基础化学:第四章 配位化合物-1

合集下载

大学无机化学经典课件第三、四章配位化学

大学无机化学经典课件第三、四章配位化学
Cu2+ + 2
CH2NH2
H2CNH2
NH2CH2
CH2NH2
H2CNH2
NH2CH2
Cu
Cu2+的配位数等于4。
例如:
2+
螯合物
乙二胺四乙酸根 EDTA(Y4-)
乙二酸根(草酸根)
2–
O O C C O O
• •
• •
4–
• •
• •
• •
3. 浓度:一般[配体]增大,配位数增加
4. 温度:温度增加,配位数增大
[AlCl4]- [AlF6]3-
、配位化合物的命名 1 外界是负离子,简单酸根离子(Cl-), “某化某” 2 外界负离子是复杂酸根(SO42-)“某酸某” 3 外界为正离子(H+,Na+), “某酸某” (某酸/钠)
[Ag(NH3)2]+ [Cu(NH3)2]+ [Cu(CN)4]3- [Cu(NH3)4]2+ [Zn(NH3)4]2+ [Cd(CN)4]2- [Fe(CO)5] [FeF6]3- [Fe(CN)6]3- [Fe(CN)6]4- [Fe(H2O)6]2+ [MnCl4]2- [Mn(CN)6]4- [Cr(NH3)6]3+
烯羟配合物:配体为不饱和烃类的配合物。
一、几何异构现象
二、旋光异构现象---对应异构现象
三、其他异构
2.2 配合物异构现象
2.2 配合物异构现象
异构现象: 配合物的化学组成相同而原子间的联结方式或空间排列方式不同而引起性质不同的现象。
配合物的空间构型虽五花八门,但基本规律是:
(1) 形成体在中间,配位体围绕中心离子排布 (2) 配位体倾向于尽可能远离,能量低,配合物稳定

配位化合物的配位数和配位键的性质

配位化合物的配位数和配位键的性质

配位化合物的配位数和配位键的性质配位化合物是由一个或多个配体与中心金属离子形成的化合物。

在配位化学领域,配位数和配位键的性质是非常重要且基础的概念。

本文将探讨配位化合物的配位数和配位键的性质,并分析它们在化学中的应用。

一、配位数的概念和分类配位数指在一个配位化合物中,中心金属离子周围结合的配体数量。

根据不同的配体与中心金属离子的结合方式,可以将配位数分为以下几种类型:1. 一配位:指一个配体与一个中心金属离子形成一根配位键的情况。

典型的一配位化合物为氯化物离子(Cl-)与银离子(Ag+)结合形成的AgCl。

2. 二配位:指两个配体与一个中心金属离子形成两根配位键的情况。

例如,氨(NH3)与铜离子(Cu2+)结合形成的[Cu(NH3)2]2+。

3. 多配位:指多个配体与一个中心金属离子形成多个配位键的情况。

例如,氯化物(Cl-)、溴化物(Br-)和碘化物(I-)与铁离子(Fe3+)结合形成的[FeCl3]、[FeBr3]和[FeI3]。

二、配位键的性质配位键是配体与中心金属离子之间的化学键,决定了配位化合物的稳定性和性质。

以下是配位键的一些重要性质:1. 强配位键:强配位键是指能够与中心金属离子形成较强的化学键的配体。

具有强配位键的配体通常是具有较大的电负性和较高的硬度。

常见的强配位键配体包括氨、氰化物(CN-)和水(H2O)等。

2. 弱配位键:弱配位键是指与中心金属离子形成较弱化学键的配体。

具有弱配位键的配体通常是具有较小的电负性和较低的硬度。

典型的弱配位键配体包括一氧化碳(CO)和硫化物(S2-)等。

3. 配位键长度:配位键的长度与配位键强度密切相关。

通常情况下,配位键越短,配位键越强。

配位键长度可以通过X射线晶体学等方法来确定。

4. 配位键的方向性:配位键可以是线性的、平面性的或立体性的。

这取决于配体与中心金属离子之间的共价键角度以及配位平面的几何结构。

三、配位数和配位键的应用配位化合物的配位数和配位键的性质对其在化学和生物学中的应用起着重要作用。

基础化学中英文课件-配位化合物

基础化学中英文课件-配位化合物

Chelate: a polydentate ligand, when coordinated at two or more points to a central ion, forms a ring structure such as illustrated by the ethylenediamine complex of cobalt above. This type of complex is called a chelate.
The Coordination Complex 配位化合物
Notes:
cathode [‘kæθəʊd] 阴极 cathodic [kə‘θɔdik] 阴极的 cation [‘kætaiən] 阳离子 cationic [‘kætaiɔnik] 阳离子的 anode [‘ænəʊd] 阳极 anodic [ə’nɔdik] 阳极的 anion [‘ænaiən] 阴离子 anionic [‘ænaiɔnik] 阴离子的 Nonionic [‘nɔnaiɔnik] 非离子的
[Ag(NH3)2]Cl
Diamminesilver(I) chloride
K4[Fe(CN)6]
Potassium hexacyanoferrate(II)
[Co(NH3)3(NO2)3]0 Triamminetrinitrocobalt(III)
[Cu(NH3)4]SO4 Tetramminecopper(II) sulfate
methylamine: methyl-, amine (甲胺) Ethylenediamine: ethyl-, -ene, di-, amine (乙二胺)
Naming the coordination compounds

配位化合物知识总结

配位化合物知识总结

六氯合锑(Ⅲ)酸铵 三氯化三(乙二胺)合钴(Ⅲ) 二水合溴化二溴·四水合铬(Ⅲ)
Example 2
写出下列配合物的化学式: (1)羟基·水·草酸根·乙二胺合铬(Ⅲ) (2) 氯·硝基·四氨合钴(Ⅲ)配阳离子
Solution:
(1) [Cr(OH)(H2O)(C2O4)(en)]; (2) [Co(NH3)4(NO2)Cl]+
H2N••源自CH2CH2N••
H
2
● 六齿配体:乙二胺四乙酸根 EDTA(Y4-)
其中 2 个 N ,4 个 OH 中的 O 均可配位
(4) 配位数及电荷
● 与中心离子(或原子)成键的配位原子的总数
配位数 配位体i的数目齿数
单齿配体 多齿配体
Cu(NH3 )4
PtCl3 (NH3 ) CoCl2 (en)2 2 Al(C2O4 )3 3 Ca(EDT A) 2
配位化合物
配位化合物的基本概念 配位化合物的化学键理论
配位化合物的稳定性
配位化合物的基本概念
一、配位化合物 Coordination Compounds
1 定义 (Definition)
配合物可看成是一类由简单化合物反应生成的复杂化合物:
CuSO4 + 4 NH3 == [Cu(NH3)4]SO4 SiF4 + 2 HF == H2[SiF6] Ni + 4 CO == [Ni(CO)4]
互为旋光异构体的两 种物质,使偏振光偏 转的方向不同。按一 系列的规定,定义为 左旋、右旋。 不同的
旋光异构体在生物体 内的作用不同。
(c) and (d) 光学异构
2、异构现象
A) 结构(构造)异构
电离异构 水合异构 键合异构 配位异构

4配位化学

4配位化学

配体命名的先后次序
a) 无机配体在前,有机配体在后;
如:Cis-[PtCl2(Ph3P)2] 顺-二氯二(三苯基膦)合铂(II) b) 阴离子在前,中性分子在后; 如:K[PtCl3NH3], 三氯一氨合铂(II)酸钾
[Co(N3)(NH3)5]SO4 , 硫酸一叠氮五氨合钴(III)
c) 同类配体中,若配位原子不同时, 则按配位原子元素 符号的英文字母顺序排列; 如: [Co(NH3)5H2O]Cl3 三氯化五氨一水合钴(III) K2[Cr(CN)2O2(O2)NH3]
配合物命名Leabharlann 则按照中国化学会无机专业委员会制定规则命名
由国际纯粹与应用化学联合会(IUPAC)命名委员会 制定和通过,中国化学会根据汉语习惯改编而成。以中 国化学会1980年制订的《无机化学命名原则》为依据。 配酸:×××酸 H4[Fe(CN)6] 六氰合铁(II)酸
配碱:氢氧化×××
[Ag(NH3)2](OH) 氢氧化二氨合银(Ⅰ)
(3) 配体和配位原子
配体 负离子 X– SCN– C2O42– CN– 中性分子 H2O NH3 CO en
配位原子指配体中给出孤对电子与中心原子直接形成 配位键的原子。除少数例外,配位原子至少有一对弧 对电子。 可做配位原子的大概有14种元素,主要属于周期 表中的Ⅴ、Ⅵ、Ⅶ主族元素,即: H– C N O F P S Cl 最常见的是C、N、 As Se Br O,其次是P、S。 Sb Te I
配位数的多少与中心原子的电荷、半径以及
配体的电荷、半径有关。一般来说,中心原子的
电荷高、半径大有利于形成高配位数配位单元; 配体电荷高、半径大有利于形成低配位数配位单 元。常见金属离子的配位数如下表所示。

分析化学 第四章 配位滴定法

分析化学 第四章  配位滴定法
分析化学
通辽职业学院
第二节 乙二胺四乙酸的性质及其配合物
一、乙二胺四乙酸的性质 1.乙二胺四乙酸的结构与性质 乙二胺四乙酸的结构
HOOCH2C HOOCH2C CH2COOH N CH2 CH2 N CH2COOH
从结构式所知, EDTA 为四元有机弱酸。用 H4Y 表示其化学式。 EDTA 为白色粉末状结晶,微溶于水,由于溶解度太小,不宜作滴 定液。利用 EDTA 难溶于酸和一般有机溶剂,易溶于氨水和氢氧化 钠等碱性溶液等性质,常制备成相应的钠盐,其化学名称为乙二胺 四乙酸的二钠盐,用Na2H2Y· 2H2O表示,也简称EDTA。EDTA钠盐 为白色粉末状结晶,有较好的水溶性。
分析化学
通辽职业学院
2.乙二胺四乙酸在水溶液中的电离平衡 在水溶液中,EDTA分子中互为对角线的两个羧基 上的H+会转移到氮原子上,形成双偶极离子。
HOOCH2C
+
N OOCH2C H
CH2 CH2
N H CH COOH 2
+
CH2COO
-
在强酸性溶液中,两个羧酸根可再接受H+而形成 H6Y2+,因此EDTA可看作六元酸,在溶液中有六级 离解平衡: 分析化学
通辽职业学院
EDTA在水溶液中的六级离解平衡:
H6 Y2+ Y+ H+ H+ + H5 Y+
K a1 [H ][H5 Y ] 100.9 2 [H6 Y ]
H5
+ H4Y
H4Y H3Y H2 Y2-
H + + H3Y H+ + H2Y2H+ H+ + HY3-

第四章 配合物

第四章 配合物

间无沉淀,其水溶液中主要组分为Cs+和
[Rh(H2O)4(SO4)2]-,后者也存在于晶体中。
4-1-4 配合物的命名
如果配合物中的酸根是一个简单的阴离 子,称某化某,如[Co(NH3)Cl3称三氯化六氨 和钴(III)。如果是一个复杂的阴离子,则称某 酸某,如[Cu(NH3)4]SO4称硫酸四氨合铜(II)。 若外界为氢离子,配阴离子的名称之后用酸 字结尾,如H2[PtCl6]称六氨合铂(IV)酸。若外 界为氢氧根离子则称氢氧化某,如 [Cu(NH3)4](OH)2称为氢氧化四氨合铜(II)。
例3:卟吩与卟啉配合物叶绿素、血红素等的基本结构
例4:多核配合物
OH2 H2O Fe H2O OH2
H O O H
OH2 OH2 Fe OH2 OH2
联结两个中心原子的配体称为桥联配体或桥联 集团,简称桥基。 如三价铁离子在水溶液中,于适当浓度和pH 之下可形成多核的配离子。
含有两个或两个以上中心原子的配合物,称多 核配合物。在多核配合物中,中心原子除与配 体结合外,金属原子间还互相接合,这样的配 合物称为金属簇配合物。
4.配位数
(1)配位数 直接与中心离子(或原子)结合的配位 原子的数目称为该中心离子(或原子)的配位数。 (2)配位数的计算 ① 配位离子(或分子)中的配体都是单齿配位时 ,则配位数与配位体的数目相同。例如在 + [Cu(NH3)4]²配阳离子中,Cu2+的配位数为4;在 [Fe(CN)6]3-配位离子中,Fe3+的配位数为6;在 [PtCl2(NH3)2]配位分子中,Pt的配位数为4。
(ii)配体的半径较大时,在同一中心离子周围 所能容纳的配体的数目减少,故配位数降低。
例如,Al3+离子同卤数离子形成配合物时,与 半径较小的F-离子可形成6配位的[AlF6]3-,而 与半径较大的Cl-、Br-、I-离子则形成4配位的 [AlCl4]-、[AlBr4]-和[AlI4]-。

配位化学第4章 配合物的立体化学与异构现象

配位化学第4章 配合物的立体化学与异构现象

迄今为止, 罕有五配位化合物异构体的实例报道, 无 疑这与TBP←→SP两种构型容易互变有关, 因为互 变将使得配体可以无差别的分布于所有可能出现的 位置.
尽管X-射线衍射和红外光谱结果显示, 在[Fe(CO)5] 和PF5中, 处于轴向(z轴)的配体和处于赤道平面(xy 平面)的配体, 其环境是不等价的, 但NMR研究却证 实, [Fe(CO)5]或PF5中所有五个配位位置的配体都 是完全等价的, 这些结果揭示出这些分子在溶液中 具有流变性(fluxional molecules), 即分子结构在溶 液中的不确定性.
217 pm 187 187
Ni
187 184
199 pm 183
190 Ni
185 191
四方锥
变形三角双锥
图 4–3 在配合物[Cr(en)3][Ni(CN)5]1.5H2O中, 配阴离 子[Ni(CN)5]3–的两种结构
b) 三角双锥结构
五配位的非金属化合物如PF5具有三角双锥结构, 轴向 和赤道平面的P–F键键长是非等价的. 一般说来, 在PX5 分子中, 轴向键长比赤道平面的键长要稍长些. 但在配 合物[CuCl5]3−中赤道平面的键长反而比轴向键长稍微长 一些, 见图 4–2.
欲从四方锥(SP)构型转变成三角双锥(TBP)构型的话, 结构上看, 只需要挪动其中一个配体的位置即可, 反之 亦然.
在图 4–3中列出了[Ni(CN)5]3−既可以采取四方锥结构也 可以采取歪曲的三角双锥结构. 将四方锥底的两个对位 配体向下弯曲可转变成三角双锥结构的两个赤道配体, 在这个扭变的三角双锥结构中, 赤道平面的另一个配体 源于原先的锥顶配体, 赤道平面上的其中一个C–Ni–C 夹角(142°)要明显大于另外两个C–Ni–C的夹角 (107.3°和111

配位化学(coordination.

配位化学(coordination.
● 都存在一个“配位个体”. ● “配位个体”相对稳定,既可存在于晶体中,也可存在于溶液中. ● 与“复盐 (double salts) 不同,但又无绝对的界线.
二、 definition of coordination compounds(complex)
凡是由一定数量的可以给出孤对电子或多个不定
4-1-1 definition of coordination compound 一、Properties comparing between common compound and coordination compound
配合物可看成是一类由简单化合物反应生 成的复杂化合物:
CuSO4 1、Cu2+、SO 42-
单齿monodentate:[Fe(CN)6]4双齿didentate: [Fe(en)2]2+
PtCl 3 (NH 3 ) CoCl 2 (en) 2 2 Al(C 2 O 4 ) 3 3 Ca(EDTA) 2
单齿配体 Cu(NH 3 ) 4 多齿配体
另: Cs3CoCl5 = Cs2[CoCl4]· CsCl 不能以表面观察 从本质上讲,中心离子的coordinating number是中心离 子接受孤电子对的数目or the number of coordinate bonds formed by metal ion to ligands in complex。抓住这个本质 就比较容易确定一个中心离子的配位数
域电子的离子or分子(配体)和具有接受孤对电子or
多个不定域电子的空位的原子or离子(称中心原子)通 过配位键按一定的组成和空间构型所形成的个体(通常 称为配位单元 )为特征的化合物—配位化合物 coordination compounds,简称配合物,也叫络合物。

化学中的配位化合物

化学中的配位化合物

化学中的配位化合物化合物是由不同原子通过共价或离子键相互结合形成的物质,而配位化合物则是在这个基础上引入了一个中心离子,使得周围的分子(配体)以孪晶体的方式围绕中心离子达到稳定的结构。

配位化合物的结构一般有两种,一种是具有点群对称的配位化合物,形成简单、对称的分子结构,大部分金属的情况都可以用点群的理论来解释。

另一种是非点群对称的配位化合物,由于存在不对称的原子、分子轨道、配体偏离等因素,使得其结构更为复杂。

不同种类的配位化合物均有着精细的内部结构和相关的理论研究。

以下将简单介绍一些常见的配位化合物及其特性。

1. 氨基酸配合物氨基酸是生物体中基础的分子构成单元,能通过阳离子交换、水解、还原等方式形成两性离子、金属离子配合物等,而在生命的进化过程中扮演了重要的角色。

例如,在乳酸菌中形成的结晶化氢桥纤维素(HBNC)中,氧原子上存在的羧基(O-H)和羧酸根基相连形成具有羟基和羧基的链状结构,进而与其它羟基和尿酸等形成氢键和金属离子配合物。

这些配合物有着天然的抗氧化、生物酸等很好的保健作用。

2. 金属络合物金属络合物即为金属离子与配体发生协同作用形成的化合物。

一般来说,金属离子具有可导电性、电子电离能低、主量子数较低、容易失去电子等特性,而其与配体之间的协同作用则存在着多种络合键,如项链式、夹心戒指式、四面体结构等。

这些络合物往往具有一定的生物活性、化学稳定性和物理性能特征,同时也在催化、光催化等领域为人们所利用。

例如,著名的血红蛋白就是由铁离子与血红蛋白配体组成,具有保护红细胞、传递氧气等作用。

而且通过控制金属离子的丰度、配合物的带电性等可以实现多种功能,例如合成光致消除材料、催化剂及光电转换器件等等。

3. 铁与铜络合物铁与铜被广泛应用在催化剂、生物学等领域,其化学性质与络合物的结构密切相关。

铁与铜的化合物因其含有容易发生氧化还原反应的过渡金属离子而具有很大的生物活性;而其复杂的化学结构和理论分析则常常是人们探寻其性质的难点。

有机化学基础知识点整理络合反应和配位化合物

有机化学基础知识点整理络合反应和配位化合物

有机化学基础知识点整理络合反应和配位化合物络合反应是有机化学中重要的基础知识点之一。

它描述了配位化合物中金属离子与其他分子或离子之间的相互作用,形成稳定的配位键。

本文将对络合反应和配位化合物进行整理和分析,希望能够帮助读者更好地理解这一主题。

一、络合反应的基本概念及特点络合反应是指配位位阻上的原子或多个原子团与金属离子形成共价键或均带正电荷的离子键,从而形成稳定的配位化合物的过程。

络合反应具有以下几个特点:1. 配位原子:通常是有空轨道的中性分子或带正电离子。

2. 配位键:由金属离子与配位原子之间的共价键或离子键组成。

3. 配位数:指金属离子与配位原子之间的键数。

常见的配位数有二配位、四配位和六配位。

4. 配位环境:指金属离子周围配位原子的种类和排列方式。

二、络合反应的类型及机制络合反应的类型有多种,根据反应的方式和配位原子的性质可分为配位置换反应、配位加合反应和配位加成反应。

这些反应的机制各不相同,下面一一进行介绍。

1. 配位置换反应:是指金属离子与配体之间发生键的断裂和新键的形成,从而产生新的配位化合物。

置换反应可以分为亲核性取代和配位基取代两种机制。

亲核性取代是指一个亲核试剂(如水、氯离子等)与配位原子上的配体之间发生反应,将原有的配体取代。

这种反应通常发生在金属离子配位场弱的情况下。

配位基取代是指一个配体通过与金属离子和络合物之间的键的断裂和合成,发生取代反应。

这种反应通常在金属离子配位场较强的情况下发生。

2. 配位加合反应:是指一个或多个配体与金属离子之间发生键的形成,生成新的配位化合物。

这种反应通常发生在金属离子配位场较强的情况下。

3. 配位加成反应:是指两个分子通过共享或互补可能的化学键使之成为一个配合物。

这种反应通常发生在金属离子配位场较强的情况下。

三、配位化合物的性质和应用配位化合物具有较高的稳定性和特殊的性质,因此在许多领域都有广泛的应用。

下面列举了一些常见的配位化合物及其应用领域。

第四章 配合物0

第四章 配合物0


类型 配酸 化学式 H3[AlF6]

命名 六氟合铝(Ⅲ)酸
配碱 [Cr(OH)(H2O)5](OH)2 氢氧化一羟基五水合铬(Ⅲ)
配 位 盐 中性 分子 K[Al(OH)4] [Co(NH3)5(H2O)]Cl3 [Pt(NH3)6][PtCl4] [Ni(CO)4] [PtCl2(NH3)2] 四羟基合铝 (Ⅲ)酸钾
ONO亚硝酸根
SCNNCS硫氰酸根 异硫氰酸根
2. 多齿配体 配体中含有两个或两个以上配位原子的叫多齿配体。其齿数 可以是2,3,4,5,6。
如无机含氧酸根: SO42– 、 CO32– 、 PO43–
:O S :O 如有机酸根: CH3 COO– 既可作单齿也可作二齿配体。 O
O
3. 螯合配体 同一配体中两个或两个以上的配位原子直接与同一金 属离子配合成环状结构的配体称为螯合配体。螯合配体是多齿
第四章 配位化合物
考试要求:
配位键。重要而常见的配合物的中心离子(原子) 和重要而常见的配体(水、羟离子、卤离子、拟卤 离子、氨、酸根离子、不饱和烃等)。螯合物及螯 合效应。重要而常见的配合反应。配合反应与酸碱 反应、沉淀反应、氧化还原反应的关系(定性说 明)。配合物几何构型和异构现象基本概念和基本 事实。配合物的杂化轨道理论。用杂化轨道理论说 明配合物的磁性和稳定性。用八面体配合物的晶体 场理论说明Ti(H2O)63+离子的颜色。不要求记忆单 电子磁矩计算公式。不要求晶体场、配位场理论的 基本概念。
乙烯
丁二烯 苯
C2H4
CH2=CH-CH=CH2 C6H6 C5H5-
环戊二烯基
等。由π配体形成的配合物称为π配合物。π配合物通常出 现在过渡金属配合物中。

第四章 配位键和配位化合物第一节 配位化合物的基本概念

第四章  配位键和配位化合物第一节 配位化合物的基本概念
A +∶B → A∶B(表示为A←B)
∶B称电子对给予体。A称电子对接受体。配离子中,中心离子是 电子对接受体,配体是电子对给予体。配位键用一个指向电子对 接受体的箭头“→”表示
●配位键的形成条件
——成键原子中的一个原子的价电子层有孤对电子
——另一原子的价电子层有可接受孤对电子的空轨道
2023/2/19
2023/2/19
3
Байду номын сангаас
一、配合物的定义 1980年, IUPAC (International Union of Pure
and Applied Chemistry,国际纯化学与应用化学联合会)
●由可以给出孤对电子或多个不定域电子的一定数目的离子或分 子(称为配体)和具有接受孤对电子或多个不定域电子原子或离 子(统称中心离子),按一定的组成和空间构型形成的化合物称 配位化合物,简称配合物
[Ag(NH3)2]OH
氢氧化二氨合银(Ⅰ)
[CoCl(NH3)5]Cl2
二氯化一氯•五氨合钴(Ⅲ)
[PtCl(NO2)(NH3)4]CO3
碳酸一氯•一硝基•四氨合铂(Ⅳ)
[CrCl2(NH3)4]Cl•2H2O
二水合一氯化二氯•四氨合铬(Ⅲ)
[Cr(NH3)6][Co(CN)6]
六氰合钴(Ⅲ)酸六氨合铬(Ⅲ)
例,Fe3+与SCN-配位,随着SCN-浓度增加,可形成配位数为1~6 的配离子
2023/2/19
12
(五)配离子的电荷
是中心离子电荷和配体总电荷的代数和
例,Zn2+与CN-形成[Zn(CN)4]x,电荷数x为x=2+4(-1)=-2,故为 [Zn(CN)4]2-配离子,[Zn(NH3)6]x的电荷x为+2

配位化学-第4章

配位化学-第4章

d 轨道示意图
晶体场理论是一种静电理论, 它把配合物中中心原子与
配体之间的相互作用, 看作类似于离子晶体中正负离子间的相互 作用。但配体的加入, 使得中心原子五重简并的 d 轨道(见图)失
去了简并性。在一定对称性的配体静电场作用下, 五重简并的d 轨道将解除简并, 分裂为两组或更多的能级组, 这种分裂将对配 合物的性质产生重要影响。
d 轨道能级在不同配位场中的分裂
表4
二 分裂能和光谱化学序列
分裂能: 中心离子的d轨道的简并能级因配位场的影响而分裂
成不同组能级之间的能量差。
分裂能的大小与下列因素有关:
(1)配位场亦即几何构型类型
如△t=(4/9)△o
(2) 金属离子的电荷
中心金属离子电荷增加, Δ值增加。这是由于随着金属离子的电荷的增加, 金属离子的半径减小, 因而配体更靠近金属离子, 从而对 d 轨道产生的影响增 大之故, 三价离子的分裂能比二价离子要大40-60%。
(3) 金属离子d轨道的主量子数
在同一副族不同过渡系的金属的对应配合物中, 分裂能值随着d轨道主量 子数的增加而增大。当由第一过渡系到第二过渡系再到第三过渡系、分裂 能依次递增40-50%和20-25%。这是由于4d轨道在空间的伸展较3d轨道 远, 5d轨道在空间的伸展又比4d轨道远, 因而易受到配体场的强烈作用之故
3 平面正方形场 设四个配体只在x、y平面上沿±x和±y 轴方向趋近于中心原 子, 因dx2-y2轨道的极大值正好处于与配体迎头相撞的位置, 受排 斥作用最强, 能级升高最多。其次是在xy平面上的dxy轨道。而dz2 仅轨道的环形部分在xy平面上, 受配体排斥作用稍小, 能量稍低, 简 并的dxz 、dyz 的极大值与xy平面成45°角, 受配体排斥作用最弱, 能量最低。总之, 5条d轨道在Sq场中分裂为四组, 由高到低的顺序 是: ①dx2-y2, ②dxy, ③dz2, ④dxz和dyz。 4拉长的八面体 相对于正八面体而言, 在拉长八面体中, z轴方向上的两个配 体逐渐远离中心原子, 排斥力下降, 即dz2能量下降。同时, 为了保 持总静电能量不变, 在x轴和y轴的方向上配体向中心原子靠拢, 从 而dx2-y2的能量升高, 这样eg轨道发生分裂。在t2g三条轨道中, 由 于xy平面上的dxy轨道离配体要近, 能量升高, xz和yz平面上的轨道 dxz和dyz离配体远因而能量下降。结果, t2g轨道也发生分裂。这样 , 5条d轨道分成四组, 能量从高到低的次序为 ①dx2-y2, ②dz2, ③dxy, ④dxz和dyz。

有机化学基础知识配位化学和配位反应

有机化学基础知识配位化学和配位反应

有机化学基础知识配位化学和配位反应有机化学基础知识: 配位化学和配位反应配位化学是有机化学中一个重要的分支,它研究的是配位化合物的形成、结构、性质及其反应。

配位化学广泛应用于无机领域,在有机化学中也发挥着重要作用。

本文将介绍有机化学基础知识中的配位化学和配位反应。

一、配位化学1. 配位键的形成配位化学研究的首要问题是如何形成金属与配体之间的配位键。

通常,金属原子通过空位和配体中的锯齿型电子云形成配位键。

配位键的形成可以通过配位键理论来解释,其中最常见的是单线性理论和自由电子对瓦伦希巴理论。

2. 配位数和配位几何一个金属离子可以与一个或多个配体形成配位键,其中与金属离子形成化学键的配体被称为配体场。

而金属离子与配体形成的化学键被称为配位键。

配位数指的是与金属离子形成配位键的配体数量,不同的金属离子具有不同的配位数。

配位几何是指配体在金属离子周围的三维排列方式,常见的配位几何有线性、平面四方形、正四面体和八面体等。

二、配位反应1. 配位镜像异构配位镜像异构是指当一个金属离子的配位体在一定方向上排列成对称镜像的两种形式时,这两种形式被称为配位镜像异构体。

配位镜像异构体之间可以通过外部环境的改变或者配体的交换来转化。

2. 配位取代反应配位取代反应是指当一个或多个配体被其他配体取代时发生的反应。

配位取代反应是有机化学中常见的反应类型之一,通过改变配体可以改变配位化合物的性质。

配位取代反应的速率往往受到配体的电子效应、空间位阻和化学平衡的影响。

不同的配体具有不同的取代反应活性,从而导致不同的反应速率和选择性。

3. 配位加成反应配位加成反应是指当一个或多个配体与金属离子形成新的配位键时发生的反应。

配位加成反应可以使得金属离子的配位数增加,从而改变化合物的结构和性质。

配位加成反应的选择性往往由配体的电子构型、酸碱性和空间位阻等因素决定。

不同的配体具有不同的加成反应活性,从而导致不同的反应速率和选择性。

总结:配位化学是有机化学中重要的一个分支,研究配位化合物的形成、结构和性质。

高中化学竞赛配位化合物基础知识

高中化学竞赛配位化合物基础知识

配位数的多少与中心原子、配体和环境等许多因素有 关在其它因素不变的情况下有: 配体相同时,中心原子的半径越大,可能的配位数越多; 中心离子相同时,配体的体积越大空间位阻),配位数越低; 中心离子的价数越高,可能的配位数越多当中心离子的价
数分别为+1、+2、+3时,可能的配位数通常为2、4/6、6. 如AgI2- (+1)、[AgI4]2- (+2)
金属-金属键;
CO
OC CO
OC O C Ir
Ir C O Ir C O
Ir C O
OC OC
CO CO
Ir4(C O )12
含不饱和配位体的配合物:金属与配位体之间形成 π-σ键或反馈π键 ; 如C2H4、C2H2、CO等提供不定域电子.
反馈π键是指电子从一个原子 的原子轨道移动到另外一个 原子或配体的反键轨道(π* 轨道在金属有机化学中,过 渡金属原子上的电子云有部 分会移动到这些配体上,减 少金属原子上的负电荷电子 一般都来源于金属的d-轨道。
2.1.3.2.1 单齿配体
若配体分子或离子中仅有一个原子可提供孤对电子
则只能与中心原子形成一个配位键,所形成的配体称为单 齿配体
常见的单齿配体有卤离子(F-、Cl-、Br-、电I-负)、性其与配它离子 CN- 、 SCN- 、 NO3- 、 NO2- 、 RCOO-) 、 中 性体分强子弱成(反R3N 、
顺序排列NH3,H2O)。不同配位体的名称之间还要用中圆 点•分开。
例1
① Fe(CN)64-
六氰合铁(Ⅱ)配离子/六氰合亚铁配离子
② K4[Fe(CN)6] 六氰合铁(Ⅱ)酸钾/六氰合亚铁酸钾
③ [Co(en)3]2(SO4)3

配位化合物与配位滴定法—配合物的解离平衡(基础化学课件)

配位化合物与配位滴定法—配合物的解离平衡(基础化学课件)

K稳越大,Ksp越大沉淀越易溶解生成配离子。
3、氧化还原反应对配位平衡的影响
氧化还原反应可改变金属离子的浓度,使 配位平衡移动。
➢在氧化还原平衡体系中加入配位剂能与其中
的氧化剂或还原剂反应生成稳定的配合物,使 金属离子浓度发生改变(即电极电势E改变)而 改变氧化还原反应的方向。
例如:
在血红色的Fe(SCN)3溶液中加入SnCl2,血红色消失。
练习
例 : 若 只 考 虑 酸 效 应 , 计 算 pH=1.0 和 pH=6.0 时 PbY的lgK‘PbY值。
配位平衡移动
(配位平衡与其它平衡一样遵循吕·查德原理 )
1、酸度对配位平衡的影响 配位体的酸效应(配体与H+结合使配离子稳定性降低的作用)
[Cu(NH3)4]2+
Cu2+ + 4NH3

L MLn
M(L)
=
[M'] [M]
主反应 辅助配位效应引起的副反应
3、配合物的条件稳定常数(有效稳定常数)
配位反应 M + Y
MY
副反应系数
αY(H)
稳定常数
K MY
[MY ] [M ][Y ]
条件稳定常数 K 'MY [MY ] [M ][Y ']
lgK’MY = lgKMY - lg αY(H)
平衡移动方向
+ 4H+
4 NH4+
酸度↑(PH越低) →配位体浓度↓→配离子稳
定性降低(酸效应越强)。
水解效应(金属离子与OH-结合使配离子稳定性降低的作用)
[FeF6]3-
Fe3+ + 6F-
平衡移动方向

有机化学基础知识点配位化合物的结构和性质

有机化学基础知识点配位化合物的结构和性质

有机化学基础知识点配位化合物的结构和性质配位化合物是有机化学中一个重要的研究领域,它形成于配位键的形成和金属离子的配位,具有独特的结构和性质。

既然我们谈到了有机化学基础知识点,让我们来深入了解一下配位化合物的结构和性质。

一、配位化合物结构的基本特点配位化合物通常由一个中心金属离子和一些称为配体的分子或离子组成。

配体通常是有机化合物,具有不同的配位原子,如氮、氧、硫等。

它们通过配位键与中心金属离子结合。

1. 配位键的形成配位键是指配体的一个或多个配位原子与中心金属离子之间的共有电子对。

配位键的形成通常是由配位原子上的孤对电子(孤对电子是未参与共价键形成的电子对)与金属离子形成的。

例如,以水合铜离子Cu(H2O)6^2+为例,氧原子上的孤对电子直接与铜离子形成了配位键。

2. 配位数与配位体配位数是指配位原子或配体与中心金属离子之间的配位键数量。

根据配位数的不同,配位体可以分为双齿配体、三齿配体、四齿配体等。

例如,以乙二胺(NH2CH2CH2NH2)为配体的四氯合铜(II)配合物[CuCl2(NH2CH2CH2NH2)2]的配位数是六。

3. 配位化合物的空间构型配位化合物的空间构型由配位体的取向和排布所决定。

常见的空间构型有正方形平面型、八面体型等。

这些不同的空间构型会影响到化合物的性质和反应性。

二、配位化合物的性质配位化合物由于金属离子与配体之间的配位键的形成,使其具有一些独特的性质。

1. 形成稳定的络合化合物由于配位键的形成,配位化合物通常具有较高的稳定性。

这使得它们在催化、溶剂选择性和聚合物合成等方面具有广泛的应用。

2. 形成具有特定功能的配位聚合物配位化合物的结构可以通过合适的选择和设计配体,形成具有特定功能的配位聚合物。

这些聚合物在催化、传感、光电子等领域中有广泛的应用。

3. 光谱性质配位化合物常常具有丰富的光谱性质,如紫外可见吸收光谱、红外光谱、荧光光谱等。

这些光谱性质对于研究配位化合物的结构和反应机制具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配位药物化学
顺铂 (Cisplatin)
卡铂
奥沙利铂
奈达铂
乐铂
铂类抗癌药物
❖ 4.1 配合物 (coordination compound) 的基本概念
一、配合物的定义、组成和命名
1. 定义
➢ 由配体和中心原子以配位键结合,按一定组成和 空间构型所形成的化合物
➢ 配体(L):能够给出示有 SO42-
未能查出Cu2+ X射线晶体衍射证明为
[Cu(NH3)4]SO4
配合物
配合物的应用广泛
➢ 人体内胰岛素:锌的配合物 ➢ 植物的固氮作用:铁、钼的配合物 ➢ 植物光合作用:镁的配合物 ➢ 维生素B12:钴的配合物 ➢ 人体血液中传送氧气的血红蛋白:铁的配合物 ……
血红蛋白
H2OO2
第四章 配位化合物
❖ 4.1 配合物的基本概念 ❖ 4.2 价键理论 ❖ 4.3 晶体场理论
CuSO4溶液 CuSO4溶液 CuSO4溶液 +过量氨水 CuSO4溶液 +过量氨水 CuSO4溶液 +过量氨水
NaOH溶液 BaCl2溶液 BaCl2溶液 NaOH溶液 无水乙醇
示有Cu2+
示有 SO42-
(3). 配体的数目用一、二、三、四等表示
(4). 在最后一个配体名称之后、金属前缀以“合”字 (5). 当中心离子具有多种氧化态时,在该原子
后用括号注明(罗马数字) (6). 若配体名称较长或为复杂配体时,配体名
称写在配体数目后的括号中
[Co(NH3)3(H2O)Cl2]+ 二氯•三氨•水合钴(Ⅲ)离子
➢ 中心原子(M):具有接受孤对电子或多个不定域 电子的空轨道的离子或原子
配位键
L
M
离子键
SO42-
配位单元
二苯铬
配位键的存在是配合物与其它物质最本质的区别
配位单元
CuSO4 4NH3
[Cu(NH3 )4 ]SO4
3NaF AlF3
Na3[ AlF6 ]
SiF4 2HF
H2[SiF6 ]
Ni 4CO [Ni(CO)4 ]
C [Co (NH3)3 Cl3]
D [Co (H2O) (NH3)3Cl2] Cl
(1). 中心离子(原子)
➢ 过渡金属离子(原子) ➢ 高氧化态的非金属离子
① 带正电荷的阳离子:Fe3+ Cu2+ Co2+ Ag+ ② 中性原子 Fe(CO)5 Ni(CO)4 ③ 负价金属离子 HCo(CO)4 ④ 高氧化态的非金属离子 SiF6- PF6-
(2). 配位体:提供孤对电子或不定域电子的分子或离子
配位体
负离子:X-,SCN-,NCS-,C2O42-,CN- 中性分子:H2O,NH3,CO
(3). 配位原子:与中心离子(原子)直接以配合的原子
(4). 配体的类型: 配位原子数目
单齿配体 多齿配体
单齿配体:一个配体只含一个配位原子
X-,OH-,CN-,SCN-,NCS-,H2O,NH3,CO
(5). 配位数 直接与中心离子(原子)配合的配位原子总数 单齿配体: 配位数 = 配体的总数 多齿配位体: 配位数 = 配体数*齿数
配离子 [Ag(NH3)2]+ [Cu(NH3)4]2+ [Cu(en)2]2+ [CoCl(NH3)5]2+
配位数
2
4
4
6
H3N Cu
H3N
2+ NH3
NH3
CH2-H2N CH2-H2N
Note:
1). 可以无外界,如Ni(CO)4,不能没有内界 2). 内外界之间是离子键,在水溶液中完全电离;
内界中是配位键,水溶液中稳定存在
在某固体 CoCl3·3NH3 的水溶液中, 加入 AgNO3 后测得 Cl-的含量是 整个Cl含量的 1/3 ,请判断下列 哪个为正确的分子式:
A [Co (H2O)3 (NH3)3] Cl3 B [Co (H2O)3(NH3)3Cl]Cl2
(吡啶) NN
多齿配体:一个配体中含两个或两个以上配位原子
乙二胺(en)
H2N
NH2 M
二齿配体: 邻菲罗啉(phen) 草酸根 C2O42-
N
N
M
OO O- C C
O-
M
三齿配体:二乙三胺(dien)
H2N
NH
NH2
M
六齿配体:乙二胺四乙酸(EDTA)
HOOCH2C HOOCH2C
NH2C CH2N
CH2COOH CH2COOH
两可配体
SCN-
配合物实例 配位原子 配体名称
[Ag(SCN)2]- SCN-
硫氰酸根
[Fe(NCS)3]3 - SCN-
异硫氰酸根
NO2-
配合物实例 配位原子 配体名称
[Co(NH3)5(NO2)]2+ NO2- 硝基
[Co(NH3)5(ONO)]2+ ONO-
亚硝酸根
配合物组成相关概念的小结
配合物
中心原子(离子)
配体
配位原子
配位数
两可配体
单齿配体 多齿配体
三、 配合物的命名
1. 配离子的命名 2. 配体的命名 3. 配合物的命名
1. 配离子的命名
口诀:配体数-配体名称-“合”-中心离子名称(氧化数) (1). 先配体后中心
(2). 不同配体名称间用 ·分开
2+ NH2-CH2 Cu
NH2-CH2
常见的配位数为2,4,6 ,8
(6). 影响配位数的因素
(a) 中心离子(原子)
➢ 半径越大,配位数越高 [Cr(CN)6]3-,[Mo(CN)7]4- ➢ 电荷数越高,配位数越高 [PtCl4]2-,[PtCl6]2-
(b) 配体
➢ 半径越大,配位数越低 AlF63-,AlCl4➢ 电荷数越高,配位数越低(配体之间的斥力越大) SiF62-,SiO42-
阳离子 阴离子 分子
与复盐区别? 如:KAl(SO4)2·12H2O
复盐:在水中完全解离为简单离子 配合物:在水中仅部分解离,存在配离子
2. 组成 (constitution)
[ Cu ( NH3 ) 4 ] SO4
中心离子 配位体 配位数 外界离子
内界
外界
配合物
内界 (inner sphere):配位单元 外界 (outer sphere):与内界电荷平衡的相反离子
血红素
配位化学的发展
➢ 1704年,普鲁士人在染料作坊中发现第一个配合物 ➢ 1893年,Werner提出“络合理论” ➢ 1930年,Pauling 提出配位键理论 ➢ 1929 年,H. Bethe 提出晶体场理论 ➢ 分子轨道理论和配位场理论 ➢ 与催化、生物化学、药物化学等多学科交叉发展 ……
[Co(NH3)3(H2O)Cl2]+ 二氯•三氨•水合钴(Ⅲ)离子
相关文档
最新文档