调节变量与中介变量
调节变量和中介变量
自变量 自变量
中介变量 调节变量
因变量 因变量
280 articles
76 (27%) tested for mediation
99 (35%) 19 tested for
moderation
mentioned the moderator implied a mediator
. Incidence of tests of mediation and moderation in the Journal of Applied Psychology (volumes 84-86).
Job
Job
Sat
SatSalຫໍສະໝຸດ rySalary调节变量亦即交互作用
在模型中有特殊的表达方法 Mod
X1
Y
如何检验调节效应:
取决于变量的类型 如果自变量是二分变量,调节变量也是二分
变量
2x2 ANOVA
二分变量的调节效应
例:奖励食物数量影响动物的作业水平,内驱 力是调节变量
依次检验方法的局限
1. 总体作用显著并不是中介作用显著的必要条件;我们只 要直接检验间接作用即可发现是否有中介作用。研究者 按照Baron和Kenny因果步骤,会因为总体作用c不显 著而停止余下的检验,可能错失发现间接作用 显著的 机会
2. Baron和Kenny的方法需要a和b都要显著,而直接检 验间接作用 的中介分析(比如Sobel检验)却只需a和 b的乘积显著即可。显然,拒绝两个虚无假设要比拒绝 一个要困难。
测量间接效应
间接效应即中介作用的大小
完全中介或部分中介 间接效应=(c - c') 理论上, c - c' = a*b
调节变量和中介变量
自变量、因变量和乘积项放到多元回归方程中检验交互作用。 乘积项的系数如果显著,就说明调节作用存在。
5.调节作用的分析和解释
调节变量和自变量都是定类变量:
1)在不同的组中分别计算因变量的均值,然后用得到的值 来做图,直观的表示出调节作用的模式。
2)在案调节变量所分的不同组中,检验自变量对结果变量 回归的斜率。
3.2 中介作用的检验和分析
1.建立因果关系
两个变量X与Y之间存在因果关系,如果X与Y之间 是完全没有关系的,接下来的步骤就不用做了。
这种关系是不是虚假的相关。
Wegener和Fabrigar提出:即使用非实验的研究,人们也 可以通过把其他变量的作用控制掉的方法或收集几个时间 点的数据的方法,来实现比较严格的因果关系研究。
交互作用分类
增强型交互作用:随着X2变大,X1对Y的正面影 响越来越强
干扰型交互作用:随着X2变大,X1对Y的正面影 响逐渐减弱
2.3 检验调节作用的方法
检验调节作用最普遍的方法是多元调节回归分析: MMR
MMR具体步骤
1.用虚拟变量代表类别变量
所需的虚拟变量的数目等于类别变量水平个数减一。 如2个类别变量的时候,D1=1;D1=0
“视情况而定”“因人而异” “在什么样的情况下”“对于哪些人”
Z
X
Y
2.1 调节作用的原理
调节变量影响自变量和因变量之间的关系,即可以是对关 系方向的影响,又可以是对关系强度的影响。
2.2 调节作用与交互作用
交互作用:两个变量(X1和X2)共同作用时对Y的 影响不等于两者分别影响Y的简单数学和。两个 自变量可以是对称也可以是不对称的。
调节变量和中介变量
本章大纲
有中介的调节变量和有调节的中介变量解读
有中介的调节变量和有调节的中介变量有中介的调节变量(Mediated Moderator )有中介的调节效应的检验程序:1)、做Y 对X 、U 和UX 的回归,UX 的系数显著;(这一步说明U 对Y 与X 关系的调节效应显著。
)2)、做W 对X 、U 和UX 的回归,UX 的系数显著;3)、做Y 对X 、U 、UX 和W 的回归,W 的系数显著。
如果在第3)步中,UX 的系数不显著,则U 的调节效应完全通过中介变量W 而起作用。
有调节的中介变量(Mod erated Mediator)有中介的调节效应的检验程序:1)、做Y 对X 和U 的回归,X 的系数显著;2)、做W 对X 和U 的回归,X 的系数显著;3)、做Y 对X 、U 和W 的回归,W 的系数显著;(到此为止说明W 的中介效应显著。
)4)、做Y 对X 、U 、W 和UW 的回归,UW 的系数显著。
从上面分析步骤可知,检验有调节的中介效应时,先要检验中介效应,然后检验调节效应。
混合模型(Mixed Model )1)、U 的直接调节效应显著,即UX →Y 的系数显著;2)、W 的中介效应显著,即X →W ,W →Y 的系数显著;3)、由UX →W 的系数显著和W →Y 的系数显著,可知U 是有中介的调节变量,即除了直接调节效应外,U 通过W 还对Y 有间接调节效应。
4)、由UX →Y 的系数显著,U 是X →W 的调节变量,再由UW →Y 的系数显著,U 是W →Y的调节变量,从而X →W 和W →Y 的中介过程受到U 的影响,所以从这个角度看W 是有调节的中介变量。
Notes :在通常的调节模型中,Y 对X 的回归系数是调节变量U 的线性函数,而在混合模型中,调节不是通常的线性调节,而是二次调节,即Y 对X 的回归系数是调节变量U 的二次函数。
当U 在一定区域内,X 对Y 的效应不显著。
(可通过方程推导该区域)。
中介变量和调节变量
例如:
父亲的社会经济地位——儿子的教育程 度——儿子的社会经济地位(Duncan, Featherman & Duncan, 1972)
中介变量:儿子的教育程度
下属的表现——上司对下属表现的归 因——上司对下属表现的反应(James & Brett,1984)
中介变量:上司对下属表现的归因
效应之间的关系:c=c’+ab
2. 广义乘积指标(GAPI)方法( Wall & Amemiya, 2001) 3. 无约束方法(Marsh, Wen & Hau, 2004)
拟极大似然估计(QML)方法(Klein & Muthen, 2002)
2 中介变量和中介效应
2.1 中介变量的定义 考虑自变量X对因变量Y的影响,如果X通过 影响变量M来影响Y,则称M为中介变量。 (Judd & Kenny,1981; Baron & Kenny, 1986)
第三者: 老师的管教方式(U) 老师对学生的喜欢程度(W)
5.1 教师喜欢程度 是调节变量还是中介变量
调节效应分析
5.1 教师喜欢程度 是调节变量还是中介变量
中介效应分析
5.2 管教方式 是调节变量还是中介变量
调节效应分析
5.2 管教方式 是调节变量还是中介变量
中介效应分析
Sobel 检验
化潜为显(均值或因子得分) 两步最小二乘回归 (Bollen & Paxton, 1998) 分组线性结构方程分析 (如Bagozzi & Yi ,
1989 ; Joreskog, 1971)
带潜变量乘积项的结构方程分析
1. 参数非线性约束方法(Kenny & Judd, 1984; Joreskog & Yang , 1996; Algina & Moulder, 2001)
中介变量和调节变量
调整效应
调整变量和自变量都是类别变量时: 做方差分析当两者旳交互效应明显时,则阐明
调整变量产生了调整效应。之后,能够经过 简朴效应分析进一步了解调整变量旳详细 作用。
当调整变量是连续变量时,不论自变量是何种 变量,均可采用层次回归技术来进行检验。 即先分别考察自变量和调整变量对因变量 旳主效应大小,然后将“自变量×调整变量” 乘积项纳入回归方程,若该项系数明显,则表 白调整效应明显。
然后,以自尊、社会影响以及这两者旳交互作用
项一起作为预测变量,以自控为因变量采用逼迫进 入法进行回归分析。成果表白,整体模型具有统计 明显性,但是交互作用项对自控旳影响未到达明显 水平( p < 0. 05) ,这阐明社会影响在自尊与自控之 间未存在调整效应。
最终,以自尊、社会影响、自控、自尊与社会影响 旳交互作用项以及自控与社会影响旳交互作用项一
3当该回归系数降低到0时,称为完全中介作用
中介效应分析措施
• 假设Y与X 旳有关明显,意味着回归系数c 明显,在 这个前提下考虑中介变量M。对中介效应旳统计 检验主要有三种措施。
• 老式旳做法是依次检验回归系数a、b (完全中介 效应还要检验c′) 旳明显性。 第二种做法是检验经过中介变量旳途径上旳回归 系数旳乘积ab 是否明显。 第三种做法是检验c’与c 旳差别是否明显。三种 措施各有利弊。
第二步:
明显 X预测M检验系数明显
不明显 不明显
第三步:
明显
停止中介效果分析
X和M同步预测Y检验X Y系数是否明显
不明显且
明显且≤第 一步X Y
X Y系数接 近0
部分中介效果明显
完全中介效果明显
操作环节
(一)国内部分: 1.将变量中心化 变量值-均值 2、检验回归系数c,即主观幸 福感对社会支持旳回归 Y=0.30X(要看原则系数) 3、检验回归系数a,即自尊 对社会支持旳回归M=0.26X 4、检验回归系数b,即主观 幸福感对自尊旳回归 5、检验系数c’ , Y=0.17X+0.49M
调节变量和中介变量精选全文
变革型领导
员工工作绩效和组织公民行为
中介变量解释关系后的作用机制
中介变量可以解释变量之间为什么会存在关系以及这个关系如 何发生的。
二、调节变量的原理和检验方法
调节变量定义:
如果变量X与变量Y有关系,但是X与Y的关系受第三个变 量Z的影响,那么变量Z就是调节变量。
变量Y与变量X的关系是变量Z的函数,Z便称为X与Y关系 的调节变量。
因变量有几种测量方法,尽量选择测量信度高的 方法和测量敏感度较高的方法。
2.5 检验调节变量的其他方法
多层线性模型:HLM 结构方程模型:SEM
三、中介变量的原理和检验方法
3.1 中介作用的原理
凡是X影响Y,并且X是通过一个中间的变量M对Y产生影 响的,M就是中介变量。
完全中介:c=0 部分中介:c>0
“视情况而定”“因人而异” “在什么样的情况下”“对于哪些人”
Z
X
Y
2.1 调节作用的原理
调节变量影响自变量和因变量之间的关系,即可以是对关 系方向的影响,又可以是对关系强度的影响。
2.2 调节作用与交互作用
交互作用:两个变量(X1和X2)共同作用时对Y的 影响不等于两者分别影响Y的简单数学和。两个 自变量可以是对称也可以是不对称的。
交互作用分类
增强型交互作用:随着X2变大,X1对Y的正面影 响越来越强
干扰型交互作用:随着X2变大,X1对Y的正面影 响逐渐减弱
2.3 检验调节作用的方法
检验调节作用最普遍的方法是多元调节回归分析: MMR
MMR具体步骤
1.用虚拟变量代表类别变量
所需的虚拟变量的数目等于类别变量水平个数减一。 如2个类别变量的时候,D1=1;D1=0
Moderator
Moderator and MediatorModerator and Mediator调节变量(moderator)和中介变量(mediator)是两个重要的统计概念,它们都与回归分析有关。
相对于⼈们关注的⾃变量和因变量⽽⾔,调节变量和中介变量都是第三者,经常被⼈混淆。
这些内容在社会⼼理科学的研究中应⽤⽐较多。
通过这篇⽂章我还是对调节变量和中间变量有了⼀定的了解。
如果变量Y与变量X的关系是变量M 的函数,称M 为调节变量。
就是说, Y与X 的关系受到第三个变量M 的影响。
调节变量可以是定性的(如性别、种族、学校类型等) ,也可以是定量的(如年龄、受教育年限、刺激次数等) ,它影响因变量和⾃变量之间关系的⽅向(正或负)和强弱. 例如,学⽣的学习效果和指导⽅案的关系,往往受到学⽣个性的影响:⼀种指导⽅案对某类学⽣很有效,对另⼀类学⽣却没有效,从⽽学⽣个性是调节变量。
⼜如,学⽣⼀般⾃我概念与某项⾃我概念(如外貌、体能等)的关系,受到学⽣对该项⾃我概念重视程度的影响:很重视外貌的⼈,长相不好会⼤⼤降低其⼀般⾃我概念;不重视外貌的⼈,长相不好对其⼀般⾃我概念影响不⼤,从⽽对该项⾃我概念的重视程度是调节变量。
这⼤体上可以通过y = b0 + b1 X + b2 M + b3 (X*M) + e这个函数式来表⽰,如果b3是显著的话,我们就说M调节了X与Y的关系。
⽽中介变量则是在考虑⾃变量X 对因变量Y的影响,如果X 通过影响变量M 来影响Y,则称M 为中介变量。
例如,上司的归因研究:下属的表现——上司对下属表现的归因——上司对下属表现的反应,其中的“上司对下属表现的归因”为中介变量。
如果⼀个变量与⾃变量或因变量相关不⼤,它不可能成为中介变量,但有可能成为调节变量。
理想的调节变量是与⾃变量和因变量的相关都不⼤。
有的变量,如性别、年龄等,由于不受⾃变量的影响,⾃然不能成为中介变量,但许多时候都可以考虑为调节变量。
调节效应和中介效应
调节变量(Moderator) vs 中介变量(Mediator)1、调节变量的定义变量Y与变量X 的关系受到第三个变量M 的影响,就称M为调节变量。
调节变量可以是定性的,也可以是定量的。
在做调节效应分析时,通常要将自变量和调节变量做中心化变换。
简要模型:Y = aX + bM + cXM + e 。
Y与X 的关系由回归系数a + cM 来刻画,它是M 的线性函数, c衡量了调节效应(moderating effect)的大小。
如果c显著,说明M 的调节效应显著。
2、调节效应的分析方法显变量的调节效应分析方法:分为四种情况讨论。
当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做Y=aX+bM+cXM+e 的层次回归分析:1、做Y对X和M的回归,得测定系数R12。
2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。
或者,作XM的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按M的取值分组,做Y对X的回归。
若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e的层次回归分析。
潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。
当调节变量是类别变量时,做分组结构方程分析。
做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。
然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。
前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差。
如果χ2检验结果是统计显著的,则调节效应显著;当调节变量和自变量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen和Hau 提出的无约束的模型。
(完整word版)调节效应和中介效应
调节变量(Moderator)vs 中介变量(Mediator)1、调节变量的定义变量Y与变量X 的关系受到第三个变量M 的影响,就称M为调节变量。
调节变量可以是定性的,也可以是定量的.在做调节效应分析时,通常要将自变量和调节变量做中心化变换。
简要模型:Y = aX + bM + cXM + e 。
Y与X 的关系由回归系数a + cM 来刻画,它是M 的线性函数, c衡量了调节效应(moderating effect)的大小。
如果c显著,说明M 的调节效应显著。
2、调节效应的分析方法显变量的调节效应分析方法:分为四种情况讨论。
当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做Y=aX+bM+cXM+e 的层次回归分析:1、做Y对X和M的回归,得测定系数R12。
2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。
或者,作XM的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按 M的取值分组,做 Y对 X的回归。
若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e的层次回归分析.潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。
当调节变量是类别变量时,做分组结构方程分析。
做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。
然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。
前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差.如果χ2检验结果是统计显著的,则调节效应显著;当调节变量和自变量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen和Hau提出的无约束的模型。
中介变量与调节变量 (1)
韩张慧 蒋山花 张咏喻 王一帆 鲁甜甜 杨佳淇 唐红梅
■ 中介变量 ■ 调节变量
■ 两者的比较
■ SPSS的操作
中介效应分析概述
■ 中介效应分析广泛用于社会科学研究,如心理学,管理学 和传播学等。Rucker等(2011)统计发现2005至2009年间发 表在《人格与社会心理学杂志》JPSP和《人格与社会心理 学公报》PSPB上59%和65%的文章使用了中介检验。 中介变量是社会科学诸多理论中不可缺少的内
例子
■ 学生行为(X)对同伴关系(Y )影响的中介效应分析 ■ 学生行为(X)是被试的违纪捣乱行为 , 包括9 个题目(如挑 起争斗 、欺负同学 、说脏话等), 同伴关系(Y )是被试受 同学欢迎的程度,具体地说 ,就是同班同学有多少人将其列 入喜欢的名单。 ■ 老师的管教方式(U)是被试对班主任老师的管教方式的评价, 也有 9 个题目(如班主任愿意听我们的意见 ,班主任的期望 和要求明确清晰 等等)。 ■ 老师对学生的喜欢程度(W)由班主任为被试打分(从“一点都 不喜欢”到“非常喜欢”5 级记分)。
缺点:在a=0,但b≠0时,可能存在较高的第一类错误率
即使中介效应不存在(ab=0),只要b显著,结果仍判定中介效应显著
Bootstrapping
■ 原理:正态分布假设不成立时,经验抽样分布可以作为实际整体分布 用于参数估计。Bootstrapping以研究样本作为抽样总体,采用放回取 样,从研究样本中反复抽取一定数量的样本,通过平均每次抽样得到 的参数作为最后的估计结果。 Bootstrapping不需要分布假设所以避免了系数乘积检验违反分布假设 的问题,而且该方法不依赖标准误所以避免了不同标准误公式产生结 果不一致的问题。模拟研究发现,与其他中介效应检验方法相比 Bootstrapping具有较高的统计效力。 Mplus提供两种Bootstrap:标准的和残差的。 标准的Bootstrap只适应于ML,WLS,WLSM,WLSMV,ULS和GLS 估计法,残差的Bootstrap只适应于连续变量的ML估计。 通过使用Bootstrap语句以及MODEL INDIRECT和CINTERVAL,可以得到 间接效应的 Bootstrap标准误和偏差校正的Bootstrap置信区间
实验研究中的调节变量和中介变量
实验研究中的调节变量和中介变量在科学实验中,为了深入探究某个现象或问题,研究者需要许多不同的变量。
其中,调节变量和中介变量是两种关键的变量类型,对于理解实验结果具有重要意义。
本文将详细阐述调节变量和中介变量的概念,以及它们在实验研究中的作用。
调节变量是指那些能够影响实验结果的其他因素。
在实验中,如果研究者想要探究某个自变量(独立变量)对因变量(依赖变量)的影响,但这种影响会受到其他因素的影响,那么这些其他因素就可能成为调节变量。
例如,在探究温度对物质溶解度的影响时,温度是自变量,物质溶解度是因变量,但溶解度还可能受到压力、湿度等其他因素的影响,这些因素就可能成为调节变量。
中介变量则是位于自变量和因变量之间的变量。
在实验中,如果一个自变量对因变量的影响要经过一个或多个其他变量的中介作用,那么这些中介变量就可能影响实验结果。
例如,在探究教育程度对收入的影响时,教育程度是自变量,收入是因变量,但教育程度对收入的影响可能要经过工作技能、工作经验等中介变量的作用。
在实验设计与实施中,调节变量和中介变量的识别和控制至关重要。
对于调节变量,研究者需要在实验设计中考虑到这些因素,并尽可能消除或控制它们对实验结果的影响。
对于中介变量,研究者需要通过适当的测量和统计分析来识别它们对实验结果的影响。
实验结果和讨论部分,研究者需要报告各个实验组的结果,并对结果进行比较和分析。
在讨论中,研究者需要探讨调节变量和中介变量对实验结果的影响及其原因。
例如,在上述探究教育程度对收入的影响的实验中,如果工作经验这个中介变量的影响显著,那么研究者就需要进一步探讨工作经验是如何影响教育程度对收入的影响的。
在总结部分,研究者需要概括实验研究的结果,并说明这些结果对实践的指导意义。
例如,如果研究发现工作经验这个中介变量对教育程度对收入的影响具有显著影响,那么这就意味着在实际工作中,教育程度相同的人,拥有更多工作经验的人可能获得更高的收入。
调节变量和中介变量(温忠麟)
6.1 遮掩效应
检验步骤和中介效应检验相同,但可以忽略第一步
例如 X—居民区每月人均购物消费 Y—居民区每月人均便利店购物消费 M—居民区每月人均超市购物消费
拟极大似然估计(QML)方法(Klein & Muthen, 2002) 贝叶斯(Bayesian)方法
2 中介变量和中介效应
2.1 中介变量的定义 考虑自变量X对因变量Y的影响,如果X通过 影响变量M来影响Y,则称M为中介变量。 (Judd & Kenny,1981; Baron & Kenny, 1986)
愿人间凝聚的能量激荡每一个人的智场 —— 等概率
敬请批评指正
谢谢各位
1. 做Y对X、U和UX的回归, UX的系数显著; 2. 做W对X、U 和UX的回归, UX的系数显著; 3. 做Y对X、U 、UX和W的回归, W的系数显著。
如果在第(3)步中,UX的系数不显著,则U的调节 效应完全通过中介变量W而起作用。
4.2 有调节的中介模型
有调节的中介效应显著意味着:
1.做Y对X和U的回归,X的系数显著; 2.做W对X和U的回归,X的系数显著; 3.做Y对X、U和W的回归,W的系数显著;
带潜变量乘积项的结构方程分析
1. 参数非线性约束方法(Kenny & Judd, 1984; Joreskog & Yang , 1996; Algina & Moulder, 2001)
2. 广义乘积指标(GAPI)方法( Wall & Amemiya, 2001) 3. 无约束方法(Marsh, Wen & Hau, 2004, 2006, 2007)
实验研究中的调节变量和中介变量
实验研究中的调节变量和中介变量一、本文概述探讨它们在实验研究中的应用1、研究背景在科学研究,特别是实验研究中,理解并妥善运用调节变量和中介变量是至关重要的。
这些变量不仅能帮助我们更深入地理解研究现象的本质,还能优化实验设计,提高研究的科学性和有效性。
随着社会科学和自然科学研究方法的不断发展和完善,对调节变量和中介变量的理解和应用也日益深入。
然而,在实际的研究过程中,许多研究者仍然对这两种变量的概念、作用及如何正确应用存在困惑。
因此,本文旨在详细阐述实验研究中的调节变量和中介变量的定义、特点、作用,以及在实际研究中的应用方法,以期为研究者提供一个清晰、系统的理论框架和实践指南。
2、研究目的本研究的核心目的是深入探索实验研究中调节变量和中介变量的角色与影响。
调节变量和中介变量在实验设计中占据重要地位,它们不仅能够帮助我们更全面地理解实验过程中的复杂关系,还能够揭示变量之间的潜在机制。
通过本研究,我们期望能够清晰地界定调节变量和中介变量的概念,并详细阐述它们在实验设计中的具体应用。
我们还计划探讨这些变量如何影响实验结果,以及如何通过操纵这些变量来优化实验设计和提高实验的有效性。
最终,本研究旨在为实验研究者提供一套系统的、实用的方法,以便在实验中更好地控制和利用调节变量和中介变量,从而推动实验研究的深入发展。
二、调节变量与中介变量的定义与其他变量的区别1、调节变量的定义在实验研究中,调节变量是一个重要的概念,它对于理解变量之间的关系以及预测结果具有关键作用。
调节变量,也称为调节器或调制器,是指能够影响两个或多个变量之间关系的第三个变量。
当两个变量之间的关系受到第三个变量的影响时,这个第三个变量就被称为调节变量。
调节变量的存在意味着两个变量之间的关系不是固定的,而是随着调节变量的变化而变化。
这种变化可能是由于调节变量直接影响了两个变量之间的关系强度,或者是由于调节变量改变了其中一个或两个变量的值。
无论是哪种情况,调节变量的引入都能够帮助我们更全面地理解变量之间的关系,提高预测的准确性和可靠性。
有中介的调节变量和有调节的中介变量
有中介的调节变量和有调节的中介变量一、本文概述在社会科学和心理学研究中,变量之间的关系常常是复杂而多元的。
中介变量和调节变量是理解这种复杂关系的重要工具。
然而,当这两者同时存在时,它们之间的互动和影响就变得更加复杂。
本文将深入探讨有中介的调节变量和有调节的中介变量这两种特殊情况,旨在帮助读者更好地理解和应用这些概念。
我们将概述中介变量和调节变量的基本概念和作用。
中介变量通常用于解释自变量和因变量之间的内在机制,它揭示了一个过程或路径,通过这个过程,自变量的变化影响了因变量。
而调节变量则用于描述一个变量如何影响自变量和因变量之间的关系强度或方向,它揭示了在何种条件下,这种关系会发生变化。
接下来,我们将详细讨论有中介的调节变量。
这种情况指的是,调节变量不仅直接影响自变量和因变量之间的关系,而且还通过中介变量间接影响这种关系。
我们将通过具体案例和数学模型来解释这种复杂的相互作用,并讨论如何识别和分析这种关系。
我们还将探讨有调节的中介变量。
在这种情况下,中介变量的作用受到调节变量的影响。
这意味着,在不同的调节变量水平下,中介变量可能发挥不同的作用,从而影响自变量和因变量之间的关系。
我们将探讨这种关系的特点和识别方法,并通过实例进行说明。
我们将总结这两种特殊情况在理论和实践中的应用。
通过本文的阐述,读者将能够更好地理解和分析复杂变量之间的关系,从而在研究中做出更准确的推断和更有力的解释。
二、有中介的调节变量在统计分析中,中介变量和调节变量各自扮演着不同的角色,然而在某些复杂的情况下,它们可能会共同出现,形成“有中介的调节变量”这一概念。
这意味着一个变量既在自变量和因变量之间起中介作用,又受到另一个调节变量的影响。
理解这一概念对于深入研究变量间的关系,揭示现象背后的复杂机制具有重要意义。
有中介的调节变量模型通常涉及四个主要变量:自变量()、调节变量(M)、中介变量(W)和因变量(Y)。
在这个模型中,自变量通过中介变量W影响因变量Y,同时调节变量M也影响中介变量W。
调节变量与中介变量的比较
调节变量与中介变量的比较
调节变量是衡量行为变化或影响任意因素的变量,即称为“因变量”。
直接影响调节变量的变量叫做自变量。
调节变量用于衡量自变量所带来的变化,它对研究者有重要的信息提供,可以是数量的变化,也可以是人的情绪改变。
中介变量是一种被认为用于某些变量之间的行为之间的直接关系的变量。
它们通常在心理学研究中被称为“间接变量”,也可以称为中间变量或模糊变量。
中间变量“不显示任何直接或直接关系”,但它们能解释一个变量如何影响另一个变量。
例如,担心可以作为一个变量,它会改变另一个变量,即行为,从而说明担心是行为的中介因素。
最重要的区别在于,调节变量没有必要与其他变量之间存在直接的关系,而中间变量有必要存在两个变量之间的直接关系。
另外,中介变量不应直接影响调节变量,而且仅受自变量的影响。
此外,调节变量可以是一个变量,而中间变量更多地是一组变量。
调节变量可以提供解释影响行为和改变的背景,以及这些变量之间的关系。
而中介变量主要用于识别被解释变量之间的直接关系。
例如,一项研究可能会探讨性别与收入之间的关系,中介变量可以帮助识别,为什么性别会影响收入水平。
此外,中介变量还可以解释自变量是如何影响被解释变量的,以及自变量如何影响多个被解释变量的。
总的来说,调节变量是用来衡量行为变化或影响一个变量的变量,而中介变量是旨在发现两个变量之间的直接关系的变量。
对于研究人员来说,正确理解这些变量和它们之间关系的重要性是必不可少的,以识别研究中的影响及其过程。
调节效应和中介效应
调节变量(Moderator) vs 中介变量(Mediator)1、调节变量的定义变量Y与变量X 的关系受到第三个变量M 的影响,就称M为调节变量。
调节变量可以是定性的,也可以是定量的。
在做调节效应分析时,通常要将自变量和调节变量做中心化变换。
简要模型:Y = aX + bM + cXM + e 。
Y与X 的关系由回归系数a + cM 来刻画,它是M 的线性函数, c衡量了调节效应(moderating effect)的大小。
如果c显著,说明M 的调节效应显著。
2、调节效应的分析方法显变量的调节效应分析方法:分为四种情况讨论。
当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做Y=aX+bM+cXM+e 的层次回归分析:1、做Y对X和M的回归,得测定系数R12。
2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。
或者,作XM的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按M的取值分组,做Y对X的回归。
若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e的层次回归分析。
潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。
当调节变量是类别变量时,做分组结构方程分析。
做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。
然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。
前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差。
如果χ2检验结果是统计显著的,则调节效应显著;当调节变量和自变量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen和Hau 提出的无约束的模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调节变量与中介变量
调节变量(moderator)和中介变量(mediator)是两个重要的统计概念,它们都与回归分析有关。
一般人总是搞混两个之间的含义,因此造成统计数据的误差。
调节变量的定义
如果变量Y与变量X的关系是变量M 的函数,称M 为调节变量。
就是说, Y与X 的关系受到第三个变量M 的影响。
调节变量可以是定性的(如性别、种族、学校类型等) ,也可以是定量的(如年龄、受教育年限、刺激次数等) ,它影响因变量和自变量之间关系的方向(正或负)和强弱.
例如,学生的学习效果和指导方案的关系,往往受到学生个性的影响:一种指导方案对某类学生很有效,对另一类学生却没有效,从而学生个性是调节变量。
又如,学生一般自我概念与某项自我概念(如外貌、体能等)的关系,受到学生对该项自我概念重视程度的影响:很重视外貌的人,长相不好会大大降低其一般自我概念;不重视外貌的人,长相不好对其一般自我概念影响不大,从而对该项自我概念的重视程度是调节变量。
中介变量的定义
考虑自变量X 对因变量Y的影响,如果X 通过影响变量M 来影响Y,则称M 为中介变量。
例如,上司的归因研究:下属的表现———上司对下属表现的归因———上司对下
属表现的反应,其中的“上司对下属表现的归因”为中介变量。
如果一个变量与自变量或因变量相关不大,它不可能成为中介变量,但有可能成为调节变量。
理想的调节变量是与自变量和因变量的相关都不大。
有的变量,如性别、年龄等,由于不受自变量的影响,自然不能成为中介变量,但许多时候都可以考虑为调节变量。
对于给定的自变量和因变量,有的变量做调节变量和中介变量都是合适的,从理论上都可以做出合理的解释。