)因式分解:(x2﹣4x)2+8(x2﹣4x)+16.【分析】直接利用完全平方公式分解因式,进而得出答案.【解答】解:原式=(x2﹣4x+4)2=(x﹣2)4.【点评】此题主要考查了公式法分解因式,正确运用完全平方公式是解题的关键.23.(2022秋•长宁区校级期中)(m+n)2+6(m2﹣n2)+9(m﹣n)2.【分析】首先利用平方差公式分解m2﹣n2,观察发现此题代数式符合完全平方公式,再利用完全平方公式进行分解即可.【解答】解:原式=(m+n)2+6(m﹣n)(m+n)+9(m﹣n)2,=[(m+n)+3(m﹣n)]2,=(4m﹣2n)2,=4(2m﹣n)2.【点评】此题主要考查了公式法分解因式,关键是掌握完全平方公式:a2±2ab+b2=(a±b)2.24.(2022秋•长宁区校级期中)分解因式:m(m﹣4)+4.【分析】先运用单项式乘以多项式法则将括号展开,再利用完全平方公式进行因式分解即可.【解答】解:m(m﹣4)+4=m2﹣4m+4=(m﹣2)2.【点评】本题主要考查了因式分解,熟练掌握完全平方公式(a2±2ab+b2=(a±b)2)是解答本题的关键.题型9.综合利用提公因式法与完全平方公式分解因式25.(2022秋•长宁区校级期中)因式分解:=.【分析】先提取公因式,再利用完全平方公式分解因式即可.【解答】解:原式=(m2﹣4m+4)=(m﹣2)2.故答案为:(m﹣2)2.【点评】本题考查的是多项式的因式分解,掌握“利用完全平方公式分解因式”是解本题的关键.26.(2022秋•长宁区校级期中)分解因式:﹣6x2y﹣3x3﹣3xy2.【分析】先提取公因式,再利用完全平方公式.【解答】解:﹣6x2y﹣3x3﹣3xy2=﹣3x(x2+2xy+y2)=﹣3x(x+y)2.【点评】本题考查了整式的因式分解,掌握因式分解的提公因式法和公式法是解决本题的关键.27.(2022秋•青浦区校级期中)因式分解:3a2+12ab+12b2.【分析】先提取公因式,再套用完全平方公式.【解答】解:3a2+12ab+12b2=3(a2+4ab+4b2)=3(a+2b)2.【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.题型10.十字相乘法28.(2022秋•青浦区校级期末)因式分解:2x2﹣6x﹣8=.【分析】原式先提取公因数2,再利用十字相乘法求出解即可.【解答】解:原式=2(x2﹣3x﹣4)=2(x﹣4)(x+1),故答案为:2(x﹣4)(x+1).【点评】本题考查了因式分解—十字相乘法,熟练掌握十字相乘的方法是解题的关键.29.(2022秋•虹口区校级期中)分解因式:x2﹣7xy﹣18y2=.【分析】由十字相乘法进行分解因式即可.【解答】解:x2﹣7xy﹣18y2=(x﹣9y)(x+2y).故答案是:(x﹣9y)(x+2y).【点评】本题考查因式分解,熟练掌握十字相乘法分解因式是解题的关键.30.(2022秋•宝山区期末)分解因式:2x2+6xy+4y2.【分析】先提公因式,再用十字相乘法因式分解即可.【解答】解:2x2+6xy+4y2=2(x2+3xy+2y2)=2(x+2y)(x+y).【点评】本题考查了提公因式法与十字相乘法的综合运用,熟练掌握因式分解的方法是解题的关键.31.(2022秋•奉贤区期中)分解因式:ax4﹣14ax2﹣32a.【分析】首先提取公因式a,再利用十字相乘法分解因式,再结合平方差公式分解因式即可.【解答】解:ax4﹣14ax2﹣32a=a(x4﹣14x2﹣32)=a(x2+2)(x2﹣16)=a(x2+2)(x+4)(x﹣4).【点评】此题主要考查了十字相乘法分解因式,正确运用公式是解题关键.32.(2022秋•虹口区校级期中)分解因式:(a2﹣a)2+2(a2﹣a)﹣8.【分析】先变形,局部逆用完全平方公式,再使用十字相乘法.【解答】解:(a2﹣a)2+2(a2﹣a)﹣8=(a2﹣a)2+2(a2﹣a)+1﹣9=(a2﹣a+1)2﹣9=(a2﹣a+4)(a2﹣a﹣2)=(a2﹣a+4)(a﹣2)(a+1).【点评】本题主要考查运用公式法、十字相乘法进行因式分解,熟练掌握公式法、十字相乘法是解决本题的关键.33.(2022秋•上海期末)分解因式:3x2﹣9x﹣30.【分析】先提取公因式,再利用十字相乘法分解.【解答】解:3x2﹣9x﹣30=3(x2﹣3x﹣10)=3(x﹣5)(x+2).【点评】本题考查了整式的因式分解,掌握提公因式法和十字相乘法是解决本题的关键.34.(2022秋•徐汇区期末)分解因式:(1)2ab2﹣6a2b2+4a3b2;(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24.【分析】(1)先提取公因式,再利用十字相乘法;(2)先利用十字相乘法,再利用公式法和十字相乘法.【解答】解:(1)2ab2﹣6a2b2+4a3b2=2ab2(1﹣3a+2a2)=2ab2(2a﹣1)(a﹣1);(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24=(x2﹣4x﹣8)(x2﹣4x+3)=[(x2﹣4x+4)﹣12](x﹣3)(x﹣1)=[(x﹣2)2﹣12](x﹣3)(x﹣1)=(x﹣2+2)(x﹣2﹣2)(x﹣3)(x﹣1).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.35.(2021秋•金山区期末)分解因式:(x2﹣x)2﹣18(x2﹣x)+72.【分析】把(x2﹣x)看成一个整体,利用十字相乘法分解即可.【解答】解:(x2﹣x)2﹣18(x2﹣x)+72=[(x2﹣x)﹣6][(x2﹣x)﹣12]=(x﹣3)(x+2)(x﹣4)(x+3).【点评】本题考查了整式的因式分解,掌握十字相乘法和整体的思想是解决本题的关键.36.(2021秋•奉贤区期末)分解因式:(a2+a)2﹣8(a2+a)+12.【分析】因为﹣2×(a2+a)=﹣2(a2+a),﹣6×(a2+a)=﹣6(a2+a),所以可利用十字相乘法分解因式;得到的两个因式,还可以用十字相乘法分解因式.【解答】解:根据十字相乘法,(a2+a)2﹣8(a2+a)+12,=(a2+a﹣2)(a2+a﹣6),=(a+2)(a﹣1)(a+3)(a﹣2).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察、体会它实质是二项式乘法的逆过程;并注意一定要分解完全.题型11.十字相乘法的灵活应用37.(2022秋•静安区校级期中)多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0B.10C.12D.22【分析】首先利用十字交乘法将77x2﹣13x﹣30因式分解,继而求得a,b,c的值.【解答】解:利用十字交乘法将77x2﹣13x﹣30因式分解,可得:77x2﹣13x﹣30=(7x﹣5)(11x+6).∴a=﹣5,b=11,c=6,则a+b+c=(﹣5)+11+6=12.故选:C.【点评】此题考查了十字相乘法分解因式的知识.注意ax2+bx+c(a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).38.(2022秋•宝山区期末)分解因式:x2﹣9x+14=(x+□)(x﹣7),其中□表示一个常数,则□的值是()A.7B.2C.﹣2D.﹣7【分析】利用十字相乘法因式分解即可.【解答】解:x2﹣9x+14=(x﹣2)(x﹣7),∴□表示﹣2,故选:C.【点评】本题考查因式分解,熟练掌握利用十字相乘法进行因式分解是解题的关键.39.(2022秋•虹口区校级期中)如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.5【分析】∵4=﹣1×(﹣4),﹣1+(﹣4)=﹣5,∴可以用十字相乘法因式分解.【解答】解:当c=4时,x2﹣5x+c=x2﹣5x+4=(x﹣1)(x﹣4).故选:C.【点评】本题主要考查了因式分解﹣十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.40.(2021秋•普陀区期末)已知关于x的多项式x2+kx﹣3能分解成两个一次多项式的积,那么整数k的值为.【分析】把常数项分解成两个整数的乘积,k就等于那两个整数之和.【解答】解:∵﹣3=﹣3×1或﹣3=﹣1×3,∴k=﹣3+1=﹣2或k=﹣1+3=2,∴整数k的值为:±2,故答案为:±2.【点评】本题考查了因式分解﹣十字相乘法,熟练掌握因式分解﹣十字相乘法是解题的关键.41.(2022秋•嘉定区校级期中)阅读下列文字,解决问题.先阅读下列解题过程,然后完成后面的题目.分解因式:x4+4解:x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2x+2)(x2﹣2x+2)以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.这样利用添项的方法,将原代数式中的部分(或全部)变形为完全平方的形式,这种方法叫做配方法.按照这个思路,试把多项式x4+3x2y2+4y4分解因式.【分析】把原式中的第二项的系数1变为4﹣1,化简后三项结合构成完全平方式,剩下的一项写出完全平方式,然后再利用平方差公式即可分解因式.【解答】解:x4+3x2y2+4y4=x4+4x2y2+4y4﹣x2y2=(x2+2y2)2﹣x2y2=(x2+2y2+xy)(x2+2y2﹣xy).【点评】此题考查学生阅读新方法并灵活运用新方法的能力,考查了分组分解法进行分解因式,是一道中档题.本题的思路是添项构成完全平方式.题型12.利用分组分解法分解因式42.(2022秋•徐汇区期末)分解因式:xy+(x+1)(y+1)(xy+1).【分析】根据分组法和十字相乘法因式分解即可.【解答】解:xy+(x+1)(y+1)(xy+1)=xy+(xy+x+y+1)(xy+1)=xy+[(xy+1)+(x+y)](xy+1)=(xy+1)2+(x+y)(xy+1)+xy=(xy+x+1)(xy+y+1).【点评】本题考查了分组法进行因式分解,熟练掌握分组法和十字相乘法是解题的关键.43.(2022秋•青浦区校级期末)因式分解:x2+4y﹣1﹣4y2.【分析】首先重新分组,进而利用完全平方公式以及平方差公式分解因式得出答案即可.【解答】解:x2+4y﹣1﹣4y2.x2﹣(﹣4y+4y2+1)=x2﹣(1﹣2y)2=(x﹣2y+1)(x+2y﹣1).【点评】此题主要考查了分组分解法以及公式法分解因式,正确分组是解题关键.44.(2022秋•浦东新区校级期末)分解因式:(1)m2﹣n2+6n﹣9;(2)(x+2y)x2+6(x+2y)x﹣7x﹣14y.【分析】(1)根据平方差公式和完全平方公式解答;(2)用提公因式法和十字相乘法解答.【解答】解:(1)原式=m2﹣(n2﹣6n+9)=m2﹣(n﹣3)2=(m﹣n+3)(m+n﹣3);(2)原式=(x+2y)x2+6(x+2y)x﹣7(x+2y)=(x+2y)(x2+6x﹣7)=(x+2y)(x﹣1)(x+7).【点评】本题考查了因式分解,熟悉乘法公式和提公因式法是解题的关键.45.(2022秋•闵行区校级期末)分解因式:2x3﹣2x2y+8y﹣8x.【分析】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).【点评】本题考查了平方差公式,分组分解法分解因式,要先把式子整理,再分解因式.对于一个四项式用分组分解法进行因式分解,难点是采用两两分组还是三一分组.46.(2022秋•闵行区校级期中)因式分解:a2﹣6ab+9b2﹣16.【分析】先分成两组,用完全平方公式,再用平方差公式分解因式.【解答】解:原式=(a2﹣6ab+9b2)﹣16=(a﹣3b)2﹣42=(a﹣3b+4)(a﹣3b﹣4).【点评】本题主要考查了因式分解﹣分组分解法,掌握因式分解﹣分组分解法的方法,先分组,再分解因式,完全平方公式和平方差公式的熟练应用是解题关键.47.(2022秋•青浦区校级期中)因式分解:2ac﹣6ad+bc﹣3bd.【分析】首先将前两项以及后两项提取公因式,进而分解因式得出即可.【解答】解:2ac﹣6ad+bc﹣3bd=2a(c﹣3d)+b(c﹣3d)=(c﹣3d)(2a+b).【点评】此题主要考查了分组分解法分解因式,正确分组得出是解题关键.48.(2022秋•宝山区校级期末)分解因式:b2﹣4a2﹣1+4a.【分析】利用分组分解法,将﹣4a2﹣1+4a分为一组,先利用完全平方公式,再利用平方差公式即可.【解答】解:原式=b2﹣(4a2+1﹣4a)=b2﹣(2a﹣1)2=[b+(2a﹣1)][b﹣(2a﹣1)]=(b+2a﹣1)(b﹣2a+1).【点评】本题考查分组分解法分解因式,掌握分组的原则和分组的方法是正确解答的前提,掌握完全平方公式、平方差公式的结构特征是解决问题的关键.49.(2022秋•嘉定区校级期末)因式分解:x2﹣4+4y2﹣4xy.【分析】直接将原式分组,再利用完全平方公式以及平方差公式分解因式得出答案.【解答】解:x2﹣4+4y2﹣4xy=x2+4y2﹣4xy﹣4=(x﹣2y)2﹣4=(x﹣2y+2)(x﹣2y﹣2).【点评】此题主要考查了分组分解法分解因式,正确运用公式是解题关键.50.(2022秋•宝山区期末)分解因式:m2﹣2m+1﹣4n2.【分析】先分组再利用平方差公式.【解答】解:m2﹣2m+1﹣4n2=(m﹣1)2﹣4n2=(m﹣1+2n)(m﹣1﹣2n).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.51.(2022秋•闵行区校级期中)因式分解:x2+9xy+18y2﹣3x﹣9y.【分析】先把多项式按三、二分组,再分别因式分解,最后提取公因式.【解答】解:x2+9xy+18y2﹣3x﹣9y=(x2+9xy+18y2)﹣(3x+9y)=(x+3y)(x+6y)﹣3(x+3y)=(x+3y)(x+6y﹣3).【点评】本题考查了整式的因式分解,掌握因式分解的提公因式和十字相乘法是解决本题的关键.题型13.分组分解法的灵活应用52.(2022秋•静安区校级期中)已知x2﹣x﹣3=0,那么x3﹣2x2﹣2x+2022=.【分析】根据x2﹣x﹣3=0,得出x2=x+3,代入求值即可.【解答】解:∵x2﹣x﹣3=0,∴x2=x+3,x3﹣2x2﹣2x+2022=x(x+3)﹣2x2﹣2x+2022=﹣x2+x+2022=﹣(x2﹣x﹣3)+2019=2019,故答案为:2019.【点评】本题主要考查因式分解的应用,熟练掌握因式分解是解题的关键.53.(2022秋•闵行区校级期中)已知a2﹣a﹣1=0,则代数式a3﹣2a+6=.【分析】根据已知条件得到a2﹣a=1,将要求的代数式化简得到a(a2+a)﹣a2﹣2a+6,两次代入求解即可.【解答】解:∵a2﹣a﹣1=0,∴a2﹣a=1,a3﹣2a+6=a3﹣a2+a2﹣2a+6=a(a2﹣a)+a2﹣2a+6=a+a2﹣2a+6=a2﹣a+6,将a2﹣a=1代入原式=1+6=7.故答案为:7.【点评】本题考查因式分解的应用,合理利用已知条件是关键.【方法三】成功评定法一、单选题1.(2022秋·上海·七年级上海市民办新复兴初级中学校考期中)如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.5【分析】根据平方差公式逐项分析即可.【详解】解:A.()()x y x y +-22x y =-,故能用平方差公式计算;B.()()x y x y +-+22y x =-,故能用平方差公式计算;C.()()x y x y -+-222()2x y x xy y =--=-+-,故不能用平方差公式计算;D.()()x y x y -+--22x y =-,故能用平方差公式计算;故选:C .【点睛】此题主要考查了乘法公式,熟练掌握公式是解答本题的关键.完全平方公式是()2222a b a ab b ±=±+;平方差公式是()()22a b a b a b +-=-.二、填空题三、解答题【分析】利用平方差公式进行因式分解即可得出答案.【详解】解:224691x y y +--()224961x y y =--+()22431x y --=()()231231x y x y =+--+.【点睛】此题主要考查因式分解,解题的关键是掌握利用平方差公式进行因式分解.22.(2022秋·上海·七年级阶段练习)因式分解:221218a b ab b -+【答案】22(3)b a -.【分析】先提公因式2b ,再利用完全平方公式即可【详解】解:原式()2269=-+b a a 22(3)=-b a .【点睛】本题考查了综合提公因式法和公式法分解因式,熟练掌握方法是解题的关键23.(2022秋·上海·七年级校考阶段练习)因式分解:()()2222225225m n m n ---【答案】()()()2221m n m n m n +-+【分析】直接利用平方差公式分解因式即可.【详解】原式()()2222222252255225m n m n m n m n =-+---+()()22227733m n m n =-+()()222221m n m n =-+()()()2221m n m n m n =+-+【点睛】本题考查了公式法分解因式,熟练应用平方差公式是解题关键.24.(2022秋·上海·七年级校考阶段练习)因式分解:()()2280x y y x ----【答案】()()810x y x y ---+【分析】利用十字相乘法分解因式即可.【详解】()()2280x y y x ----。

因式分解的典型例题

因式分解的典型例题

因式分解例题1、提取公因式常用的公式有:完全平方公式、平方差公式等例一:2x^2-3x=0解:x(2x-3)=0x1=0,x2=3/2总结:要发现一个规律就是:当一个方程有一个解x=a时,该式分解后必有一个(x-a)因式。

2、公式法常用的公式有:完全平方公式、平方差公式等注意:使用公式法前,建议先提取公因式。

例二:x^2-4分解因式分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2 解:原式=(x+2)(x-2)3、十字相乘法这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果例三:把2x^2-7x+3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数):2=1×2=2×1;分解常数项:3=1×3=3×1=(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:1 1╳2 31×3+2×1 =51 3╳2 11×1+2×3 =71 -1╳2 -31×(-3)+2×(-1) =-51 -3╳2 -11×(-1)+2×(-3) =-7经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解:原式=(x-3)(2x-1).总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:a1 c1╳a2 c2a1c2+a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2).4、分组分解法一般是把式子里的各个部分分开分解,再合起来例四:x^2+4x+4y^2-y^2可以看出,前面三项可以组成平方,结合后面的负平方,可以用平方差公式解:原式=(x+2)^2-y^2=(x+2+y)(x+2-y)总结:分组分解法需要前面的方法作基础。

第二章分解因式知识点总结及例题

第二章分解因式知识点总结及例题

学习必备欢迎下载第二章分解因式一 . 分解因式1.把一个多项式化成几个整式的积的形式 ,这种变形叫做把这个多项式分解因式 .2.因式分解与整式乘法是互逆关系。

因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式 ;(2)因式分解是把一个多项式化为几个因式相乘.二. 提公共因式法1.如果一个多项式的各项含有公因式 ,那么就可以把这个公因式提出来 ,从而将多项式化成两个因式乘积的形式 .这种分解因式的方法叫做提公因式法 .如 : ab ac a(b c)2.概念内涵 :(1)因式分解的最后结果应当是“积” ;(2)公因式可能是单项式 ,也可能是多项式 ;(3)提公因式法的理论依据是乘法对加法的分配律 ,即 :ma mb mc m(a b c)3.易错点点评 :(1)注意项的符号与幂指数是否搞错 ;(2)公因式是否提“干净” ;(3)多项式中某一项恰为公因式,提出后 ,括号中这一项为 +1,不漏掉 .三 . 运用公式法1.如果把乘法公式反过来 ,就可以用来把某些多项式分解因式 .这种分解因式的方法叫做运用公式法 .2.主要公式 :(1)平方差公式 : a2 b 2(a b)( a b)(2)完全平方公式 : a22ab b2(a b) 2 a 22ab b2( a b) 2补充:欧拉公式:a333 b c3abc( a b c)(a 222 b c ab bc ca)1(a b c)[(a b) 2(b c) 2(c a) 2 ]2特别地:( 1)当abc0 时,有 a 3b3 c 33abc( 2)当c0 时,欧拉公式变为两数立方和公式。

3. 因式分解要分解到底 .如x4y 4(x 2y2 )( x 2y2 ) 就没有分解到底.4.运用公式法 :(1)平方差公式 : ①应是二项式或视作二项式的多项式 ; ②二项式的每项 ( 不含符号 ) 都是一个单项式 ( 或多项式 ) 的平方 ; ③二项是异号 .(2)完全平方公式 :①应是三项式 ; ②其中两项同号 , 且各为一整式的平方 ;③还有一项可正负 , 且它是前两项幂的底数乘积的 2 倍.5.因式分解的思路与解题步骤 :(1)先看各项有没有公因式,若有 ,则先提取公因式 ;(2)再看能否使用公式法 ;(3)用分组分解法 ,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解 ;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.四. 分组分解法 :1.分组分解法 :利用分组来分解因式的方法叫做分组分解法 .如 : am an bm bn a(m n) b(m n) (a b)(m n)2.概念内涵 :分组分解法的关键是如何分组 ,要尝试通过分组后是否有公因式可提 ,并且可继续分解 ,分组后是否可利用公式法继续分解因式 .3.注意 : 分组时要注意符号的变化 .五 .十字相乘法 :1.对于二次三项式ax2bx c ,将a和c分别分解成两个因数的乘积, a a1 a2,a1c1c c1 c2,且满足 b a1c2a2 c1,往往写成a2 c 2的形式 ,将二次三项式进行分解 .如: ax2bx c(a1 x c1 )( a2 x c2 )2. 二次三项式x2px q 的分解:p a b q ab 3.规律内涵 :(1)理解 :把1a x2px q ( x a)( x b)1bx2px q 分解因式时,如果常数项q是正数 ,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同 .(2)如果常数项 q 是负数 ,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数 p 的符号相同 ,对于分解的两个因数 ,还要看它们的和是不是等于一次项系数 p.4.易错点点评 :(1)十字相乘法在对系数分解时易出错 ;(2)分解的结果与原式不等 , 这时通常采用多项式乘法还原后检验分解的是否正确.提公因式法1.把下列各式因式分解( 1)a 2 x m 2abx m 1acx m ax m 3( 2)a(a b)3a2(b a)2ab(b a)222.利用提公因式法简化计算过程例:计算987987987987 123268456521 13681368136813683.在多项式恒等变形中的应用2x y3例:不解方程组,求代数式 ( 2x y)(2x 3yx) 3 ( 2x y) 的值。

(经典)因式分解应用全题型总结

(经典)因式分解应用全题型总结

因式分解应用全题型总结(一)、简便运算:1、①、16.8×3215+7.6×1615 ②、39.82-2×39.8×49.8+49.82 ③、 200920081122⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭ = = =(二)、化简求值:2、已知(4x -2y -1)2+2-xy =0,求4x 3y -4x 2y 2+xy 3的值.(3)、已知133=+b a ,100=ab ,求22ab b a +的值.(4)、已知2=+b a ,求)(8)(22222b a b a +--的值(三)、整除:5、证明32000-4×31999+10×31998能被7整除6、求证:对于任意整数n,(2n+1)2-1一定能被8整除.(7)、证明:对于任意正整数n,223232n n n n ++-+-一定是10的倍数(四)、待定系数:8、若16)3(22+-+x m x 是完全平方式,则m=_______。

9、若949)7(22+-=-bx x a x ,则b a +的值为_______。

(10)、若多项式2x ax b ++可分解为(1)(2)x x +-,试求a b ,的值.(五)、应用题:11、已知a,b,c 为三角形三边的三条边,且222338102426a b c a b c +++=++,试判断△ABC 的形状.(12)、已知a,b,c 为三角形三边的条边,且2220a b c ab bc ac ++---=.试判断△ABC 的形状,并说明理由.(13)、已知串联电路的电压U =IR 1+IR 2+IR 3,当R 1=12.9, R 2=18.5, R 3=18.6, I=2.3时,求U 的值。

14、解方程:(25)(31)(23)(13)28x x x x +-++-=(六)、规律计算:15、 求(1-212)(1-213)(1-214)…(1-212012)(1-212013)的值。

初中数学因式分解法知识点(例题)

初中数学因式分解法知识点(例题)

初中数学因式分解法知识点(例题)
初中数学因式分解法知识点(例题)
因式分解的试题应用:
其实因式分解法就是把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式。

因式分解法
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8
(2) 2x2+3x=0
(3) 6x2+5x-50=0 (选学)
(4)x2-4x+4=0 (选学)
(1)解:(x+3)(x-6)=-8 化简整理得
x2-3x-10=0 (方程左边为二次三项式,右边为零)
(x-5)(x+2)=0 (方程左边分解因式)
∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5 x2=-2是方程的解。

x(2x+3)=0 (用提公因式法将方程左边分解因式)
∴x=0或2x+3=0 (转化成两个一元一次方程)
∴x1=0,x2=-3/2是原方程的解。

(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
∴2x-5=0或3x+10=0
∴x?=5/2, x?=-10/3 是原方程的解。

(4)解:x2-4x+4 =0
(x-2)(x-2 )=0
∴x1=x2=2是原方程的解。

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程通常有两个解。

《因式分解》知识梳理及经典例题

《因式分解》知识梳理及经典例题

《因式分解》知识梳理及经典例题【知识梳理】1.因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。

例:13ax +13bx =13x(a +b)因式分解,应注意以下几点。

1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。

2.因式分解的方法:(1)提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。

公因式:多项式的各项都含有的相同的因式。

公因式可以是一个数字或字母,也可以是一个单项式或多项式。

{系数——取各项系数的最大公约数字母——取各项都含有的字母指数——取相同字母的最低次幂例:12a 3b 3c −8a 3b 2c 3+6a 4b 2c 2的公因式是 .解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部分a 3b 3c,a 3b 2c 3,a 4b 2c 2都含有因式a 3b 2c ,故多项式的公因式是2a 3b 2c .②提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。

注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。

多项式中第一项有负号的,要先提取符号。

(2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

a.逆用平方差公式:a2−b2=(a+b)(a−b)b.逆用完全平方公式:a2±2ab+b2=(a±b)2c.逆用立方和公式:a3+b3=(a+b)(a2−ab+b2)(拓展)d.逆用立方差公式:a3−b3=(a−b)(a2+ab+b2)(拓展)注意:①公式中的字母可代表一个数、一个单项式或一个多项式。

因式分解小结(含答案)

因式分解小结(含答案)

因式分解小结【分类解析】1. 通过基本思路达到分解多项式的目的 例1. 分解因式x x x x x 54321-+-+-分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;也可把x x 54-,x x 32-,x -1分别看成一组,此时的六项式变成三项式,提取公因式后再进行分解。

解一:原式=-+--+()()x x x x x 54321=-+--+=--+=--+++x x x x x x x x x x x x x 32232221111111()()()()()()()解二:原式=()()()x x x x x 54321-+-+-=-+-+-=-++=-++-=--+++2x x x x x x x x x x x x x x x x x 4244222211111121111()()()()()()[()]()()()2. 通过变形达到分解的目的 例1. 分解因式x x 3234+- 解一:将32x 拆成222x x +,则有原式=++-=+++-=++-=-+x x x x x x x x x x x x 322222242222212()()()()()()()()解二:将常数-4拆成--13,则有原式=-+-=-+++-+=-++=-+x x x x x x x x x x x x 322221331113314412()()()()()()()()()3. 在证明题中的应用例:求证:多项式()()x x x 2241021100--++的值一定是非负数分析:现阶段我们学习了两个非负数,它们是完全平方数、绝对值。

本题要证明这个多项式是非负数,需要变形成完全平方数。

证明:()()x x x 2241021100--++=+---+=+---+=---++()()()()()()()()()()x x x x x x x x x x x x 223710027231005145610022设y x x =-25,则原式无论取何值都有的值一定是非负数=-++=-+=--≥∴--++()()()()()()y y y y y y y x x x 14610081644041021100222224. 因式分解中的转化思想例:分解因式:()()()a b c a b b c ++-+-+2333分析:本题若直接用公式法分解,过程很复杂,观察a+b ,b+c 与a+2b+c 的关系,努力寻找一种代换的方法。

专题研究因式分解总结归纳及典型例题

专题研究因式分解总结归纳及典型例题

分解因式专题突破第一部分:专题介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本专题在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.第二部分:知识总结1.定义:把一个多项式化成几个整式积的形式,叫做把这个多项式分解因式.2、注意事项因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。

(1)因式分解的对象是多项式:如把25a bc 分解成5a abc 就不是分解因式,因为25a bc 不是多项式;再如:把211x -分解为11(1)(1)x x+-也不是分解因式,因为211x -是分式,不是整式; (2)分解因式的结果必须是积的形式:如21(1)1x x x x +-=+-就不是分解因式,因为结果(1)1x x +-不是积的形式;(3)分解因式结果中每个因式都必须是整式,如:221(1)x x x x -=-就不是分解因式,因为21(1)x x-是分式,不是整式;(4)分解因式,必须进行到每一个因式都不能再分解为止;(5)公式中的字母可以表示单项式,也可以表示多项式;(6) 结果如有相同因式,应写成幂的形式;(7)题目中没有指定数的范围,一般指在有理数范围内分解;3、搞清分解因式与整式乘法的关系分解因式与整式乘法是两种相反方向的变形过程,即它们互为逆过程,互为逆关系,例如:()m a b c ++ ma mb mc ++ 因此,我们可以利用整式乘法来检验分解因式的结果是否正确.4、注意分解因式的一般步骤(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。

《因式分解》知识点归类及例题分析

《因式分解》知识点归类及例题分析

《因式分解》知识点归类及例题分析《《因式分解》知识点归类及例题分析》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一.知识概要:二.知识点精讲1.因式分解:就是把一个多项式化为几个整式的的形式.分解因式要进行到每一个因式都不能再分解为止.2.因式分解的方法:⑴,⑵,⑶,3.提公因式法:___________________.4.公式法:⑴⑵⑶.5.十字相乘法:.6.因式分解的一般步骤:一“提”(公因式),二“用”(公式),三“十字”(相乘).7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中的字母,不仅可以表示一个数,也可以表示一个单项式或一个多项式.三.例题分析与跟踪训练知识点1因式分解例1把多项式分解因式,下列结果正确的是 ()A.B.C.D.分析:利用整式乘法与因式分解是互逆运算的方法进行判定,也可以提公因式a后,用十字相乘法。

答案:A方法点拨:对于复杂多项式的因式分解,可以利用因式分解是整式乘法互逆运算的原理来判定多项式的因式分解是否正确.跟踪训练1:把分解因式,结果正确的是()A.B.C.D.知识点2提公因式法进行因式分解例2因式分解:_______________.分析:多项式中有公因式的,可以通过提取公因式的方法,进行因式分解。

答案:方法点拨:认真观察多项式,正确寻找到各项的公因式是解答此类问题的关键.跟踪训练2:分解因式:.知识点3用公式法进行因式分解例3在实数范围内因式分解= _____________.分析:观察多项式,发现其有平方差公式特点,所以可以使用平方差公式进行因式分解。

需要注意要将因式分解在实数范围内进行到底,且不可半途而废.答案:方法点拨:掌握平方差公式和完全平方公式特点,是解答此类问题的关键.跟踪训练3:下列因式分解错误的是()A.B.C.D.课外练习巩固一、分解因式:1.=2..3..4.(x+3)2-(x+3) ___________.5. .6.,.7.=__________.8..9.二、在三个整式中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解。

因式分解知识点总结及典型试题

因式分解知识点总结及典型试题

因式分解知识点总结及典型试题因式分解知识点总结及典型试题因式分解的总体思路如下:1.定项(以加减号为准,区分三项以下的和三项以上的两种因式分解)2.三项以下的要观察是否有公因式,有公因式先公因式提再分解。

3.三项以上的要分组,分组后再用公式法分解。

4.用公式法分解(如果是两项用平方差;三项用完全平方或十字相乘法)公因式的确定方法如下:各项中系数取最大公因数,相同字母取最低次幂,乘起来作为公因式。

下面是一些典型试题:1.分解因式m-ma2的结果是:A。

m(1+a)(1-a) B。

m(1+a)2 C。

m(1-a)2 D。

(1-a)(1+a)2.计算-(-2)2015的结果是:A。

B。

C。

- D。

3x3.把代数式ax2-4ax+4a分解因式,正确的结果是:A。

a(x-2)2 B。

a(x+2)2 C。

a(x-4)2 D。

a(x+2)(x-2)4.把代数式3x3-12x2+12x分解因式,正确的结果是:A。

3x(x-2)2 B。

3x(x-4)2 C。

3x(x+2)(x-2) D。

3x(x-2)5.多项式an-a3n+an+2分解因式的结果是:A。

an(1-a3+a2) B。

an(-a2n+a2) C。

an(1-a2n+a2) D。

an(-a3+an)6.代数式3(x+y)3-27(x+y)因式分解的结果正确的是:A。

3(x+y)(x+y+3)(x+y-3) B。

3(x+y)[(x+y)2-9] C。

3(x+y)(x+y+3)2 D。

3(x+y)(x+y-3)27.多项式x2-1与多项式x2-2x+1的公因式是:A。

x-1 B。

x+1 C。

x2-1 D。

(x-1)28.若ab=-3,a-2b=5,则a2b-2ab2的值是:A。

-15 B。

15 C。

2 D。

-89.+3xy2-9x2y的公因式是:A。

-3x B。

3xz C。

3yz D。

-3xy10.下面是两个代数式,它们的因式分解都需要用到公式法:(1) m(a-2)+n(2-a) (2) (y-x)2+2x-2y。

因式分解培优题型归纳总结完美

因式分解培优题型归纳总结完美

因式分解题型归纳总结知识梳理一、因式分解得定义:把一个多项式化成几个既约整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.二、因式分解常见形式:三、因式分解基本方法:“一提二代三分解”是因式分解的三种常见基本解法,“提”指的是提取公因式法,“代”指的是公式法(完全平方公式,平方差公式,立方差和立方和公式,三项完全平方公式),“分解”指的是分组分解的方法.①提取公因式法几个整式都含有的因式称为它们的公因式.例如:()2+4+6=2+2+3ma mb mc m a b c把每项的公因式,包括数和字母全部提出,当然有的时候把一个式子看成一个整体.②公式法因为因式分解和整式的乘法是互逆的,所以说常见的乘法公式要特别熟悉.平方差公式:()()a b a b a b 22+-=-完全平方公式:()a b a ab b 222+=+2+;()a b a ab b 222-=-2+ 立方差公式:()()a b a ab b a b 2233-++=- 立方和公式:()()a b a ab b a b 2233+-+=+三项完全平方公式:()a b c a b c ab ac bc 2222++=+++2+2+2完全立方公式:()a b a a b ab b 33223+=+3+3+ ;()a b a a b ab b 33223-=-3+3- 大立方公式:()()a b c abc a b c a b c ab ac bc 333222++-3=++++--- n 次方差公式:1221()()nnn n n n a b a b aa b ab b -----=-++++(n 为正整数) n 次方差差公式:1221()()nnn n n n a b a b a a b ab b ----+=+-+-+(n 为正奇数)③分组分解法一般地,分组分解大致分为三步:i .将原式的项适当分组;ii .对每一组进行处理(“提”或“代”); iii .将经过处理的每一组当作一项,再采用“提”或“代”进行分解. 四、十字相乘法五、双十字相乘法双十字相乘法的本质与十字相乘法是一致的,它一般适用于二元二次六项式或可视为于二元二次六项式的多项式的因式分解,双十字相乘法的步骤:对于形如Ax 2+Bxy +Cy 2+Dx +Ey +F 的多项式的因式分解,基本步骤是: (1)运用十字相乘法分解前三项组成的二次三项式;(2)在这个十字相乘图的右边再画一个十字,把常数项分解为两个因数,填在第二个十字的右端,使这两个因数与含y 的项的交叉之积的和等于原多项式中含y 的一次项Ey ,同时这两个因数与含x 的项的交叉之积的和等于原多项式中含x 的一次项Dx . 六、换元法如果在多项式中某个数或式子多次出现,那么可将这个数或式子用一个字母代替,这样做常常使多项式变得更为简单,结构更加清晰,从而易于发现因式. (1)整体换元(2)和积换元 七、主元法在对含有多个未知数的代数式进行因式分解时,可以选其中的某一个未知数为主元,把其他未知数看成是字母系数进行因式分解. 八、拆项和添项法1、拆项:把代数式中的某项拆成两项或几项的代数和,叫做拆项.2、添项:在代数式中添加两个相反项,叫做添项. 九、待定系数法将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式.然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法,其实质就是对于含有待定系数的恒等式,利用恒等概念和恒等定理,采用系数比较法或数值代入法. 如果两个多项式恒等,则左右两边同类项的系数相等.即,如果n n n n n n n n n n n n a x a x a x a x a b x b x b x b x b -1-21-1-21-1-210-1-210+++++=+++++恒成立,那么n n a b =,n n a b -1-1=,…,a b 11=,a b 00=.待定系数法的使用前提是知道所需要求的代数式的形式,根据代数式的形式把不确定的部分设为未知数,然后通过比较系数得到方程,进而求解. 十、余数定理与因式定理法1、余数定理:多项式f (x )除以x -c ,所得的余数为f (c ).2、因式定理:若多项式f (x )有一个因式x -c ,则f (c )=0;反之,若f (c )=0,则x-a 必为多项式f (x )的一个因式.3、整数系数多项式f (x )=a n x n +a n -1x n -1+…+a 1x +a 0的两个性质:性质1:设整数系数多项式f (x )的首项系数a n =1,且它有因式x -p (p 为整数),那么p 一定是常数项a 0的约数.例如x 2-2x -8的首项系数是1,它有因式x +2和x -1,-2和4都是常数项-8的约数. 性质2:设整数系数多项式f (x )的首项系数a n ≠1,且它有因式p x q -(pq为整数),那么q 一定是首项系数a n 的约数,p 一定是常数项a 0的约数. 例如,6x 3+x 2-1的首项系数a n =6不为1,它有因式12x -,不难看出分母2是a n =6的约数,分子1是常数项-1的约数.例如:分解因式:x x 3-3+2.观察可知,当x =1时,x x 3-3+2=0,则()x x x A 3-3+2=-1,其中A 为整式,即()x -1是多项式x x 3-3+2的一个因式.若要确定整式A ,则可用大除法.x x x x x x x x x x x x x x 2323222+-2-1+0⋅-3+2--3--2+2-2+2∴()()()()()()()x x x x x x x x x x 322-3+2=-1+-2=-1-1+2=-1+2.题型一 因式分解的定义例题1: 下列因式分解正确的是( ) A .()()()a b a b a b a b 2222-4+4=-4-4=-4+2-2 B .()m m m m 323-12=3-4C .()x y x y x y x y 422224-12+7=4-3+7D .()()m m m 24-9=2+32-3解析:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式因式分解。

初中因式分解典型例题汇总(附答案)

初中因式分解典型例题汇总(附答案)

初中因式分解典型例题汇总(附答案)初中因式分解典型例题汇总例1 多项式x +ax+b因式分解为(x+1)(x-2),求a+b的值.分析根据因式分解的概念可知因式分解是一种恒等变形,而恒等式中的对应项系数是相等的,从而可以求出a 和 b,于是问题便得到解决.解2 2由题意得:x +ax+b=(x+1)(x-2),所以22x +ax+b=x -x-2,从而得出 a=-1,b=-2,所以 a+b=(-1)+(-2)=-3.点评“恒等式中的对应项系数相等”这一知识是求待定系数的一种重要方法.例2 分析解点评因式分解 6a b+4ab -2ab.此多项式的各项都有因式2ab,提取2ab 即可.6a b+4ab -2ab=2ab(3a+2b-1).用“提公因式法”分解因式,操作时应注意这样几个问题:首2 2 2 2先,所提公因式应是各项系数的最大公约数与相同字母最低次幂的乘积,即提取的公因式应是多项式各项的最高公因式,否则达不到因式分解的要求;其次,用“提公因式法”分解因式,所得结果应是:最高公因式与原多项式各项分别除以最高公因式所得商式的乘积.如果原多项式中的某一项恰是最高公因式,则商式为 1,这个 1 千万不能丢掉.本例题中,各项的公因式有 2,a,b,2a,2b,ab,2ab 等.其中 2ab 是它们的最高公因式,故提取 2ab.作为因式分解后的一个因式,另一个因式则是分别用 6a b,4ab 和-2ab除以 2ab所得的商式代数和,其中-2ab÷2ab=-1,这个-1 不能丢.例3 分析因式分解 m(x+y)+n(x+y)-x-y.将-x-y 变形为-(x+y),于是多项式中各项都有公因式 x+y,提2 2取 x+y 即可.解 m(x+y)+n(x+y)-x-y=m(x+y)+n(x+y)-(x+y) =(x+y)(m+n-1).点评例4 分析3注意添、去括号法则.因式分解 64x -1. 64x 可变形为(8x ) ,或变形为(4x ) ,而 1 既可看作 1 ,也可6 3 2 2 3 2 6看作1 ,这样,本题可先用平方差公式分解,也可先用立方差公式分解.解6方法一3 264x -1=(8x ) -1 =(8x +1)(8x -1) =[(2x) +1][(2x) -1] =(2x+1)(4x -2x+1)(2x-1)(4x +2x+1) 方法二2 23 3 3 364x -1=(4x ) -1 =(4x -1)(16x +4x +1) =(2x+1)(2x-1)(16x +8x +1-4x ) =(2x+1)(2x-1)[(4x +1) -(2x) ] =(2x+1)(2x-1)(4x +2x+1)(4x -2x+1) 点评在分解因式时,尽管采用的方法不同,但结果应是相同的.本2 2 2 2 2 4 2 2 2 4 262 3题的两种解法,显然第一种方法比较简单.点评分解因式时,应首先考虑各项有没有公因式,如果有公因式,一定先提公因式,然后再考虑能否用其它方法继续分解.本题如果先提 2,应如何分解?例6 分析因式分解(x+y) -6(x+y)+9.可将x+y 当作一个整体,此多项式便是关于这个整体的二次三2项式,显然它可用完全平方公式分解.解 (x+y) -6(x+y)+92 2 2=(x+y) -2×3×(x+y)+3 =(x+y-3) .点评2在运用公式分解因式时,一定要掌握公式的特点,尤其要注意完全平方公式中一次项系数的特点.例7 分析因式分解x +6x-7.这个二次三项不符合完全平方公式的特点,首先,二次项与常2数项不同号,其次,常数项的绝对值不是一次项系数一半的平方,所以不能直接用公式分解,但经过适当的变形后,便可用公式分解.另外,这样的二次三项式可用十字相乘法分解.解2方法一2 2x +6x-7=x +6x+9-9-7=(x+3) -16 =(x+3+4)(x+3-4)=(x+7)(x-1) 方法二 x +6x-7=(x+7)(x-1)2点评方法一叫配方法.用配方法分解二次三项式时,其前提是二次项系数为 1(如果二次项系数不是 1,则提取这个系数,使二次项系数转化为 1);其关键是,加上紧接着减去一次项系数绝对值一半的平方,这样便达到配方的目的.在用十字相乘法分解二次三项式时,主要考虑的是十字相乘后的代数和应是一次项.例8 分析因式分解 3x -7x-6.本题二次项系数不是 1,如果用配方法分解,则应首先提取二2次项系数3,然后再加、减一次项系数一半的平方;如果用十字相乘法分解,既要考虑好首尾两项的分解,更要考虑到十字相乘后的代数和应是中间项(即一次项).解方法一方法二3x -7x-6=(3x+2)(x-3).2点评用十字相乘法分解因式,在排列算式时,应想到同行不应有公因式(如本题二次项所分出的 3x与常数项所分出的 3 不能放在同行,只能与分解出的另一个因式 2 放在同行)这是因为,如果同行有公因式,此公因式在开始分解时就应提出.掌握这一点会简化操作过程.从上述两例可以明显看出,在有理数范围内分解二次三项式ax +bx+c用十字相乘法比较方便,但随着数的范围的扩大,就看出配方法的重要了.于是便出现这样的问题:在分解二次三项式ax +bx+c 时,何时用公式法?何时用十字相乘法?何时用配方法?我们可用b -4ac的结果来判别: b -4ac=0 时,用完全平方公式分解; b -4ac>0 且是一个完全平方数时,用十字相乘法分解;b -4ac>0 但不是完全平方数时,用配方法分解;在有理数范围内和将来学到的实数范围内都不能分解. b -4ac<0 时,至于为什么可用b -4ac的结果来作上述判断,这个问题在今后的学习中会得到解决.2 2 2 2 2 2 2 2例9 分析因式分解2ax-10ay+5by-bx.用分组分解法.可将一、二两项和四、三两项分别作为一组,这样不仅每组可分解,而且确保继续分解.解2ax-10ay+5by-bx=2ax-10ay-bx+5by =(2ax-10ay)-(bx-5by) =2a(x-5y)-b(x-5y) =(x-5y)(2a-b).点评本题还可以一、四两项一组,二、三两项一组,但不能一、三项和二、四项分组,可见分组要恰当.分组是否恰当,以能否达到因式分解的目的为标准.所以,分组后各组系数成比例则是恰当分组的重要条件.例 10 因式分解:2 2(1)x -2xy+y -1 分析(2)x -2y-y -122这两小题都不能平均分组,因为平均分组后,各组系数不可能成比例,从而达不到因式分解的目的,但经过观察可知,如果将(1)题前三项和第四项分组,将(2)题第一项和后三项分组,则可先用完全平方公式继而用平方差公式将其分解.解2(1)x -2xy+y -1222=(x -2xy+y )-1 =(x-y) -1=(x-y+1)(x-y-1) (2)x -2y-y -1=x -y -2y-12 2 2 2 2=x -(y +2y+1) =x -(y+1) =(x+y+1)(x-y-1) 点评在分解四项式时,也应首先考虑是否有公因式,如果有,要先2 222提公因式然后再考虑分组,在分组时,又有两两分组、一三分组和三一分组三种不同分法,这就需要做到具体问题具体分析.对某些特殊的四项式也可直接用完全立方公式分解,即a ±3a b+3ab ±b =(a± b) .对五项式或五项以上的多项式也采用分组分解法.例 11 分析因式分解x +4xy+3y +x+3y.本题的前三项可以分解为(x+y)(x+3y),其中(x+3y)正好与后2 23 3 2 2 3两项完全一样,所以本题作三二分组,问题便得到解决.解2x +4xy+3y +x+3y222=(x +4xy+3y )+(x+3y) =(x+y)(x+3y)+(x+3y) =(x+3y)(x+y+1).例 12 因式分解:2 2(1)a +2ab+b +2a+2b+1,(2)a +2ab+b +2a+2b-3,(3)a +3ab+2b +2a+b-3.分析这三道题都不能平均分组,经观察,它们都可以三二一分组,2 2 2 2分组后,(1)题可经过两次完全平方公式分解,(2)题可经过一次公式和一次十字相乘分解,而(3)题则可经过两次十字相乘分解.解(1)a +2ab+b +2a+2b+12 2=(a +2ab+b )+(2a+2b)+1 =(a+b) +2(a+b)+1=(a+b+1) .(2)a +2ab+b +2a+2b-3 =(a +2ab+b )+(2a+2b)-3 =(a+b) +2(a+b)-3 =(a+b+3)(a+b-1).2 2 2 2 2 2 222(3)a +3ab+2b +2a+b-3 =(a +3ab+2b )+(2a+b)-3 =(a+b)(a+2b)+(2a+b)-3 =(a+b-1)(a+2b+3).2 222例 132已知 4x +4xy+y -4x-2y+1=0,求证:2222x +3xy+y -x-y=0 分析要证明一个多项式的值为零,通常是将此多项式分解因式.若分解后的因式中有一个值为零,则原多项式的值为零.经过分组分解,可知 2x +3xy+y -x-y=(x+y)(2x+y-1),若x+y或 2x+y-1 为零,则原多项式的值为零.为达此目的,就要从条件入手.证明因为4x +4xy+y -4x-2y+1=0,所以2 2 2 2 2(2x+y) -2(2x+y)+1=0, (2x+y-1) =0.所以22x+y-1=0.又因为 2x +3xy+y -x-y=(x+y)(2x+y-1).而 2x+y-1=0,所以2x +3xy+y -x-y=0.例14 已知3x -4xy-7y +13x-37y+m能分解成两个一次因式的乘积,2 2 2 2 2 2求m的值.并将此多项式分解因式.分析根据因式分解的概念和乘法法则可知,原多项式所分解得的两个因式必然都是三项式,而原多项式的前三项可分解为(3x-7y)(x+y),于是可设原多项式分解为(3x-7y+a)(x+y+b),再根据恒等式中的对应项系数相等,便能使问题得到解决.解设3x -4xy-7y +13x-37y+m2 2=[(3x-7y)+a][(x+y)+b] =3x -4xy-7y +(a+3b)x+(a-7b)y+ab.对应项系数相等,所以2 2由(1)(2)解得 a=-2,b=5.将 a=-2,b=5 代入(3),得m=-10,所以 3x -4xy-7y +13x-37y+m2 2=3x -4xy-7y +13x-37y-10 =(3x-7y+a)(x+y+b) =(3x-7y-2)(x+y+5).例 15 分析已知|x-3y-1|+x +4y =4xy,求x与y的值.在通常情况下,由一个方程求两个未知数的值,条件是不够的,2 222但在特殊条件下又是可行的,这“特殊条件”包括非负数的和等于零的性质.本题已有一个明显的非负数,即|x-3y-1|,而另一个非负数可由因式分解得到.于是问题能够解决.解因为|x-3y-1|+x +4y =4xy,所以2 2 2 2|x-3y-1|+x -4xy+4y =0 即|x-3y-1|+(x-2y) =0 所以2解这个方程组,得 x=-2,y=-1.例 16 因式分解:4 4(1)x +4y ;分析(2)x +5x-6.3这两个多项式既无公因式可提,也不能直接用公式或直接分组2 2 2 2分解.经过观察:(1)题若加上 4x y ,随之减去 4x y ,这样既保证多项式的值不变,又可先用完全平方公式继而用平方差公式分解. 2)(题如果将 5x拆成-x+6x便可分组分解.或者,将-6 拆成-1-5 也可分组分解.解2(1)x +4y =x +4x y +4y -4x y2 2 24442 242 2=(x +2y ) -(2xy)2 2 2=(x +2xy+2y )(x -2xy+2y ).(2)x +5x-6=x -x+6x-6 =(x -x)+(6x-6) =x(x+1)(x-1)+6(x-1) =(x-1)(x +x+6) 点评例 17 分析若将-6 拆成-1-5,应如何分解?已知x -2xy-3y =5,求整数x和y的值.原式左端可分解为两个一次因式的乘积,由题意可知,这两个2 2 23 3 32因式都表示整数,这样只能是一个因式为1(或-1),而另一个因式为 5(或-5).于是便可列出方程组求出 x 和 y 的值.解因为x -2xy-3y =5,所以2 2(x-3y)(x+y)=5.依题意 x,y 为整数,所以 x-3y 和 x+y 都是整数,于是有:解上述方程组得:例 18已知 A=(x+2)(x-3)(x+4)(x-5)+49(x 为整数),求证:A 为一个完全平方数.证明2因为 A=(x+2)(x-3)(x+4)(x-5)+492=(x -x-6)(x -x-20)+49 =(x -x) -26(x -x)+169 =(x -x-13)2 2 2 2 2所以 A 是一个完全平方数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分解因式专题突破第一部分:专题介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本专题在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.第二部分:知识总结1.定义:把一个多项式化成几个整式积的形式,叫做把这个多项式分解因式.2、注意事项因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。

(1)因式分解的对象是多项式:如把25a bc 分解成5a abc 就不是分解因式,因为25a bc 不是多项式;再如:把211x -分解为11(1)(1)x x+-也不是分解因式,因为211x -是分式,不是整式; (2)分解因式的结果必须是积的形式:如21(1)1x x x x +-=+-就不是分解因式,因为结果(1)1x x +-不是积的形式;(3)分解因式结果中每个因式都必须是整式,如:221(1)x x x x -=-就不是分解因式,因为21(1)x x-是分式,不是整式;(4)分解因式,必须进行到每一个因式都不能再分解为止;(5)公式中的字母可以表示单项式,也可以表示多项式;(6) 结果如有相同因式,应写成幂的形式;(7)题目中没有指定数的范围,一般指在有理数范围内分解;3、搞清分解因式与整式乘法的关系分解因式与整式乘法是两种相反方向的变形过程,即它们互为逆过程,互为逆关系,例如:()m a b c ++ ma mb mc ++ 因此,我们可以利用整式乘法来检验分解因式的结果是否正确.4、注意分解因式的一般步骤(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。

即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;❖ 分解因式必须分解到每个多项式不能再分解为止.为了便于记忆请同学们记住以下“顺口溜”:“分解因式并不难,首先提取公因式,然后考虑用公式,两种方法反复试,结果必是连乘积”,请同学们还要注意“反复试”的目的,就一直分解到每个因式都不能再分解为止,然后检查分解因式的结果是否正确,也可以简记为“一提二公三查”.第三部分:方法介绍1.提公因式法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而把多项式化成两个整式乘积的形式,这种分解因式的方法叫提公因式法.这种方法实质上是逆用乘法分配律.要正确应用提公因式法,必须注意以下几点:(1)准确找出多项式中各项的公因式,方法如下:首先公因式的系数是多项式中各项系数的最大公约数;其次字母取各项中都含有的;相同字母的指数取次数最低的,如:多项式 222291812x y x y x y z -+,各项系数的最大公约数是3,各项中都含有的字母是,,x y z ,x 的指数取最低的2,y 的指数取最低的1因此公因式是23x y .(2)如果多项式首项是“-”号,一般应先提出“-”号,使括号内的第一项的系数是正的;在提出“-”号时,多项式的各项都要变号,如:2222279(279)x y xy x y xy -+=--=9(3)xy x y --.(3)当某项全部提出后,剩下的是1,而不是0,如:2(1)m mn m m m n +-=+-,而不能发生2()m mn m m m n +-=+的错误.分解因式整式乘法专项训练一、把下列各式分解因式。

1、nx ny -2、2a ab +3、3246x x -4、282m n mn +5、23222515x y x y -6、22129xyz x y -7、2336a y ay y -+8、259a b ab b -+9、2x xy xz -+- 10、223241228x y xy y --+ 11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +- 13、3222315520x y x y x y +- 14、432163256x x x --+专项训练二:把下列各式分解因式。

1、()()x a b y a b +-+2、5()2()x x y y x y -+-3、6()4()q p q p p q +-+4、()()()()m n P q m n p q ++-+-5、2()()a a b a b -+-6、2()()x x y y x y ---7、(2)(23)3(2)a b a b a a b +--+ 8、2()()()x x y x y x x y +--+9、()()p x y q y x --- 10、(3)2(3)m a a -+-11、()()()a b a b b a +--+ 12、()()()a x a b a x c x a -+---13、333(1)(1)x y x z --- 14、22()()ab a b a b a --+-15、()()mx a b nx b a --- 16、(2)(23)5(2)(32)a b a b a b a b a ----- 17、(3)(3)()(3)a b a b a b b a +-+-- 18、2()()a x y b y x -+-19、232()2()()x x y y x y x ----- 20、32()()()()x a x b a x b x --+--2.运用公式法把乘法公式反过来,就可以用来把某些多项式分解,这种分解因式的方法叫运用公式法.(1)平方差公式22()()a b a b a b -=+-,即两个数的平方差,等于这两个数的和与这两个数的差的积运用平方差公式,应注意:①熟记公式特征:公式的右边是这两个二项式的积,且这两个二项式有一项完全相同,另一项互为相反数,公式的左边是这两项的平方差,且是左边相同的一项的平方减去互为相反数的一项的平方.②注意公式中字母的广泛含义,即可以表示单项式,也可以表示多项式,如: 22()()[()()][()()]2(2)4x y x y x y x y x y x y x y xy --+=-++--+=-=-(其中x y -相当于公式中的a ,x y +相当于公式中的b ).(2)完全平方公式2222()a ab b a b ±+=±,即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.运用平方差公式,应注意:①熟记公式特征:右边是两数和(或差)的平方,左边是前平方(2a )、后平方(2b )、二倍之积在中央(ab 2±).②注意公式中字母的广泛含义,即可以表示单项式,也可以表示多项式,如: 222()4()4[()2](2)x y x y x y x y ---+=--=--,(其中x y -相当于公式中的a ,2相当于公式中的b ).③结果的符号应与第二项符号相同.❖ 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2)(a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3)(a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4)(a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2).(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例1.把下列各式分解因式:(1)x 2-4y 2 (2)22331b a +- (3)22)2()2(y x y x +-- (4)24)x y (y)-4(x --例2.把下列各式分解因式:(1) 442-+-x x (2) 323x 6x 3x -+-(3) 215103102+-p p (4)22259251216.0y xy x +- 因式分解(运用公式法): (1)11622-b a(2)8144-y x (3)22)2()2(y x y x +-- (4)36122+-x x(5)4202522++ab b a (6)m m 321912-+ (7)()()122++++b a b a (8)22264)48(x x --(9)()()22224y x y x --+ (10)32244y y x xy -- (11)69222-z y x (12)()()96222+-+-x x x x (13)()()142-+-+n m n m (14)3212123a a a -+- 3、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

相关文档
最新文档