概率统计专题复习(文科)
高考概率统计文科知识点
高考概率统计文科知识点在文科高考中,概率统计是一个重要的考试内容。
理解和掌握概率统计的知识点对于应对考试至关重要。
下面将介绍一些高考概率统计的文科知识点。
一、概率的基本概念概率是指在某个事物中某个事件发生的可能性大小。
在高考文科中,概率的基本概念主要包括样本空间、随机事件、事件的概率等。
1.1 样本空间样本空间是指一个试验所有可能结果的集合。
例如,一次掷骰子的样本空间为S={1,2,3,4,5,6}。
1.2 随机事件随机事件是指在试验中可能发生的事件。
在样本空间中取一个子集,就表示一个随机事件。
例如,掷骰子出现奇数点数可以表示为A={1,3,5}。
1.3 事件的概率事件的概率是指事件发生的可能性大小。
事件A的概率可以用P(A)表示。
例如,在掷骰子实验中,掷出1的概率为P(A)=1/6。
二、基本概率公式高考文科中,基本概率公式主要包括加法公式和乘法公式。
2.1 加法公式加法公式是指对于两个不相容事件A和B,它们的概率之和等于事件A或B发生的概率。
公式如下:P(A∪B) = P(A) + P(B),其中∪表示并集。
2.2 乘法公式乘法公式是指对于两个独立事件A和B,它们同时发生的概率等于事件A发生的概率乘事件B发生的概率。
公式如下:P(A∩B) = P(A) * P(B),其中∩表示交集。
三、条件概率和独立性在概率统计中,条件概率和独立性是两个重要的概念。
3.1 条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
设A和B是两个事件,且P(A)>0,那么B在A发生的条件下的概率记作P(B|A),计算公式为:P(B|A) = P(A∩B) / P(A)。
3.2 独立性两个事件A和B相互独立,是指事件A的发生与否不影响事件B的发生与否。
具体而言,如果满足以下条件,则称事件A和B是独立事件:P(A∩B) = P(A) * P(B)。
四、排列组合在高考概率统计中,排列组合是非常重要的知识点。
文科统计概率知识点总结
文科统计概率知识点总结统计学是一门研究数据的收集、分析、解释和展示的学科。
统计学是一种通过数学方法来分析数据的学科,它有着广泛的应用领域,包括经济学、心理学、社会学和政治学等。
统计学的应用范围也非常广泛,涵盖从商业到医学的各个领域。
而概率是统计学中一个非常重要的概念,它可以帮助我们预测和理解各种现象发生的可能性。
本文将对文科统计学中的概率知识点进行总结和分析。
一、概率的概念概率是一个用来描述事件发生可能性的数学概念。
在统计学中,概率通常用来描述随机事件发生的可能性大小。
概率的取值范围是0到1之间,其中0表示事件不可能发生,1表示事件一定会发生。
在现实生活中,我们经常会面临各种不确定性,比如天气预报、投资风险、疾病传播等。
概率可以帮助我们对这些不确定性进行量化和分析。
二、概率的性质概率有一些基本的性质,这些性质对于理解和计算概率都非常重要。
其中包括:1. 互斥事件的概率:两个事件互斥指的是它们不能同时发生。
如果A和B是互斥事件,那么它们的概率满足P(A∪B) = P(A) + P(B)。
2. 独立事件的概率:两个事件独立指的是它们的发生不会相互影响。
如果A和B是独立事件,那么它们的概率满足P(A∩B) = P(A) × P(B)。
3. 补事件的概率:对于一个事件A,它的补事件指的是A不发生的情况。
补事件的概率满足P(A') = 1 - P(A)。
4. 加法法则:对于两个事件A和B,它们的概率和满足P(A∪B) = P(A) + P(B) - P(A∩B)。
5. 乘法法则:对于两个独立事件A和B,它们的概率乘积等于它们各自的概率。
这些性质可以帮助我们在实际问题中计算概率,而理解这些性质也对于我们理解概率的本质有很大帮助。
三、离散型随机变量的概率分布在统计学中,随机变量是一个可以随机取不同值的变量。
离散型随机变量是指其可能取值是有限的或者可数的,而不是连续的。
1. 离散型随机变量的概率质量函数:对于一个离散型随机变量X,其概率质量函数P(X=x)描述了X取各个可能值的概率。
必修3概率与统计复习导学(文)
概率与统计复习一、典型问题与方法(一)随机抽样:简单随机抽样、系统抽样、分层抽样简单随机抽样:各个个体被抽中的机会都相等,不放回抽取,常有抽签法、随机数法。
系统抽样:用简单随机抽样确定一个个体,再按一定规则(加间隔)抽取。
分层抽样的比较:已知总体内部组成结构,各层按比例抽取。
例1.1.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是()A.1000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是1002.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k小组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是3.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生()A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人4.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②. 则完成①、②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法基础训练1.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( ).A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除一人,然后分层抽样2.某学校为了了解高一年级学生对教师教学的意见,打算从高一年级2007名学生中抽取50名进行抽查,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下2000人再按系统抽样的方法进行,则每人入选的机会()A. 不全相等B. 均不相等C. 都相等D. 无法确定3.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为()A.5,10,15,20B.2,6,10,14C.2,4,6,8D.5,8,11,144.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。
概率统计文科知识点总结
概率统计文科知识点总结概率统计的知识点涉及很多,包括基本概率论、统计学基础、抽样调查、推断统计、多元统计分析等等。
同时,概率统计还包括了一系列数学工具和模型,如随机变量、概率分布、统计推断和假设检验等内容。
下面我们来具体总结一下文科领域中概率统计的知识点。
1.基本概率论概率论是概率统计的基础,在文科领域中,基本概率论的内容包括了概率的定义、事件的概率、条件概率、独立事件、概率分布等内容。
了解基本概率论可以让文科学生更好地理解概率统计的相关知识,对于后续的学习具有重要的作用。
2.统计学基础统计学基础是概率统计的另一个重要内容,包括了统计量、样本集中趋势、样本离散程度、概率分布等内容。
统计学基础是文科领域中概率统计的重要组成部分,它主要用来描述和分析文科数据的规律和特征。
3.抽样调查抽样调查是文科领域中概率统计的一个重要应用,它主要用来获取文科数据样本。
在实际的文科研究中,抽样调查是获取数据的常用方法,通过对抽样调查的了解可以帮助文科学生更好地进行文科研究和分析。
4.推断统计推断统计是文科领域中概率统计的一个重要内容,它主要用来从样本数据中推断总体数据的特征和规律。
推断统计包括了点估计、区间估计、假设检验等内容,通过推断统计可以帮助文科学生更好地分析文科数据。
5.多元统计分析多元统计分析是文科领域中概率统计的一个拓展内容,它主要用来分析多个变量之间的关系。
在文科研究中,多元统计分析可以帮助文科学生更好地理解文科数据之间的关系,对于文科研究具有重要的意义。
除了上述内容之外,文科领域中概率统计还包括了一系列数学工具和模型,如随机变量、概率分布、统计推断和假设检验等内容。
这些内容都是文科学生在概率统计学习中需要重点掌握的知识点。
总的来说,概率统计在文科领域中有着重要的地位,它不仅可以帮助文科学生更好地理解文科数据的规律和特征,还可以帮助文科学生更好地进行文科研究和分析。
因此,文科学生在学习概率统计的过程中需要重点掌握上述知识点,通过理论学习和实际应用,不断提高自己的概率统计分析能力。
高考文科概率统计大题
高考文科概率统计大题高考文科概率统计大题一、引言高考作为中国教育体系的重要组成部分,对于学生来说意义重大。
其中,文科概率统计是一道常见的考题,对学生的数学思维能力和概率统计知识的掌握程度提出了挑战。
本文将从基本概念、计算方法和实际应用三个方面来探讨高考文科概率统计大题。
二、基本概念在开始解答概率统计大题之前,首先需要了解一些基本概念。
概率是指某一事件发生的可能性或者程度大小,而统计学则是利用样本数据推断总体的特征。
在解答概率题时,常见的概念包括样本空间、事件、频率和概率等。
理解这些基本概念,能够为我们后续的计算和分析打下基础。
三、计算方法在文科概率统计大题中,计算方法是解决问题的关键。
常见的计算方法包括排列、组合、加法原理、乘法原理等。
通过正确运用这些方法,我们可以快速准确地计算出答案。
此外,还需要掌握条件概率、贝叶斯定理等进阶计算方法,以应对更复杂的问题。
不同的计算方法适用于不同的场景,学生们需要掌握并善于选择合适的方法。
四、实际应用概率统计在实际生活中有着广泛的应用。
在文科概率统计大题中,常涉及到投资、风险评估、信用评分、调查统计等实际问题。
学生们需要通过解答这些实际应用题,了解并应用概率统计在现实生活中的重要性和实用性。
此外,还需要培养对问题分析和解决的能力,将概率统计知识与实际应用相结合。
五、答题技巧解答概率统计大题不仅要掌握基本概念和计算方法,还需要具备一定的答题技巧。
首先,学生们要仔细审题,理解问题要求和限制条件;其次,要对题目进行归类,将抽象问题具象化;还要善于利用已知条件,简化计算过程。
另外,还要注意答题过程中的合理化推测和合理性判断,确保答案的准确性。
六、总结综上所述,高考文科概率统计大题是一道考察学生数学思维和概率统计知识的重要题目。
通过理解基本概念、熟练掌握计算方法、应用实际问题和灵活应用答题技巧,学生们便能够在高考中应对这一考题。
希望本文的内容能够对广大考生在备战高考中有所帮助,实现更好的成绩。
文科数学专题概率与统计(学案)高考二轮复习资料含答案
文科数学专题概率与统计(学案)高考二轮复习资料含答案1.以客观题形式考查抽样方法,样本的数字特征和回归分析,独立性检验的基本思路、方法及相关计算与推断.2.本部分较少命制大题,若在大题中考查多在概率与统计、算法框图等知识交汇处命题,重点考查抽样方法,频率分布直方图和回归分析或独立性检验,注意加强抽样后绘制频率分布直方图,然后作统计分析或求概率的综合练习.3.以客观题形式考查古典概型与几何概型、互斥事件与对立事件的概率计算.4.与统计结合在大题中考查古典概型与几何概型.(1)在频率分布直方图中:频率①各小矩形的面积表示相应各组的频率,各小矩形的高=;②各小矩形面积之和等于1;③中位数组距左右两侧的直方图面积相等,因此可以估计其近似值.(2)茎叶图当数据有两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,从总体中逐个抽取少在起始部分抽样时采按事先确定的规则在各用简单随机抽样总体中的个体数较多分层抽样时采用简单总体由差异明显的随机抽样或系统抽样几部分组成即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.当数据有三位有效数字,前两位相对比较集中时,常以前两位为茎,第三位(个位)为叶(其余类推).3.样本的数字特征(1)众数在样本数据中,频率分布最大值所对应的样本数据(或出现次数最多的那个数据).(2)中位数样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取当中两个数据的平均数作为中位数.(3)平均数与方差-1样本数据的平均数某=(某1+某2++某n).n1-2-2-22方差=[(某1-某)+(某2-某)++(某n-某)].n注意:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定.4.变量间的相关关系(1)利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中的点从整体上看大致分布在一条直线的附近,我们说变量某和y具有线性相关关系.(2)用最小二乘法求回归直线的方程^^^设线性回归方程为y=b某+a,则^b=-某-某^-^-a=y-b某ni=1nii=1--某i-某yi-y=--某iyi-n某yi=1nn22i-n某某2-i=1.--注意:回归直线一定经过样本的中心点(某,y),据此性质可以解决有关的计算问题.5.回归分析n某i-某yi-yi=1--r=n,叫做相关系数.某i-某2yi-y2i=1i=1-n-相关系数用来衡量变量某与y之间的线性相关程度;|r|≤1,且|r|越接近于1,相关程度越高,|r|越接近于0,相关程度越低.6.独立性检验假设有两个分类变量某和Y,它们的取值分别为{某1,某2}和{y1,y2},其样本频数列联表(称为2某2列联表)为某1某2总计2y1aca+c2y2bdb+d总计a+bc+da+b+c+da+b+c+dad-bc则K=,a+bc+da+cb+d若K>3.841,则有95%的把握说两个事件有关;若K>6.635,则有99%的把握说两个事件有关;若K<2.706,则没有充分理由认为两个事件有关.7.随机事件的概率随机事件的概率范围:0≤P(A)≤1;必然事件的概率为1,不可能事件的概率为0.8.古典概型①计算一次试验中基本事件的总数n;②求事件A包含的基本事件的个数m;③利用公式P(A)=计算.9.一般地,如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率的和,即P(A+B)=P(A)+P(B).-10.对立事件:在每一次试验中,相互对立的事件A和A不会同时发生,但一定有一个发生,因此有222mnP(A)=1-P(A).11.互斥事件与对立事件的关系-对立必互斥,互斥未必对立.12.几何概型一般地,在几何区域D内随机地取一点,记事件“该点落在其内部区域d内”为事件A,则事件A发生的概率P(A)=考点一几何概型例1.【2022课标1,】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是d的测度.D的测度141C.2A.【答案】Bπ8πD.4B.【变式探究】(2022·江苏卷)记函数f(某)=6+某-某的定义域为D.在区间[-4,5]上随机取一个数某,则某∈D的概率是________.5【答案】93--252【解析】由6+某-某≥0,解得-2≤某≤3,则D=[-2,3],则所求概率为=.5--49【变式探究】从区间[0,1]随机抽取2n个数某1,某2,,某n,y1,y2,,yn,构成n个数对(某1,y1),(某2,y2),,(某n,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4n2m2nB.mC.4mn2mD.n【答案】Cmπ4m4m【解析】由题意知,=,故π=,即圆周率π的近似值为.n4nn考点二古典概型例2.(2022·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.【答案】D3102511015【2022山东】从分别标有1,2,,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A)5475(B)(C)(D)18999【答案】C【解析】标有1,2,,9的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到的2张卡112C5C45,选C.片上的数奇偶性不同的概率是989【变式探究】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.51011B.C.D.1212121【变式探究】(2022·天津卷)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.【答案】C【解析】从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共424种,所以所求概率P==.105故选C.考点三概率与其他知识的交汇例3、(2022·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数[10,15)2[15,20)16[20,25)36[25,30)25[30,35)7[35,40)44 5352515以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率.(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.【变式探究】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下表:消费次数收费比例第1次1第2次0.95第3次0.90第4次0.85第5次及以上0.80该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如下表:消费次数频数第1次60第2次20第3次10第4次5第5次及以上5假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.40【解析】(1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为100=0.4.(2)该会员第1次消费时,公司获得的利润为200-150=50(元).50+40第2次消费时,公司获得的利润为200某0.95-150=40(元),所以,公司获得的平均利润为=245(元)。
高中统计与概率知识点
高中统计与概率知识点(文科)(一)统计一、简单随机抽样1.总体和样本在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。
5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
二、系统抽样1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布成某种循环性规律,且这种循环和抽样距离重合。
系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
因为它对抽样框的要求较低,实施也比较简单。
更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。
[数学]高三文科数学概率复习课
1. “一个骰子掷一次得到6的概率是
1 6
,这说明一个骰子掷6次会出现一
1
次6”,这种说法对吗?请说明你的理由. 解析:这种说法是不对的.虽然每次掷骰子出现6点的概率是 6,但连续
掷6次骰子不一定会1,2,3,4,5,6各出现一次,可能出现某个数的次数多
一些,其他的数少一些,这正好体现了随机事件发生的随机性.但随着试 验次数的增加,出现1,2,3,4,5,6各数的频率大约相等,即都为试验次数 的
1
女孩 P
2
2002
2003 2004 2005 2006 5年总计
0.516
0.518 0.515 0.518 0.516 0.517
0.484
0.482 0.485 0.482 0.484 0.483
2. 某批乒乓球产品质量检查结果如下表所示: 抽取球数n 50 100 200 500 1000 2000
题型二
随机事件的概率问题
例2某地区近5年出生婴儿的调查表如下:
出生数 出生年份 2002 男孩 m
1
共计n=
2
出生频率 男孩 P
1
女孩 m
m m
1
2
女孩 P
2
52807
49473
102280
2003
2004 2005 2006 5年总计
51365
49698 49654 48243 251767
47733
概率复习课
第三章
第1课时
基础梳理
1. 事件 (1)必然事件:
概率
随机事件的概率
在条件S下, 一定会发生的事件,叫做相对于条件S的必然事件. (2) 不可能事件: 在条件S下, 一定不会发生 的事件,叫做相对于条件S的不可能事件. (3) 确定事件: 必然事件与不可能事件 统称为相对于条件S的确定事件. (4) 随机事件 在条件S下, 可能发生也可能不发生 的事件,叫做相对于条件S的随机事件.
(完整word版)统计与概率高考题(文科)
统计与概率【小题训练】1.(2018全国卷Ⅰ,T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(2018全国卷Ⅱ,T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6 B .0.5C .0.4D .0.33.(2018全国卷Ⅲ,T5)某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A .0.3B .0.4C .0.6D .0.74.(2017新课标Ⅰ,T2)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为1x ,2x ,…,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .1x ,2x ,…,n x 的平均数B .1x ,2x ,…,n x 的标准差C .1x ,2x ,…,n x 的最大值D .1x ,2x ,…,n x 的中位数5.(2017新课标Ⅰ,T4)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.8πC.12D.4π6.(2017新课标Ⅱ,T11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.257.(2017新课标Ⅲ,T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳8.(2016全国I卷,T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是A.13B.12C.23D.569.(2016全国II卷,T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为A.710B.58C.38D.31010.(2016年全国III 卷,T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是A .各月的平均最低气温都在0℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20℃的月份有5个11.(2016全国III 卷,T5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是 A .815 B .18 C .115 D .130 12.(2016年北京,T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为A .15 B .25 C .825 D .92513.(2016年北京,T8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则A .2号学生进入30秒跳绳决赛B .5号学生进入30秒跳绳决赛C .8号学生进入30秒跳绳决赛D .9号学生进入30秒跳绳决赛 14.(2015新课标1,T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为 A .310 B .15 C .110 D .12015.(2015新课标2,T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关16.(2015北京,T4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为A.90 B.100 C.180 D.300类别人数老年教师900中年教师1800青年教师1600合计430017.(2018全国卷Ⅲ,T14)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.18、为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区户家庭,得到如下统计数据表:收入(万元)支出(万元)根据上表可得回归直线方程,据此估计,该社区一户收入为万元家庭年支出为()A.万元B.万元C.万元D.万元大题题型题型一:回归分析1、社会在对全日制高中的教学水平进行评价时,常常将被清华北大录取的学生人数作为衡量的标准之一.重庆市教委调研了某中学近五年(年-年)高考被清华北大录取的学生人数,制作了如下所示的表格(设年为第一年).年份(第年)人数(人)(1)试求人数关于年份的回归直线方程;(2)在满足(1)的前提之下,估计年该中学被清华北大录取的人数(精确到个位);(3)教委准备在这五年的数据中任意选取两年作进一步研究,求被选取的两年恰好不相邻的概率.参考公式:.题型二统计图1、某服装店对过去天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:(1)若将上述频率视为概率,已知该服装店过去天的销售中,实体店和网店销售量都不低于件的概率为,求过去天的销售中,实体店和网店至少有一边销售量不低于件的天数;(2)若将上述频率视为概率,已知该服装店实体店每天的人工成本为元,门市成本为元,每售出一件利润为元,求该门市一天获利不低于元的概率;(3)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到).2、某工厂有工人名,记岁以上(含岁)的为类工人,不足岁的为类工人,为调查该厂工人的个人文化素质状况,现用分层抽样的方法从两类工人中分别抽取了人、人进行测试.(1)求该工厂两类工人各有多少人?(2)经过测试,得到以下三个数据图表:图一:分以上两类工人成绩的茎叶图(茎、叶分别是十位和个位上的数字)①先填写频率分布表(表一)中的六个空格,然后将频率分布直方图(图二)补充完整;②该厂拟定从参加考试的分以上(含分)的类工人中随机抽取人参加高级技工培训班,求抽到的人分数都在分以上的概率.题型三独立性分析年全国两会,即中华人民共和国第十二届全国人民代表大会第四次会议和中国人民政治协商会议第十二届全国委员会第四次会议,分别于年月日和月日在北京开幕。
概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)
专题16 概率与统计(解答题)(文科专用)1.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k 2.7063.8416.6352.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =i n i=1i √∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.3.【2021年甲卷文科】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++4.【2021年乙卷文科】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥认为有显著提高).5.【2020年新课标1卷文科】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务6.【2019年新课标1卷文科】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年新课标2卷文科】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.8.【2018年新课标1卷文科】某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。
概率统计(文科)
文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率P(A)e(0,1)(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1•某校高一年级有900名学生,其中女生400名•按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.2•某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取名学生.3.某校老年、中年和青年教师的人数见右表,米用分层抽样的方法调查教类另U人数师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年老年教师900教师人数为中年教师1800 4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是青年教师1600 5•若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为•合计4300 6•重庆市2013年各月的平均气温(°C)数据的茎叶图如右图:o吕9则这组数据的中位数是•1252003127•某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国豕,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图的频率分布直方图.(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(III)估计居民月均用水量的中位数.0Q.511622.533.544.6月满意度评分低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意A 地区用户满意度评分的频率分布直方司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.(II) 根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(I) 应收集多少位女生的样本数据?(II) 根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(&10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;满意度评分分组 [50,60) [60,70) [70,80) [80,90) [90,100] 频数 2 8 14 10 6B 地区用户满意度评分的频数分布表 (I)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分 的平均值及分散程度(不要求计算出具 体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(III)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体 育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间 与性别有关”.n (ad 一bc\附:尺2步畝+d 儿+枫+d )P (2>k)0.10 0.05 0.01 0.005 k2.7063.8416.6357.8799.(2015全国II 文)某公03511.(2014全国I文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(I)在下表中作出这些数据的频率分布直方图: 12.(2014广东文)某车间20名工人年龄数据如下表: 年皤7舁工人執7人1912日329330531斗323401昔讦20(I)求这20名工人年龄的众数与极差;(II)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(III)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.14.___________________________________________________ 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(II)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是.(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95 16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是.的产品至少要占全部产品80%”的规定?17. (2016天津文)甲、乙两人下棋,两人下成和棋的概率为1,甲获胜的概率是-,则甲不23输的概率为.18. 已知5件产品中有2件次品,其余为合格品•现从这5件产品中任选2件,恰有一件次品 的概率为.24. 如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴19.某单位N 名员工参加“社区低碳你我他”活动•他们的年龄在25岁至50岁之间.按年龄分组并得到的频率分布直方图如图所示.下表是年龄的频数分布表.区间 [25,30) [30,35) [35,40) [40,45) [45,50] 人数25 ab5丰25. 为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174 176 176 176 178 儿子身高y (cm )17517517617717722. ____________________________________________ 在区间[-2,3]上随机选取一个数x ,则x <1的概率为23. ___________________________________ 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是.(I )求y 关于t 的回归方程y =bt+a ;(II )利用(I )中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情4550年龄/驴(I )求正整数a ,b ,N 的值;(II )现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(III )在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率. 20.(2016全国丨文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( A.1B.1C.-D.- 21.(2016全国II 文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒•若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()10 B.5D.—10 则y 对X 的线性回归方程为()A .y =x 一1B .y =x +1C .y =88+-x广告费用x (万元)4 2 35 销售额y (万元)4926395426.某产品的广告费用x 与销售额y 的统计数据如下:D .y =176根据上表可得回归方程y =bx+a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元B .65.5万元C .67.7万元D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长•设某地区城乡居民人民币储蓄存款(年 底余额)如下表:年份 2011 2012 2013 2014 2015 时间代号t1 2 3 4 5 储蓄存款y (千亿兀)567810年(1=6)的人民币储蓄存款.V--‘’ty-nty _‘附:回归方程$=几+<2中,,a=y-bt.乙/2-nt 2i=l28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:乙校:(1)计算兀y 的值;况,并 预测 该地 区 2016P^Ki>k)0.10 0.05 0.010 k2.7063.8416.635参考数据与(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2X2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.公式:由列联表中数(a+b)(?+d)C+c)a+d),临界值表:29.—次考试中,5名学生的数学、物理成绩如下表所示:学生 A B C D E 数学成绩兀(分) 89 91 93 95 97 物理成绩y (分)8789899293(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90 分的概率;(2 )性回归100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.0.08°1—r---—r方程(系数精确到0.01).''''(1)求频率分布表中a、b的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标II)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:附:回归直线的方程是:y=bx+a上年度出险次数0 1 2 3 4 >5保费0.85a a 1.25a 1.5a 1.75a2a其中b=㈠(j——,a=y-b x;设该险种一续保人一年内出险次数与相应概率如下:ii=130•为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取一年内出险次数0 1 2 3 4 >5 概率0.30 0.15 0.20 0.20 0.10 0.05(I)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答•试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.34.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(I)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);A地区B帥反4567S9。
高中数学:概率统计专题
高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。
概率与统计(文科)
第二讲 概率——古典概型与几何概型
概率知识的考查是近几年新课改后高考命题的一大热点,高 考每年在选择、填空或解答题中都有所体现,由于文科数学后续 课程不再学习概率,文科数学将重点考查概率的意义、古典概型 与几何概型的掌握和运用.在处理概率问题时主要有两种思路:正 向思路和逆向思路.正向思考可对复杂问题进行分解;逆向思考常 使一些复杂问题得到简化.要学会将实际问题转化为古典概型和
[典题例析]
(2014·广东高考)为了解 1 000 名学生的学习情况,采用系统抽
样的方法,从中抽取容量为 40 的样本,则分段的间隔为( )
A.50
B.40
C.25
D.20
解析:由1 40000=25,可得分段的间隔为 25.故选 C.
2.(人教 B 版教材习题改编)某工厂平均每天生产某种机器零件 大约 10 000 件,要求产品检验员每天抽取 50 件零件,检查 其质量状况,采用系统抽样方法抽取,若抽取的第一组中的 号码为 0010,则第三组抽取的号码为___0_4_1_0__.
几何概型来解决.
古典概型
基础梳理
1. 基本事件
(1) 基本事件的定义:
(2) 一次试验中可能出现的试验结果称为一个基本事件.所有的基本事件都 有有限个,而且是试验中不能再分的最简单的随机事件.
(3)(2) 基本事件的特点:
(4)① 任何两个基本事件互是斥的;
(5)② 任何事件都可以表示成 基本事的件和.
73 58 07 44 39 52 38 79,33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 解析:由随机数表,可以看出前 4 个样本的个体的编号是 331,572,455,068.于是,第 4 个样本个体的编号是 068.
文科高考概率统计知识点
文科高考概率统计知识点在文科高考中,概率统计是一个重要的数学知识点,它涉及到了随机事件的发生规律以及对数据的分析和归纳能力。
掌握好概率统计的知识,对于学生在高考数学中的成绩起着至关重要的作用。
下面,本文将从概率的基本概念、事件的概率、独立事件、条件概率和统计与分布等角度,详细阐述文科高考中的概率统计知识点。
概率的基本概念是概率统计的基础,要了解概率,首先需要明白什么是随机事件。
随机事件是在一定条件下可能发生的结果,它有唯一确定的结果,但在每次实验中的结果却是不确定的。
概率则是对随机事件发生可能性的量化。
概率的计算方法多种多样,常用的有古典概型、几何概型和统计概型等。
几何概型中,概率等于事件所包含的有利结果个数与总结果个数之比。
统计概型中,概率可以通过大量实验的结果频率来估算。
在考试中,经常会遇到求多个事件同时发生的概率问题。
这时,我们需要使用事件的乘法定理。
乘法定理表明,多个事件同时发生的概率等于各事件单独发生的概率相乘。
在解决问题时,需要根据题目条件进行筛选和计算。
对于互不影响的事件,可以直接将各个事件的概率相乘;对于有依赖关系的事件,需要利用条件概率的概念。
条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
条件概率的计算是通过主事件和次事件的交集的概率与主事件的概率之比来得出的。
在考试中,条件概率的应用非常广泛,可以用来解决很多实际问题。
例如,某班级男生与女生的比例问题,或者某地区某种疾病的发病率问题等等。
独立事件是指两个事件之间没有任何联系,即一个事件的发生与另一个事件的发生没有任何影响。
在概率计算中,如果两个事件是独立事件,那么它们同时发生的概率就等于各个事件单独发生的概率的乘积。
判断两个事件是否独立需要根据题目的具体条件进行分析和推理。
在解题实践过程中,要善于运用事件独立性的概念,确定事件之间的关系。
在高考中,概率统计的应用不仅仅停留在概率的计算上,还需要对数据进行统计和分析。
概率统计
5 高三数学专题——概率与统计测试卷(文科)一、选择题(共10题,每小题均只有一个正确答案,每小题5分,共60分)1.右图是2008年韶关市举办“我看韶关改革开放三十年”演讲比赛大赛上,七位评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A.5;1.6B.85;1.6C.85;0.4D.5;0.42.如图,样本数为9的四组数据,它们的平均数都是5,频率条形图如下,则标准差最大的一组是3.已知函数()2f x x bx c=++,其中04,04b c≤≤≤≤,记函数满足()()21213ff≤⎧⎪⎨-≤⎪⎩的事件为A,则事件A的概率为()A.58B.12C.38D.144.在区间[]0,1上任取两个数,a b,方程220x ax b++=的两根均为实数的概率为()A.18B.14C.12D.345.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。
根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A.甲地:总体均值为3,中位数为4 B.乙地:总体均值为1,总体方差大于0 C.丙地:中位数为2,众数为3 D.丁地:总体均值为2,总体方差为36.在长为1的线段上任取两点,则这两点之间的距离小于12的概率为()A.14B.12C.34D.787.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积不小于3S的概率是()A.32B.13C.43D.418.下列说法中,正确的个数是()(1) 在频率分布直方图中,中位数左边和右边的直方图的面积相等。
(2)平均数是频率分布直方图的“重心”。
(3) 如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变。
(4)一个样本的方差()()()222212133320ns x x x⎡⎤=-+-+⋯-⎣⎦,则这组数据等总和等于60.(5) 数据123,,,...,na a a a的方差为2σ,则数据1232,2,2,...,2na a a a的方差为24σA. 5B. 4C.3D. 29.5.甲、乙两人各抛掷一次正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x、y,则满足复数ix y+的实部大于虚部的概率是()A.16B.512C.712D.1310.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中{},1,2,3,4,5,6a b∈,若1a b-≤,就称甲乙“心有灵犀”。
高考复习文科数学之统计与概率
各地解析分类汇编:统计与概率1.【山东省济南外国语学校2013届高三上学期期中考试 文科】某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。
现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( ) A. 6 B. 7 C. 8 D.9 【答案】C【解析】设从高二应抽取x 人,则有30:406:x =,解得8x =,选C.2.【山东省济南外国语学校2013届高三上学期期中考试 文科】(本小题满分12分)某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X=70时,Y=460;X 每增加10,Y 增加5;已知近20年X 的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160. (I )完成如下的频率分布表:近20年六月份降雨量频率分布表(II )假定今年六月份的降雨量与近20年六月份的降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.【答案】解:(I )在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为…………………………………………………………………………………….…..….5分.(II )("132320202010P ++=发电量低于490万千瓦时或超过530万千瓦时")=P(Y<490或Y>530)=P(X<130或X>210)=故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.…………………………………………………………………………………12分3.【云南师大附中2013届高三高考适应性月考卷(三)文】记集合{}22(,)|16A x y x y =+≤和集合{}(,)|40,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为12,ΩΩ若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω的概率为A .12πB .1πC .14D .24ππ- 【答案】A【解析】区域1Ω为圆心在原点,半径为4的圆,区域2Ω为等腰直角三角形,两腰长为4,所以218116π2πS P S ΩΩ===,故选A . 4.【云南省昆明一中2013届高三新课程第一次摸底测试文】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病倒数计算,下列各选项中,一定符合上述指标的是 ①平均数3x ≤;②标准差2S ≤;③平均数3x ≤且标准差2S ≤;④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于4。
文科数学高考知识点概率
文科数学高考知识点概率概率是数学中的一个重要分支,也是文科数学高考中的一个重要考点。
概率可以说是一种描述随机性的工具,它可以帮助我们分析和预测各种事件的发生可能性。
在高考中,概率常常和统计一起出现,共同构成了数学的一大门类。
一、概率的基本概念在学习概率之前,我们首先需要了解一些基本的概念。
概率的基本单位是事件,而事件是指某件事情发生或者不发生。
在概率的计算中,我们通常使用事件发生的可能性大小来描述概率的大小。
概率的取值范围是0到1之间,其中0表示不可能事件,而1表示必然事件。
二、概率的计算方法1.古典概型古典概型是最简单的概率计算方法之一。
在古典概型中,我们假设每个样本点出现的机会是相等的,然后通过计算有利事件出现的样本点数目与总样本点数目的比值来计算概率。
2.频率概率频率概率是根据事件发生的频率来计算概率。
通过大量的实验或观察,我们可以统计出事件发生的次数,然后计算事件发生的频率作为概率的近似值。
3.几何概型在几何概型中,我们通常是通过计算几何图形的面积或者长度来求解概率。
几何概型常常应用在正方形、圆形、三角形等几何图形的计算中。
4.条件概率条件概率是指在已知某个事件发生的前提下,另一个事件发生的概率。
条件概率的计算对于解决一些实际问题非常有用,它能够帮助我们预测在特定条件下事件发生的可能性。
5.全概率全概率是利用分区思想来计算概率的一种方法。
通过将一个事件分解成若干个互斥且穷尽的事件,然后计算各个事件发生的概率并相加,就可以得到整个事件发生的概率。
三、概率的应用概率在现实生活中有着广泛的应用。
在商业领域中,概率可以用于市场调研、销售预测等方面。
在医学领域中,概率可以帮助医生分析疾病的风险和预后。
在金融领域中,概率可以用于投资决策和风险控制。
在运输和物流领域中,概率可以帮助我们进行货物运输和交通流量的规划。
总之,概率在各个领域中都发挥着重要的作用。
结语概率作为一门重要的数学学科,是文科数学高考中的重要考点之一。
【新课标】备战高考数学专题复习测试题_概率统计(文科)
高考第一轮复习专题素质测试题概率统计(文科)班别______学号______姓名_______评价______(考试时间120分钟,满分150分,试题设计:隆光诚)一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确)1.(06湖北)甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么()A. 甲是乙的充分但不必要条件B. 甲是乙的必要但不充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件2. (10四川)一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是()A.12,24,15,9B.9,12,12,7C.8,15,12,5D.8,16,10,63.(05辽宁)设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为()A.101006 104 80 C CC⋅B.101004 106 80 C CC⋅C.101006 204 80 C CC⋅D.101004 206 80 C CC⋅4.(08福建)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是()A.12125B.16125C.48125D.961255.(07湖北)将5本不同的书全发给4名同学,每名同学至少有一本书的概率是()A.1564B.15128C.24125D.481256.(06安徽)在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰..三角形的概率为( ) A .17 B .27 C .37 D .477.(07辽宁)一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球.若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为( ) A .122B .111C .322D .2118.(07四川)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是( )A.150.2克B.149.8克C.149.4克D.147.8克9.(09重庆)12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为( ) A .155B .355C .14 D .1310.(10北京)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是( ) A.45 B.35 C.25 D.1511.(09安徽)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于( )A.1B.21 C. 31D. 0 12.(09江西)甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为( )A .16 B .14 C .13 D .12二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号后的横线上)13.(10江苏)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ _ _.14.(07湖北)某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率为.(用数字作答)15.(08上海)在平面直角坐标系中,从五个点:(0,0)A 、(2,0)B 、(1,1)C 、(0,2)D 、(2,2)E 中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 16.(07全国Ⅱ)一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤) 17. (本题满分10分,08福建18) 三人独立破译同一份密码.已知三人各自破译出密码的概率分别为51、41、31,且他们是否破译出密码互不影响. (1)求恰有二人破译出密码的概率; (2)“密码被破译”与“密码未被破译”的概率哪个更大?说明理由.18.(本题满分12分,08广东19)某初级中学共有学生2000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知245,245y z ≥≥,求初三年级中女生比男生多的概率.19.( 本题满分12分,10四川17)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16,甲、乙、丙三位同学每人购买了一瓶该饮料.(Ⅰ)求三位同学都没的中奖的概率;(Ⅱ)求三位同学中至少有两位没有中奖的概率.20.(本题满分12分,08全国Ⅱ19)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立. (Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.21. (本题满分12分,09全国Ⅰ20)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率.22. (本题满分12分,10全国Ⅰ19)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.参考答案:一、选择题答题卡:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B DDCACDBBDAD二、填空题 13.21. 14.12815. 15.54. 16.201. 三、解答题17.解:记“第i 个人破译出密码”为事件(1,2,3)i A i =,依题意有 123111(),(),()543P A P A P A ===且A 1,A 2,A 3相互独立.(1) 设“恰好二人破译出密码”为事件B,则有:B =A 1·A 2·3A ·A 1·2A ·A 3+1A ·A 2·A 3且A 1·A 2·3A ,A 1·2A ·A 3,1A ·A 2·A 3 彼此互斥,于是P (B )=P (A 1·A 2·3A )+P (A 1·2A ·A 3)+P (1A ·A 2·A 3) =314154314351324151⨯⨯+⨯⨯+⨯⨯ =203.(2)设“密码被破译”为事件C ,“密码未被破译”为事件D ,则有:D =1A ·2A ·3A ,且1A ,2A ,3A 互相独立,则有P (D )=P (1A )·P (2A )·P (3A )=324354⨯⨯=52. 而P (C )=1-P (D )=53,故P (C )>P (D ). 所以密码被破译的概率比密码未被破译的概率大. 18.解:(1)∵19.02000x=∴x=380. (2)初三年级人数为y+z=2000-(373+377+388+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:200048×500=12名. (3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y,z):由(2)知y+z=500,且y,z ∈N ,基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、……(255,245)共11个,事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245)共5个,∴P(A)=115. 答:(1)x 的值为380;(2)应在初三年级抽取12名;(3)初三年级中女生比男生多的概率为115. 19.解:(Ⅰ)设甲、乙、丙中奖的事件分别为A 、B 、C,那么1()()()6P A P B P C ===, 35125()()()()()6216P A B C P A P B P C ⋅⋅=== .答:三位同学都没有中奖的概率是125216.(Ⅱ)23151251())13()()66627P A B C A B C A B C A B C -⋅⋅+⋅⋅+⋅⋅+⋅⋅=-⨯⨯-= . 答:三位同学中至少有两位没有中奖的概率为2527. 20.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数. (Ⅰ)221211B A B A B A A ⋅+⋅+⋅=,112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++ 112122()()()()()()P A P B P A P B P A P B =++ 0.30.40.10.40.10.40.2=⨯+⨯+⨯=.(Ⅱ)12B C C =+,22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=, 332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=.答:(Ⅰ)在一轮比赛中甲击中的环数多于乙击中环数的概率为0.2;(Ⅱ)在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率为0.104.21.解:记“第i 局甲获胜”为事件)5,4,3(=i A i ,“第j 局乙获胜”为事件(3,4,5)j B j =。
概率与统计(选择、填空题)(文科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)
专题15概率与统计(选择题、填空题)(文科专用)1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%+75%2>70%,所以A错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以D错.故选:B.2.【2022年全国甲卷】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为615=25.故选:C.3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,A选项结论正确.对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.116=8.50625>8,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616=0.375<0.4,C选项结论错误.对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316=0.8125>0.6,D选项结论正确.故选:C4.【2021年甲卷文科】为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【解析】【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于⨯频率组距组距.5.【2021年甲卷文科】将3个1和2个0随机排成一行,则2个0不相邻的概率为()A .0.3B .0.5C .0.6D .0.8【答案】C 【解析】【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610,故选:C.6.【2021年乙卷文科】在区间10,2⎛⎤⎥⎝⎦随机取1个数,则取到的数小于13的概率为()A .34B .23C .13D .16【答案】B【分析】根据几何概型的概率公式即可求出.【详解】设Ω=“区间10,2⎛⎫ ⎪⎝⎭随机取1个数”,对应集合为:102x x ⎧⎫<<⎨⎬⎩⎭,区间长度为12,A =“取到的数小于13”,对应集合为:103x x ⎧⎫<<⎨⎬⎩⎭,区间长度为13,所以()()()10231302l A P A l -===Ω-.故选:B .【点睛】本题解题关键是明确事件“取到的数小于13”对应的范围,再根据几何概型的概率公式即可准确求出.7.【2020年新课标1卷文科】设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为()A .15B .25C .12D .45【答案】A 【解析】【分析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从O A B C D ,,,,5个点中任取3个有{,,},{,,},{,,},{,,}O A B O A C O A D O B C {,,},{,,},{,,},{,,}O B D O C D A B C A B D {,,},{,,}A C D B C D 共10种不同取法,3点共线只有{,,}A O C 与{,,}B O D 共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为21105=.【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.8.【2020年新课标3卷文科】设一组样本数据x 1,x 2,…,xn 的方差为0.01,则数据10x 1,10x 2,…,10xn 的方差为()A .0.01B .0.1C .1D .10【答案】C 【解析】【分析】根据新数据与原数据关系确定方差关系,即得结果.【详解】因为数据(1,2,,)i ax b i n +=L ,的方差是数据(1,2,,)i x i n =L ,的方差的2a 倍,所以所求数据方差为2100.01=1⨯故选:C 【点睛】本题考查方差,考查基本分析求解能力,属基础题.9.【2019年新课标1卷文科】某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生【答案】C 【解析】【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .【点睛】本题主要考查系统抽样.10.【2019年新课标2卷文科】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .15【答案】B 【解析】【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,所以恰有2只做过测试的概率为63105=,选B .【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.11.【2019年新课标3卷文科】两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12【答案】D 【解析】男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D .【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.12.【2018年新课标2卷文科】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A .0.6B .0.5C .0.4D .0.3【答案】D 【解析】【详解】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为12,A A ,3名女同学为123,,B B B ,从以上5名同学中任选2人总共有12111213212223121323,,,,,,,,,A A A B A B A B A B A B A B B B B B B B 共10种可能,选中的2人都是女同学的情况共有121323,,B B B B B B 共三种可能则选中的2人都是女同学的概率为30.310P ==,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件A ;第二步,分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ;第三步,利用公式()mP A n=求出事件A 的概率.13.【2018年新课标3卷文科】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A .0.3B .0.4C .0.6D .0.7【答案】B 【解析】【详解】分析:由公式()()()()P A B P A P B P AB ⋃=++计算可得详解:设事件A 为只用现金支付,事件B 为只用非现金支付,则()()()()P A B P A P B P AB 1⋃=++=因为()()P A 0.45,P AB 0.15==所以()P B 0.4=,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.14.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为C 53=10甲、乙都入选的方法数为C 31=3,所以甲、乙都入选的概率=310故答案为:31015.【2018年新课标3卷文科】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样.【解析】【详解】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率、统计专题复习(文科)例1.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨): “厨余垃圾”箱 “可回收物”箱 “其他垃圾”箱 厨余垃圾 400 100 100 可回收物 30 240 30 其他垃圾 20 20 60(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,,a b c ,其中0a >,600a b c ++=.当数据,,a b c 的方差2S 最大时,写出,,a b c 的值(结论不要求证明),并求此时2S 的值.(注:方差2222121[()()()]n s x x x x x x n=-+-++-,其中x 为12,,n x x x 的平均数)例2.从装有编号分别为a,b 的2个黄球和编号分别为 c,d 的2个红球的袋中无放回地摸球,每次任摸一球,求:(Ⅰ)第1次摸到黄球的概率;(Ⅱ)第2次摸到黄球的概率.例3.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A 轿车B 轿车C舒适型 100 150 z标准型300450600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆. (1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.作业:11 .(2012陕西理)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则 ( ) (A). x x <甲乙,m 甲>m 乙 (B).x x <甲乙,m 甲<m 乙 (C).x x >甲乙,m 甲>m 乙 (D).x x >甲乙,m 甲<m 乙2.200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速超过60km/h 的汽车数量为( )(A )65辆 (B )76辆(C )88 辆 (D )辆95 3.样本4,2,1,0,-2的标准差是(A).1 (B).2 ( C).4 (D).524.国庆阅兵中,某兵种A ,B ,C 三个方阵按一定次序通过主席台,若先后顺序是随机排定的,则B 先于A ,C 通过的概率为 ( )61)(A 31)(B 21)(c 32)(D5.张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 6.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为23,则第8组抽出的号码应是 。
若用分层抽样方法,则40岁以下年龄段应抽取 人。
7.如图7.EFGH 是以O 为圆心,半径为1的圆的内接正方形。
将一颗豆子随机地扔到该图内,用A 表示事件“豆子既落在正方形EFGH 内 又落在扇形OHE (阴影部分)内”,则P (A )= _____________; .三、解答题8.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00—10:00间各自的点击量,得如 下所示的统计图,根据统计图:(1)甲、乙两个网站点击量的极差分别是多少? (2)甲网站点击量在[10,40]间的频率是多少? (3)甲、乙两个网站哪个更受欢迎?并说明理由。
9.现有8名2012年伦敦奥运会志愿者,其中志愿者A 1,A 2,A 3通晓日语,B 1,B 2,B 3通晓俄语,C 1,C 2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (1)求A 1被选中的概率;(2)求B 1和C 1不全被选中的概率.茎叶图110.在某次测验中,有6位同学的平均成绩为75分.用x n表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:编号n 1234 5成绩x n7076727072(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.11、世界大学生夏季运动会期间,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。
将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.(Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(Ⅱ)若从所有“高个子”中选3名志愿者,求所选志愿者中能担任“礼仪小姐”的人数为2的概率概率、统计专题复习(文科)例1.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨): “厨余垃圾”箱 “可回收物”箱 “其他垃圾”箱 厨余垃圾 400 100 100 可回收物 30 240 30 其他垃圾 20 20 60(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,,a b c ,其中0a >,600a b c ++=.当数据,,a b c 的方差2S 最大时,写出,,a b c 的值(结论不要求证明),并求此时2S 的值. (注:方差2222121[()()()]n s x x x x x x n=-+-++-,其中x 为12,,n x x x 的平均数)解、(1)厨余垃圾投放正确的概率约为“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=23=++400400100100(2)设生活垃圾投放错误为事件A,则事件A 表示生活垃圾投放正确.事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P(A ),约为++=0.7400240601000.所以P(A)约为1-0.7=0,3.(3)当600a =,0b c ==时,2S 取得最大值.因为1()2003x a b c =++=, 所以22221[(600200)(0200)(0200)]80003S =-+-+-=.例2.从装有编号分别为a,b 的2个黄球和编号分别为 c,d 的2个红球的袋中无放回地摸球,每次任摸一球,求: (Ⅰ)第1次摸到黄球的概率; (Ⅱ)第2次摸到黄球的概率.解:(Ⅰ)第1次摸球有4个可能的结果:a ,b ,c ,d ,其中第1次摸到黄球的结果包括:a ,b ,故第1次摸到黄球的概率是.=2054.(Ⅱ)先后两次摸球有12种可能的结果:(a ,b )(a ,c )(a ,d )(b ,a )(b ,c )(b ,d )(c ,a )(c ,b )(c ,d )(d ,a )(d ,b )(d ,c ),其中第2次摸到黄球的结果包括:(a ,b )(b ,a )(c ,a )(c ,b )(d ,a )(d ,b ),故第2次摸到黄球的概率为. 60512. 例3.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A 轿车B 轿车C舒适型 100 150 z标准型300450600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆. (1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率. 解: (1)设该厂这个月共生产轿车n 辆, 由题意得50n =10100+300,所以n =2 000,则z =2 000-100-300-150-450-600=400. (2)设所抽样本中有a 辆舒适型轿车, 由题意得4001 000=a5,则a =2.因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A 1,A 2表示2辆舒适型轿车,用B 1,B 2,B 3表示3辆标准型轿车,用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),共10个. 事件E 包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),共7个. 故P (E )=710,即所求概率为710.(3)样本平均数x =18(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.设D 表示事件“从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D 包含的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以P (D )=68=34,即所求概率为34.作业:12 .(2012陕西理)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则 ( ) A . x x <甲乙,m 甲>m 乙 B .x x <甲乙,m 甲<m 乙 C .x x >甲乙,m 甲>m 乙 D .x x >甲乙,m 甲<m 乙2.200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速超过60km/h 的汽车数量为( )(A )65辆 (B )76辆(C )88 辆 (D )辆95 3.样本4,2,1,0,-2的标准差是A .1B .2C .4D .52答案 B.4.国庆阅兵中,某兵种A ,B ,C 三个方阵按一定次序通过主席台,若先后顺序是随机排定的,则B 先于A ,C 通过的概率为61)(A 31)(B 21)(c 32)(D ( )答案 B.5.张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为答案 .126.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为23,则第8组抽出的号码应是 。