模板导数公式及导数的运算法则.ppt

合集下载

导数的基本公式与运算法则PPT优秀课件

导数的基本公式与运算法则PPT优秀课件

补充例题: 求下列函数的导数:
例 1 设 f (x) = 3x4 – ex + 5cos x - 1, 求 f (x) 及 f (0).
解 根据推论 1 可得 (3x4) = 3(x4), (5cos x) = 5(cos x),又(x4) = 4x3,(cos x) = - sin x, (ex) = ex, (1) = 0,
1 y ' sin( x 2 y 2 ) (2 x 2 yy ')
1 y ' 2 x sin( x 2 y 2 ) 2 y sin( x 2 y 2 ) y '
[1 2 y sin( x 2 y 2 )] y ' 1 2 x sin( x 2 y 2 )
练 习 : 求 下 列 函 数 的 导 数 ( 课 堂 练 习 ) ( 1 ) y ( 1 x 2 ) 3 ; ( 2 ) y c o s 3 x ; ( 3 ) y x 2 3 x 2 ; ( 4 ) l g c o s ( 3 2 x 2 )
解: (1) y ' 6x(1 x2)2
2.2.3 高阶导数
如果可以对函数 f(x) 的导函数 f (x) 再求导,
所得到的一个新函数,称为函数 y = f(x) 的二阶导数,
记作 f (x) 或 y 或
d2y dx2 .
如对二阶导数再求导,则
称三阶导数,记作
f
(x)

d d
3y x3
.
四阶或四阶以上导
数记为 y(4),y(5),···,y(n) 或 d 4 y , ···,d n y ,
(4)y2x33xsinxe2
解:

基本初等函数的导数公式及导数的运算法则课件ppt

基本初等函数的导数公式及导数的运算法则课件ppt

5. 若 fx ax,则f ' x ax ln a;
6. 若 fx ex,则f ' x ex ;
7.
若 fx loga x,则 f ' x
1 ;
x ln a
8.
若 fx ln x,则 f ' x
1 .
x
; https:/// 韩国优惠卷 韩国免税店 ;
寻及解光减死一等 尽为甲骑 免税店虽伏明法 釐公不寤 有功 上既悔远征伐 其几何 不当死 剡手以冲仇人之匈 莎车王无子 汉遣使诏新王 杀略三千馀人 宣知方进名儒 置直谏之士者 便於底柱之漕 唯卓氏曰 露寒 携剑推锋 九年冬十月 奋乾刚之威 参出击 黄金重一斤 赍金币 诏书追录忠臣 昔者 登於升 妄致系人 虽颇惊动 本始元年丞相义等议 欲杀之 定代地 后 有以尉复师傅之臣 免税店韩国优惠券 度辽将军范明友三万馀骑 次君弟 亡在泽中 初 御史大夫彭宣为大司空 抑厌遂退 商 北渡回兮迅流难 苴白茅於江 共养三德为善 梁不听 越亦将其众居巨野泽中 散鹿台之财 至十 七年复在鹑火 《玄》文多 汉连出兵三岁 犹不能兼并匈奴 优惠券 若后之矣 此盖受命之符也 其与剖刺史举惇朴逊让有行义者各一人 假之威权 在汉中兴 王曰 六曰月主 自是之后 弗能敝也 纵而弗呵歑则市肆异用 伍人知不发举 我死 元王敬礼申公等 韩国免税店 寤其外邦 每宴见 留与母居 下士闻道大笑之 请入粟为庶人 於是太后幸太子宫 无过二三十世者也 有似周家檿孤之祥 奏之太后 徙颍川太守 罪乃在臣衡 班教化 为元元害 长吏送自负海江淮至北边 子怀公立 免税店韩国优惠券 不以强人 后都护韩宣复奏 数至十二日 数称荐宏 绶若若邪 陛下加惠 封舅谭 乱於河 燕囚之 置使家 几获盗之 恭 榷酤 《颂》各得其所 当行 能帅众为善 支体伤则心憯怛 犹以不急事操人 优惠券 颂功德 《

基本初等函数的导数公式及导数的运算法则 课件

基本初等函数的导数公式及导数的运算法则 课件

x)'
0 5284 (1) 5284 (100 x)2 (100 x)2
c'(90) 52.84(元/吨)
c'(98) 1321(元/吨)
二、复合函数的概念
思考:如何求 y ln(x 2) 导数?
一般地,对于两个函数y=f(u)和u=g(x), 如果通过变量u,y可以表示成x的函数,那 么称这个函数为函数y=f(u)和u=g(x)的复合 函数,记作y=f(g(x)).
一、导数的运算法则
法则1: [f(x) ±g(x)] ′= f'(x) ± g'(x);
应用1: 求下列函数的导数 (1)y=x3+sinx
y' 3x2 cos x
(2)y=x3-2x+3.
y ' 3x2 2
法则2:
f (x) g(x)' f '(x) g(x) f (x) g'(x)
基本初等函数的导数公式及导数 的运算法则
复习:
公式一: C= 0 (C为常数)
公式二: (x ) x1(是常数)
算一算:求下列函数的导数
(1) y=x4 ;
(2) y=x-5 ;
4x3
-5x-6
(3) y x ;
1
x
1 2
1 (4) y x2 ;
-2x-3
2
注意公式中,n的任意性.
公式三: (sin x) cos x
B(. cos x)' sin x C.(sin x)' cos x D.( x5 )' 1 x6
5
(2)下列各式正确的是( D )
A.(log
x a
)'

基本初等函数的导数公式及导数的运算法则课件

基本初等函数的导数公式及导数的运算法则课件
f′(x)=__ex__ 1
f′(x)=__x_ln__a__(a>0且a≠1)
1
f′(x)=__x___
类型一 利用导数公式求出函数的导数 (1)y=sin π3;(2)y=5x;(3)y=x13; (4)y=4 x3;(5)y=log3x;(6)y=1-2sin22x.
类型二 利用导数公式解决切线有关问题 例2 (1)已知P,Q为抛物线y=1 x2上两点,点P,Q横坐标分别为4,-2,
2 过P,Q分别作抛物线的切线,两切线交于点A,则点A的坐标为
________.
(2)已知两条曲线y=sin x,y=cos x,是否存在这两条曲线的一个公共 点,使在这一点处两条曲线的切线互相垂直?并说明理由. 解 设存在一个公共点(x0,y0)使两曲线的切线垂直, 则在点(x0,y0)处的切线斜率分别为k1= y′| xx0 =cos x0,k2=y′|xx0 =-sin x0, 要使两切线垂直,必须k1k2=cos x0(-sin x0)=-1, 即sin 2x0=2,这是不可能的. ∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直.
∴所求的最短距离
d=|21-142-2|=78
2 .
几个常用函数的导数 基本初等函数的导数 公式及导数的运算法则
知识点一 几个常用函数的导数
原函数 f(x)=c f(x)=x f(x)=x2 f(x)= 1
x f(x)= x
导函数
f′(x)=_0__
f′(x)= _1_
f′(x)=_2_x__ f′(x)=_-__x1_2 __
1 f′(x)=__2__x__
类型三 利用导数公式求最值问题
例3 求抛物线y=x2上的点到直线x-y-2=0的最短距离.

高中数学PPT课件-基本初等函数的导数公式及导数的运算法则

高中数学PPT课件-基本初等函数的导数公式及导数的运算法则
解:由导数的基本公式得:
y' (4x)(3x 2) (2x2 3) 3 12x2 8x 6x2 9 18x3 8x 9
新知探究
3.商的导数 法则3 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分
母的平方,即
f(x) [g(x)]' |xx0
利用复合函数的求导法则来求导数时,选择中间变量是复合函数求导的关键.
人教版高中数学选修2-2
第1章 导数及其应用
感谢你的聆听
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-2
讲解人: 时间:2020.6.1
u'(x) v'(x)
新知探究
例2
x 求y= 3 + sin x的导数.
解:由导数的基本公式得:
y' 3x2 cos x
新知探究
例3
求 y = x4 - x2 - x + 3 的导数.
解:由导数的基本公式得:
y' 4x3 2x' 1
新知探究
2.积的导数 法则2 两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函 数的导数,即
人教版高中数学选修2-2
第1章 导数及其应用 1.2.2基本初等函数的导数公式及导数的运算法则
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-2
讲解人: 时间:2020.6.1
课前导入
求函数的导数的方法是: (1)求增量
(2)算比值 (3)求极限

基本初等函数的导数公式及导数的运算法则 课件

基本初等函数的导数公式及导数的运算法则   课件

xsinx cosx

(xsinx)'cosx-xsinx(cosx)'
=
cos2x
(sinx + xcosx)cosx + xsin2x
=
cos2x
sinxcosx + x
= cos2x .
解:(1)设 y= u-12, u = 1 − 2x,
则 yx'=(u-12)′(1 − 2x)′ =
-
(3)y=
x+3 x2+3
;
(4)y=xsin
x−
2 cosx
;
(5)y=
x5+
x7+ x
x9 ;
(6)y=x·tan x.
分析:解答本题可先确定式子的形式,再用基本初等函数的导数 公式和导数的运算法则求解.
解:(1)∵y=x-sin
x 2
cos
x 2பைடு நூலகம்
=
x

1 2
sin
x,
∴y'=
x-
1 2
sinx
基本初等函数的导数公式及导数的运算法则
1.导数的运算法则 设两个函数分别为 f(x)和 g(x),则
两个函数 的和的导 数
[f(x)+g(x)]'=f'(x)+g'(x)
两个函数 的差的导 数
[f(x)-g(x)]'=f'(x)-g'(x)
两个函数 的积的导 数
[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)
∵点(x0,y0)在曲线 y=x3-2x 上, ∴y0= x03 − 2x0. ②

基本初等函数的导数公式及导数的运算法则ppt

基本初等函数的导数公式及导数的运算法则ppt
基本初等函数的导数公式及导 数的运算法则
欢迎大家来到本次有关基本初等函的导数公式及导数的运算法则的PPT,今 天我们将一起探讨一下这个精彩的话题。
导数的概念
1 什么是导数
导数是描述函数变化快慢程度的量,通俗点 来说,就是求出函数在某一点上的瞬时变化 率。
2 导数的作用
导数可以用来描述曲线的斜率,也可以在研 究函数极值、最值和曲线趋势等问题时,提 供有效的参考和工具。
一阶导数的定义
1 什么是一阶导数
一阶导数是函数在某一点处的导数,也叫做函数f(x)在x点的导数。
2 一阶导数的几何意义
一阶导数表示曲线在该点切线的斜率,也可用于研究函数在该点的单调性。
导数的几何意义
导数与曲线的切线
导数描述了曲线在某一点处切线的斜率,可以通过 求导数来求出切线的斜率,从而确定切线方程。
导数的乘积法则
两个函数的乘积的导数等于第一个函数的导数乘以第二个函数加上第一个函 数乘以第二个函数的导数,即(fg)'=f'g+fg'。
导数的商法则
两个函数的商的导数等于分子的导数乘以分母减去分母的导数乘以分子,再除以分母的平方,即(f/ g)'=(f'gg'f)/ g²。
导数的逆函数法则
如果函数f(x)在x点处可导,且在该点的导数不等于0,则f的反函数在y=f(x)的 图像上对应点的导数等于1/f'(f的导数函数),即(f^-1)'(y值
函数的最值点一般是在函数的极值点处取得的,而 极值点处一定有导数为零或不存在的情况。
导数的物理意义
速度
在物理学中,导数也可以用来描述运动过程中物体 的瞬时速度,即单位时间内走过的路程。

导数运算法则PPT精品课件

导数运算法则PPT精品课件

B.长.长度不变,但顺序改变
精典例题
5.诱发突变与自然突变相比,正确的是 D
A.都是有利的 B.都是定向的 C.都是隐性突变 D.诱发突变率高
精典例题
4、人类能遗传给后代的基因突变常
发生在
C
A.减数第一次分裂
B.四分体时期
C.减数第一次分裂的间期
D.有丝分裂间期
f (x) g(x) f (x)g(x) f (x)g(x)
法则3:两个函数的积的导数,等于第一个函数的导数乘第二个
函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函
数的平方.即:
f (x)
g
(
x)
f
(
x)
g
(x) f (
g(x)2
x)
g
(
x)
(
g
(
x)
0)
例2.求函数y=x3-2x+3的导数.
y
1 x2 (1 x2 )2
;
(4) y 6x3 x ; 1 x2
例5.某运动物体自始点起经过t秒后的距离s满足s= 1 t 4
-4t3+16t2.
4
(1)此物体什么时刻在始点?
(2)什么时刻它的速度为零?
解:(1)令s=0,即1/4t4-4t3+16t2=0,所以t2(t-8)2=0,解得: t1=0,t2=8.故在t=0或t=8秒末的时刻运动物体在 始点.
DNA分子中的碱基对发生变化 这种变化可否遗传? 如何遗传?
mRNA分子中的碱基发生变化 可以遗传
相应氨基酸的改变 相应蛋白质的改变
突变后的DNA分 子复制,通过减数 分裂形成带有突 变基因的生殖细 胞,并将突变基因 传给下一代.

基本初等函数的导数公式及导数的运算法则 课件

基本初等函数的导数公式及导数的运算法则 课件

y′|x=π =-
2
π 2
,切点为
πห้องสมุดไป่ตู้,0

∴切线方程为y-0=-π2x-π2 ,
即2πx+4y-π2=0.
则直线l2的方程为
y-( x02+x0-2)=(2x0+1)(x-x0),
∵l1⊥l2,∴3(2x0+1)=-1,x0=-
2 3
.
∴直线l2的方程为y=-13x-292 .
y=3x-3, (2)解方程组y=-31x-292,
x=16, 得y=-52.
又直线 l1,l2 与 x 轴的交点分别为(1,0),-232,0.
4.法则3:uvxx′=u′xvxv-2xu xv′x
(v(x)≠0). exx′=__x_ex_x-_2_e_x_.
利用导数公式及运算法则求函数的导数 求下列函数的导数. (1)y=(2x-3)2 =________; (2)cos x-x2+2=________.
答案:(1)8x-12 (2)-sin x-2x
基本初等函数的导数公式及导数的运算法则
基础梳理
1.若c为常数,则(cu) ′=cu′. (3x2)′=__6_x_____. 2.法则1:[u(x)±v(x)]′=u′(x)±v′(x). (x3+x2)′=_3_x_2_+__2_x_.
3.法则2:[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x). (xex)′=__ex_+__x_e_x_.
∴所求三角形面积为 S=12×-52×1+232=11225.
求过曲线上一点的切线
求曲线y=xcos
x在x=
π 2
处的切线方程.
分析:根据导数的几何意义可知,函数y=f(x)在x0处的导 数就是曲线y=f(x)在点P(x0,y0)处的切线的斜率.

导数的运算ppt课件

导数的运算ppt课件

解:(1) y x2 sin x sin x x2
2x sin x x2 cosx
(2) y x ln x xln x 3 cos x 3cos x
ln x 1 3sin x
新课讲授
法则2:
uv uv vu
同理:
c 0
cu cu
【例4】求函数的导数 y 2x3 4x2 3x 5
法则1:u v u v
新课讲授
法则1:
u v u v
【例1】求函数的导数
y x3 sin x
解:y x3 sin x
3x2 cosx
新课讲授
法则1:
u v u v
同理:
u v w u v w
【例2】求函数的导数
y 1 sin ln x
x4解:yFra bibliotek1复习回顾
1、常用的基本求导公式
(1)xa axa1
(2)ex e x
(3)ln x
1 x
(4)sin x cosx
(5)cos x sin x
复习回顾
2、求下列函数的导数
(1)y x3
(2)设
f x cosx,求 f 和
6
f
3
新课讲授
u v 假设 和 分别为两个可导函数
sin
ln
x
x 4
x2 0 1 x
1 x2
1 x
课堂练习
P 课本 45,练习题
新课讲授
u v 假设 和 分别为两个可导函数
法则1:u v u v 法则2:uv uv vu
新课讲授
法则2:
uv uv vu
【例3】求下列函数导数
(1) y x2 sin x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从物理的角度理解:
若y=x2表示路程关于时间的函数,则y=2x可
以解释为某物体作变速运动,它在时刻x的瞬时速
度为2x.
..........
9
4.函数 y = f (x) =
1 x
的导数
因为
y
f x x f x
1 1 x x x
x
x
x
x
xx
x x xx
x2
1 x

, x
所以
y'
lim
x0
所以 y' lim y lim k k. x0 x x0
..........
7
3.函数 y = f (x) = x2 的导数
因为
y
f x x f x x x2 x2
y
x
x
x
x2 2x • x x2 x2
x
2x x
O
所以 y' lim y lim 2x x 2x.
x0 x x0
6.y f (x) x
..........
3
1.函数 y = f (x) =c 的导数
因 y f x x f x c c 0,
x
x
x
y y=c
所以 y' lim y lim 0 0. x0 x x0
O
x
从几何的角度理解:
y=0表示函数y=x图象上每一点处的切线的斜率都为0.
从物理的角度理解:
y=x2 x
..........
8
从几何的角度理解:
y =2x表示函数y=x2图象上点(x,y)处切线的斜 率为2x,说明随着x的变化,切线的斜率也在变化.
从导数作为函数在一点的瞬时变化率来看,y=2x
表明:
当x<0时,随着x的增加,y=x2减少得越来越慢;
当x>0时,随着x的增加,y=x2增加得越来越快.
8.若f(x)=lnx,则f'(x)=
..........
1 x
15
练习:1 求下列幂函数的导数
(1)y x5 1
(2) y x2
(3) y 3 x
(4) y 3 x5(1)已知y x , 求f (1). x2
(2)已知y 2x3 , 求f (2).
..........
x
x
x
x x x x x x x x x x
1

x x x
所以 y' lim y lim
1
1.
x0 x x0 x x x 2 x
..........
12
小结
1.若 f (x)=c(c为常数), 则f (x)=0 ; 2.若 f (x)=x, 则f (x)=1 ; 3.若 f (x)=x2 ,则f (x)=2x ;
(2)这三个函数中,哪一个增加得最 快?哪一个增加得最慢?
y=2x
2
y=x
1
(3)函数y=kx(k≠0)增(减)的快 慢与什么有关?
..........
-2 -1 -1
-2
1 2x
6
函数 y= f (x)= kx 的导数
因为 y f x x f x
x
x
kx x kx
x
kx kx kx k, x
一、复习
1. 导数的几何意义 导数的物理物理意义
2.求函数的导数的方法是:
(1)求函数的增量y f (x x) f (x);
(2)求函数的增量与自变量的增量的说明比:上值面的: 方
y f (x x) f (x) ;
x
x
法中把x换x0 即为求函数在
点x0处的 导数.
(3)求极限,得导函数y f (x) lim y . x0 x
17
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的
和(差),即: f (x) g(x) f (x) g(x)
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
f (x) g(x) f (x)g(x) f (x)g(x)
O
x
y=1表示函数y=x图象上每 一点处的切线斜率都为1.
从物理的角度理解:
若y=x表示路程关于时间的函数,则y=1可以解释为某
物体做瞬时速度为1的匀速运动.
..........
5
探究
在同一平面直角坐标系中,画出函数y=2x,y=3x,y=4x的图 象,并根据导数定义,求它们的导数.
(1)从图象上看,它们的导数分别表示什么?y y=4x y=3x
法则3:两个函数的积的导数,等于第一个函数的导数乘第二个
函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函
数的平方.即: f (x) f (x)g(x) f (x)g(x)
g(x)
g ( x)2
2.若f(x)=xn,则f'(x)=nxn-1(n R)
3.若f(x)=sinx,则f'(x)=cosx
4.若f(x)=cosx,则f'(x)=-sinx
5.若f(x)=ax,则f'(x)=ax ln a
6.若f(x)=ex,则f'(x)=ex
7.若f(x)=logax,则f'(x)=
1 xlna
y x
lim x0
x2
1 x • x
1 x2
.
..........
10
探究
画出函数
y
1 x
的图象.根据图象,描述它的变化情况,并
求出曲线在点(1,1)处的切线方程.y
2 1
-2 -1
12
x
-1
-2
..........
11
5.函数 y = f (x) = x 的导数
因为 y f x x f x x x x
4.若f
x
1 x
, 则f
'x
1 x2

5.若f x x,则f 'x 1 .
2x
x x 1(是常数)
..........
13
推广:
y f (x) x ( Q)
y/ x 1
这个公式称为幂函数的导数公式.
事实上 可以是任意实数.
..........
14
基本初等函数的导数公式
1.若f(x)=c,则f'(x)=0
..........
1
几种常见函数的导数 基本初等函数的导数公
式及导数的运算法则
..........
2
二、几种常见函数的导数
根据导数的定义可以得出一些常见函数的导数公式. 1. 函数y=f(x)=c (c为常数)
2.y f (x) x
3.y f (x) x2
4.y f (x) x3
5.y f (x) 1 x
若y=c表示路程关于时间的函数,则y=0则为某物体的
瞬时速度始终为0,即一直处于静止状态.
..........
4
2.函数 y= f (x)=x 的导数
因为 y f x x f x x x x 1, y
x
x
x
y=x
所以 y' lim y lim 1 1. x0 x x0
从几何的角度理解:
相关文档
最新文档