八年级数学上册《课时达标》练与测答案

合集下载

人教版初二上册全册课时练(附答案共54页)

人教版初二上册全册课时练(附答案共54页)

重点中学教学资源整理人教版初二上册全册课时练(精编答案版共54页)第 1 页共53 页第十一章三角形11.1与三角形有关的线段专题一三角形个数的确定1.如图,图中三角形的个数为()A.2 B.18 C.19 D.202.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形__________个.3.阅读材料,并填表:在△ABC中,有一点P1,当P1、A、B、C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?△ABC内点的个数 1 2 3 (1007)构成不重叠的小三角形的个数 3 5 …4.三角形的三边分别为3,1-2a,8,则a的取值范围是()A.-6<a<-3 B.-5<a<-2 C.2<a<5 D.a<-5或a>-25. 在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有______个.6.若三角形的三边长分别是2、x、8,且x是不等式22x+>123x--的正整数解,试求第三边x的长.状元笔记【知识要点】1.三角形的三边关系三角形两边的和大于第三边,两边的差小于第三边.2.三角形三条重要线段(1)高:从三角形的顶点向对边所在的直线作垂线,顶点与垂足之间的线段叫做三角形的高.(2)中线:连接三角形的顶点与对边中点的线段叫做三角形的中线.(3)角平分线:三角形内角的平分线与对边相交,顶点与交点之间的线段叫做三角形的角平分线.3.三角形的稳定性三角形具有稳定性.【温馨提示】1.以“是否有边相等”,可以将三角形分为两类:三边都不相等的三角形和等腰三角形.而不是分为三类:三边都不相等的三角形、等腰三角形、等边三角形,等边三角形是等腰三角形的一种.2.三角形的高、中线、角平分线都是线段,而不是直线或射线.【方法技巧】1.根据三角形的三边关系判定三条线段能否组成三角形时,要看两条较短边之和是否大于最长边.2.三角形的中线将三角形分成两个同底等高的三角形,这两个三角形面积相等.参考答案:1.D 解析:线段AB上有5个点,线段AB与点C组成5×(5-1)÷2=10个三角形;同样,线段DE上也有5个点,线段DE与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.故选D.2.21 解析:根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=4-3,则第n个图形中,三角形的个数是4n-3.所以当n=6时,原式=21.△ABC内点的个数 1 2 3 (1007)构成不重叠的小三角形的个数 3 5 7 (2015)解析:当△ABC内有1个点时,构成不重叠的三角形的个数是3=1×2+1;当△ABC内有2个点时,构成不重叠的三角形的个数是5=2×2+1;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3个点时,三角形的个数是3×2+1=7;当有1007个点时,三角形的个数是1007×2+1=2015.4.B 解析:根据题意,得8-3<1-2a<8+3,即5<1-2a<11,解得-5<a<-2.故选B.5.10 解析:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b.∵b=4,∴a=1,2,3,4.a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5,6,7.∴这样的三角形共有1+2+3+4=10个.6.解:原不等式可化为3(x+2)>-2(1-2x),解得x<8.∵x是它的正整数解,∴x可取1,2,3,5,6,7.再根据三角形三边关系,得6<x<10,∴x=7.11.2与三角形有关的角专题一利用三角形的内角和求角度1.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°D.30°2.如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D. 若AP平分∠BAC 且交BD于P,求∠BPA的度数.3.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:__________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系.(直接写出结论即可)专题二利用三角形外角的性质解决问题4.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°5.如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=40°,∠B=72°.(1)求∠DCE的度数;(2)试写出∠DCE与∠A、∠B的之间的关系式.(不必证明)6.如图:(1)求证:∠BDC=∠A+∠B+∠C;(2)如果点D与点A分别在线段BC的两侧,猜想∠BDC、∠A、∠ABD、∠ACD这4个角之间有怎样的关系,并证明你的结论.状元笔记【知识要点】1.三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的性质及判定性质:直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.3.三角形的外角及性质外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质:三角形的外角等于与它不相邻的两个内角的和.【温馨提示】1.三角形的外角是一边与另一边的延长线组成的角,而不是两边延长线组成的角.2.三角形的外角的性质中的内角一定是与外角不相邻的内角.【方法技巧】1.在直角三角形中已知一个锐角求另一个锐角时,可直接使用“直角三角形的两个锐角互余”.2.由三角形的外角的性质可得出:三角形的外角大于任何一个与它不相邻的内角.1.C 解析:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠1=12∠ACE,∠2=12∠ABC.又∵∠D=∠1-∠2,∠A=∠ACE-∠ABC,∴∠D=12∠A=25°.故选C.2.解:(法1)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°.因为BD平分∠ABC,AP平分∠BAC ,∠BAP=12∠BAC,∠ABP=12∠ABC ,即∠BAP+∠ABP=45°,所以∠APB=180°-45°=135°.(法2)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°,因为BD平分∠ABC,AP平分∠BAC,∠DBC=12∠ABC,∠PAC=12∠BAC ,所以∠DBC+∠PAD=45°.所以∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C =45°+90°=135°.3.解:(1)∠A+∠D=∠B+∠C;(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P,又∵AP、CP分别平分∠DAB和∠BCD,∴∠1=∠2,∠3=∠4,∴∠P-∠D=∠B-∠P,即2∠P=∠B+∠D,∴∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D.4.B 解析:延长DC,与AB交于点E.根据三角形的外角等于不相邻的两内角和,可得∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.设AC与BP相交于点O,则∠AOB=∠POC,∴∠P+12∠ACD=∠A+12∠ABD,即∠P=50°-12(∠ACD-∠ABD)=20°.故选B.5.解:(1)∵∠A=40°,∠B=72°,∴∠ACB=68°.∵CD平分∠ACB,∴∠DCB=12∠ACB=34°.∵CE是AB边上的高,∴∠ECB=90°-∠B=90°-72°=18°.∴∠DCE=34°-18°=16°.(2)∠DCE=12(∠B-∠A).6.(1)证明:延长BD交AC于点E,∵∠BEC是△ABE的外角,∴∠BEC=∠A+∠B.∵∠BDC是△CED的外角,∴∠BDC=∠C+∠DEC=∠C+∠A+∠B.(2)猜想:∠BDC+∠ACD+∠A+∠ABD=360°.证明:∠BDC+∠ACD+∠A+∠ABD=∠3+∠2+∠6+∠5+∠4+∠1=(∠3+∠2+∠1)+(∠6+∠5+∠4)=180°+180°=360°.11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.第十二章全等三角形12.1全等三角形12.2三角形全等的判定专题一三角形全等的判定1.如图,BD是平行四边形ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB 的平分线DF交BC于点F.求证:△ABE≌△CDF.2.如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________;(2)证明:3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二全等三角形的判定与性质4.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A6B.4 C.23D.55.【2013·襄阳】如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.NMEDB CA6.【2012·泸州】如图,△ABC是等边三角形,D是AB边上一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.专题三全等三角形在实际生活中的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°8.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,对吗?为什么?状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等. 3.“HL ”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等. 【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角; (2)对应顶点所对应的边是对应边; (3)公共边(角)是对应边(角); (4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC ≌△DEF , 说明A 与D ,B 与E , C 与F 是对应点,则∠ABC 与∠DEF 是对应角,边AC 与边DF 是对应边.2.判定两个三角形全等的解题思路:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——参考答案:1.证明:平行四边形ABCD 中,AB=CD ,∠A=∠C ,AB ∥CD , ∴∠ABD=∠CDB .∵∠ABE=21∠ABD ,∠CDF=21∠CDB ,∴∠ABE=∠CDF .在△ABE 与△CDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠CDF ABE CDAB C A ∴△ABE ≌△CDF . 2.解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒ (2)以DC BD =为例进行证明: ∵CF ∥BE ,又∵DCBD ,∠FDC=∠EDB,∴△BDE≌△CDF.3.解:(1)添加条件②,③,④中任一个即可,以添加②为例说明.证明:∵AE=CD,BE=BD,∴AB=CB.又∠ABD=∠CBE,BE=BD,∴△ADB≌△CEB.(2)③④.4.B 解析:∵∠ABC=45°,AD⊥BC,∴AD=BD,∠ADC=∠BDH,∠AHE=∠BHD=∠C.∴△ADC≌△BDH.∴BH=AC=4.故选B.5.证明:如图所示,M∵△AEB由△ADC旋转而得,∴△AEB≌△ADC.∴∠3=∠1,∠6=∠C.∵AB=AC,AD⊥BC,∴∠2=∠1,∠7=∠C.∴∠3=∠2,∠6=∠7.∵∠4=∠5,∴∠ABM=∠ABN.又∵AB=AB,∴△AMB≌△ANB.∴AM=AN.6.证明:∵△ABC和△EDC是等边三角形,∴∠BCA=∠DCE=60°.∴∠BCA-∠ACD=∠DCE-∠ACD,即∠BCD=∠ACE.在△DBC和△EAC中,BC=AC,∠BCD=∠ACE,DC=EC,∴△DBC≌△EAC(SAS).∴∠DBC=∠EAC.又∵∠DBC=∠ACB=60°,∴AE∥BC.7.B 解析:∵滑梯、墙、地面正好构成直角三角形,又∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF.∴∠ABC=∠DEF,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°.故选B.8.解:在△ABC和△CED中,AC=CD,∠ACB=∠ECD,EC=BC,∴△ABC≌△CED.∴AB=ED.即量出DE的长,就是A、B两端的距离.9.解:对.理由:∵AC⊥AB,∴∠CAB=∠CAB′=90°.在△ABC和△AB′C中,ACB ACBAC ACCAB CAB=⎧⎪=⎨⎪=⎩∠∠′,,∠∠′,∴△ABC≌△AB′C(ASA).∴AB′=AB.12.3 角的平分线的性质专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt△ABC中,∠C=90°,21BAC B∠∠,AD是∠BAC的角平分线,DE⊥AB∶∶于点E,AC=3 cm,求BE的长.专题二角平分线的性质在实际生活中的应用4.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在__________,理由是__________.6.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留作图痕迹)状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.参考答案:1.证明:∵DF AB DG AC DF DG ⊥⊥=,,,∴AD 是BAC ∠的平分线, ∴BAD CAD =∠∠. 在ABD △和ACD △中,⎪⎩⎪⎨⎧=∠=∠=(公共边)(已求)已知)AD AD DAC DAB AC AB (∴SAS)ABD ACD (△≌△. ∴ADB ADC =∠∠.又∵180BDA CDA +=︒∠∠,∴90BDA =︒∠,∴AD BC ⊥. 2.证明:∵AO 平分∠BAC ,OD ⊥AB ,OE ⊥AC ,∴OD =OE ,在Rt △BDO 和Rt △CEO 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,COE DOB OEOD CEO BDO∴(ASA)BDO CEO △≌△.∴OB =OC . 3.解:∵∠C =90°,∴∠BAC +∠B =90°,又DE ⊥AB ,∴∠C =∠AED =90°, 又21BAC B =∶∶∠∠,∴∠A =60°,∠B =30°, 又∵AD 平分∠BAC ,DC ⊥AC ,DE ⊥AB , ∴DC =DE ,∴3AE AC ==cm .在Rt △DAE 和Rt △DBE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠.DE DE BED AED B DAE∴△DAE ≌△DBE (AAS ),∴3BE AE == cm .4.C 解析:根据角平分线的性质,集贸市场应建在∠A 、∠B 两内角平分线的交点处.故选C .5.∠A 的角平分线上,且距A1cm 处 角平分线上的点到角两边的距离相等 6.解:作两个角的平分线,交点P 就是所求作的点.第十三章 轴对称13.1轴对称 13.2画轴对称图形专题一 轴对称图形 1.【2012·连云港】下列图案是轴对称图形的是( )2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.专题二轴对称的性质4.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠ABC和∠C的度数.6.如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C.3D.18.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-511.已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.状元笔记【知识要点】1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);【温馨提示】1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2.在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.参考答案:1.D 解析:∵将D图形上下或左右折叠,图形都能重合,∴D图形是轴对称图形,故选D.2.圆、正三角形、菱形、长方形、正方形、线段等3.如图所示:4.A 解析:根据轴对称的定义可得,如果△ABC和△ADE关于直线l对称,则△ABC≌△ADE,即①正确;因为如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对应线段、对应角相等,故l垂直平分DB,∠C=∠E,即②,③正确;因为成轴对称的两个图形对应线段或延长线如果相交,那么,交点一定在对称轴上,故BC与DE的延长线的交点一定落在直线l上,即④正确.综上所述,①②③④都是正确的,故选A.5.解:根据题意A点和E点关于BD对称,有∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.B点、C点关于DE对称,有∠DBE=∠BCD,∠ABC=2∠BCD.且已知∠A=90°,故∠ABC+∠BCD=90°.故∠ABC=60°,∠C=30°.6.解:(1)对称点有A和A',B和B',C和C'.(2)连接A、A′,直线m是线段AA′的垂直平分线.(3)延长线段AC与A′C′,它们的交点在直线m上,其他对应线段(或其延长线)的交点也在直线m上,即若两线段关于直线m对称,且不平行,则它们的交点或它们的延长线的交点在对称轴上.7.B 解析:在Rt△FDB中,∵∠F=30°,∴∠B=60°.在Rt△ABC中,∵∠ACB=90°,∠ABC=60°,∴∠A=30°.在Rt△AED中,∵∠A=30°,DE=1,∴AE=2.连接EB. ∵DE 是AB的垂直平分线,∴EB=AE=2. ∴∠EBD=∠A=30°.∵∠ABC=60°,∴∠EBC=30°.∵∠F=30°,∴EF=EB=2.故选B.AF ED8.8 解析:∵DF是AB的垂直平分线,∴DB=DA.∵EG是AC的垂直平分线,∴EC=EA.∵BC=8,∴△ADE的周长=DA+EA+DE=DB+DE+EC=BC=8.9.解:AB+BD=DE.证明:∵AD⊥BC,BD=DC,∴AB=AC.∵点C在AE的垂直平分线上,∴AC=CE.∴AB=CE.∴AB+BD=CE+DC=DE.10.C 解析:关于y轴对称的点横坐标互为相反数,纵坐标相等,∴a=2,b=3.∴a+b=5.解得1.5<a<2.5,又因为a必须为整数,∴a=2.∴点P2(-1,-1).∴P1点的坐标是(-1,1).13.3等腰三角形13.4课题学习最短路径问题专题一等腰三角形的性质和判定的综合应用1.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是___________.(填序号)2.如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?(4)请你猜想:当∠A为多少度时,∠EDF+∠EFD=120°,并请说明理由.3.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.专题二等边三角形的性质和判定4.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是__________.5.如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.6.如图,△ABC中,AB=BC=AC=12 cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.专题三最短路径问题7.如图,A、B两点分别表示两幢大楼所在的位置,直线a表示输水总管道,直线b表示输煤气总管道.现要在这两根总管道上分别设一个连接点,安装分管道将水和煤气输送到A、B两幢大楼,要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短.图中,点A′是点A关于直线b的对称点,A′B分别交b、a于点C、D;点B′是点B关于直线a的对称点,B′A分别交b、a于点E、F.则符合要求的输水和输煤气分管道的连接点依次是()A.F和C B.F和E C.D和C D.D和E8.如图,现准备在一条公路旁修建一个仓储基地,分别给A、B两个超市配货,那么这个基地建在什么位置,能使它到两个超市的距离之和最小? (保留作图痕迹及简要说明)状元笔记【知识要点】1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.等边三角形的性质和判定方法性质:等边三角形的三个内角都相等,并且每一个角都等于60°.判定方法1:三个角都相等的三角形是等边三角形.判定方法2:有一个角是60°的等腰三角形是等边三角形.4.直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【温馨提示】1.“等边对等角”和“等角对等边”只限于在同一个三角形中,在两个三角形中时,上述结论不一定成立.2.在应用直角三角形的性质时应注意以下两点:(1)必须是在直角三角形中;(2)必须有一个锐角等于30°.【方法技巧】1.等腰三角形的性质是证明两个角相等的重要方法,当要证明同一个三角形的两个内角相等时,可尝试用“等边对等角”.2.等腰三角形的判定是证明线段相等的一个重要方法,当要证明位于同一个三角形的两条线段相等时,可尝试用“等角对等边”.3.利用轴对称可以解决几何中的最值问题,本方法的实质是依据轴对称的性质以及两点之间线段最短和三角形两边之和大于第三边.参考答案:1.①②③解析:∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB.∵BF是∠ABC的平分。

八年级上册数学人教版课时练《13.3.2 等边三角形》03(含答案解析)

八年级上册数学人教版课时练《13.3.2 等边三角形》03(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!《13.3.2等边三角形》课时练一、选择题1.如图,已知ABC D 和CDE D 都是等边三角形,且A 、C 、E 三点共线.AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:①AD BE =;②60AOB Ð=°;③AP BQ =;④PCQ D 是等边三角形;⑤//PQ AE .其中正确结论的有()个A .5B .4C .3D .22.已知,在△ABC 中,AB AC =,如图,(1)分别以B ,C 为圆心,BC 长为半径作弧,两弧交于点D ;(2)作射线AD ,连接BD ,CD .根据以上作图过程及所作图形,下列结论中错误..的是()A .BAD CADÐ=ÐB .△BCD 是等边三角形C .AD 垂直平分BC D .ABDC S AD BC=3.如图,在四边形ABCD 中,对角线AC 与BD 相交于点E ,若AC 平分∠DAB ,且AB=AC ,AC=AD ,有四个结论:①AC ⊥BD ;②BC=DC ;③△ABC ≌△ADC ;④△ABD 是等边三角形.其中正确的是()A .①②③B .①②④C .②③④D .①③④4.如图点,,A B C 在同一条直线上,,CBE ADC D D 都是等边三角形,,AE BD 相交于点O ,且分别与,CD CE交于点,M N ,连接,M N ,有如下结论:①DCB ACE D @D ;②AM DN =;③CMN D 为等边三角形;④60°Ð=EOB .其中正确的结论个数是()A .1个B .2个C .3个D .4个5.如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA=CQ 时,连PQ 交AC 边于D ,则DE 的长为()A .0.5B .1C .0.25D .26.已知∠AOB =30°,点P 在∠AOB 的内部,OP=8,在OA 、OB 上分别取点M 、N ,使△OMN 的周长最短,则△PMN 周长的最小值为()A .4B .8C .16D .327.如图,在等边△ABC 中,AD 是BC 边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD ≌△ACD ;②2DE=2DF=AD ;③△ADE ≌△ADF ;④4BE=4CF=AB .正确的个数是()A .1B .2C .3D .48.设P 是边长为a 的正三角形内的一点,P 到三边的距离分别为,,()x y z x y z ££.若以,,()x y z x y z ££为边可以组成三角形,则z 应满足的条件为()A .3386a a z ££B .3364a z a ££C .33348a z a ££D .33382a z a ££9.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A .511a 32´()B .511a 23´()C .611a 32´()D .611a 23´()10.如图,∠AOB =30°,点P 是∠AOB 内的定点,且OP =3.若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是()A .12B .9C .6D .3二、填空题11.如图所示,∠AOB =60°,点P 是∠AOB 内一定点,并且OP =2,点M 、N 分别是射线OA ,OB 上异于点O 的动点,当△PMN 的周长取最小值时,点O 到线段MN 的距离为_____.12.已知等边ABC D 的边长为3,点E 在直线AB 上,点D 在直线CB 上,且ED EC =,若6AE =,则CD 的长为______.13.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 延长线上一点,当AP =CQ 时,PQ 交AC 于D ,则DE 的长为______.14.如图,已知ABC 中,60A Ð=°,D 为AB 上一点,且2,4AC AD BD B ACD =+Ð=Ð,则DCB Ð的度数是_________.15.如图,△ABC 和△CDE 都是等边三角形,且∠EBD=72°,则∠AEB 的度数是______.三、解答题16.在△ABC 中,∠ACB=90°,∠A=30°,BD 是△ABC 的角平分线,DE ⊥AB 于点E .(1)如图1,连接EC ,求证:△EBC 是等边三角形;(2)点M 是线段CD 上的一点(不与点C ,D 重合),以BM 为一边,在BM 的下方作∠BMG=60°,MG 交DE 延长线于点G .请你在图2中画出完整图形,并直接写出MD ,DG 与AD 之间的数量关系;(3)如图3,点N 是线段AD 上的一点,以BN 为一边,在BN 的下方作∠BNG=60°,NG 交DE 延长线于点G .试探究ND ,DG 与AD 数量之间的关系,并说明理由.17.在边长为9的等边三角形ABC 中,点Q 是BC 上一点,点P 是AB 上一动点,以1个单位每秒的速度从点A 向点B 移动,设运动时间为t 秒.(1)如图1,若BQ=6,PQ//AC 求t 的值;(2)如图2,若点P 从点A 向点B 运动,同时点Q 以2个单位的速度从点B 经点C 向点A 运动,当t 为何值时,APQ D 为等边三角形.(3)如图3,将边长为9的等边三角形ABC 变换为AB ,AC 为腰,BC 为底的等腰三角形,且AB=AC=10,BC=8,点P 运动到AB 中点处静止,点M ,N 分别为BC ,AC 上动点,点M 以1个单位每秒的速度从点B 向C 运动,同时N 以a 个单位每秒的速度从点C 向A 运动,当,BPM CNM D D 全等时,求a 的值.18.如图1,已知△ABC 和△EFC 都是等边三角形,且点E 在线段AB 上.(1)求证:BF ∥AC ;(2)过点E 作EG ∥BC 交AC 于点G ,试判断△AEG 的形状并说明理由;(3)如图2,若点D 在射线CA 上,且ED =EC ,求证:AB =AD +BF .19.小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED EC =,试确定线段AE 与DB 的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点E 为AB 的中点时,如图(2),确定线段AE 与DB 的大小关系,请你写出结论:AE _____DB (填“>”,“<”或“=”),并说明理由.(2)特例启发,解答题目:解:题目中,AE 与DB 的大小关系是:AE _____DB (填“>”,“<”或“=”).理由如下:如图(3),过点E 作EF ∥BC ,交AC 于点F .(请你将剩余的解答过程完成)(3)拓展结论,设计新题:在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =,若△ABC 的边长为1,2AE =,求CD 的长(请你画出图形,并直接写出结果).20.在△ABC 中,AB =AC ,D 是直线BC 上一点,以AD 为一条边在AD 的右侧作△ADE ,使AE =AD ,∠DAE =∠BAC ,连接CE .(1)如图,当点D 在BC 延长线上移动时,若∠BAC =40°,则∠ACE =,∠DCE =,BC 、DC 、CE 之间的数量关系为;(2)设∠BAC =α,∠DCE =β.①当点D 在BC 延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D 在直线BC 上(不与B ,C 两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE ∥AB 时,若△ABD 中最小角为15°,试探究∠ACB 的度数(直接写出结果,无需写出求解过程).21.如图,在ABC D 中,AC BC =,90ACB Ð=°,点D 为ABC D 内一点,且BD AD =.(1)求证:CD AB ^;(2)若15CAD Ð=°,E 为AD 延长线上的一点,且CE CA =.①求BDC ∠的度数.②若点M 在DE 上,且DC DM =,请判断ME 、BD 的数量关系,并说明理由.③若点N 为直线AE 上一点,且CEN D 为等腰D ,直接写出CNE Ð的度数.22.如图,已知△ABC 和△ADE 均为等边三角形,BD 、CE 交于点F .(1)求证:BD=CE ;(2)求∠EFB 的度数.23.(1)如图1,ABC 和DCE 都是等边三角形,且B ,C ,D 三点在一条直线上,连接AD ,BE 相交于点P ,求证:BE AD =.(2)如图2,在BCD 中,若120BCD Ð<°,分别以BC ,CD 和BD 为边在BCD 外部作等边ABC ,等边CDE △,等边BDF ,连接AD 、BE 、CF 恰交于点P .①求证:AD BE CF ==;②如图2,在(2)的条件下,试猜想PB ,PC ,PD 与BE 存在怎样的数量关系,并说明理由.参考答案1.A 2.D3.A 4.D 5.A 6.B 7.D 8.B 9.A 10.D 11.112.3或913.1214.20°15.132°16.(1)证明:如图1所示:在Rt △ABC 中,∠ACB=90°,∠A=30°,∴∠ABC=60°,BC=AB.∵BD 平分∠ABC ,∴∠1=∠DBA=∠A=30°.∴DA=DB .∵DE ⊥AB 于点E .∴AE=BE=AB.∴BC=BE .∴△EBC 是等边三角形;(2)结论:AD=DG+DM .证明:如图2所示:延长ED 使得DW=DM ,连接MW ,∵∠ACB=90°,∠A=30°,BD 是△ABC 的角平分线,DE ⊥AB 于点E ,∴∠ADE=∠BDE=60°,AD=BD ,又∵DM=DW ,∴△WDM 是等边三角形,2121∴MW=DM ,在△NGM 和△DBM 中,∴△WGM ≌△DBM ,∴BD=WG=DG+DM ,∴AD=DG+DM .(3)结论:AD=DG ﹣DN .证明:如图延长BD 至H ,使得DH=DN .由(1)得DA=DB ,∠A=30°.∵DE ⊥AB 于点E .∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH 是等边三角形.∴NH=ND ,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB .在△DNG 和△HNB 中,∴△DNG ≌△HNB (ASA ).∴DG=HB .∵HB=HD+DB=ND+AD ,∴DG=ND+AD .∴AD=DG ﹣ND .17.解:(1)ABC D 是等边三角形,60A B C \Ð=Ð=Ð=°,PQ//AC ,60BQP C \Ð=Ð=°,60BQP B \Ð=Ð=°,BPQ \D 是等边三角形,BP BQ \=,由题意可知:AP t =,则9BP t =-,96t \-=,解得:3t =,故t 的值为3;(2)①当点Q 在边BC 上时,已知此时APQ D 不可能为等边三角形;②当点Q 在边AC 上时,若APQ D 为等边三角形,则AP AQ =,由题意可知,AP t =,2BC CQ t +=,()922182AQ BC AC BC CQ t t \=+-+=´-=-,182t t \=-,解得:6t =,故当6t =时,APQ D 为等边三角形;(3)由题意可知:BM t =,CN at =,1110522BP AB ==´=,则8CM BC BM t =-=-,若PBM D ≌NCM D ,则PB NC BM CM =ìí=î,即:58at t t=ìí=-î,解得:544a t ì=ïíï=î;若PBM D ≌MCN D ,则PB MC BM CN =ìí=î,即:58t t at=-ìí=î,解得:13a t =ìí=î;综上所述:当,BPM CNM D D 全等时,a 的值为1或54.18.解:(1)如图1,∵△ABC 和△EFC 都是等边三角形,∴∠ACB=∠ECF=∠A=60°,AC=BC ,CE=FC ,∴∠1+∠3=∠2+∠3,∴∠1=∠2,在△ACE 与△FCB 中,12AC BC CE CF =ìïÐ=Ðíï=î,∴△ACE ≌△FCB ,∴∠CBF=∠A =60°,∴∠CBF =∠ACB ,∴AC ∥BF ;(2)△AEG 是等边三角形,理由如下:如图,过E 作EG ∥BC 交AC 于G,∵∠ABC=∠ACB=60°,∴∠AEG=∠AGE=60°,∴△AEG 是等边三角形.(3)如图2,过E 作EG ∥BC 交AC 于G ,由(2)可知△AEG 是等边三角形,∴AE=EG=AG ,∠GAE=∠AGC=60°,∴∠DAE=∠EGC=120°,∵DE=CE ,∴∠D=∠1,∴△ADE ≌△GCE ,∴AD=CG ,∴AC=AG+CG=AG+AD ,由(1)得△ACE ≌△FCB ,∴BF=AE ,∴BF=AG ,∴AC=BF+AD ,∴AB=BF+AD .19.解:(1)AE DB =,理由如下:ED EC = ,EDC ECD\Ð=Ð∵△ABC 是等边三角形,60ACB ABC Ð=Ð=°\,点E 为AB 的中点,1302ECD ACB \°Ð=Ð=,30EDC Ð=°\,30D DEB Ð=Ð=°\,DB BE \=,AE BE = ,AE DB \=;故答案为:=;(2)AE DB =,理由如下:如图3:∵△ABC 为等边三角形,且EF ∥BC ,60AEF ABC Ð=Ð=°\,60AFE ACB Ð=Ð=°,FEC ECB Ð=Ð;120EFC DBE Ð=Ð=°\;ED EC = ,D ECB \Ð=Ð,D FEC Ð=Ð,在△EFC 与△DBE 中,FEC D EFC DBE EC DE Ð=ÐìïÐ=Ðíï=î,∴△EFC ≌△DBE (AAS ),EF DB\=60AEF AFE Ð=Ð=° ,∴△AEF 为等边三角形,AE EF \=,AE BD \=.(3)①如图4,当点E 在AB 的延长线上时,过点E 作EF ∥BC ,交AC 的延长线于点F:则DCE CEF Ð=Ð,DBE AEF Ð=Ð;ABC AEF Ð=Ð,ACB AFE Ð=Ð;∵△ACB 为等边三角形,60ABC ACB \Ð=Ð=°,60AEF AFE \Ð=Ð=°,60DBE ABC Ð=Ð=°,DBE EFC \Ð=Ð;而ED EC =,D DCE \Ð=Ð,D CEF Ð=Ð;在△FEC 和△BDE 中,FEC D EFC DBE EC DE Ð=ÐìïÐ=Ðíï=î,∴△FEC ≌△BDE (AAS ),EF BD \=;∵△AEF 为等边三角形,2AE EF \==,2BD EF ==,123CD \=+=;②如图5,当点E 在BA 的延长线上时,过点E 作EF ∥BC ,交CA 的延长线于点F :类似上述解法,同理可证:2DB EF ==,1BC =,211CD =-=\.、20.(1)如图1所示:∵∠DAE =∠BAC ,∴∠DAE +∠CAD =∠BAC +∠CAD ,∴∠BAD =∠CAE .在△BAD 和△CAE 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠B 12=(180°﹣40°)=70°,BD =CE ,∴BC +DC =CE .∵∠ACD =∠B +∠BAC =∠ACE +∠DCE ,∴∠BAC =∠DCE .∵∠BAC =40°,∴∠DCE =40°.故答案为:70°,40°,BC +DC =CE ;(2)①当点D 在线段BC 的延长线上移动时,α与β之间的数量关系是α=β.理由如下:∵∠DAE =∠BAC ,∴∠DAE +∠CAD =∠BAC +∠CAD ,∴∠BAD =∠CAE .在△BAD 和△CAE 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,∴△BAD ≌△CAE (SAS ),∴∠B=∠ACE.∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.∵∠BAC=α,∠DCE=β,∴α=β;②分三种情况:(Ⅰ)当D在线段BC上时,α+β=180°,如图2所示.理由如下:同理可证明:△ABD≌△ACE(SAS),∴∠ADB=∠AEC,∠ABC=∠ACE.∵∠ADC+∠ADB=180°,∴∠ADC+∠AEC=180°,∴∠DAE+∠DCE=180°.∵∠BAC=∠DAE=α,∠DCE=β,∴α+β=180°;(Ⅱ)当点D在线段BC反向延长线上时,α=β,如图3所示.理由如下:同理可证明:△ABD≌△ACE(SAS),∴∠ABD=∠ACE.∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC,∴∠ACD+∠DCE=∠ACD+∠BAC,∴∠BAC=∠DCE.∵∠BAC=α,∠DCE=β,∴α=β;(Ⅲ)当点D在线段BC的延长线上时,如图1所示,α=β;综上所述:当点D 在BC 上移动时,α=β或α+β=180°;(3)∠ACB =60°.理由如下:∵当点D 在线段BC 的延长线上或在线段BC 反向延长线上移动时,α=β,即∠BAC =∠DCE .∵CE ∥AB ,∴∠ABC =∠DCE ,∴∠ABC =∠BAC .∵AB =AC ,∴∠ABC =∠ACB =∠BAC ,∴△ABC 是等边三角形,∴∠ACB =60°;∵当D 在线段BC 上时,α+β=180°,即∠BAC +∠DCE =180°.∵CE ∥AB ,∴∠ABC +∠DCE =180°,∴∠ABC =∠BAC .∵AB =AC ,∴∠ABC =∠ACB =∠BAC ,∴△ABC 是等边三角形,∴∠ACB =60°;综上所述:当CE ∥AB 时,若△ABD 中最小角为15°,∠ACB 的度数为60°.21.(1)∵CB=CA ,DB=DA ,∴CD 垂直平分线段AB ,∴CD ⊥AB ;(2)①在△ADC 和△BDC 中,BC AC CD CD BD AD =ìï=íï=î,∴△ADC ≌△BDC (SSS ),∴∠ACD=∠BCD=12∠BCA=45°,∠CAD=∠CBD=15°,∴∠BDC=180°-45°-15°=120°;②结论:ME=BD ,理由:连接MC ,∵AC BC =,90ACB Ð=°,∴∠CAB=∠CBA=45°,∵∠CAD=∠CBD=15°,∴∠DBA=∠DAB=30°,∴∠BDE=30°+30°=60°,由①得∠BDC=120°,∴∠CDE=60°,∵DC=DM ,∠CDE=60°,∴△MCD 为等边三角形,∴CM=CD ,∵EC=CA=CB ,∠DMC=60°,∴∠E=∠CAD=∠CBD=15°,∠EMC=120°,在△BDC 和△EMC 中,15120CBD E BDC EMC CD CM Ð=Ð=°ìïÐ=Ð=°íï=î,∴△BDC ≌△EMC (AAS ),∴ME=BD ;③当EN=EC 时,∠1152EN C °==7.5°或∠2EN C =180152°-°=82.5°;当EN=CN 时,∠3EN C =180215°-´°=150°;当CE=CN 时,点N 与点A 重合,∠CNE=15°,所以∠CNE 的度数为7.5°或15°或82.5°或150°.22.(1)证明:∵△ABC 和△ADE 均为等边三角形,∴AE=AD 、AB=AC ,又∵∠EAD=∠BAC=60°,∴∠EAD+∠DAC=∠BAC+∠DAC ,即∠DAB=∠EAC ,在△EAC 和△DAB 中,AE AD DAB EAC AB AC =ìïÐ=Ðíï=î,∴△EAC ≌△DAB ,∴BD=CE ;(2)解:由(1)△EAC ≌△DAB ,可得∠ECA=∠DBA ,在等边△ABC 中,∠ABC=∠ACB=60°,∴∠EFC=∠FCB+∠FBC=∠FCA+∠ACB+∠FBC=∠ACB+∠ABC=60°+60°=120°.23.(1)证明:∵ABC 和DCE 都是等边三角形,∴BC=AC ,CE=CD ,∠ACB=∠DCE=60°,∴∠ABC+∠ACE=∠DCE+∠ACE ,即∠BCE=∠ACD ,∴BCE ACD ≌(SAS ),∴BE=AD ;(2)①证明:∵ABC 和DCE 是等边三角形,∴AC=BC ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD ,即∠ACD=∠BCE ,∴≌ACD BCE V V (SAS ),∴AD=BE ,同理:ABD CBF ≌(SAS ),∴AD=CF ,即AD=BE=CF ;②解:结论:PB+PC+PD=BE ,理由:如图2,AD 与BC 的交点记作点Q ,则∠AQC=∠BQP ,由①知,≌ACD BCE V V ,∴∠CAD=∠CBE ,在ACQ 中,∠CAD+∠AQC=180°-∠ACB=120°,∴∠CBE+∠BQP=120°,在BPQ V 中,∠APB=180°-(∠CBE+∠BQP )=60°,∴∠DPE=60°,同理:∠APC=60°,60,CPE \Ð=°∠CPD=120°,在PE 上取一点M ,使PM=PC ,∴CPM △是等边三角形,∴CP CM PM ==,∠PCM=∠CMP=60°,∴∠CME=120°=∠CPD ,∵CDE △是等边三角形,∴CD=CE ,∠DCE=60°=∠PCM ,∴∠PCD=∠MCE ,∴PCD MCE ≌(SAS ),∴PD=ME ,∴BE=PB+PM+ME=PB+PC+PD .。

最新浙教版八年级数学上册课时测试题(全册 共264页 附答案)

最新浙教版八年级数学上册课时测试题(全册 共264页 附答案)

最新浙教版八年级数学上册课时测试题(全册共264页附答案)目录1.1 认识三角形(一)1.1 认识三角形(二)1.2 定义与命题(一)1.2 定义与命题(二)1.3 证明(一)1.3 证明(二)1.4 全等三角形1.5 三角形全等的判定(一)1.5 三角形全等的判定(二)1.5 三角形全等的判定(三)1.5 三角形全等的判定(四)1.6 尺规作图第1章自我评价第2章特殊三角形2.1 图形的轴对称2.2 等腰三角形2.3 等腰三角形的性质定理(一)2.3 等腰三角形的性质定理(二)2.4 等腰三角形的判定定理2.5 逆命题和逆定理2.6 直角三角形(一)2.6 直角三角形(二)2.7 探索勾股定理(一)2.7 探索勾股定理(二)2.8 直角三角形全等的判定第2章自我评价3.1 认识不等式3.2 不等式的基本性质3.3 一元一次不等式(一)3.3 一元一次不等式(二)3.3 一元一次不等式(三)3.4 一元一次不等式组第3章自我评价第4章图形与坐标4.1 探索确定位置的方法4.2 平面直角坐标系(一)4.2 平面直角坐标系(二)4.3 坐标平面内图形的轴对称和平移(一) 4.3 坐标平面内图形的轴对称和平移(二) 第4章自我评价第5章一次函数5.1 常量与变量5.2 函数(一)5.2 函数(二)5.3 一次函数(一)5.3 一次函数(二)5.4 一次函数的图象(一)5.4 一次函数的图象(二)5.5 一次函数的简单应用(一)5.5 一次函数的简单应用(二)第5章自我评价期末综合自我评价1.1 认识三角形(一)A组1.如图,图中共有__6__个三角形,以AD为边的三角形有△ABD,△ADE,△ADC,以E为顶点的三角形有△ABE,△ADE,△AEC,∠ADB是△ABD的内角,△ADE的三个内角分别是∠ADE,∠AED,∠DAE.(第1题)(第2题)2.在“三角尺拼角实验”中,小明同学把一副三角尺按如图所示的方式放置,则∠1=__120°__.3.在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A的度数为__40°__.4.(1)若一个三角形的两边长分别为5和8,则第三边长可能是(B)A. 14 B. 10 C. 3 D. 2(2)若长度分别为2,7,x的三条线段能组成一个三角形,则x的值可以是(C)A. 4 B. 5 C. 6 D. 9(第5题)5.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的度数为(C) A.54° B.62°C.64° D.74°6.若一个三角形三个内角的度数之比是2∶3∶7,则这个三角形一定是(C)A.直角三角形 B.锐角三角形C.钝角三角形 D.不能确定(第7题)7.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围.(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【解】(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°,∴∠C=180°-∠AEC-∠A=70°.B组8.现有3 cm,4 cm,7 cm, 9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是(B)A. 1 B. 2 C. 3 D. 4【解】四根木棒任取三根的所有组合为3,4,7;3,4,9;3,7,9和4,7,9,其中3,7,9和4,7,9能组成三角形.9.已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为(D)A. 2a+2b-2c B. 2a+2bC. 2c D. 0【解】∵a+b>c,∴a+b-c>0,c-a-b<0,∴|a+b-c|-|c-a-b|=a+b-c+(c-a-b)=a+b-c+c-a-b=0.10.各边长都是整数,且最大边长为8的三角形共有多少个?【解】∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;5,5,8;5,6,8;5,7,8;5,8,8;6,6,8;6,7,8;6,8,8;7,7,8;7,8,8;8,8,8.故各边长都是整数,且最大边长为8的三角形共有20个.(第11题)11.在农村电网改造中,四个自然村分别位于如图所示的A,B,C,D处,现计划安装一台变压器,使到四个自然村的输电线路的总长最短,那么这个变压器应安装在AC,BD的交点E处,你知道这是为什么吗?【解】如图,另任取一点E′(异于点E),分别连结AE′,BE′,CE′,DE′.在△BDE′中,DE′+BE′>DB.在△ACE′中,AE′+CE′>AC.∴AE′+BE′+CE′+DE′>AC+BD,即AE+BE+CE+DE最短.数学乐园12.观察并探求下列各问题:(1)如图①,在△ABC中,P为边BC上一点,则BP+PC__<__AB+AC(填“>”“<”或“=”).(2)将(1)中的点P移到△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.(3)将(2)中的点P变为两个点P1,P2,得图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.(第12题)【解】(1)BP+PC<AB+AC.理由:三角形两边的和大于第三边.(2)△BPC的周长<△ABC的周长.理由如下:如解图①,延长BP交AC于点M.∵PC<PM+MC,∴BP+PC<BM+MC.∵BM<AB+AM,∴BM+MC<AB+BC,∴BP+PC<AB+AC,∴BP+PC+BC<AB+AC+BC,即△BPC的周长<△ABC的周长.(第12题解)(3)四边形BP1P2C的周长<△ABC的周长.理由如下:如解图②,分别延长BP1,CP2交于点M.由(2)知,BM+CM<AB+AC.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC,∴BP1+P1P2+P2C+BC<AB+AC+BC,即四边形BP1P2C的周长<△ABC的周长.1.1 认识三角形(二)A组1.如图,过△ABC的顶点A作BC边上的高线,下列作法正确的是(A)2.能将三角形的面积分成相等两部分的是(A)A.中线 B.角平分线C . 高线D . 以上都不能3.一个正方形和一个等边三角形的位置如图所示,若∠2=50°,则∠1=(C ) A . 50° B . 60° C . 70° D . 80°,(第3题)),(第4题))4.如图,AD 是△ABC 的中线,BC =10,则BD 的长为__5__.5.如图,在△ABC 中,BD 是∠ABC 的平分线,已知∠ABC=80°,则∠DBC =__40°__.,(第5题)) ,(第6题))6.如图,AD 是△ABC 的中线,AB -AC =5 cm ,△ABD 的周长为49 cm ,则△ADC 的周长为__44__cm .(第7题)7.如图,在△ABC 中,AD 是高线,AE ,BF 是角平分线,它们相交于点O ,∠CAB =50°,∠C =60°,求∠DAE 和∠BOA 的度数.【解】 ∵∠CAB =50°,∠C =60°, ∴∠ABC =180°-50°-60°=70°. ∵AD 是高线,∴∠ADC =90°, ∴∠DAC =180°-∠ADC -∠C =30°. ∵AE ,BF 是角平分线,∴∠ABF =12∠ABC =35°,∠EAF =12∠CAB =25°,∴∠DAE =∠DAC -∠EAF =5°, ∠AFB =180°-∠ABF -∠CAB =95°, ∴∠AOF =180°-∠AFB -∠EAF =60°,∴∠BOA =180°-∠AOF =120°.B 组8.如图,在△ABC 中,点D ,E ,F 分别在三边上,E 是AC 的中点,AD ,BE ,CF 交于一点G ,BD =2DC ,S △BDG =8,S △AGE =3,则S △ABC =(B )A . 25B . 30C . 35D . 40【解】 在△BDG 和△GDC 中,∵BD =2DC, 这两个三角形在BC 边上的高线相等,∴S △BDG =2S △GDC ,∴S △GDC =4. 同理,S △GEC =S △AGE =3.∴S △BEC =S △BDG +S △GDC +S △GEC =8+4+3=15, ∴S △ABC =2S △BEC =30.(第8题)(第9题)9.如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =__14__.【解】 设S △ABC =S . ∵AD 是中线, ∴BD =CD ,∴S △ACD =S △ABD =12S △ABC =12S .∵BE 是中线,∴AE =CE ,∴S △EDC =S △EDA =12S △ACD =14S .∴S △EDC ∶S △ABC =14S S =14.(第10题)10.如图,在△ABC 中,CD ⊥AB 于点D ,CE 是∠ACB 的平分线,∠A =20°,∠B =60°,求∠BCD 和∠ECD 的度数.【解】 ∵CD ⊥AB ,∴∠CDB =90°. ∵∠B =60°,∴∠BCD =180°-∠CDB -∠B =30°.∵∠A =20°,∠B =60°,∠A +∠B +∠ACB =180°,∴∠ACB =100°. ∵CE 是∠ACB 的平分线, ∴∠BCE =12∠ACB =50°,∴∠ECD =∠BCE -∠BCD =20°.(第11题)11.如图,在△ABC 中(AB>BC),AC =2BC ,BC 边上的中线AD 把△ABC 的周长分成60和40的两部分,求AC 和AB 的长.【解】 ∵AD 是BC 边上的中线,AC =2BC , ∴BD =CD ,AC =4BD .设BD =CD =x ,AB =y ,则AC =4x . 分两种情况讨论:①AC +CD =60,AB +BD =40,则4x+x=60,x+y=40,解得x=12,y=28,即AC=4x=48,AB=28,BC=2x=24,此时符合三角形三边关系定理.②AC+CD=40,AB+BD=60,则4x+x=40,x+y=60,解得x=8,y=52,即AC=4x=32,AB=52,BC=2x=16,此时不符合三角形三边关系定理.综上所述,AC=48,AB=28.数学乐园12.如图,已知△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C =BC,C1A=CA,顺次连结点A1,B1,C1,A1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连结点A2,B2,C2,A2,得到△A2B2C2……按此规律,要使得到的三角形的面积超过2018,则最少经过__4__次操作.,(第12题))【解】由题意可得规律:第n次操作后得到的三角形的面积变为7n,则7n>2018,可得n最小为4.故最少经过4次操作.1.2 定义与命题(一)A组1.下列语句中,属于定义的是(D)A.两点确定一条直线B.两直线平行,同位角相等C.等角的余角相等D.直线外一点到这条直线的垂线段的长度叫做点到直线的距离2.下列语句中,属于命题的是(C)A.直线AB与CD垂直吗B.过线段AB的中点作AB的垂线C.同位角不相等,两直线不平行D.连结A,B两点3.命题“垂直于同一条直线的两条直线平行”的题设是(D)A.垂直B.两条直线C.同一条直线D.两条直线垂直于同一条直线4.下列语句中,不属于命题的是(C)A.若两角之和为90°,则这两个角互补B.同角的余角相等C.作线段的垂直平分线D.相等的角是对顶角5.把“对顶角相等”改写成“如果……那么……”的形式是如果两个角是对顶角,那么它们相等.6.指出下列命题的条件和结论.(1)同旁内角互补,两直线平行.(2)如果∠1=∠2,∠2=∠3,那么∠1=∠3.(3)邻补角的平分线互相垂直.【解】(1)条件:两条直线被第三条直线所截,同旁内角互补;结论:这两条直线平行.(2)条件:∠1=∠2,∠2=∠3;结论:∠1=∠3.(3)条件:两条射线是邻补角的平分线;结论:这两条射线互相垂直.7.把命题改写成“如果……那么……”的形式.(1)等底等高的两个三角形的面积相等.(2)两直线平行,内错角相等.(3)等角的余角相等.【解】(1)如果两个三角形等底等高,那么它们的面积相等.(2)两条直线被第三条直线所截,如果这两条直线平行,那么内错角相等.(3)如果两个角同为等角的余角,那么这两个角相等.B组8.下列命题正确的是(D)A.若a>b,b<c,则a>cB.若a>b,则ac>bcC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b9.对同一平面内的三条直线,给出下列5个论断:a∥b,b∥c,a⊥b,a∥c,a⊥c.以其中两个论断为条件.一个论断为结论,组成一个你认为正确的命题.条件:a∥b,b∥c,结论:a∥c.【解】本题答案不唯一.10.定义两种新变换:①f(a,b)=(a,-b),如f(1,2)=(1,-2);②g(a,b)=(b,a),如g(1,2)=(2,1).据此得g(f(5,-6))=(6,5).【解】∵f(5,-6)=(5,6),∴g(f(5,-6))=g(5,6)=(6,5).数学乐园(第11题)11.如图,定义:直线l1与l2交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p,q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,求“距离坐标”是(1,2)的点的个数(第11题解)【解】“距离坐标”是(1,2)的点表示的含义是该点到直线l1,l2的距离分别为1,2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1或a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1或b2上,它们有4个交点,即为如解图所示的点M1,M2,M3,M4.故满足条件的点的个数为4.1.2 定义与命题(二)A 组1.下列命题是真命题的是(A ) A . 互余的两个角之和是90° B . 同角的余角互余C . 等底的两个三角形面积相等D . 相等的角是直角2.下列命题是假命题的是(C ) A .三角形两边之和大于第三边 B .三角形的内角和等于180°C .等边三角形旋转180°后能与本身重合D .三角形的中线能平分三角形的面积3.能说明命题“对于任何实数a ,|a|>-a”是假命题的一个反例可以是(A ) A . a =-2 B . a =13C . a =1D . a = 24.(1)定理是真命题(填“真”或“假”,下同). “如果ab =0,那么a =0”是假命题. “如果a =0,那么ab =0” 是真命题.(2)“如果(a -1)(a -2)=0,那么a =2”是假命题,反例是a =1.(第5题)5.如图,若∠1=∠2,则AB∥CD,这是假命题(填“真”或“假”). 6.判断下列命题是真命题还是假命题,如果是假命题,请举出一个反例. (1)如果一个数是偶数,那么这个数是4的倍数. (2)两个负数的差一定是负数.【解】 (1)假命题.反例:6是偶数,但6不是4的倍数.(2)假命题.反例:(-5)-(-8)=+3.7.如图,在△ABC中,∠B=∠C,AD∥BC,则AD平分∠EAC.请用推理的方法说明它是真命题.(第7题)【解】∵AD∥BC,∴∠EAD=∠B,∠CAD=∠C.又∵∠B=∠C,∴∠EAD=∠CAD,∴AD平分∠EAC.∴该命题是真命题.B组8.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人.”乙说:“两项都参加的人数小于5人.”对于甲、乙两人的说法,有下列命题,其中是真命题的是(B)A.若甲对,则乙对 B.若乙对,则甲对C.若乙错,则甲错 D.若甲错,则乙对【解】A项,若甲对,即只参加一项的人数大于14人,则两项都参加的人数小于6人,故乙可能对也可能错.B项,若乙对,即两项都参加的人数小于5人,则两项都参加的人数至多为4人,此时只参加一项的人数至少为16人,故甲对.C项,若乙错,即两项都参加的人数大于或等于5人,则只参加一项的人数小于或等于15人,故甲可能对也可能错.D项,若甲错,即只参加一项的人数至多为14人,则两项都参加的人数至少为6人,故乙错.综上所述,真命题只有“若乙对,则甲对”.9.有下列命题:①若a+b>0且ab>0,则a>0且b>0;②若a>b且ab>0,则a>b>0;③一个锐角的补角比它的余角小90°.其中属于真命题的是__①__(填序号).【解】①由ab>0,可得a,b同号.又∵a+b>0,∴a>0且b>0,故本项正确.②令a=-1,b=-2,则ab=2>0,b<a<0,故本项错误.③一个锐角的补角比它的余角大90°,故本项错误.(第10题)10.如图,GH,MN分别是∠EGB,∠EMD的平分线,若GH∥MN,则AB∥CD.请用推理的方法说明它是真命题.【解】∵GH∥MN,∴∠EGH=∠EMN.∵GH,MN分别是∠EGB,∠EMD的平分线,∴∠EGB=2∠EGH,∠EMD=2∠EMN,∴∠EGB=∠EMD,∴AB∥CD.∴该命题是真命题.数学乐园11.如图,∠ABC的两边分别平行于∠DEF的两边,且∠ABC=25°.(第11题)(1)∠1=25°,∠2=155°.(2)请观察∠1,∠2与∠ABC分别有怎样的关系,并由此归纳一个真命题.【解】(2)∠1=∠ABC,∠2+∠ABC=180°.真命题:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.1.3 证明(一)A组1.如图,下面的推理正确的是(D)。

2023-2024学年秋季8年级上册数学人教版课时练《12.1 全等三角形》03(含答案)

2023-2024学年秋季8年级上册数学人教版课时练《12.1 全等三角形》03(含答案)

《12.1 全等三角形》课时练一、选择题1.如图,△ABD≌△CDB,下面四个结论中,不正确的是()A.∠ABD=∠CBD B.△ABD和△CDB的周长相等C.AD=BC D.△ABD和△CDB的面积相等2.如图所示,△ABC≌△DEC,∠ACB=60°,∠BCD=100°,点A恰好落在线段ED上,则∠B的度数为()A.50°B.60°C.55°D.65°3.已知:△ABC≌△DCB,若BC=10cm,AB=5cm,AC=7cm,则CD为()A.10cm B.7cm C.5cm D.5cm或7cm 4.如图,Rt△ABC≌Rt△CED,点B、C、E在同一直线上,则结论:①AC=CD,②AC ⊥CD,③BE=AB+DE,④AB∥ED,其中成立的有()A.仅①B.仅①③C.仅①③④D.①②③④5.已知图中的两个三角形全等,则∠α的度数为()A.105°B.75°C.60°D.45°6.下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形7.如图,△ABC≌△DEF,BE=2,AE=1,则BD的长是()A.5B.4C.3D.28.已知:如图,△ABC≌△ADE,AB与AD是对应边,AC与AE是对应边,若∠B=31°,∠C=95°,∠EAB=20°,则∠BAD等于()A.77°B.74°C.47°D.44°9.已知△ABC与△DEF全等,BC=EF=4cm,△ABC的面积是12cm2,则EF边上的高是()A.3cm B.4cm C.6cm D.无法确定10.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°二.填空题11.如图,△ABC≌△DEF,∠A=35°,∠B=50°,则∠DFE=.12.已知:如图,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.则∠F的度数;DH的长.13.已知△ABC≌△DEF,AB=DE=8cm,△DEF的面积为20cm2,则△ABC的边AB上的高为cm.14.如图,已知△ABC≌△DEF,AD=1cm,则BE的长为cm.15.如图,已知△ABC≌△DBE,如果∠CBD=96°,∠CBE=28°,那么∠ABC=.三.解答题16.如图,A,D,E三点在同一直线上,且△BAD≌△ACE.(1)求证:BD=DE+CE;(2)请你猜想△ABD满足什么条件时,BD∥CE.17.如图,已知△ABF≌△CDE.(1)若∠B=30°,∠DCF=40°,求∠EFC的度数;(2)求证:AE=CF.18.如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.19.已知:如图,△ABC≌△DEF,AM、DN分别是△ABC、△DEF的对应边上的高.求证:AM=DN.参考答案一、选择题1.A 2.A 3.C 4.D 5.B 6.D 7.A 8.B 9.C 10.A 二、填空题11.95°12.35° 6 13.5 14.1 15.68°三、解答题16.(1)证明:∵△BAD≌△ACE,∴AD=CE,BD=AE,∵A,D,E三点在同一直线上,∴AE=AD+DE,∴BD=CE+DE;(2)解:假如BD∥CE,则∠BDE=∠E,∵△BAD≌△ACE,∴∠ADB=∠E,∴∠ADB=∠BDE,又∵∠ADB+∠BDE=180°,∴∠ADB=∠BDE=90°,∴当∠ADB=∠E=90°时,BD∥CE.17.(1)解:∵△ABF≌△CDE,∴∠D=∠B=30°,∴∠EFC=∠D+∠DCF=70°;(2)证明:∵△ABF≌△CDE,∴∠AFB=∠CED,AF=CE,在△AFE和△CEF中,,∴△AFE≌△CEF(SAS),∴AE=CF.18.解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.19.方法一:证明:∵△ABC≌△DEF,∴AB=DE,∠B=∠E,∵AM,DN分别是△ABC,△DEF的对应边上的高,即AM⊥BC,DN⊥EF,∴∠AMB=∠DNE=90°,在△ABM和△DEN中,∴△ABM≌△DEN(AAS),∴AM=DN.方法二:∵△ABC≌△DEF。

八年级上册数学人教版课时练《12.2 三角形全等的判定》03(含答案解析)

八年级上册数学人教版课时练《12.2 三角形全等的判定》03(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!《12.2三角形全等的判定》课时练一、选择题(本大题共12道小题)1.如图,已知AB=AD,若利用SSS证明△ABC≌△ADC,则需要添加的条件是()A.AC=ACB.∠B=∠DC.BC=DCD.AB=CD2.如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3.如图,点B,E,C,F在同一直线上,AB∥DE,∠A=∠D,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.BE=CF B.∠ACB=∠FC.AC=DF D.AB=DE4.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去()A.①B.②C.③D.①和②5.如图,在正方形ABCD中,连接BD,点O是BD的中点.若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对6.如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠A=∠DEF,BC=FD7.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC8.如图,AB=AC,AD=AE,BE=CD,∠2=110°,∠BAE=60°,则下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACEC.∠C=30°D.∠1=70°9.如图,点A,E,B,F在同一直线上,在△ABC和△FED中,AC=FD,BC=ED,当利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE =BE;④BF=BE,可利用的是()A.①或②B.②或③C.①或③D.①或④10.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A.2B.3C.2D.611.现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误12.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题共6道小题)13.如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要添加条件:____________.14.如图,已知CD=CA,∠1=∠2,要使△ECD≌△BCA,需添加的条件是__________(只需写出一个条件).15.如图,在四边形ABCD 中,∠B =∠D =90°,AB =AD ,∠BAC =65°,则∠ACD 的度数为________.16.如图,在△ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E .若△DBE 的周长为20,则AB =________.17.如图,在Rt ABC △中,90C Ð=°,以顶点B 为圆心,适当长度为半径画弧,分别交AB BC ,于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A Ð=°,则BCD ABDS S =△△__________.18.如图,∠C =90°,AC =10,BC =5,AX ⊥AC ,点P 和点Q 是线段AC 与射线AX 上的两个动点,且AB =PQ ,当AP =________时,△ABC 与△APQ全等.三、解答题(本大题共3道小题)19.如图,BD ,CE 是△ABC 的高,且BE =CD .求证:Rt △BEC ≌Rt △CDB .20.如图,AD ∥BC ,AB ⊥BC 于点B ,连接AC ,过点D 作DE ⊥AC 于点E ,过点B 作BF ⊥AC 于点F .(1)若∠ABF =63°,求∠ADE 的度数;(2)若AB =AD ,求证:DE =BF +EF .21.如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE Ð=Ð,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若65ABC Ð=°,28ACB Ð=°,求FGC Ð的度数.参考答案一、选择题1.C2.A3.B4.C5.C6.C7.C8.C9.A10.B 11.A12.D二、填空题13.AB=AC14.答案不唯一,如CE=CB15.25°16.2017.1 218.5或10三、解答题19.证明:∵BD,CE是△ABC的高,∴∠BEC=∠CDB=90°.在Rt△BEC和Rt△CDB中,=CB,=CD,∴Rt△BEC≌Rt△CDB(HL).20.解:(1)∵AD∥BC,AB⊥BC,∴∠ABC=∠BAD=90°.∵DE⊥AC,BF⊥AC,∴∠BFA=∠AED=90°.∴∠ABF+∠BAF=∠BAF+∠DAE=90°.∴∠DAE=∠ABF=63°.∴∠ADE=27°.(2)证明:由(1)得∠DAE=∠ABF,∠AED=∠BFA=90°.在△DAE和△ABF DAE=∠ABF,AED=∠BFA,=BA,∴△DAE≌△ABF(AAS).∴AE=BF,DE=AF.∴DE=AF=AE+EF=BF+EF.21.(1)∵CAF BAE Ð=Ð,∴BAC EAF Ð=Ð,∵AE AB AC AF ==,,∴BAC EAF △≌△,∴EF BC =.(2)∵65AB AE ABC =Ð=°,,∴18065250BAE Ð=°-°´=°,∴50FAG Ð=°,∵BAC EAF △≌△,∴28F C Ð=Ð=°,∴502878FGC Ð=°+°=°.。

八年级数学北师大版上册课时练第7章《3 平行线的判定》(含答案解析)(1)

八年级数学北师大版上册课时练第7章《3 平行线的判定》(含答案解析)(1)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第7单元平行线的证明3平行线的判定一、选择题1.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等2.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°3.如图,能判定EB∥AC的条件是()A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE4.如图,下列条件中,能判定DE∥AC的是()A.∠EDC=∠EFCB.∠AFE=∠ACDC.∠3=∠4D.∠1=∠25.如图,不能作为判断AB∥CD的条件是()A.∠FEB=∠ECDB.∠AEC=∠ECDC.∠BEC+∠ECD=180°D.∠AEG=∠DCH6.如图,下列判断错误的是()A.如果∠2=∠4,那么AB∥CDB.如果∠1=∠3,那么AB∥CDC.如果∠BAD+∠D=180°,那么AB∥CDD.如果∠BAD+∠B=180,那么AD∥CD7.如图,下列条件不能判断直线l1∥l2的是()A.∠1=∠3B.∠1=∠4C.∠2+∠3=180°D.∠3=∠58.如图,下列条件中,能判定DE∥AC的是()A.∠EDC=∠EFCB.∠AFE=∠ACDC.∠3=∠4D.∠1=∠29.同一平面内的三条直线满足a⊥b,b⊥c,则下列式子成立的是()A.a∥cB.b⊥aC.a⊥cD.b∥c10.如图,已知∠1=∠B,∠2=∠C,则下列结论不成立的是()A.∠2+∠B=180°B.AD∥BCC.AB=BCD.AB∥CD二、填空题11.如图,已知AB与CF相交于点E,∠AEF=80°,要使AB∥CD,需要添加的一个条件是.12.如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是.13.如图:已知:∠1=105°,∠2=105°,则_____∥_____.14.如图,若∠1=∠2,则______∥______,理由是______;若∠3=∠4,则______∥______,理由是______.15.如图,∠B=∠D=∠E,那么图形中的平行线有___________________________,理由是_________________________________________.16.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD 的条件有_____(填写所有正确的序号).17.如图,直线a,b 与直线c相交.给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°.其中能判断a∥b 的是_______________(填序号).18.如图,AC、BC 分别平分∠DAB、∠ABE,且∠1与∠2互余,则______∥_______,理由是_________________________________________.HG21ED C BA三、解答题19.如图,已知∠1=∠2,∠3+∠4=180°.求证:AB∥EF.20.如图,∠B=∠C,B、A、D 三点在同一直线上,∠DAC=∠B+∠C,AE 是∠DAC 的平分线,求征:AE∥BC.21.如图,已知∠1与∠3互余,∠2与∠3的余角互补,问直线l1,l2平行吗?为什么?22.如图,已知CD⊥DA,DA⊥AB,∠1=∠2,问直线DE与AF是否平行?为什么?23.如图,∠ABC=∠ADC、DE是∠ABC、∠ADC的角平分线,∠1=∠2.求征DC∥AB.24.如图,已知∠ADE=46°,DF平分∠ADE,∠1=23°.求证:DF∥BE.请你根据已知条件补充推理过程,并在相应括号内注明理由.证明:∵DF平分∠ADE(已知)∴=12∠ADE()又∵∠ADE=46°(已知),∴∠=23°,而∠1=23°(已知).∴∥()参考答案1.A2.B3.D4.C5.D6.B7.A8.C9.A10.C11.答案为:∠C=100°.12.答案为:同位角相等,两直线平行.13.答案为:a,b14.答案为:AD,BC,内错角相等,两直线平行,AB,CD,内错角相等,两直线平行.15.答案为:CD∥EF,内错角相等,两直线平行16.答案为:①③④17.答案为:①③④18.答案为:GD;HE;同旁内角互补,两直线平行19.证明:∵∠1=∠2,∴AB∥CD.∵∠3+∠4=180°,∴CD∥EF.∴AB∥EF.20.证明:∵∠B=∠C,∠DAC=∠B+∠C,∴∠DAC=2∠B.∵AE是∠DAC的平分线,∴∠1=∠2,∠DAC=2∠1,∴∠1=∠B,∴AE∥BC.21.解:平行证明:∵∠1+∠3=90°,∠2+(90°-∠3)=180°∴∠3=90°-∠1,∠2+90°-90°+∠1=180°∴∠2+∠1=180°∴l1∥l222.解:DE∥AF,理由如下:∵CD⊥DA,DA⊥AB,∴∠CDA=∠DAB=90°,∴CD∥AB,∵∠1=∠2,∴∠CDA﹣∠1=∠DAB﹣∠2,∴∠3=∠4,∴DE∥AF.23.证明:∵BF、DE分别是∠ABC、∠ADC的角平分线∴∠2=12∠ABC,∠3=12∠ADC∵∠ABC=∠ADC∴∠2=∠3∵∠1=∠2∴∠1=∠3∴DC∥AB24.答案为:∠FDE;角平分线定义;∠FDE;DF;BE;内错角相等,两直线平行.。

人教版初二数学上册《全册课时练》(详尽答案60页)

人教版初二数学上册《全册课时练》(详尽答案60页)

重点中学教学资源整理人教版初二上册全册课时练(精编答案版共60页)第 1 页共61 页第11章《三角形》同步练习(§11.1 与三角形有关的线段A)班级学号姓名得分1、填空题:(1)由____________三条线段______所组成的图形叫做三角形.组成三角形的线段叫做______;相邻两边的公共端点叫做______,相邻两边所组成的角叫做______,简称______.(2)如图所示,顶点是A、B、C的三角形,记作______,读作______.其中,顶点A所对的边______还可用______表示;顶点B所对的边______还可用______表示;顶点C 所对的边______还可用______表示.(3)由“连接两点的线中,线段最短”这一性质可以得到三角形的三边有这样的性质______________________________.由它还可推出:三角形两边的差____________.(4)对于△ABC,若a≥b,则a+b______c同时a-b______c;又可写成______<c<______.(5)若一个三角形的两边长分别为4cm和5cm,则第三边x的长度的取值范围是____________,其中x可以取的整数值为____________.2.已知:如图,试回答下列问题:(1)图中有______个三角形,它们分别是______________________________________.(2)以线段AD为公共边的三角形是_________________________________________.(3)线段CE所在的三角形是______,CE边所对的角是________________________.(4)△ABC、△ACD、△ADE这三个三角形的面积之比等于______∶______∶______.3.选择题:(1)下列各组线段能组成一个三角形的是( ).(A)3cm,3cm,6cm (B)2cm,3cm,6cm(C)5cm,8cm,12cm (D)4cm,7cm,11cm(2)现有两根木条,它们的长分别为50cm,35cm,如果要钉一个三角形木架,那么下列四根木条中应选取( ).(A)0.85m长的木条(B)0.15m长的木条(C)1m长的木条(D)0.5m长的木条(3)从长度分别为10cm、20cm、30cm、40cm的四根木条中,任取三根可组成三角形的个数是( ).(A)1个(B)2个(C)3个(D)4个(4)若三角形的两边长分别为3和5,则其周长l的取值范围是( ).(A)6<l<15 (B)6<l<16(C)11<l<13 (D)10<l<164.(1)一个等腰三角形的周长为18,若腰长的3倍比底边的2倍多6,求各边长.(2)已知等腰三角形的一边等于8cm,一边等于6cm,求它的周长.(3)一个等腰三角形的周长为30cm,一边长为6cm,求其它两边的长.(4)有两边相等的三角形的周长为12cm,一边与另一边的差是3cm,求三边的长.5.(1)若三角形三条边的长分别是7,10,x,求x的范围.(2)若三边分别为2,x-1,3,求x的范围.(3)若三角形两边长为7和10,求最长边x的范围.(4)等腰三角形腰长为2,求周长l的范围.(5)等腰三角形的腰长是整数,周长是10,求它的各边长.6.已知:如图,△ABC中,AB=AC,D是AB边上一点.(1)通过度量AB 、CD 、DB 的长度,确定AB 与)(21DB CD 的大小关系. (2)试用你所学的知识来说明这个不等关系是成立的.7.已知:如图,P 是△ABC 内一点.请想一个办法说明AB +AC >PB +PC .8.如图,D 、E 是△ABC 内的两点,求证:AB +AC >BD +DE +EC .第11章《三角形》同步练习(§11.1 与三角形有关的线段B )班级 学号 姓名 得分1.填空题:(1)从三角形一个顶点向它的对边画______,以______和______为端点的线段叫做三角形这边上的高.如图,若CD 是△ABC 中AB 边上的高,则∠ADC ______∠BDC =______,C 点到对边AB 的距离是______的长.(2)连结三角形的一个顶点和它______的______叫做三角形这边上的中线.如右图,若BE 是△ABC 中AC 边上的中线,则AE ______.______21 EC(3)三角形一个角的______与这个角的对边相交,以这个角的______和______为端点的线段叫做三角形的角平分线.一个角的平分线与三角形的角平分线的区别是________________________________ ______________________________________.如图,若AD 是△ABC 的角平分线,则∠BAD ______∠CAD =21______或∠BAC =2______=2______.2.已知:△GEF ,分别画出此三角形的高GH ,中线EM ,角平分线FN .3.(1)分别画出△ABC 的三条高AD 、BE 、CF .(∠A为锐角) (∠A为直角) (∠A为钝角)(2)这三条高AD、BE、CF所在的直线有怎样的位置关系?4.(1)分别画出△ABC的三条中线AD、BE、CF.(2)这三条中线AD、BE、CF有怎样的位置关系?(3)设中线AD与BE相交于M点,分别量一量线段BM和ME、线段AM和MD的长,从中你能发现什么结论?5.(1)分别画出△ABC的三条角平分线AD、BE、CF.(2)这三条角平分线AD、BE、CF有怎样的位置关系?(3)设△ABC的角平分线BE、CF交于N点,请量一量点N到△ABC三边的距离,从中你能发现什么结论?6.已知:△ABC中,AB=AC,BD是AC边上的中线,如果D点把三角形ABC的周长分为12cm和15cm两部分,求此三角形各边的长.7.(1)如果将一个三角形的三边的长确定,那么这个三角形的形状和大小就不会改变了,三角形的这个性质叫做________________________.(2)四边形是否具有这种性质?8.将一个三角形剖分成若干个面积相等的小三角形,称为该三角形的等积三角形的剖分(以下两问要求各画三个示意图)(1)已知一个任意三角形,并其剖分成3个等积的三角形.(2)已知一个任意三角形,将其剖分成4个等积的三角形.9.不等边△ABC的两条高长度分别为4和12,若第三条高的长也是整数,试求它的长.参考答案(§11.1 与三角形有关的线段A )1.(1)不在同一直线上的,首尾顺次相接,三角形的边,三角形的顶点,三角形的内角,三角形的角.(2)△ABC ,三角形ABC ,BC ,a ;AC ,b ;AB ,c(3)三角形两边之和大于第三边,小于第三边.(4)>,<,a -b ,a +b(5)1cm <x <9cm ,2cm 、3cm 、4cm 、5cm 、6cm 、7cm 、8cm .2.(1)六,△ABC 、△ABD 、△ABE 、△ACD 、△ACE 、△ADE .(2)△ABD 、△ACD 、△ADE .(3)△ACE ,∠CAE .(4)BC :CD :DE .3.(1)C ,(2)D ,(3)A ,(4)D4.(1)6,6,6;(2)20cm ,22cm ;(3)12cm ,12cm ;(4)5cm ,5cm ,2cm .5.(1)3<x <17;(2)2<x <6;(3)10≤x <17;(4)4<e <8;(5)3,3,4或4,4,26.(1))(21DB CD AB +>. (2)提示:对于△ADC ,∵AD +AC >DC ,∴(AD +DB )+AC >CD +DB ,即AB +AC >CD +DB .又∵AB =AC ,∴2AB >CD +DB .从而AB >21(CD +DB ). 7.提示:延长BP 交AC 于D .∵在△ABD 中,AB +AD >BD =BP +PD ,①在△DPC 中,DP +DC >PC ,②由①、②,∴AB +(AD +DC )+DP >BP +PC +DP .即AB +AC >PB +PC .8.证明:延长BP 交AC 于D ,延长CE 交BD 于F .在△ABD 中,AB +AD >BD . ①在△FDC 中,FD +DC >FC . ②在△PEF 中,PF +FE >PE . ③①+②+③得AB +AD +FD +DC +PF +FE >BD +FC +PE ,即:AB +AC +PF +FD +FE >BP +PF +FD +FE +EC +PE ,所以AB +AC >BP +PE +EC .(§11.1 与三角形有关的线段B )1.(1)垂线,顶点、垂足,=,90°,高CD 的长.(2)所对的边的中点、线段,=,AC(3)平分线,顶点、交点,一个角的平分线是射线,而三角形的角平分线是线段.=,∠BAC ,∠BAD ,∠DAC2.略.3.(1)略,(2)三条高所在直线交于一点.4.(1)略,(2)三条中线交于一点,(3)BM =2ME .5.(1)略,(2)三条角平分线交于一点,(3)点N 到△ABC 三边的距离相等.6.提示:有两种情况,分别运用方程思想,设未知数求解.⎩⎨⎧===,11,8BC AC AB 或⎩⎨⎧===.7,10BC AC AB 7.(1)三角形的稳定性,(2)不具有稳定性.8.(1)(2)下列各图是答案的一部分:9.它的长为5,或4.提示:设S △ABC =S ,第三条高为h ,则△ABC 的三边长可表示为:h S S S 212242、、,列不等式得:12242212242S S h S S S +<<- ∴3<h <6.第11章《三角形》同步练习(§11.2 与三角形有关的角)班级 学号 姓名 得分1.填空:(1)三角形的内角和性质是____________________________________________________.(2)三角形的内角和性质是利用平行线的______与______的定义,通过推理得到的.它的推理过程如下:已知:△ABC ,求证:∠BAC +∠ABC +∠ACB =______.证明:过A 点作______∥______,则∠EAB =______,∠F AC =______.(___________,___________)∵∠EAF 是平角,∴∠EAB +______+______=180°.( )∴∠ABC +∠BAC +∠ACB =∠EAB +∠______+∠______.( )即∠ABC +∠BAC +∠ACB =______.2.填空:(1)三角形的一边与_________________________________________叫做三角形的外角.因此,三角形的任意一个外角与和它相邻的三角形的一个内角互为______.(2)利用“三角形内角和”性质,可以得到三角形的外角性质?如图,∵∠ACD是△ABC的外角,∴∠ACD与∠ACB互为______,即∠ACD=180°-∠ACB.①又∵∠A+∠B+∠ACB=______,∴∠A+∠B=______.②由①、②,得∠ACD=______+______.∴∠ACD>∠A,∠ACD>∠B由上述(2)的说理,可以得到三角形外角的性质如下:三角形的一个外角等于____________________________________________________.三角形的一个外角大于____________________________________________________. 3.(1)已知:如图,∠1、∠2、∠3分别是△ABC的外角,求:∠1+∠2+∠3.(2)结论:三角形的外角和等于______.4.已知:如图,BE与CF相交于A点,试确定∠B+∠C与∠E+∠F之间的大小关系,并说明你的理由.5.已知:如图,CE⊥AB于E,AD⊥BC于D,∠A=30°,求∠C的度数.6.依据题设,写出结论,想一想,为什么?已知:如图,△ABC中,∠ACB=90°,则:(1)∠A+∠B=______.即∠A与∠B互为______;(2)若作CD⊥AB于点D,可得∠BCD=∠______,∠ACD=∠______.7.填空:(1)△ABC中,若∠A+∠C=2∠B,则∠B=______.(2)△ABC中,若∠A∶∠B∶∠C=2∶3∶5,则∠A=______,∠B=______,∠C=______.(3)△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则它们的相应邻补角的比为______.(4)如图,直线a∥b,则∠A=______度.(5)已知:如图,DE⊥AB,∠A=25°,∠D=45°,则∠ACB=______.(6)已知:如图,∠DAC=∠B,∠ADC=115°,则∠BAC=______.(7)已知:如图,△ABC中,∠ABC=∠C=∠BDC,∠A=∠ABD,则∠A=______(8)在△ABC中,若∠B-∠A=15°,∠C-∠B=60°,则∠A=______,∠B=______,∠C=______.8.已知:如图,一轮船在海上往东行驶,在A处测得灯塔C位于北偏东60°,在B处测得灯塔C位于北偏东25°,求∠ACB.9.已知:如图,在△ABC中,AD、AE分别是△ABC的高和角平分线.(1)若∠B=30°,∠C=50°,求∠DAE的度数.(2)试问∠DAE与∠C-∠B有怎样的数量关系?说明理由.10.已知:如图,O是△ABC内一点,且OB、OC分别平分∠ABC、∠ACB.(1)若∠A=46°,求∠BOC;(2)若∠A=n°,求∠BOC;(3)若∠BOC=148°,利用第(2)题的结论求∠A.11.已知:如图,O是△ABC的内角∠ABC和外角∠ACE的平分线的交点.(1)若∠A=46°,求∠BOC;(2)若∠A=n°,用n的代数式表示∠BOC的度数.12.类比第10、11题,若O是△ABC外一点,OB、OC分别平分△ABC的外角∠CBE、∠BCF,若∠A=n°,画出图形并用n的代数表示∠BOC.13.如图,点M是△ABC两个内角平分线的交点,点N是△ABC两个外角平分线的交点,如果∠CMB;∠CNB=3∶2求∠CAB的度数.14.如图,已知线段AD、BC相交于点Q,DM平分∠ADC,BM平分∠ABC,且∠A=27°,∠M=33°,求∠C的度数.参考答案1.(1)三角形的内角和等于180°,(2)性质、平角,说理过程(略)2.略.3.∠1+∠2+∠3=360°,360°.4.∠B +∠C =∠E +∠F .(此图中的结论为常用结论) 5.30°6.(1)90°,余角,(2)∠A ,∠B7.(1)60°.(2)36°,54°,90°.(3)5∶4∶3.(4)39°.(5)110°.(6)115°.(7)36°.(8)30°,45°,105°.8.35°. 9.(1)10°;(2)).(21B C DAE ∠-∠=∠ 10.(1)113°,(2),2190o οn + (3)116°. 11.(1)23°.(2).21οn BOC =∠ 证明:∵OB 平分∠ABC ,OC 平分∠ACE ,∴.21,21ABC OBC ACE OCE ∠=∠∠=∠ ∴.2121)(21οn A ABC ACE OBC OCF BOC =∠=∠-∠=∠-∠=∠ 12.)(21180)32(180FCB EBC BOC ∠+∠-=∠+∠-=∠οο )]()[(21180o ABC A ACB A ∠+∠+∠+∠-= )180(21180o o A ∠+-= A ∠-=2190ο .2190o οn -=13.36°.14.39°.由本练习中第4题结论可知:∠C +∠CDM =∠M +∠MBC ,即①.2121ABC M ADC C ∠+∠=∠+∠同理,②.2121ABC A ADC M ∠+∠=∠+∠ 由①、②得),(21C A M ∠+∠=∠ 因此∠C =39°. 第11章《三角形》同步练习(§11.3 多边形及其内角和)班级 学号 姓名 得分1.填空:(1)平面内,由____________________________________________________________叫做多边形.组成多边形的线段叫做______.如果一个多边形有n 条边,那么这个多边形叫做______.多边形____________叫做它的内角,多边形的边与它的邻边的______组成的角叫做多边形的外角.连结多边形________________的线段叫做多边形的对角线.(2)画出多边形的任何一条边所在直线,如果整个多边形都在______,那么这个多边形称作凸多边形.(3)各个角______,各条边______的______叫做正多边形.2.(1)n 边形的内角和等于____________.这是因为,从n 边形的一个顶点出发,可以引______条对角线,它们将此n 边形分为______个三角形.而这些三角形的内角和的总和就是此n 边形的内角和,所以,此n 边形的内角和等于180°×______.(2)请按下面给出的思路,进行推理填空.如图,在n 边形A 1A 2A 3…A n -1A n 内任取一点O ,依次连结______、______、______、……、______、______.则它们将此n 边形分为______个三角形,而这些三角形的内角和的总和,减去以O 为顶点的一个周角就是此多边形的内角和.所以,n 边形的内角和=180°×______-( )=( )×180°.3.任何一个凸多边形的外角和等于______.它与该多边形的______无关.4.正n边形的每一个内角等于______,每一个外角等于______.5.若一个正多边形的内角和2340°,则边数为______.它的外角等于______.6.若一个多边形的每一个外角都等于40°,则它的内角和等于______.7.多边形的每个内角都等于150°,则这个多边形的边数为______,对角线条数为______.8.如果一个角的两边分别垂直于另一个角的两边,其中一个角为65°,则另一个角为______度.9.选择题:(1)如果一个多边形的内角和等于它的外角和的两倍,则这个多边形是( ).(A)四边形(B)五边形(C)六边形(D)七边形(2)一个多边形的边数增加,它的内角和也随着增加,而它的外角和( ).(A)随着增加(B)随着减少(C)保持不变(D)无法确定(3)若一个多边形从一个顶点,只可以引三条对角线,则它是( )边形.(A)五(B)六(C)七(D)八(4)如果一个多边形的边数增加1,那么它的内角和增加( ).(A)0°(B)90°(C)180°(D)360°(5)如果一个四边形四个内角度数之比是2∶2∶3∶5,那么这四个内角中( ).(A)只有一个直角(B)只有一个锐角(C)有两个直角(D)有两个钝角(6)在一个四边形中,如果有两个内角是直角,那么另外两个内角( ).(A)都是钝角(B)都是锐角(C)一个是锐角,一个是直角(D)互为补角10.已知:如图四边形ABCD中,∠ABC的平分线BE交CD于E,∠BCD的平分线CF交AB于F,BE、CF相交于O,∠A=124°,∠D=100°.求∠BOF的度数.11.(1)已知:如图1,求∠1+∠2+∠3+∠4+∠5+∠6___________.图1(2)已知:如图2,求∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8____________.图212.如图,在图(1)中,猜想:∠A+∠B+∠C+∠D+∠E+∠F=______度.请说明你猜想的理由.图1如果把图1成为2环三角形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F;图2称为2环四边形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H;图2则2环四边形的内角和为_____________________________________________度;2环五边形的内角和为________________________________________________度;2环n边形的内角和为________________________________________________度.13.一张长方形的桌面,减去一个角后,求剩下的部分的多边形的内角和.14.一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数.15.如果一个凸多边形除了一个内角以外,其它内角的和为2570°,求这个没有计算在内的内角的度数.16.小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回点A时共走了多少米?若不能,写出理由.参考答案1.略.2.(1)(n -2)×180°,n -3,n -2,n -2.(2)OA 1,OA 2,OA 3……,OA n -1,OA n ,n ,n ,360°,(n -2). 3.360°,边数. 4.⋅⨯-n nn oo 360,180)2( 5.十五,24°. 6.1260°. 7.12,54. 8.65°或115°.9.(1)C ,(2)C ,(3)B ,(4)C ,(5)A ,(6)D 10.68° 11.(1)360°;(2)360°.12.(1)360°;(2)720°;(3)1080°;(4)2(n -2)×180°. 13.180°或360°或540°.14.九.提示:设多边形的边数为n ,某一个外角为α.则(n -2)×180+α =1350.从而1809071801350)2(αα-+=-=-n . 因为边数n 为正整数,所以α =90,n =9.15.130°.提示:设多边形的边数为n ,没有计算在内的内角为x °.(0<x <180)则(n -2)×180=2570+x .从而⋅++=-18050142xn 因为边数n 为正整数,所以x =130. 16.可以走回到A 点,共走100米.第12章《全等三角形》同步练习(§12.1~12.2)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.如图,△ABC ≌△DEF ,A 与D ,B 与E 分别是对应顶点,∠B =32o ,∠A =68o ,AB =13cm ,则∠F =______度,DE =______cm .2.由同一张底片冲洗出来的两张五寸照片的图案 全等图形,而由同一张底片冲洗出来的五寸照片和七寸照片 全等图形(填“是”或“不是”).3.如图,△ABC 与△DBC 能够完全重合,则△ABC 与△DBC 是____________,表示为△ABC ____△DBC .4.如图,已知△ABC ≌△BAD ,BC =AD ,写出其他的对应边 和对应A B C DE F (第1题) A B CD(第3题)角 .5.如图所示,ABC ADE △≌△,BC 的延长线交DA 于F ,交DE 于G ,105ACB AED ∠=∠=o ,15CAD ∠=o ,30B D ∠=∠=o ,则1∠的度数为 . 6.如图,已知AB BD ⊥,垂足为B ,ED BD ⊥,垂足为D ,AB CD =,BC DE =,则ACE ∠=___________o .7.如图,已知AF BE =,A B ∠=∠,AC BD =,经分析 ≌ .此时有F ∠= .8.如图所示,AB ,CD 相交于O ,且AO =OB ,观察图形,图中已具备的另一相等的条件是________,联想到SAS ,只需补充条件________,则有△AOC ≌△________. 9.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上________块,其理由是__________. 10.如图,把两根钢条AA ',BB '的中点O 连在一起,可以做成一个测量工件内槽宽的工具(工人把这种工具叫卡钳)只要量出A B ''的长度,就可以知道工件的内径AB 是否符合标准,你能简要说出工人这样测量的道理吗? . 二、选择题(每题3分,共24分)11.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为( ) A.①②③④ B.①③④ C.①②④ D.②③④ 12.如果D 是ABC △中BC 边上一点,并且ADB ADC △≌△,则ABC △是()(第10题)AEC BD (第6题)C D A BEF(第7题)ACODB A C1 2(第8题) (第9题)A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形13.一个正方形的侧面展开图有( )个全等的正方形.A .2个B .3个C .4个D .6个 14.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有( )A .1个B .2个C .3个D .4个15.如图,在ABC △和DEF △中,已知AB DE =,BC EF =,根据(SAS )判定ABC DEF △≌△,还需的条件是( )A.A D ∠=∠ B.B E ∠=∠ C.C F ∠=∠ D.以上三个均可以16.下面各条件中,能使△ABC ≌△DEF 的条件的是( )A.AB =DE ,∠A =∠D ,BC =EF B.AB =BC ,∠B =∠E ,DE =EF C .AB =EF ,∠A =∠D ,AC =DF D.BC =EF ,∠C =∠F ,AC =DF 17.如图,AD BC ,相交于点O ,OA OD =,OB OC =.下列结论正确的是( )A .AOB DOC △≌△. B .ABO DOC △≌△ C .A C ∠=∠D .B D ∠=∠18.如图,已知AB AC =,AD AE =,BAC DAE ∠=∠.下列结论不正确的有( ).A .BAD CAE ∠=∠B .ABD ACE △≌△C .AB=BCD .BD CE = 三、解答题(共46分)19.(7分)找出下列图形中的全等图形.(1) (2) (3) (4) (5) (6)ABOC D A EDB CA DC E (第15题) (第17题) (第18题)(7)(8)(9)(10)(11)(12)20.(7分)如图,AB=DC,AC=DB,求证AB∥CD.21.(8分)如图,已知AB∥DC,AD∥BC.证明:(1)AB=CD;(2)AD=BC.DCBA22.(8分)如图,点A B C D ,,,在一条直线上,△ABF ≌△DCE ,你能得出哪些结论?(请写出三个以上的结论)23.(8分)如图,点D E ,分别在AB AC ,上,且AD AE =,BDC CEB ∠=∠.求证:BD CE =.24.(8分)如右图,已知DE ⊥AC ,BF ⊥AC ,垂足分别是E 、F ,AE =CF ,DC ∥AB ,(1)试证明:DE =B F ;(2)连接DF 、BE ,猜想DF 与BE 的关系?并证明你的猜想的正确性.DFCBAE参考答案一、填空题1.80,13 2.是 不是 3.全等三角形,≌ 4.AC =BD ,AB =BA ,∠C =∠D ,∠CAB =∠DBA ,∠ABC =∠BAD 5.60度 6.90 7.ADF BCE △≌△,得F E ∠=∠. 8.∠AOC =∠BOD ,OC =OD ,△BOD 9.1,有两边及其夹角对应相等的两个三角形全等 10.此工具是根据三角形全等制作而成的.由O 是AA ',BB '的中点,可得AO A O '=,BO B O '=,又由于AOB ∠与A OB ''∠是对顶角,可知AOB A OB ''∠=∠,于是根据“SAS ”有AOB A OB ''△≌△,从而A B AB ''=,只要量出A B ''的长度,就可以知道工作的内径AB 是否符合标准二、选择题11.A 12.D 13.C 14.A 15.B 16.D 17.A 18.C 三、解答题19.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形 20.略 21.略 22.由△ABF ≌△,DCE 可得到BAF CDE AFB DEC ABF DCE AB DC BF CE AF DE ∠=∠∠=∠∠=∠===,,,,,;AF ED AC BD BF CE =∥,,∥,△AEC ≌△DFB 等 23.略 24.(1)证明 Rt △CDE ≌Rt △AFB ;(2)DF ∥BE 且DF=BE第12章《全等三角形》同步练习班级 学号 姓名 得分 一、填空题(每题3分,共30分)1.到一个角的两边距离相等的点都在_________. 2.∠AOB 的平分线上一点M ,M 到 OA 的距离为1.5 cm ,则M 到OB 的距离为_________. 3.如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC =_________.①②③4.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_________ cm .5.如图,已知AB 、CD 相交于点E ,过E 作∠AEC 及∠AED 的平分线PQ 与MN ,则直线MN 与PQ 的关系是_________.6.三角形内一点到三角形的三边的距离相等,则这个点是三角形_________的交点. 7.△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,且BD :CD =3:2,BC =15cm ,则点D 到AB 的距离是__________. 8.角平分线的性质定理:角平分线上的点_____________________________. 9.(1)如图,已知∠1 =∠2,DE ⊥AB , DF ⊥AC ,垂足分别为E 、F ,则DE ____DF . (2)已知DE ⊥AB ,DF ⊥AC ,垂足分别 为E 、F ,且DE = DF ,则∠1_____∠2.10.直角三角形两锐角的平分线所夹的钝角为_______度.二、选择题(每题3分,共24分) 11.如图,OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D .下列结论中错误的是( )A .PC = PDB .OC = OD C .∠CPO = ∠DPO D .OC = PC12.如图,△ABC 中,∠C = 90°,AC = BC ,AD 是∠BAC 的平分线,DE ⊥AB 于E ,若AC = 10cm ,则△DBE 的周长等于( )A .10cmB .8cmC .6cmD .9cm13.到三角形三条边的距离都相等的点是这个三角形的( )A .三条中线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点14. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处 D.4处 15.给出下列结论,正确的有( )(第3题) (第4题) (第5题) 21A B CDEF(第9题)A BCDO P(第11题)EDCB(第12题)①到角两边距离相等的点,在这个角的平分线上;②角的平分线与三角形平分线都是射线;③任何一个命题都有逆命题;④假命题的逆命题一定是假命题A.1个B.2个C.3个D.4个16.已知,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD∶CD=9∶7,则D到AB的距离为()A.18 B.16 C.14 D.1217.两个三角形有两个角对应相等,正确说法是()A.两个三角形全等B.两个三角形一定不全等C.如果还有一角相等,两三角形就全等D.如果一对等角的角平分线相等,两三角形全等18.如图,OB、OC是∠AOD的任意两条射线,OM平分∠AOB ,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式为()A.2α-βB.α-βC.α+βD.2α三、解答题(共46分)19.(7分)如图,已知OE、OD分别平分∠AOB和∠BOC,若∠AOB=90°,∠EOD=70°,求∠BOC的度数.20.(7分)已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留画图痕迹)(第18题)21.(8分)如图,点D 、B 分别在∠A 的两边上,C 是∠A 内一点,AB = AD ,BC = CD ,CE ⊥AD 于E ,CF ⊥AF 于F . 求证:CE = CF22.(8分)已知:如图,在△ABC 中,∠A =90°,AB = AC ,BD 平分∠ABC .求证:BC = AB + AD23.(8分)如图,PB 和PC 是△ABC 的两条外角平分线. ①求证:∠BPC =90°-12∠BAC . ②根据第①问的结论猜想:三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形? F A B EC D D B AC CBA24.(8分)如图,BP是△ABC的外角平分线,点P在∠BAC的角平分线上.求证:CP是△ABC的外角平分线.参考答案一、填空题 1.这个角的平分线上 2.1.5cm 3.30° 4.8 5.MN ⊥PQ 6.三条角平分线 7.6cm 8.到角的两边的距离相等 9.(1)=(2)= 10.135 二、选择题11. D 12. B 13.D 14.D 15.B 16.C 17.D 18.A 三、解答题19.50° 20.画两个角的角平分线的交点P 21.略 22.提示:过点D 做DM ⊥BC 23.①略;②锐角三角形 24.提示:过P 作三边AB 、AC 、BC 的垂线段PD 、PE 、PF第13章《轴对称》同步练习(§13.1~13.2)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.如图所示的图形是___图形,其对称轴共有___条.2.简体汉字中“田、日、中”,都具有对称美的特点,请你再写出具有这们特征的三个汉字为_____.3.正方形是轴对称图形,它的对称轴有_______条.4.如果一个图形沿一条直线折叠,直线两旁的部分能够________,这个图形就叫做______________,这条直线就是它的________,这时,我们也说这个图形关于这条直线 对称.5.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是 .6.点A (-2,1)关于y 轴的对称点的坐标是____,点x 的对称点的坐标是____.7.如图,△COB 与△AOB 关于x 轴对称,点A 的坐标为(则点C 的坐标为____.8.如图所示,写出长方形ABCD 三个顶点的坐标:A B :___,C :____.(第5题) (第1题)9.如图,P是正△ABC内的一点,若将△P AB绕点A逆时针旋转到△P′AC,则∠P AP′的度数为________.10.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是________.二、选择题(每题3分,共24分)11.下列图形:①线段;②角;③平行四边形;④三角形;⑤圆,其中一定是轴对称图形的共有()A.2个B.3个C.4个D.5个12.下列图形中轴对称图形有()A.4个B.3个C.2个D.1个13.如图所示,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超,使超市到三个小区的距离相等,则超市应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在AC、BC两边垂直平分线的交点处D.在A、B两内角平分线的交点处14.在刚刚买来的一件衣服上,有一个标签,上面有如下几个图形,如图所示分别表示这件衣服可干洗,不可漂白,应低温熨烫或悬挂凉干,它们其中是轴对称图形的是()15.如图,在四个图形中,对称轴条数最多的一个图形是()A.B.C.D.(第10题)ONMAyxPPCBA(第9题)OD(2,1.5)CBA(第8题)CBA(第13题)A.B.C.D.16.在直角坐标系中,点P (2,1)关于x 轴对称点的坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D (-2,-1)17.将一圆形纸片对折后再对折,得到如图所示的图形,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )18.王明是班上公认的“小马虎”在做作业时,将点A 的纵横坐标次序颠倒,写成A (a ,b ),小华也不细心,将点B 的坐标写成关于y 轴的对称点的坐标,写成B (-b ,-a ),则A 、B 两点原来的位置关系是( )A .关于y 轴对称B .关于x 轴对称C .A 和B 重合D .以上都不对三、解答题(共46分) 19.(7分)如图所示,下面两个图形关于某条直线对称,画出其对称轴,求出z y x ,,的值.20.(7分)如图是由两个等边三角形组成的图形,它是轴对称图形吗?如果不是,请移动其中的一个三角形,使它与另一个三角形一起组成轴对称图形,有几种移法?(至少画四种,相同类型的算一种). 21.(8分)你能将方格中的图案做如下变换吗?相信你一定能行的! (1)关于x 轴对称;(2)关于y 轴对称(第17题)6270︒120︒100︒z yHG FE DCxB A22.(8分)AC 、AB 是两条笔直的交叉公路,M 、N 是两个实习点的同学参加劳动,现欲建一个茶水供应中,使得此茶水供应站到公路两边的距离相等,且离M 、N 两个实习点的距离也相等,试问:此茶水供应站应建在何处?23.(8分)已知A (2m +n ,2)、B (1,n -m ),当m ,n分别为何值时 (1)A 、B 关于x 轴对称; (2)A 、B 关于y 轴对称. 24.(8分)开放与探究(1)观察图中①-④中阴影部分所构成的图案,请写出这四个图案都具有的两个特征; (2)借助图中⑤的网格,请你设计一个新图案,使该图案同时具有你解答(1)中所写的两个共同的特征.Bx参考答案一、填空题1.轴对称图形,5 2.答案不唯一如:“美、善、口、工、士”等 3.4 4.互相重合,轴对称图形,对称轴,成轴 5.1021∶ 6.(2,1),(-2,-1) 7.(2,-3) 8.(-2,1.5)、(-2,-1.5)、(2,-1.5) 9.60° 10.)(),,(3-1.3-1-N M二、选择题11.B 12.B 13.C 14.B 15.B 16.C 17.C 18.B 三、解答题19.对称轴为MN ,2,6,70==︒=z y x 20.不是,答案不唯一 21.略 22.图略,画法:(1)画出∠CAB 的角平分线AE ;(2)连结MN ,作MN 的垂直平分线与AE 交于P ;(3)由点P 即为所求 23.(1)m=1,n=-1,点A 、B 关于x 轴对称;(2)m=-1,n=1,点A 、B 关于y 轴对称. 24.答案不唯一:如(1)都是轴对称图形;阴影部分面积等于4个小正方形面积之和;(2)答案不唯一.第13章《轴对称》同步练习(§13.3)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.等腰三角形的一个角是110°,则它的底角为_______°.2.等腰三角形的腰长是6,则底边长3,周长为______________________.3.等腰三角形一个底角为50°,则此等腰三角形顶角为________________________. 4.在△ABC 中,AB =AC ,点D 在AC 边上,且BD =BC =AD ,则∠A = °.5.已知直线yy ′⊥xx ′,垂足为O ,则图形①与图形_____成轴对称6.等腰三角形一腰上的中线把这个三角形的周长分成15㎝和12㎝,则这个三角形的底边长为 ㎝.7.腰长为12㎝,底角为15°的等腰三角形的面积为 . 8.到三角形各顶点距离相等的点是三角形 的交点.9.在直角坐标系内有两点A (-1,1)、B (2,3),若M 为x 轴上一点,且MA +MB 最小,① y ′③②x ′Oxy (第5题)则M 的坐标是________,MA +MB =________.10.等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的腰边长为_____cm.. 二、选择题(每题3分,共24分)11.点M (1,2)关于原点对称的点的坐标为 ( )A .(—1,2)B .(-1,-2)C .(1,-2)D .(2,-1) 12.下列说法正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形一边不可以是另一边的二倍D .等腰三角形的两个底角相等13.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P ,P 1,P 2三点构成的三角形是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形14.如图,DE 是∆ABC 中AC 边的垂直平分线,若BC =8厘米,AB =10厘米,则∆EBC 的周长为( )厘米 A .16 B .28 C .26 D .18 15.等腰三角形的对称轴,最多可以有( )A .1条B .3条C .6条D .无数条 16.下列判断不正确的是( )A .等腰三角形的两底角相等B .等腰三角形的两腰相等C .等边三角形的三个内角都是60°D .两个内角分别为120°、40°的三角形是等腰三角形 17.下列轴对称图形中对称轴最多的是( )A .等腰直角三角形;B .正方形;C .有一个角为60°的等腰三角形;D .圆18.如图,∠A =15°,AB =BC =CD =DE =EF ,则∠FEM =( )A .45°B .60°C .75°D .90°三、解答题(共46分) 19.(7分)已知,如图ΔABC 中,AB =AC ,D 点在BC 上,且BD =AD ,DC =AC .将图中的等腰三角形全都写出来.并求∠B 的度数.NMEFC BAD(第18题)(第14题)EDABC。

北师大版八年级数学上册全册课时练习(附答案)

北师大版八年级数学上册全册课时练习(附答案)

北师大版八年级数学上册全册课时练习(附答案)1.1 探索勾股定理一、选择题。

1. 直角三角形的两直角边分别为a,b,斜边为c,则下列关于a,b,c三边的关系式不正确的是()A. b2=c2﹣a2B. a2=c2﹣b2C. b2=a2﹣c2D. c2=a2+b22. 一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A. 斜边长为5B. 三角形的周长为25C. 斜边长为25D. 三角形的面积为203. 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 804. 在Rt△ABC中,斜边长BC=3,AB2+AC2+BC2的值为()A. 18B. 9C. 6D. 无法计算5. 在Rt△ABC中,∠C=90°,若AC=5,BC=12,则AB的长为()A. 5B. 12C. 13D. 156. 若直角三角形的三边长分别为3,5,x,则x的可能值有()A. 1个B. 2个C. 3个D. 4个7. 如图,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则()A. S1=S2B. S1<S2C. S1>S2D. 无法确定8. 在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A. B. C. D.9. 直角三角形的周长为12,斜边长为5,则面积为()A. 12B. 10C. 8D. 6二、填空题。

10. 在Rt△ABC中,∠B=90°,a,b,c分别是∠A,∠B,∠C的对边,且a=12,b=13,则c的值为______.11. 甲船以15海里/时的速度离开港口向北航行,乙船同时以20海里/时的速度离开港口向东航行,则它们离开港口2小时后相距______海里.12. 如图,在△ABC中,∠ABC=90°,分别以BC、AB、AC为边向外作正方形,面积分别记为S1、S2、S3,若S2=4,S3=6,则S1=______.13. 如果直角三角形的斜边与一条直角边分别是15cm和12cm,那么这个直角三角形的面积是______.14. 如图,∠MCF=∠FCD,∠MCE=∠ECB,EF=10cm,则CE2+CF2=______.15. 在直角三角形ABC中,∠C=90°,BC=12,AC=9,则AB=______.16. 等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是______cm.17. 如图,由四个全等的直角三角形拼成“赵爽弦图”.Rt△ABF中,∠AFB=90°,AF=4,AB=5.四边形EFGH的面积是______.18. 在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=______.三、解答题。

八年级数学苏科版上册课时练第1单元《1.2全等三角形》(含答案解析)

八年级数学苏科版上册课时练第1单元《1.2全等三角形》(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练1.2全等三角形一、选择题:1、如图,若△ABC≌△A1B1C1,且∠A=110°,∠B=40°,则∠C1=()A.30°B.45°C.60°D.15°2、如图,△ABC≌△A'B'C,∠BCB'=30°,则∠ACA'的度数为()A.30°B.45°C.60°D.15°3、如图所示,△ABC≌△EFD,那么()A.AB=EF,AC=DE,BC=DF B.AB=DF,AC=DE,BC=EFC.AB=DE,AC=EF,BC=DF D.AB=EF,AC=DF,BC=DE4、如图所示,△ABC≌△DEF,请根据图中提供的信息,写出x=()A.20B.18C.16D.245、如图所示,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E 处,若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°6、如图,已知△ABD≌△ACE,∠1=75°,则∠2=().A.60°B.75°C.80°D.55°7、如图,小强利用全等三角形的知识测量池塘两端M,N之间的距离,如果△PQO≌△NMO,那么只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ8、如图所示,△ABE和△ACD是分别沿着AB,AC边翻折180°形成的,若∠BAC=150°,则∠θ的度数是()A.60°B.45°C.80°D.55°二、填空题:9、如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是.10、如图,在△ABC中,∠A=50°,点D,E分别在边AC,AB上,连接BD,CE,∠ABD=39°,且∠CBD=∠BCE,若△AEC≌△ADB,点E和点D是对应顶点,则∠CBD的度数是.11、如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为.12、已知△ABC与△DEF全等,BC=EF=4cm,△ABC的面积是12cm2,则EF边上的高是.13、如图,△ABC≌△ADE,则AB=,∠E=∠.若∠BAE=120°,∠BAD=40°,则∠BAC=°.14、已知△AB C≌△A'B'C',若△ABC的面积为10cm2,则△A'B'C'的面积为cm2;若△A'B'C'的周长为16cm,则△ABC的周长为cm.三、解答题:15、如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.16、如图,已知△ABF≌△DCE,BE,FC在同一直线上,BE=2cm,求CF的长.17、如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.18、如图,点A、B、C在同一直线上,点E在BD上,且△ABD≌△EBC,AB=2cm,BC=3cm.(1)求DE的长;(2)判断AC与BD的位置关系,并说明理由.(3)判断直线AD与直线CE的位置关系,并说明理由.参考答案一、选择题:1、A2、A3、A4、A5、C6、B7、B8、A二、填空题:9、510、26°11、130°12、6cm13、AD∠C80°14、1016三、解答题:15、∠DFE=100°,EC=2.16、2cm17、∠1=60°18、(1)DE=1cm;(2)DB与AC垂直,(3)直线AD与直线CE垂直.。

八年级上册数学人教版课时练.2.1 分式的乘除-(试卷配答案)

八年级上册数学人教版课时练.2.1 分式的乘除-(试卷配答案)

寄语:亲爱的小朋友,在学习过程中,的挑战就是逐级攀升的难度。

即使每一级都很陡峭,只要我们一步一个脚印地向上攀登,一层又一层地跨越,最终才能实现学习的目标。

祝愿你在学习中不断进步!相信你一定会成功。

相信你是最棒的!人教版数学八年级上册《15.2.1分式的乘除》课时练一、单选题1.a ÷a •的计算结果是( )1a A .aB .1C .D .a 21a2.计算a÷的结果是( )a bb a⨯A .a B .a 2C .D .2b a21a 3.化简÷的结果是( ) 1m m -21m m-A .m B .C .m -1D .1m11m -4.计算的结果是( )322222(((x y y y x x-⋅÷-A .B .C .D .368x y -368x y 2516x y -2516x y5.化简的结果是( )221121a a a a a--÷++A .B .C .D .121a a +1a a+12a a ++6.下列计算:①;②;③;④221x y x y x y -=--y x y y x y x x ⎛⎫÷⋅-=- ⎪⎝⎭22()1()a b a b -=-+;其中结果正确的有( )2a ab ab a ba b a b b++÷=--A .1个 B .2个 C .3个D .4个7.计算的结果是( )2269243m m m m m-+-⋅--A .B .C .D .32m m -+23m m +-32m m +-23m m -+8.下列运算结果为x-1的是( )A .B .C .D .11x-211x xx x -⋅+111x x x +÷-2211x x x +++9.若等于3,则x 等于( ) 2222121x x x x x x +÷--+A .B .﹣C .2D .﹣2121210.如果,那么等于()32223()()3a ab b÷=84a b A .6 B .9 C .12 D .81二、填空题11.计算:=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D. x >0.
3.下列语句正确的是( )
A. 64 的立方根是 2
B.-3 是 27 的立方根
C. 125 的立方根是 5
216
6
D. (1) 2 的立方根是-1
4.如果 a 2 (2)2 ,b3 (3)3 ,那么 a b
的值是( )
A.-5
B.1
C.-1
D.-1 或-5
5.若一个数的立方根与它的平方根完全相
(2)
由 x
3
得 x≥1
0
且 x≠3 点评 算术平方根有意义的条件 是被开方数一定是非负数,分式 有意义的条件是分母不等于 0。
6.当 a=2 时, a2 的值为
.
例2 若 a 4 b 1 0,
7.如果 a 3 4 b 0,那么 a= ,b=

求 a b 的值
8.式子 3x 1 有意义,则 x 的取值范围是
15.x 的一个平方根是 2 ,则 x+7 的平
方根是
16.(2006·南京)写出一个有理数和一个
无理数,使它们都是大于-2 的负数:
.
-1
0
·N 12 34
23.(2006·厦门)下列四个结论中,正确的 是( )
A. 3 5 5 222
B. 3 5 2 22
C. 5 5 3 422
17.(2006·上海)方程 2x 1 1 的根是
D. 9 3 121 11
4.下列式子中,正确的是
()
(A) 36 6
(B) 3.6 0.6
(C) (13)2 13 (D) 36 6
5.3 的平方根是 ,算术平方根是
;32 的平方根

,算术平方根是
; (3) 2 的平方根是

算术平方根是 .
6. 64 的平方根是
,算术平方根是

7.(1)已知 a 的平方根是 3,那么 a= ;
10. 1.41 11. a 3 ,b 3或 a 3 ,b 3
2
2
一节一测·自主反馈
一.达标训练 1.下列说法正确的是( )
A.3 是 (3) 2 的算术平方根
A.1 B.-1 C.-7 D.5
6.如果 4a 1 有意义,则 a 能取的最小
整数是( )
B. (3)2 没有意义 C. 81 9
()
A.任何数都有平方根 B.一个正数的平方根是它本身
C.只有正数才有平方根 D.非负数都有平方根
2.若 x2=36,则 x 的值是
()
A.6 B. 36 C.6 或-6 D.18
3. 9 的平方根表达正确的是 121
()
A. 9 3 121 11
B. 9 3 121 11
C. 9 3 121 11
典例精析
例 1 面积是 196 平方厘米的正 方形,它的边长是多少厘米? 解析 设边长是 x(x>0)厘米,
则 x2 196
解这个方程得 x=14
点评 要善于运用方程的思想来
解决问题。
例 2 一个正数x的两个平方根
分 别 是 a 1 和 a 3 , 则 a

,x=

解析 ∵正数的两个平方根互
为相反数,
D.5 的平方根是 5
3.下列各式正确的是( )
A. (1)2 1 42
B. 2 1 1 1 42
C. 4 9 2 3 2 3
16
44
D. 132 72 13 7 5
输入 x A.8
取算术平方根 是无理数 是有理数
B. 2 2
输出
9.实数 2 , 16 , ,3.1416,( 7 )2 , 2
C.a 是一个任意数, a2 2 一定没有平方根
D. x 1 有意义的条件是 x 1
3.下列各式中没有意义的式子是( )
A. ( 5) 2 B. (5)2 C. 52 D. 52
4.下列说法中正确的是( ) A.无限小数都是无理数 B.无理数是无限小数 C.带根号的数是无理数 D.无理数是开不尽方的数
5.当 a 时, a 有意义;当 a 时, a 有意义,
当a
时 a2 有意义.
(1)a≥0 ; (2) a ≥0
3.无限不循环小数是无理数 4.非负数有关知识
典例精析
例 1 x 为何值时,下列各式有意 义?
(1) x 1 ;(2) x 1 x3
解析 (1)由 x-1≥0,得 x≥1
x 1 0
3a
(2)由上表你发现了什么规律?请用语言叙述 这个规律。 (3)根据你发现的规律填空:
①已知 3 3 1.442 ,
则 3 3000
, 3 0.003

② 已 知 3 0.000456 0.07697 , 则
3 456

§1.3 实数与数轴 第一课时
9 ,0.020020002…(每两个 2 之间多一个 3
0)中,无理数的个数有( )
4.下列各数中,没有算术平方根的是( ) A.2 个 B.3 个 C.4 个 D.5 个
A.0
B. (3) 2
10. 81 的平方根与 16 的相反数的和等
C. 32 D. (3) 5.计算 2 9 的结果是 ( )
名师讲坛·点睛导航 知识要点
1.平方根与算术平方根 如果一个数 r 的平方等于 a,那
么这个数 r 叫做 a 的平方根或二
次方根,记作 a ,其中 a
也叫做 a 的算术平方根,规定: 0 的算术平方根是 0 2.求一个数的平方根的运算, 叫做开平方。开平方与平方互为 逆运算。 3.平方根的性质 (1)正数 a 的平方根有两个, 它们互为相反数; (2)0 平方根是 0; (3)负数没有平方根。
课时达标·以练助学
第二课时
1.满足条件 a a 的数 a 的个数是( )
A.只有 1 个 B.只有 2 个 C.只有 3 个 D.一个也没有 2.下列说法不正确的是( )
名师讲坛·点睛导航 知识要点
1. a 有意义的条件是:a≥0
2. a 有两层含义
A. a 2 1的平方根是 a2 1
B. a 2 1的算术平方根是 a2 1
A.0 B.-1 C.1 D.2 7.在实数中,( )
A.有绝对值最大的数,也有绝对值最小 的数
D.若 x2 64 ,则 x=8
B.没有绝对值最大的数,也没有绝对值 最小的数
2.下列语句中正确的是( ) A.25 的平方根是-5 B.负数没有平方根
C. 5 是 25 的平方根
C.实数的绝对值都是正数 D.没有绝对值最大的数,但有绝对值最 小的数 8.有一个数值转换器,原理如下:当输入 的 x 为 64 时,输出的 y 是( )
∴ (a 1) (a 3) 0 ,
∴a=1
其中一个平方根 a 1 2 ,故
x 22 4
点评 正数 x 的两个平方根互为 相反数,且和为 0,由此可得关 于 a 的方程,求出 a 的值,进而 可求出 x 的一个平方根.
第一章 实 数
§1,1 平方根
第一课时
课时达标·以练助学
1.下列说法正确的是
于( ) A.-1 或+7 B.-1 或-7 C.+1 或+7 D.+1 或-7
11.算术平方根是它本身的数是
,平
方根是它本身的数是
12.如果一个正数的一个平方根是 a,那么
这个数的另一个平方根是 ,这两个平方
根的和是

13.9 的算术平方根的倒数是
14.若 a2 16 ,则 a=
则 a=
;若 a 0.6 ,
二.中考连接
21.(2006·杭州)要使式子 2x 3 有意
义,字母 x 的取值必须满足( )
A.x> 1 B.x≥ 3
2
2
C.x> 3 2
D.x≥ 3 2
22.(2006·大连)如图,数轴上点 N 表示
的数可能是( )
A. 10 B. 5 C. 3 D. 2
名师讲坛·点睛导航 知识要点
1.立方根的意义 (1)如果一个数 x 的立方等于 a,那么这个数 x 叫做 a 的立方
33 27 3 3 9 (2) 3 216 3 216 6 (3) 3 3 3 3 27 3
8
82
10. 4
一.达标训练 1.下列说法错误的是( )
一节一测·自主反馈
3 0.216
A. 3 a 中的 a 可以是正数、负数、0
8.(1)2007 的立方根是
, 0.008
B. a 中的 a 不可能是负数
点评 若已知几个非负数的和为 0,则每一个非负数都为 0
答案及点拨
【第一课时】 1.D 2.C 3.B 4.D 5. 3,3,3,3; 3,3 6. 2 2,2 2 7.①9 ,
②81 8.x≤1; 9.① x 9 或x 11 ,②x=4 或 x=-2;10.①a=4;② 3
2
2
【第二课时】1.B 2.A 3.C 4.B 5.a≥0,a≤0,a=0 ;6.2 7.a=-3 b=4 8.x≥ 1 9.> ,> 3
同;则这个数是( )
A.1 B.-1 C.-1 或 1 D.0
6.正数有 个 的立方根,负数
有 个 的立方根,0 的立方根仍旧


7.① 3 1
② 3 729

二.中考连接 12.(2006·南通)64 的立方根等于( ) A.4 B. —4 C. 8 D. —8 三.思维拓展 13.(1)填表 a 0.000001 0.001 1 1000 1000000
典例精析
17 例 分别求出-1,64,4 的立
相关文档
最新文档