学案巧用旋转进行证明与计算.doc

合集下载

专题提升(15) 巧用旋转进行证明与计算31页文档

专题提升(15) 巧用旋转进行证明与计算31页文档
专题提升(15) 巧用旋转进行证明与计

21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉Байду номын сангаас 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根

旋转在几何计算、证明中的运用

旋转在几何计算、证明中的运用

旋转在几何计算、证明中的运用一、旋转在解三角形中的应用(一)正三角形类型在正ΔABC 中,P 为ΔABC 内一点,将ΔABP 绕A 点按逆时针方向旋转600,使得AB 与AC 重合。

经过这样旋转变化,将图(1-1-a )中的PA 、PB 、PC 三条线段集中于图(1-1-b )中的一个ΔP'CP 中,此时ΔP'AP也为正三角形。

例.1. ..如图:(....1.-.1.):设...P .是等边...Δ.ABC ...内的一点,.....PA=3....,. PB=4....,.PC=5....,∠..APB ...的度数是....________........... 练习,二等腰直角三角形类型在等腰直角三角形ΔABC 中, ∠C=Rt ∠ , P 为ΔABC 内一点,将ΔAPC 绕C 点按逆时针方向旋转900,使得AC 与BC 重合。

经过这样旋转变化,在图(3-1-b )中的一个ΔP' CP 为等腰直角三角形。

1.如图1所示,P 是等边三角形ABC 内的一个点,PA=2,PB=32,PC=4,求△ABC 的边长。

例2.如图,在ΔABC 中,∠ ACB =900,BC=AC ,P 为ΔABC 内一点,且PA=3,PB=1,PC=2。

求∠ BPC 的度数。

11.如图,在△ABC中,∠C=90°,AC=BC ,M 、N 是斜边AB 上的点,且∠MCN=45°,AM=3,BN=5,则MN= .三、旋转在正方形中的运用类比练习:如图,在△ABC 中,∠BAC=90°,AB=AC ,D 是BC 上的任意一点,求证:BD 2+CD 2=2AD 2.D CBA例.如图4,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转能与'CBP 重合,若PB=3,求'PP 的长。

如图5, P 是正方形ABCD 内一点,且满足PA :PD :PC=1:2:3,则∠APD= .图5、家庭作业1(青岛市)如图,P 是正三角形 ABC 内的一点,且PA =6,PB =8,PC =10.若将△PAC 绕点A 逆时针旋转后,得到△P'AB ,则点P 与点P' 之间的距离为多少,∠APB ?2、如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD = 2,将腰CD 以D 为中心逆时针旋转90°至DE ,连接AE 、CE ,△ADE 的面积为3,则BC 的长为 .3如图,E 、F 分别是正方形ABCD 的边BC 、CD 上一点,且BE +DF =EF ,求∠EAF 、4、如图,有边长为1的等边三角形ABC 和顶角为120°的等腰△DBC ,•以D 为顶点作∠MDN=60°角,两边分别交AB 、AC 于M 、N 的三角形,连结MN ,(1)、求证MN=BM+CN ;(2)、试说明△AMN 的周长为2.(3)、若M,N 分别在AB,CA 的延长线上,则(1)中结论还成立吗?如果不成立,MN,BM,CN 又满足什么关系?A B C D 图9CA5如图,已知正方形ABCD ,点E 、F 分别在BC 、CD 上,且AE=BE+FD ,请说出AF 平分∠DAE 的理由。

旋转的计算与证明

旋转的计算与证明

旋转的计算与证明旋转是几何学中非常重要的一个概念,它可以用来描述物体绕一些中心轴或中心点旋转的过程。

在计算与证明旋转相关的问题时,我们需要使用到一系列的数学工具和方法。

本文将从旋转的定义开始,逐步介绍旋转的计算与证明过程。

旋转的定义旋转可以定义为平面上一个点或一个物体绕一些中心点或中心轴旋转的过程。

旋转可以使点或物体的位置、形状或方向发生变化。

旋转可以分为顺时针旋转和逆时针旋转两种。

旋转的中心旋转的中心可以是平面上的一个点或一个物体。

以点为中心进行旋转时,可以通过计算旋转中心与待旋转点之间的距离和角度来确定旋转后的新位置。

以物体为中心进行旋转时,可以通过计算物体自身的几何信息(例如边界点、顶点等)和旋转角度来确定旋转后的新形状。

旋转的角度旋转的角度通常用弧度来表示。

弧度是一种角度的计量单位,定义为角度所对应的弧长与半径的比值。

旋转的角度可以是正值、负值或零。

旋转的方向旋转的方向可以是顺时针或逆时针。

顺时针旋转是指从从正方向看旋转的物体顺时针方向旋转;逆时针旋转是指从从正方向看旋转的物体逆时针方向旋转。

在计算旋转时,需要根据具体的问题条件确定旋转的方向。

点的旋转是指一个点绕旋转中心进行旋转。

点的旋转可以通过以下公式进行计算:x' = x * cos(θ) - y * sin(θ)y' = x * sin(θ) + y * cos(θ)其中,(x,y)为原始点的坐标,(x',y')为旋转后点的坐标,θ为旋转角度。

物体的旋转是指一个物体绕旋转中心进行旋转。

物体的旋转可以通过以下步骤进行计算:1.将物体的每个点(顶点或边界点)的坐标通过点的旋转公式计算旋转后的位置。

2.根据计算得到的新位置,重新构建物体的形状。

旋转的证明旋转的证明可以通过使用向量和矩阵的方法进行推导。

以下是旋转的一般证明方法:1.定义旋转矩阵旋转矩阵是一个正交矩阵,用于描述旋转的变换。

旋转矩阵可以通过旋转角度来确定,其中旋转角度可以是弧度或角度。

利用旋转的基本性质进行几何证明

利用旋转的基本性质进行几何证明

利用旋转的基本性质进行几何证明利用旋转的基本性质进行几何证明正方形滚动一周,就是滚动四个90°角。

如滚动第一个90°时,A点所经过的路线长是以点C为圆心、AC长为半径的-圆周长,此时A点滚动到了A1点(D点滚动到了D1点);滚动第二个90°时,其路线长是以点D1为圆心、A1D1长为半径的-圆周长,此时A1点滚动到了A2点的位置;滚动第三个90°时,由于以点A2为圆心,此时A2点的位置未变(B2点滚动到了B3点);滚动第四个90°时其长是以点B3为圆心、B3C3长为半径的-圆周长,此时A3点滚动到了A4点的位置。

∴A点滚动一周经过的路线长为:-2π8-+-2π8+0+-2π8=(4-+8)π,当正方形滚动两周时,正方形顶点A所经过的路线的长等于(8-+16)π。

[思维延伸2]:如图2,将边长为1的正方形OAPB沿x轴正方向连续翻转2019次,点P依次落在P1、P2、P3、P4…P2019的位置,则P2019的横坐标为_______。

[解析]∵正方形沿x轴正方向连续翻转4次正好翻转了一周∴翻转2019次就是翻转了502周。

从P点经过的路线可以看出,在每个周期内,P点相应的沿着x轴的正方向移动了4个单位长度∴正方形OAPB沿x轴正方向连续翻转2019次后P点向前移动了4502=2019个单位长度∴P点的横坐标为-1+2019=2019。

例6.如图6所示,已知在△ABC中,∠ACB=90°,AC=BC,P 是△ABC内一点,且PA=3,PB=1,PC=2,求∠BPC的度数。

[解析]可先将△APC绕点C按逆时针方向旋转90°到△BEC 的位置,由旋转的性质知,此时△CPE是等腰直角三角形,∠CPE=45°,在△BPE中,由勾股定理逆定理可证出∠BPE=90°,由此可求出∠BPC的度数。

[全解]将△AP C绕点C按逆时针方向旋转90°到△CBE的位置,连结PE ∴△APC≌△BEC ∴EC=PC=2,EB=PA=3,△CPE 是等腰直角三角形∵PC=2,∠CPE=45°∴PE=2-,在△BPE 中∵(2-)2+12=32,即PE2+PB2=BE2 ∴△BPE为Rt△,∠BPE=90°∴∠BPC=∠CPE+∠BPE=45°+90°=135°[思维延伸1]如图已知,在等边三角形ABC内有一点M,且MA=3,MB=4,MC=5,求等边三角形ABC的面积。

学案巧用旋转进行证明与计算

学案巧用旋转进行证明与计算

【教材母题】已知等边三角形ABC(如图Z15-1).(1)以点A为旋转中心,将△ABC按逆时针方向旋转30°,作出旋转后的图形;(2)经第(1)题旋转所得的图形与△ABC之间有没有互相垂直的边?证明你的判断.【思想方法】旋转前、后的图形全等,所以借此可以在较复杂的图形中发现等量(或全等)关系,或通过旋转(割补)图形,把分散的已知量聚合起来,便于打通解题思路,疏通解题突破口.【中考变形】1.如图Z15-2,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE 与BD交于点O,AE与CD交于点G,AC与BD交于点F,连结OC,FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确结论的个数是( )A.1 B.2 C.3 D.4图Z15-22.如图Z15-3,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,则P′A∶PB=(A.1∶ 2 B.1∶2C.3∶2 D.1∶ 3图Z15-33.如图Z15-4,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于点F,BD分别交CE,AE于点G,H.试猜想线段AE和BD的位置及数量关系,并说明理由.图Z15-44.如图Z15-5,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.图Z15-5图Z15-65.[2015·南充]如图Z15-6,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,22,10,△ADP 沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l上,如图Z15-7,他连结AD,CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图②,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图③,请你求出CF的长.。

解题技巧专题:巧用旋转进行计算或证明

解题技巧专题:巧用旋转进行计算或证明

解题技巧专题:巧用旋转进行计算或证明——体会旋转中常见解题技巧◆类型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度1.(2016·合肥校级模拟)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC于点F,则∠BAC的度数为()A.60°B.85°C.75°D.90°第1题图第2题图第3题图2.(2016·株洲中考)如图,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到△A′B′C.若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为________.4.如图,P是正三角形ABC内的一点,且P A=5,PB=12,PC=13,若将△P AC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.◆类型二利用旋转结合特殊三角形判定、性质或勾股定理求长度或证明5.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=6,则AD的长为() A.2 B.3 C.2 3 D.3 26.如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是________.7.(2016·娄底中考)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=α度时,判定四边形A1BCE的形状,并说明理由.◆类型三利用旋转计算面积8.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是()A.2-1B.2+1C. 2D. 3第8题图第9题图9.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则△DCE的面积为________.【方法3】参考答案与解析1.B 解析:∵△ABC 绕点A 逆时针旋转得到△ADE ,∴∠C =∠E =70°,∠BAC =∠DAE .∵AD ⊥BC ,∴∠AFC =90°,∴∠CAF =90°-∠C =90°-70°=20°,∴∠DAE =∠CAF +∠EAC =20°+65°=85°,∴∠BAC =∠DAE =85°.2.B3.90° 解析:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,∴∠BAB ′=∠CAC ′=120°,AB =AB ′,∴∠AB ′B =12(180°-120°)=30°.∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′-∠C ′AB ′=120°-30°=90°.4.解:连接PP ′.∵△ABC 为等边三角形,∴AB =AC ,∠BAC =60°.∵△P AC 绕点A 逆时针旋转后,得到△P ′AB ,∴∠P ′AP =∠BAC =60°,AP ′=AP ,BP ′=CP =13,∴△AP ′P 为等边三角形,∴PP ′=AP =5,∠APP ′=60°.在△BPP ′中,∵PP ′=5,BP =12,BP ′=13,∴PP ′2+BP 2=BP ′2,∴△BPP ′为直角三角形,∠BPP ′=90°,∴∠APB =∠APP ′+∠BPP ′=60°+90°=150°.即点P 与点P ′之间的距离为5,∠APB 的度数为150°.5.D 解析:在Rt △ABC 中,AB =AC 2+BC 2=62+62=62,则AB ′=AB =6 2.在Rt △B ′AD 中,∠B ′AD =180°-∠BAC -∠BAB ′=180°-45°-75°=60°.则AD =AB ′·cos ∠B ′AD =62×12=3 2. 6.2+6 解析:连接AM ,由题意,得CA =CM ,∠ACM =60°,∴△ACM 为等边三角形,∴AM =CM ,∠MAC =∠MCA =∠AMC =60°.∵∠ABC =90°,AB =BC =2,∴AC =CM =2 2.∵AB =BC ,CM =AM ,∴BM 垂直平分AC ,∴BO =12AC =2,OM =CM ·sin60°=6,∴BM =BO +OM =2+ 6.7.(1)证明:∵△ABC 是等腰三角形,∴AB =BC ,∠A =∠C .∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴A 1B =AB =BC ,∠A =∠A 1=∠C ,∠A 1BD =∠CBC 1.在△BCF 与△BA 1D 中,⎩⎪⎨⎪⎧∠A 1=∠C ,A 1B =BC ,∠A 1BD =∠CBF ,∴△BCF ≌△BA 1D ; (2)解:四边形A 1BCE 是菱形.理由如下:∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴∠A 1=∠A .∵∠ADE =∠A 1DB ,∴∠AED =∠A 1BD =α,∴∠DEC =180°-α.∵∠C =α,∴∠A 1=α,∴∠A 1BC =360°-∠A 1-∠C -∠A 1EC =180°-α,∴∠A 1=∠C ,∠A 1BC =∠A 1EC ,∴四边形A 1BCE 是平行四边形.∵A 1B =BC ,∴四边形A 1BCE 是菱形.8.A 解析:连接AE ,∵四边形ABCD 为正方形,∴AB =BC =1,且∠B =90°,∠D ′CE =45°,由勾股定理得AC =12+12= 2.由题意,得AD ′=AB =1,∠AD ′E =90°,∴D ′C =2-1,∠D ′EC =∠D ′CE =45°,∴D ′E =D ′C =2-1,∴S △D ′EC =12(2-1)2=32-2,∴S 阴影=S △ABC -S △D ′EC =12×1×1-⎝⎛⎭⎫32-2=2-1. 9.1547 解析:由旋转的性质得△ACE ≌△ABD ,∴AE =AD =5,CE =BD =6,∠DAE =60°,∴DE =5.作EH ⊥CD 垂足为H .设DH =x .由勾股定理得EH 2=CE 2-CH 2=DE 2-DH 2,即62-(4-x )2=52-x 2,解得x =58,∴DH =58.由勾股定理得EH =DE 2-DH 2=52-⎝⎛⎭⎫582=1587,∴△DCE 的面积=12CD ·EH =1547.。

【导学案】2 与旋转有关的证明导学案及答案

【导学案】2 与旋转有关的证明导学案及答案

2 图形的旋转第2课时与旋转有关的证明【学习目标】1.简单平面图形旋转后的图形的作法.2.确定一个三角形旋转后的位置的条件.重点:类比平移与旋转的异同,掌握旋转的定义和基本性质. 寻找旋转中心.难点:探索旋转的性质,掌握旋转中的定点和旋转角.按旋转角相等作图.【学习策略】1.通过画图,进一步培养学生的动手操作能力.2.对具有旋转特征的图形进行观察、分析、画图过程中,进一步发展学生的审美观念. 【学习过程】一、巧设情境问题,引入课题1.下列一组图形变换属于旋转变换的是()2.大家来看一面小旗子(出示小旗子,然后一边演示一边叙述),把这面小旗子绕旗杆底端旋转90°后,这时小旗子的位置发生了变化,形成了新的图案,你能把这时的图案画出来吗?在原图上找了四个点,即O点、A点、B点、C点,如图(教师把该生所画的图在投影上放影)这四个点是表示这面小旗子的关键点.因为旋转前后两个图形的对应点到旋转中心的距离相等,对应点与旋转中心的连线所组成的旋转角彼此相等,所以根据已知:要把这面小旗绕O点按顺时针旋转90°.我在方格中找到点A,B,C的对应点A′,B′,C′,然后连接,就得到了所求作的图形.二、新课学习观察操作、探索归纳旋转的作法⑴观察、作图先利用多媒体逐一演示点、线段、多边形的旋转,再让学生观察、动手画图 点的旋转:(以单摆为模型,并将此抽象为“点的旋转”)操作①:试着找一找如图A 点绕O 点顺时针旋转30°后所在的位置A ’线段的旋转:操作②:试着画一画线段AB 绕O 点逆时针旋转90°后所得的线段(O 点在线段外)多边形的旋转:操作③:试着画△ABC 绕O 点逆时针旋转60°后所得的三角形⑵例题讲评、规范作图例1 如图,△ABC 绕O 点旋转后,顶点A 的对应点为点D ,试确定顶点B ,C 对应点的位置,以及旋转后的三角形.分析:一般作图题,在分析如何求作时,都要先假设已经把所求作的图形作出来,然后再根据性质,确定如何操作.BABOAOA假设顶点B,C的对应点分别为点E,点F,则∠BOE,∠COF,∠AOD都是旋转角.△DEF 就是△ABC绕点O旋转后的三角形.根据旋转的性质知道:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,即旋转角相等,对应点到旋转中心的距离相等,则∠BOE=∠COF=∠AOD,OE=OB,OF=OC,这样即可求作出旋转后的图形.解:(1)连接OA,OD,OB,OC.(2)如下图,分别以OB、OC为一边作∠BOE、∠COF,使得∠BOE=∠COF=∠AOD.(3)分别在射线OE、OF上截取OE=OB、OF=OC.(4)连接EF,ED,FD.△DEF,就是△ABC绕O点旋转后的图形.本题还有没有其他作法,可以作出△ABC绕O点旋转后的图形△DEF吗?1.可以先作出点B的对应点E,连接DE,然后以点D、E为圆心,分别以AC、BC为半径画弧,两弧交于点F,连接DF,EF,则△DEF就是△ABC绕点O旋转后的图形.2.也可以先作出点C的对应点F,然后连接DF.因为△ABC与△DEF全等,所以既可以用两边夹角,也可以用两角夹边,找到点B的对应点E,即△DEF.确定一个三角形旋转后的位置的条件为:(1)三角形原来的位置. (2)旋转中心. (3)旋转角.这三个条件缺一不可.只有这三个条件都具备,我们才能准确地找到一个三角形绕点旋转后的位置,进而作出它旋转后的图形.三、尝试应用:1.在下列图案中,不能由一个图形通过旋转而构成的是()2.1.如图,三角板ABC中,∠ACB=90°,∠A=30°,AB=16 cm,将三角板ABC绕直角顶点C逆时针旋转,当起始位置时的点B恰好落在边A1B1上时,BB1的长是.3.如图,△AEC经旋转后与△BFD重合,确定图中的旋转中心和旋转角,指出图中相等的线段和相等的角.四、自主总结:本节课我们通过作平面图形旋转后的图形,进一步理解了旋转的性质,并且还知道要确定一个三角形旋转后的位置,需要有:①此三角形原来的位置.②旋转中心.③旋转角等三个条件.在作图时,要正确运用直尺和圆规,进而准确作出旋转后的图形.要注意语言的表达.五.达标测试一.选择题(共3小题)1.将△ABC旋转至△ADE,则下列说法错误的是()A.旋转中心是点AB.对应线段相等C.对应线段平行D.对应角相等2.如图所示,AF⊥BD于点O,△ABC与△DEF都是等腰三角形,AB=AC,DF=DE,BC=EF,AB=ED.下列说法正确的是()A.△DEF由△ABC绕O逆时针旋转90°得到B.△DEF由△ABC绕O顺时针旋转90°得到C.△DEF由△ABC绕O顺时针旋转60°得到D.△DEF由△ABC绕O顺时针旋转120°得到3.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B'处,此时,点A的对应点A'恰好落在BC边的延长线上,下列结论错误的是()A.∠BCB'=∠ACA'B.∠ACB=2∠BC.∠B'CA=∠B'ACD.B'C 平分∠BB'A'二.填空题(共3小题)4.如图所示,△ABC 与△ADE 都是等腰直角三角形,∠C 和∠AED 都是直角,点E 在AB 上,如果△ABC 经旋转后能与△ADE 重合,那么旋转中心是 ,旋转角的度数是 .5.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD 的度数是 .6.如图,△ABE 和△AC D 都是等边三角形,△EAC 旋转后能与△ABD 重合,EC 与BD 相交于点F ,求∠DFC =________.A DCBEF三.解答题(共3小题)7.如图所示,已知△ABC 顶点A ,B ,C 的坐标分别是A (-1,1),B (-4,-3),C (-4,-1).(1)将△ABC 绕原点O 按顺时针方向旋转90°后得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点A 1的坐(2)将△ABC绕原点O按逆时针方向旋转180°得到△A2B2C2,并说明△A2B2C2是怎样由△A1B1C1得到的.8.如图所示,正方形ABCD绕O点旋转后,顶点A的对应点为A1,试确定顶点B,C,D的对应点的位置,以及旋转后的正方形.9.如图所示的是两个边长为a的正方形,让一个正方形的顶点在另一个正方形的中心上,此时重叠部分的面积为a2,现把其中一个正方形ABCD固定不动,另一个正方形EFGH绕中心E 旋转,则在旋转过程中,两个正方形重叠部分的面积是否发生变化?请说明理由.参考答案2 .图形的旋转第2课时尝试应用:1.C2.8cm3.解:旋转中心为EF的中点M,旋转角度为180°;相等的线段有:AC=BD,CE=DF,AE=BF,AF=BE;相等的角有:∠A=∠B,∠AEC=∠BFD,∠C=∠D.达标测试答案:一.选择题(共3小题)1. C2. B3. C二.填空题(共3小题)4. 点A 45°5. 60°6. 60°解析:因为△AEC旋转后能与△ABD重合,根据旋转图形的特征,图形中的每一点都旋转了相同的角度,即图形中的边也旋转了相同的角度.又因为△AEC绕点A逆时针旋转60°可与△ABD重合.则EC同样旋转了60°,则BD与EC交角∠DFC=60°.三.解析题(共3小题)7.解:(1)如图所示,A1(-1,1).(2)如图所示,△A2B2C2是由△A1B1C1绕点O顺时针旋转90°得到的.8.解:(1)连接OA,OA1,OB,OC,OD.(2)如图,分别以OB,OC,OD为一边作∠BOB1,∠COC1,∠DOD1,使得∠BOB1=∠COC1=∠DOD1=∠AOA1.(3)分别在射线OB1,OC1,OD1上截取OB1=OB,OC1=OC,OD1=OD.(4)连接B1C1,C1D1,D1A1,A1B1,正方形A1B1C1D1即为所求.9.解:在旋转过程中,两个正方形重叠部分的面积没有变化,还是a2.连接EC,EB,则S△EBC=a2.∵∠BEC=∠FEH=90°,∴∠CEH=∠BEF.又EB=EC,∠EBC=∠ECD=45°,∴△EBM≌△ECN.∴S△EBM=S△ECN.∴S四边形EMCN=S△EMC+S△ECN=S△EMC+S△EBM=S△EBC=a2.。

专题提升(15) 巧用旋转进行证明与计算

专题提升(15) 巧用旋转进行证明与计算

(十五)巧用旋转进行证明与计算人教版九上P63习题第10题)如图,△ABD,△AEC都是等边三角形.BE与DC有什么关系?你能用旋转的性质说明上述关系成立的理由吗?【思想方法】旋转前、后的图形全等,借此可以在较复杂的图形中发现等量(或全等)关系,或通过旋转(割补)图形,把分散的已知量聚合起来,便于疏通解题思路,找出解题突破口.1.[2020·中考预测]如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,有以下结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④PQ∥AC.其中结论正确的有()A.1个B.2个C.3个D.4个2.[2019·北京]如图,已知∠AOB=30°,H为射线OA上一定点,OH=3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.3.[2018·烟台]【问题解决】一节数学课上,老师提出了一个这样问题:如图①,点P是正方形ABCD内一点,PA=1,PB=2,PC=3,你能求出∠APB的度数吗?小明他通过观察、分析、思考,形成了如下思路:思路一:将△PBC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP′B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图②,若点P是正方形ABCD外一点,PA=3,PB=1,PC=11,求∠APB的度数.①②如图,在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状,并加以证明;(3)如图③,在(2)的条件下,连接DE,若∠DEC=45°,求α的值.参考答案【教材母题】BE=DC,理由略【中考变形】 1.D2.(1)略(2)略(3)OP=2,证明略.3.【问题解决】∠APB=135°,解答过程略【类比探究】∠APB=45°【中考预测】(1)∠ABD=30°-12α(2)△ABE为等边三角形,证明略(3)30°。

10解题技巧专题巧用旋转进行计算

10解题技巧专题巧用旋转进行计算

10解题技巧专题巧用旋转进行计算在解题过程中,有时我们可以巧用旋转来进行计算,以简化问题、加快解题速度。

下面将介绍几种巧用旋转进行计算的技巧。

1.点的旋转:对于一个点(x,y),我们可以将其逆时针旋转θ度得到新的点(x',y'),计算方法如下:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ这种技巧可以用来求解两点之间的距离、判断点的位置关系等问题。

2.向量的旋转:对于一个向量(x,y),我们同样可以将其逆时针旋转θ度得到新的向量(x',y'),计算方法与点的旋转类似。

x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ这种技巧可以用来求解向量的和、点积、叉积等问题。

3. 复数的旋转:对于一个复数a + bi,我们可以将其旋转θ度得到新的复数c + di,计算方法同样类似。

c = (a + bi) * cosθd = (a + bi) * sinθ这种技巧可以用来求解复数的乘法、除法等问题。

4.矩阵的旋转:对于一个二维矩阵,我们可以将其逆时针旋转θ度得到新的矩阵,计算方法如下:对于一个点(x,y)在原矩阵中的位置(i,j),新矩阵中该点的位置为:i' = j * sinθ + i * cosθj' = j * cosθ - i * sinθ这种技巧可以用来求解矩阵的转置、乘法、快速幂等问题。

在实际应用中,我们可以根据具体问题选择合适的旋转方法。

例如,在计算几何中,通过旋转可以使问题简化为求解两点之间的距离或者判断一些点是否在条直线上,从而简化问题的求解过程。

在矩阵运算中,可以通过旋转将矩阵进行转置或者快速幂运算,提高运算效率。

巧用旋转进行计算可以节省时间、简化问题,但在应用时也需要注意旋转角度的选择和计算的正确性。

在实际解题过程中,可以通过举例或者推导来验证旋转计算的正确性,避免出现错误的结果。

巧用旋转进行计算的教学设计

巧用旋转进行计算的教学设计

巧用旋转进行计算的教学设计教学设计:巧用旋转进行计算一、教学目标1.了解旋转的基本概念和性质;2.学会将旋转运用到数学计算中;3.培养学生的逻辑思维和创造力。

二、教学重点1.旋转的基本概念和性质;2.旋转在数学计算中的应用。

三、教学难点1.将旋转运用到不同类型的数学计算中;2.培养学生的创造性思维。

四、教学准备1.教师准备:课件、黑板、白板、书籍;2.学生准备:课本、笔记工具。

五、教学过程步骤一:导入(10分钟)1.教师简单介绍旋转的概念和性质,并且展示一些与旋转相关的实例,引起学生兴趣;2.教师提出一个问题:在平面内,旋转一个矩形90°,结果是什么?引导学生思考。

步骤二:引入(15分钟)1.教师给出一个具体问题:一个三角形ABC绕点O旋转180°后得到的新三角形DEF,如何通过已知的ABC计算DEF的边长和角度?让学生进行讨论;2.学生根据已知条件进行推理,提出解题思路。

步骤三:解题(25分钟)1.以具体问题为例,教师讲解解题方法,同时在黑板上画出示意图;2.教师给学生布置练习题,要求学生根据已知条件计算旋转后的结果;3.学生完成练习题后,教师进行讲解和解答。

步骤四:拓展(20分钟)1.教师引导学生思考旋转运算在其他数学计算中的应用;2.学生自由发挥,以小组为单位,选择一个数学题目,利用旋转运算解答,并进行展示。

步骤五:总结(10分钟)1.教师总结本节课的内容;2.学生对本节课的学习进行总结和思考。

六、教学反思通过巧用旋转进行计算的教学设计,学生能够加深对旋转概念和性质的理解,同时培养学生的逻辑思维和创造力。

教师通过提出问题、引入具体问题、解题和拓展等方式,帮助学生理解旋转运算在数学计算中的应用,并鼓励学生自主思考和探索。

通过小组展示,学生之间的交流和合作也得到了增强。

整个教学过程紧密结合课程内容,步骤有序,注重培养学生的综合素养。

旋转几何证明

旋转几何证明

巧用旋转解题温州市实验中学 周利明传统几何中,有许多旋转的例子,尤其是正方形和等腰三角形中。

因此旋转的方法是几何学习中必备的技巧,本文将介绍旋转方法的几种典型用法,与广大读者共同学习、交流。

1.利用旋转求角度的大小例1:在等腰直角△ABC 中, ∠ACB=90°,AC=BC, P 是△ABC 内一点,满足PA=6、PB=2、PC=1求∠BPC 的度数.分析:本题借助常规方法的入手是比较困难的,虽然三条线段的 长度是已知的,但是这三条线段不是三角形的三条边长,因此 要得到角度的大小是不太容易的,因此我们可以借助 旋转来分析问题,因为AC=BC ,这就给我们利用旋转创造了条件,因此可以考虑将APC ∆绕点C 逆时针旋转090,得C P B '∆,连接P P ',通过三角形的边与角的关系分别求得P CP '∠和PB P '∠,就可得到BPC ∠的大小。

解:由已知AC=BC ,将APC ∆绕点C 逆时针旋转090,得C P B '∆,连接P P ';由旋转可知:ACP CB P ∠='∠,P C CP '=,AP BP '=;∴090=∠=∠+'∠ACB PCB CB P ,∴CP P '∆是等腰直角三角形 , ∴045='∠='∠P P C P CP 且2='P P ,在PB P '∆中,∵222222226PB PP AP BP ''+=+====,∴PB P '∆是直角三角形,且090='∠PB P , ∴01359045=+='∠+'∠=∠PB P P CP BPC .例2:如图所示,正方形ABCD 的边长为1,P 、Q 分别为边AB 、AD 上的点,APQ ∆的周长为2,求PCQ ∠的大小.分析:本题在已知三角形的周长和正方形的边长的条件下求角度的大小是比较困难的,因为正方形的边长BC=DC,所以可以考虑将PBC ∆绕点C 顺时针旋转90°,易证E 、D 、Q 三PABC P ’点共线,通过证明ECQ ∆和PCQ ∆全等即可求得PCQ ∠的大小.解:∵ BC=DC ,∴ 将PBC ∆绕点C 顺时针旋转90°得EDC ∆;∴ 090=∠=∠CBP EDC ,PCB ECD ∠=∠,PB ED =,CP CE =;∴ 090=∠+∠+∠=∠+∠+∠PCQ DCQ PCB PCQ DCQ ECD且 0180=∠+∠CDA EDC , ∴ E 、D 、Q 三点共线,∵ APQ ∆的周长为2,即2=++PQ AP AQ , 又 ∵2=+=+++AD AB QD PB AP AQ , ∴ EQ DQ ED DQ PB PQ =+=+=,在ECQ ∆和PCQ ∆中:⎪⎩⎪⎨⎧===CQ CQ PQ EQ CP CE ,∴≅∆ECQ PCQ ∆;∴045=∠=∠ECQ PCQ .练习1:P 为正方形内一点,且PA=1,BP=2,PC=3,求∠APB 的大小.2.利用旋转求线段的长度例3:如图,P 是等边△ABC 内一点,PA=2,32=PB ,PC=4,求BC 的长。

利用旋转解决几何问题(较难)学案.doc

利用旋转解决几何问题(较难)学案.doc

利用旋转解几何题\旋转在解三角形中的应用1.正三角形类型例 1.如图:(1-1):设P 是等边 A ABC 内的一点,PA=3, PB=4, PC=5, ZAPB 的度数是.图(1-对应练习:1如图1所示,P是等边三角形ABC内的一个点,PA=2, PB=2A/3 , PC=4,求A ABC的边长。

图1 2如图2, O是等边三角形ABC内一点,已知:ZAOB=115° , ZBOC=125°,则以线段OA、OB、OC为边构成三角形的各角度数是多少?2、直角等腰三角形例 2.如图,4 A ABC 中,Z ACB =900, BC=AC, P 为 A ABC 内一点,且PA=3, PB=1,PC=2… 求/ BPC的度数。

对应练习:1 如图,在AABC中,ZC=90° , AC=BC, M、N是斜边AB上的点, 且ZMCN=45° , AM=3, BN=5,则MN=.类比练习:如图,在ZkABC中,ZBAC=90° , AB=AC, D是BC上的任意一点,求证:BD2+CD2=2AD2.、旋转在正方形中的运用例3如图3,将边长为2的两个互相重合的正方形纸片按住其中-个不动,另一个绕点B顺时针旋转一个角度,若使重叠部分面积为兰心,则这个旋转的角度为多少?3图3练习1如图4, P是正方形ABCD内一点,将AABP绕点B顺时针方向旋转能与△CBP'重合,若PB=3,求PP'的长。

2.如图,P是正方形ABCD内•点,且满足PA: PD: PC=1: 2: 3, 则ZAPD=.3.如图6,正方形ABCD的边长为1, AB、AD上各存一点P、Q, 若^APQ的周长为2,求ZPCQ的度数。

利用旋转解决几何问题教案设计

利用旋转解决几何问题教案设计

利用旋转巧解几何题将一个图形绕着某一点旋转一个角度的图形变换叫做旋转,由旋转的性质可知旋转前后的图形全等,对应点到旋转中心的连线所组成的夹角等于旋转角,利用其性质可以解一些几何题,对同学们在解此类问题时有所帮助,下面举例说明。

一、旋转在解三角形中的应用1.正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC 重合。

经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。

例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.2,PC=4,求△ABC1 如图1所示,P是等边三角形ABC内的一个点,PA=2,PB=3的边长。

图1分析:PA 、PB 、PC 比较分散,可利用旋转将PA 、PB 、PC 放在一个三角形中,为此可将△BPA 绕B 点逆时针方向旋转60°可得△BHC 。

解:把△BPA 绕B 点逆时针方向旋转60°得到△BHC 。

因为BP=BH ,∠PBH=60° 所以△BPH 是等边三角形 所以∠BPH=60°,所以BP=PH 32= 又因为HC=PA=2,PC=4所以222HC HP PC +=所以△HCP 是Rt △,所以∠CHP=90° 又因为HC=2,PC=4 所以∠HPC=30°又因为∠BPH=60°,所以∠CPB=90° 在Rt △BPC 中,222224)32(PC BP BC +=+==12+16=2872BC =,那么△ABC 的边长为72。

2 如图2,O 是等边三角形ABC 内一点,已知:∠AOB=115°,∠BOC=125°,则以线段OA 、OB 、OC 为边构成三角形的各角度数是多少?图2解:可将△BOC 绕B 点按逆时针方向旋转60°可得△BMA 。

利用旋转的基本性质进行几何证明的方法

利用旋转的基本性质进行几何证明的方法

利用旋转的基本性质进行几何证明的方法正方形滚动一周,就是滚动四个90°角。

如图:滚动第一个90°时,A点所经过的路线长是以点C为圆心、AC长为半径的-圆周长,此时A点滚动到了A1点D点滚动到了D1点;滚动第二个90°时,其路线长是以点D1为圆心、A1D1长为半径的-圆周长,此时A1点滚动到了A2点的位置;滚动第三个90°时,由于以点A2为圆心,此时A2点的位置未变B2点滚动到了B3点;滚动第四个90°时其长是以点B3为圆心、B3C3长为半径的-圆周长,此时A3点滚动到了A4点的位置。

∴A点滚动一周经过的路线长为:-×2π×8-+-×2π×8+0+-×2π×8=4-+8π,当正方形滚动两周时,正方形顶点A所经过的路线的长等于8-+16π。

[思维延伸2]:如图2,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在P1、P2、P3、P4…P2021的位置,则P2021的横坐标为_______.[解析]∵正方形沿x轴正方向连续翻转4次正好翻转了一周∴翻转2021次就是翻转了502周。

从P点经过的路线可以看出,在每个周期内,P点相应的沿着x轴的正方向移动了4个单位长度∴正方形OAPB沿x轴正方向连续翻转2021次后P点向前移动了4×502=2021个单位长度∴P点的横坐标为-1+2021=2021。

例6.如图6所示,已知在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,PC=2,求∠BPC的度数。

[解析]可先将△APC绕点C按逆时针方向旋转90°到△BEC的位置,由旋转的性质知,此时△CPE是等腰直角三角形,∠CPE=45°,在△BPE中,由勾股定理逆定理可证出∠BPE=90°,由此可求出∠BPC的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[教材母题】
已知等边三角形,8C(如图Z15 — 1). (1)以点A为旋转中心,将△A8C按逆时针方向旋转30。

,作出旋转后的图形;(2)经第(1)题旋转所得的图形与之间有没有互相垂直的边?证明你的判断.
【思想方法】旋转前、后的图形全等,所以借此可以在较复杂的图形中发现等量(或全等)关系,或通过旋转(割补)图形,把分散的已知量聚合起来,便于打通解题思路,疏通解题突破口.
【中考变形】
1.如图Z15-2,已知△A8C和ZXDCE均是等边三角形,点8, C, E在同一条直线上,AE 与B。

交于
点。

,AE与CD交于点G, AC与BD交于点
F,连结OC, FG,则下列结论:®AE=
BD; ®AG=BF; ®FG//BE; @ZBOC
= ZEOC,其中正确结论的个数是()
A. 1
B. 2
C. 3
D. 4
A
2.如图Z15-3, P是等腰直角ZkABC外一点,把8P绕点8顺时针旋转90。

到BP',已知
ZAP1 8=135°, P‘ A : P' C=1: 3,贝l)P f A : PB= (
B. 1 : 2
D. 1 :
3.如图Z15-4, △ACD和都是等腰直角三角形,ZACD=ZBCE=9Q°f虹交DC于点F, BD分别交CE, AE于点G, H.试猜想线段AE和BD的位置及数量关系,并说明理由.
4.如图Z15-5,在RtA4BC中,ZACB=90°t匕8=30。

,将△A8C绕点C按顺时针方向旋转。

度后,得到点D刚好落在A8边上.(1)求"的值;(2)若F是DE的中点,判断四边形ACFD 的形状,并说明理由.
5.[2015-南充]如图Z15-6,点P是正方形ABC。

内一点,点P到点4, 8和D
的距离分别为1, 2皿,何,AADP 沿点A旋转至△ ABP\连结PP,并延长AP与8C相交于点Q.
在数学活动课中,小辉将边长为皿和3的两个正方形放置
在直线/上,如图Z15-7,他连结AO, CF,经测量发现
AD=CF.
①②③
(1)他将正方形ODEF绕。

点逆时针旋转一定的角度,如图②,试判断AD与CF还相等吗?说明你的理由;
(2)他将正方形ODEF绕。

点逆时针旋转,使点£旋转至直线/上,如图③,请你求出CF的长・。

相关文档
最新文档