天体运动单元测试(万有引力定律)
万有引力定律单元测试题(附答案)
期末复习:《万有引力定律测试题》制卷:章凌川时间:2012.6.14一.选择题。
(每小题4分,共44分)1.第一次通过实验比较准确的测出引力常量的科学家是()A. 牛顿B. 伽利略C.胡克D. 卡文迪许2.计算一个天体的质量,需要知道绕着该天体做匀速圆周运动的另一星球的条件是()A.质量和运转周期 B 运转周期和轨道半径C 运转速度和向心力D 运转速度和质量3. 两颗人造地球卫星,都绕地球作圆周运动,它们的质量相等,轨道半径之比r1 /r2=1/2,则它们的速度大小之比v1/v2等于()A. 2B.C. 1/2D. 44. 我国将要发射一颗绕月运行的探月卫星“嫦娥1号”。
设该卫星的轨道是圆形的,且贴近月球表面。
已知月球的质量为地球质量的1/80,月球的半径约为地球半径的1/4,地球上的第一宇宙速度约为7.9km/s,则该探月卫星绕月运行的速率约为A、0.4 km/sB、1.8 km/sC、11 km/sD、36 km/s5.两行星A和B各有一颗卫星a和b,卫星的圆轨道接近各自行星表面,如果两行星质量之比M A:M B=2 : 1,两行星半径之比R A:R B=1 : 2,则两个卫星周期之比T a:T b为()A.1 : 4 B.1 : 2 C.1 : 1 D.4 : 16.两颗人造卫星A、B绕地球作圆周运动, 周期之比为T A:T B=1:8,则轨道半径之比和运动速率之比分别为()A.R A:R B=4:1 , v A:v B=1:2 B.R A:R B=4:1 , v A:v B=2:1C.R A:R B=1:4 , v A:v B=2:1 D.R A:R B=1:4 ,v A:v B=1:27.设行星绕恒星的运动轨道是圆,则其运行周期T的平方与其运行轨道半径R的三次方之比为常数,即T2 / R3= K。
那么K的大小()A.只与行星的质量有关B.只与恒星的质量有关C.与恒星和行星的质量都有关D.与恒星的质量及行星的速率有关8.三颗人造地球卫星A、B、C在地球的大气层外沿如图所示的轨道做匀速圆周运动,已知m A = m B> m C,则三个卫星说法错误的是( )A. 线速度大小的关系是v A>v B=v CB. 周期关系是T A<T B=T CC. 向心力大小的关系是F A>F B>F CD. 向心加速度大小的关系是a A>a B>a C9.人造地球卫星在运行中,由于受到稀薄大气的阻力作用,其运动轨道半径会逐渐减小,在此进程中,以下说法中正确的是( )A 卫星的速率将减小B 卫星的周期将增大C 卫星的向心加速度将增大 D. 卫星的向心力将减小10.如图所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火将卫星送入椭圆轨道2,然后再次点火,将卫星送入同步轨道3.轨道1、2相切于Q点,2、3相切于P点,则当卫星分别在1、2、3轨道上正常运行时,下列说法中正确的是A .卫星在轨道3上的速率大于在轨道1上的速率B .卫星在轨道3上的角速度大于在轨道1上的角速度C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度D .卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度11.一颗人造地球卫星距地面的高度为h,设地球半径为R ,卫星运动周期为T ,地球表面处的重力加速度为g,则该同步卫星的线速度的大小应该为 ( )A .g R h )(+B .2π(h+R )/TC .)/(2R h g R +D .Rg二.填空题。
天体运动训练题
天体运动训练题1.一艘在火星表面进行科学探测的宇宙飞船,在经历了从轨道1→轨道2→轨道3的变轨过程后,顺利返回地球。
若轨道1为贴近火星表面的圆周轨道,已知引力常量为G,下列说法正确的是()A.飞船在轨道2上运动时,P点的速度小于Q点的速度B.飞船在轨道1上运动的机械能大于轨道3上运动的机械能C.测出飞船在轨道1上运动的周期,就可以测出火星的平均密度D.飞船在轨道2上运动到P点的加速度大于飞船在轨道1上运动到P点的加速度2.两颗人造地球卫星做圆周运动,周期之比为TA:TB=1:8,则轨道半径之比和运动速率之比分别为:A.RA:RB=4:1,vA:vB=1:2B.RA:RB=4:1,vA:vB=2:1C.RA:RB=1:4,vA:vB=1:2D.RA:RB=1:4,vA:vB=2:13.火星被认为是太阳系中最有可能存在地外生命的行星,对人类来说充满着神奇,为了更进一步探究火星,发射一颗火星的同步卫星。
已知火星的质量为地球质量的p倍,火星自转周期与地球自转周期相同均为T,地球表面的重力加速度为g。
地球的半径为R,则火星的同步卫星距球心的距离为()A.B.C.D.4.我国志愿者王跃曾与俄罗斯志愿者一起进行“火星500”的实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的,质量是地球质量的.已知地球表面的重力加速度是g,地球的半径为R,王跃在地面上能向上竖直跳起的最大高度是h,忽略自转的影响,下列说法正确的是()A.火星表面的重力加速度是gB.火星的第一宇宙速度与地球的第一宇宙速度之比为C.火星的密度为D.王跃以与在地球上相同的初速度在火星上起跳后,能达到的最大高度是h5.地球赤道上的物体随地球自转的向心加速度为,角速度为,某卫星绕地球做匀速圆周运动的轨道半径为,向心力加速度为,角速度为。
已知万有引力常量为,地球半径为。
下列说法中正确的是A.向心力加速度之比B.角速度之比C.地球的第一宇宙速度等于D.地球的平均密度6.2016年2月11日,美国科学家宣布探测到引力波,证实了爱因斯坦100年前的预测,弥补了爱因斯坦广义相对论中最后一块缺失的“拼图”.双星的运动是产生引力波的来源之一,假设宇宙中有一双星系统由a、b两颗星体组成,这两颗星绕它们连线的某一点在万有引力作用下作匀速圆周运动,测得a星的周期为T,a、b 两颗星的距离为l、a、b两颗星的轨道半径之差为?r,(a星的轨道半径大于b星的),则()A.b星的周期为B.a星的线速度大小为C.a、b两颗星的半径之比为D.a、b两颗星的质量之比为7.我国志愿者王跃曾与俄罗斯志愿者一起进行“火星500”的实验活动。
2015高考物理一轮复习—专题系列卷:万有引力定律 天体运动
选择题专练卷(四) 万有引力定律 天体运动一、单项选择题1.(2014·潍坊模拟)截止到2011年9月,欧洲天文学家已在太阳系外发现50余颗新行星,其中有一颗行星,其半径是地球半径的1.2倍,其平均密度是地球0.8倍。
经观测发现:该行星有两颗卫星a 和b ,它们绕该行星的轨道近似为圆周,周期分别为9天5小时和15天12小时,则下列判断正确的是( )A .该行星表面的重力加速度大于9.8 m/s 2B .该行星的第一宇宙速度大于7.9 km/sC .卫星a 的线速度小于卫星b 的线速度D .卫星a 的向心加速度小于卫星b 的向心加速度2.一位同学为了测算卫星在月球表面附近做匀速圆周运动的环绕速度,提出了如下实验方案:在月球表面以初速度v 0竖直上抛一个物体,测出物体上升的最大高度h ,已知月球的半径为R ,便可测算出绕月卫星的环绕速度。
按这位同学的方案,绕月卫星的环绕速度为( )A .v 02h R B .v 0h 2R C .v 02R h D .v 0R 2h 3.(2014·皖南八校联考)2012年6月24日,航天员刘旺手动控制“神舟九号”飞船完成与“天宫一号”的交会对接,形成组合体绕地球圆周运动,速率为v 0,轨道高度为340 km 。
“神舟九号”飞船连同三位宇航员的总质量为m ,而测控通信由两颗在地球同步轨道运行的“天链一号”中继卫星、陆基测控站、测量船,以及北京飞控中心完成。
下列描述错误的是( )A .组合体圆周运动的周期约1.5 hB .组合体圆周运动的线速度约7.8 km/sC .组合体圆周运动的角速度比“天链一号”中继卫星的角速度大D .发射“神舟九号”飞船所需能量是12m v 204.“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成。
地球静止轨道卫星和中轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和3.4倍,下列说法中正确的是( )A .静止轨道卫星的周期约为中轨道卫星的2倍B .静止轨道卫星的线速度大小约为中轨道卫星的2倍C .静止轨道卫星的角速度大小约为中轨道卫星的1/7D .静止轨道卫星的向心加速度大小约为中轨道卫星的1/75.(2014·长春调研)“天宫一号”目标飞行器相继与“神舟八号”和“神舟九号”飞船成功交会对接,标志着我国太空飞行进入了新的时代。
(完整版)万有引力定律经典例题
盘中心尺体査页成ftl 垃鰭藕吋’万科可力班*1那『史Jf骨=呼「黄金代樓*,其%表乐天弹表面的匪力加連讎2.中心天体质量和密度的估算⑴已知天体表面的重力加速度g 和天体半径R(2)已知卫星绕天体做圆周运动的周期 T 和轨道半径rMm 4 n4 n r 3① G ~^2 =吓r? M =苛 M 3 n 3 ② 尸4 3=乔R 33n Ri •火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知 ( )A •太阳位于木星运行轨道的中心B •火星和木星绕太阳运行速度的大小始终相等C •火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上, A错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B 错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的 比值是一个常数,C 正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面 积相等,不同行星在相同的时间内扫过的面积不相等,D 错误.答案:C2. (2016郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器•探测器升空1 .天体运动的分析方法G MR m= mg?天体质量:天体密度:“ gR 2M=旨3g 尸 4T GR③卫星在天体表面附近飞行时,r= R ,贝 y p=GT nN0.2题组训嫌提升能力天弹苕动的向心力来壽于天之间的万有引力 4^r-f后,先在近地轨道上以线速度 v 环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度 v '在火星表面附近环绕飞行•若认为地球和火星都是质量分布均匀 的球体,已知火星与地球的半径之比为 1 : 2,密度之比为5 : 7,设火星与地球表面重力加速度分别为g '和g ,下列结论正确的是()项正确,D 项错.答案:C3•嫦娥三号”探月卫星于 2013年12月2日1点30分在西昌卫星发射中心发射,将实 现“落月”的新阶段•若已知引力常量G ,月球绕地球做圆周运动的半径「1、周期T 1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径 匕、周期T 2,不计其他天体的影响,则根据题目条件可以( )A •求出“嫦娥三号”探月卫星的质量B .求出地球与月球之间的万有引力C .求出地球的密度 门3 r 23D.^=T 22不知道地球半径 r ,无法求出地球密度, C 错误;对4式得 g = 3G npR ,所以g ' : g = 5 : 14, A 、B 项错;探测器在大体表面飞行时,万有引力解析:在天体表面附近,重力与万有引力近似相等,由 GMRRm = mg , M = P 3 n R 3,解两G M R m - = mR , M = P 4 泯3,解两式得 v = 2^y G 3np,所以 v ' : v=\f28, C充当向心力,由 解析:绕地球转动的月球受力为 誉=M ' r 1 T 2 = ,已知 嫦娥三号”的周期和半径,可求出月球质量M ',但是所有的卫星A • g: g=4: 1B • g ': g = 10 : 7在万有引力提供向心力的运动学公式中卫星质量都约掉了,无法求出卫星质量,因此探月 卫星质量无法求出, A 错误;已经求出地球和月球质量,而且知道月球绕地球做圆周运动 的半径r i ,根据F =可求出地球和月球之间的引力,B 正确;由开普勒第三定律即半长轴三次方与公转周期二次方成正比,前提是对同一中心天体而言,但是两个圆周运动 的中心天体一个是地球一个是月球,D 错误.答案:B Ir 反忠捉升j ---------------------------------------------------------------------------------------------------估算天体质量和密度时应注意的问题(1) 利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天 体的质量,并非环绕天体的质量.(2) 区别天体半径 R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r - R ;计算4天体密度时,V=:T R 3中的R 只能是中心天体的半径. L3______ 丿考点二人造卫星的运行 授课提示:对应学生用书第57页1. 人造卫星的a 、3、v 、T 与r 的关系1. 地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.N0.1梳理主干填准记牢GMm2.近地时GMm mg = -R2-ma > a = G r > a ’ 22 m w 2r m^2»GM = gR 2.⑵周期一定:与地球自转周期相同,即 T = 24 h = 86 400 s.(3) 角速度一定:与地球自转的角速度相同. (4) 高度一定:根据 = m 4T r 得r= 4,23x 104km ,卫星离地面高度 h =r - R ~ 6R(为恒量).(5) 绕行方向一定:与地球自转的方向一致. 2. 极地卫星和近地卫星(1) 极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2) 近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可 近似认为等于地球的半径,其运行线速度约为7.9 km/s.(3) 两种卫星的轨道平面一定通过地球的球心.题组训嫌提升能力 运州I1.(2015高考福建卷)如图,若两颗人造卫星 a 和b 均绕地球做匀速圆周运动, a 、b 到地心O 的距离分别为「1、「2,线速度大小分别为 V 1、V 2,则()项正确,B 、C 、D 项错误.答案:A2. 2015年3月30号晚上9点52分,我国在西昌卫星发射中心用长征三号丙运载火箭, 将我国首颗新一代北斗导航卫星发射升空,于 31号凌晨3点34分顺利进入预定轨道.这 次发射的新一代北斗导航卫星,是我国发射的第17颗北斗导航卫星.北斗卫星导航系统空间段计划由35颗卫星组成,包括 5颗静止轨道卫星、27颗中地球轨道卫星、3颗倾斜同步 轨道卫星•中地球轨道卫星和静止轨道卫星都绕地球球心做圆周运动,中地球轨道卫星离 地面高度低,则中地球轨道卫星与静止轨道卫星相比,做圆周运动的( )B .线速度小 D .向心加速度大N0.2解析:根据万有引力定律可得A .周期大 C .角速度小V 1 A.— V 2G 呼 r 2V 1 V 2,所以A解析:卫星离地面的高度越低,则运动半径越小•根据万有引力提供圆周运动向心力 24 2 ; 4 2 3得 G M$ = m* = m w 2r = m-T ^^ = ma ,则周期 T ="'‘石Mr ,知半径 r 越小,周期越小,故 A知半径r 越小,角速度越大,故 C 错误;向心加速度 a =学寻,知半径r 越小,向心加速度 越大,故D 正确.答案:D3•“空间站”是科学家进行天文探测和科学试验的特殊而又重要的场所•假设“空间 站”正在地球赤道平面内的圆周轨道上运行,其离地球表面的高度为同步卫星离地球表面 高度的十分之一,且运行方向与地球自转方向一致.下列说法正确的有( )A •“空间站”运行时的加速度小于同步卫星运行的加速度B •“空间站”运行时的速度等于同步卫星运行速度的 ,10倍C .站在地球赤道上的人观察到“空间站”向东运动D •在“空间站”工作的宇航员因不受重力而可在舱中悬浮速度,故A 错误;根据 G^Mm = m*得v =. GM ,离地球表面的高度不是其运动半径,所以线速度之比不是.10 : 1,故B 错误;轨道半径越大,角速度越小,同步卫星和地球自转 的角速度相同,所以空间站的角速度大于地球自转的角速度,所以站在地球赤道上的人观 察到空间站向东运动,故 C 正确;在“空间站”工作的宇航员处于完全失重状态,重力充 当向心力和空间站一起做圆周运动,故D 错误.答案:C—r 辰忠提升j -------------------------------------------------人造卫星问题的解题技巧,知半径r 越小,线速度越大,故 B 错误;角速度 3=解析:根据G Mm Gm “yr = ma 得 a =~rr ,知 空间站”运行的加速度大于同步卫星运行的加 错误;线速度 v =GMGM戸,(1) 利用万有引力提供向心力的不同表达式 2 2GMm v24 n r—== mr 3= m=^ = ma n r r T(2) 解决力与运动关系的思想还是动力学思想,解决力与运动的关系的桥梁还是牛顿 第二定律.①卫星的a n 、V 、3、T 是相互联系的,其中一个量发生变化,其他各量也随之发生 变化.⑶要熟记经常用到的常数,如地球自转一周为一天,绕太阳公转一周为一年,月球 绕地球公转一周为一月(27.3天)等.考点三卫星的发射和变轨问题 授课提示:对应学生用书第57页梳理主干填准记牢叩己|1. 第一宇宙速度(环绕速度)v i = 79 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度, 还是绕地面附近环绕地球做匀速圆周运动时具有的速度.2. 第二宇宙速度(脱离速度)V 2 = 11.2 km/s ,使卫星挣脱地球引力束缚的最小发射速度. 3. 第三宇宙速度(逃逸速度)V 3= 16! km/s ,使卫星挣脱太阳引力束缚的最小发射速度.-------------------------------------------1. 第一宇宙速度的两种计算方法 ^Mm. m vf 得 v 叫 /GM (1) 由 GR 2 = % 得 v = R.2(2) 由 mg = mR 得 v = . g R . 2. 卫星变轨的分析(1)变轨原因:当卫星由于某种原因速度突然改变时 (开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行.②a n 、 V 、 3、 T 均与卫星的质量无关,只由轨道半径r 和中心天体质量共同决定.2Mm v o 2 n o ⑵变轨分析:卫星在圆轨道上稳定时,G-^r = m? = m w 2r = m 〒2r.2①当卫星的速度突然增大时,vm*,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大•当卫星进入新的轨道稳定运行时,由GM 可知其运行速度比原轨道时减小,但重力势能、机械能均增加;②当卫星的速度突然减小时,> 疋,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小•当卫星进入新的轨道稳定运行时,由GM可知其运行速度比原轨道时增大,但重力势能、机械能均减小.1.(多选)(2015高考广东卷)在星球表面发射探测器,当发射速度为v 时,探测器可绕星球表面做匀速圆周运动;当发射速度达到 2v 时,可摆脱星球引力束缚脱离该星球•已知地球、火星两星球的质量比约为10 : 1,半径比约为2:1•下列说法正确的有( )A •探测器的质量越大,脱离星球所需要的发射速度越大B •探测器在地球表面受到的引力比在火星表面的大C .探测器分别脱离两星球所需要的发射速度相等D •探测器脱离星球的过程中,势能逐渐增大 解析:由GMRm = mvR 得,v = ;GRM , 2v = ',,2GM ,可知探测器脱离星球所需要的发射速度与探测器的质量无关, A 项错误;由F = GMm 及地球、火星的质量、半径之比可 做负功,引力势能增大, D 项正确.答案:BD 2.(多选)2013年12月2日我国探月探测器“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图所示,地面发射后奔向月球,在P 点从圆形轨道I 进入椭圆轨道n, Q 为轨道H 上的近月点•下列关于“嫦娥三号”的运动,正确的说法是 ( )N0.2報组训竦提升能力远川知,探测器在地球表面受到的引力比在火星表面的大, 探测器脱离两星球所需的发射速度不同,C 项错误;探测器在脱离两星球的过程中,引力B 项正确;由2GM” 盲可知,A •发射速度一定大于 7.9 km/sB •在轨道n 上从 P 到Q 的过程中速率不断增大C •在轨道n 上经过 P 的速度小于在轨道I 上经过 P 的速度D •在轨道n 上经过 P 的加速度小于在轨道I 上经过 P 的加速度 解析:“嫦娥三号”探测器的发射速度一定大于 7.9 km/s , A 正确•在轨道n 上从P到Q 的过程中速率不断增大,选项B 正确.“嫦娥三号”从轨道I 上运动到轨道n 上要减速,故在轨道n 上经过 P 的速度小于在轨道I 上经过 P 的速度,选项 C 正确.在轨道n 上经过P 的加速度等于在轨道I 上经过P 的加速度,D 错.答案:ABC3.(2016成都石室中学二诊)如图所示,在同一轨道平面上的三个人造地球卫星 A 、B 、C ,在某一时刻恰好在同一条直线上•它们的轨道半径之比为 说法中正确的是()B .三颗卫星具有机械能的大小关系为 E A V E B V E CC • B 卫星加速后可与 A 卫星相遇D • A 卫星运动27周后,C 卫星也恰回到原地点 解析: 根据万有引力提供向心力G M ^p = ma ,得 a = G r ,故 a A : a B : a c=2 :」2 :」2r r r A r B r c1 1 1=* :歹:32= 36 : 9 : 4,故A 错误;卫星发射的越高,需要克服地球引力做功越多,故机 械能越大,故 E A V E B V E C ,故B 正确;B 卫星加速后做离心运动,轨道半径要变大,不可C 的周期应为A 的周期的27倍,故D 错误.答案:B1 :2 : 3,质量相等,则下列能与A 卫星相遇,故 C 错误;根据万有引力提供向心力 _Mm 4 n= m*27周后, C 卫星也恰回到原地点,则A •三颗卫星的加速度之比为r ,得 T = 2 所以T C即T C = ■.27T A 若 A 卫星运动反忠捉升」航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v=、代皿判断.(2) 航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大.航天器经过不同轨道相交的同一点时加速度相等,外轨道的速度大于内轨道的速考点四天体运动中的双星或多星模型授课提示:对应学生用书第58页N0.1梳理主干牢固记忆1•模型构建片巾“ —GY绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.2. 模型条件(1) 两颗星彼此相距较近.(2) 两颗星靠相互之间的万有引力做匀速圆周运动.⑶两颗星绕同一圆心做圆周运动.3. 模型特点(1) “向心力等大反向”一一两颗星做匀速圆周运动的向心力由它们之间的万有引力提供,故F1 = F2,且方向相反,分别作用在两颗行星上,是一对作用力和反作用力.(2) “周期、角速度相同”一一两颗行星做匀速圆周运动的周期、角速度相等.(3) “半径反比” 一一圆心在两颗行星的连线上,且「1 + r2= L,两颗行星做匀速圆周运动的半径与行星的质量成反比.题组训练提升能力运用|1 •双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一 点做周期相同的匀速圆周运动•研究发现,双星系统演化过程中,两星的总质量、距离和 周期均可能发生变化•若某双星系统中两星做圆周运动的周期为 T ,经过一段时间演化后,两星总质量变为原来的 k 倍,两星之间的距离变为原来的 n 倍,则此时圆周运动的周期为( )解析:设两颗双星的质量分别为m i 、m 2,做圆周运动的半径分别为 r i 、「2,根据万有 m i m 24 nm i m 24 n引力提供向心力可得G ----------- = m i r i 2 , G ---------------- = m 2「2 2,联立两式解得 m i + m 2 =r i + r 22 1 r i + r 22 1变为原来的n 倍时,两星圆周运动的周期为T ' B 正确,A 、C 、D 错误.答案:B2.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常 可忽略其他星体对它们的引力作用•设四星系统中每个星体的质量均为 四颗星稳定分布在边长为 a 的正方形的四个顶点上•已知引力常量为 G.关于四星系统,下列说法正确的是()A •四颗星围绕正方形对角线的交点做匀速圆周运动B •四颗星的轨道半径均为aC ・四颗星表面的重力加速度均为 罟解析:其中一颗星体在其他三颗星体的万有引力作用下,合力方向指向对角线的交点, 围绕正方形对角线的交点做匀速圆周运动,由几何知识可得轨道半径均为 B 错误;在星体表面,根据万有引力等于重力,可得 G m m _= m ' g ,解得g =罟,故C故D 正确.4 n r i + r 24 n r i + r 2 GT 2,即T 2=,因此,当两星总质量变为原来的 k 倍,两星之间的距离G m i + m 2m ,半径均为 R , 正确;由万有引力定律和向心力公式得D •答案:ACD3•如图所示,双星系统中的星球 A 、B 都可视为质点.A 、B 绕两者连线上的 0点做匀 速圆周运动,A 、B 之间距离不变,引力常量为 G ,观测到A 的速率为v 、运行周期为T ,A 、B 的质量分别为m i 、m 2.⑴求B 的周期和速率.⑵A 受B 的引力F A 可等效为位于0点处质量为 m '的星体对它的引力,试求m '.(用 m i 、m 2 表示)解析:(1)设A 、B 的轨道半径分别为r i 、r 2,它们做圆周运动的周期 T 、角速度3都相同,根据牛顿第二定律有F A = m i 32r i , F B = m 2w 2r 2,即三=需故B 的周期和速率分别为:十 十 十m i r i m i vT B =T A =T,VB=3r= 3韦2 =石2m i + m 2⑵A 、B 之间的距离r = r i +「2= 匚厂r i ,根据万有引力定律有Gm i m 2 Gm i m 'F A=,m 23 2.m i + m 23答案:⑴T mv ⑵右辰忠捉升」解答双星问题应注意 “两等”“两不等”(1)双星问题的“两等” ①它们的角速度相等.②双星做匀速圆周运动的向心力由它们之间的万有引力提供,即它们受到的向心力 大小总是相等的.⑵双星问题的“两不等” ①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半 径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离.所以m '[随堂反馈]授课提示:对应学生用书第59页1. (2015高考重庆卷)宇航员王亚平在“天宫 1号”飞船内进行了我国首次太空授课, 演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为 h ,地球质量为M ,半径为R ,引力常量为 G ,则飞船所在处的重力加速度大小为( )GMm , /口GM解析:由 2= mg '得g ' =2, B 项正确.R +h 2 R +h 2答案:B2. (2015高考北京卷)假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距 离小于火星到太阳的距离,那么( )A .地球公转周期大于火星的公转周期B .地球公转的线速度小于火星公转的线速度C .地球公转的加速度小于火星公转的加速度D .地球公转的角速度大于火星公转的角速度解析:地球的公转半径比火星的公转半径小,由知能TftHINO YAN|Ll>ANB.GM R + hC.GMm R + hD. GM T 2 GMm 2 n _尹=m — 2r ,可知地球的周期比火星的周期小,故 A 项错误;由響=m可知地球公转的线速度大,故B 项错误;由G%m = ma ,可知地球公转的加速度大,项错误;由G^^m = m w 2r ,可知地球公转的角速度大,故D 项正确.答案:D3 .已知地球质量为 M ,半径为 为G.有关同步卫星,下列表述正确的是R , 自转周期为 T ,地球同步卫星质量为 m ,引力常量A .卫星距离地面的高度为GM②由m i 32r i = m 232r 2知,由于 m i 与m 2一般不相等,故 r i 与「2 —般也不相等.B •卫星的运行速度等于第一宇宙速度C .卫星运行时受到的向心力大小为G M R2rD .卫星运行的向心加速度小于地球表面的重力加速度等于第一宇宙速度,同步卫星的运行速度小于第一宇宙速度,B 错误;同步卫星运行时的向心力大小为F 向=GMm C 错误;由G M?m = mg 得地球表面的重力加速度 g = G^,而R +h 2RR同步卫星所在处的向心加速度g ' =-GM -, D 正确.R + h 2答案:D4. (2015成都七中二诊)2013年12月2日,嫦娥三号探测器由长征三号乙运载火箭从西 昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察.假设嫦娥三号在环月圆轨道 和椭圆轨道上运动时,只受到月球的万有引力.则( )A .若已知嫦娥三号环月圆轨道的半径、运动周期和引力常量,则可以计算出月球的 密度B .嫦娥三号由环月圆轨道变轨进入环月椭圆轨道时,应让发动机点火使其加速C .嫦娥三号在环月椭圆轨道上P 点的速度大于 Q 点的速度D .嫦娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小解析:根据万有引力提供向心力 G Mm = m^r ,可以解出月球的质量 M = ^7"2,由于 r I GI 不知道月球的半径,无法知道月球的体积,故无法计算月球的密度,故A 错误;嫦娥三号在环月段圆轨道上 P 点减速,使万有引力大于向心力做近心运动,才能进入环月段椭圆轨 道,故B 错误;嫦娥三号从环月椭圆轨道上P 点向Q 点运动过程中,距离月球越来越近,月球对其引力做正功,故速度增大,即嫦娥三号在环月段椭圆轨道上P 点的速度小于 Q 点的速度,故 C 错误;卫星越高越慢,第一宇宙速度是星球表面近地卫星的环绕速度,故嫦解析:GMm2 n 2 ,口 2= m(R + h) ~T 2得 R + h 2 13GMT 2h= j ZT - R ,A 项错误;近地卫星的运行速度娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小,故答案:D 5.—物体在距某一行星表面某一高度处由静止开始做自由落体运动,依次通过A 、B 、C 三点,已知 AB 段与BC 段的距离均为0.06 m ,通过AB 段与BC 段的时间分为0.2 s 与0.1 s ,求:(1)该星球表面重力加速度值;⑵若该星球的半径为 180 km ,则环绕该行星的卫星做圆周运动的最小周期为多少? 解析:(1)根据运动学公式,由题意可得 1x = V 1t 1 + 2gt代入数值可求得g = 2 m/s 2.Mm 2 n _⑵对质量为 m 的卫星有 = m — 2r可知当R = r 时卫星做圆周运动的最小周期为代入数据解得 T 最小=600 n . 答案:(1)2 m/s 2(2)600 n s[课时作业]授课提示:对应学生用书第243页一、单项选择题1. (2016成都市石室中学一诊)下列说法正确的是( )A •洗衣机脱水桶脱水时利用了离心运动B •牛顿、千克、秒为力学单位制中的基本单位C .牛顿提出了万有引力定律,并通过实验测出了万有引力常量D •理想实验是把实验的情况外推到一种理想状态,所以是不可靠的解析:洗衣机脱水时利用离心运动将附着在衣服上的水分甩掉,水做离心运动•故 A正确;米、千克、秒为力学单位制中的基本单位,而牛顿不是基本单位,故B 错误;牛顿D 正确.2x = V 1 t 1 + t 2 + 2g t 1+ t 2星球表面有Mm=m ' g提出了万有引力定律,卡文迪许通过实验测出了万有引力常量,故 C 错误;理想实验是把实验的情况外推到一种理想状态,是可靠的,故D 错误.答案:A2•欧洲天文学家在太阳系之外发现了一颗可能适合人类居住的行星,命名为“格利斯 581c ”.该行星的质量是地球的5倍,直径是地球的 1.5倍.设想在该行星表面附近绕行星圆轨道运行的人造卫星的动能为 E k1,在地球表面附近绕地球沿圆轨道运行的相冋质量的 人造卫星的动能为 E k2,则学为(E k2)A . 0.13B . 0.3C . 3.33D . 7.5解析:在行星表面运行的卫星其做圆周运动的向心力由万有引力提供 Mm v 2故有 G~r = m~,r r1所以卫星的动能为 E k = 2mv 2 = GMm =2rGM 地m故在地球表面运行的卫星的动能E k2 =2R 地答案:C 3.(2015高考天津卷)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状 态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示•当旋 转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表 面时相同大小的支持力•为达到上述目的,下列说法正确的是( )A .旋转舱的半径越大,转动的角速度就应越大在“格利斯”行星表面运行的卫星的动能GM 行m E k1 =E k1所以有E 2GM 行m2R 行GM 地m 2R 地M 行R 地 5 1• = — XM 地 R 行 11.51033.33.B .旋转舱的半径越大,转动的角速度就应越小C .宇航员质量越大,旋转舱的角速度就应越大D •宇航员质量越大,旋转舱的角速度就应越小解析:宇航员站在旋转舱内圆柱形侧壁上,受到的侧壁对他的支持力等于他站在地球越大,需要的角速度越小, A 项错误,B 项正确.答案:B4. 一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,速 1度大小减小为原来的2则变轨前后卫星的()A .轨道半径之比为 1 : 2B .向心加速度大小之比为 4 : 1C .角速度大小之比为 2 : 1D .周期之比为1 : 8解析:卫星绕地球做圆周运动过程中,万有引力充当向心力,严=2?豊=4,A 项错;6节平=ma? a =号単,所以鲁=16, B 项错;由开普勒第三T 4QT" = & D项正确;因为 T =」,角速度与周期成反比,故 号=8, C 项 12 8 GG 2错.答案:D5•美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适 合居住的行星“开普勒-226”,它每290天环绕着一颗类似于太阳的恒星运转一周,距离 地球约600光年,体积是地球的 2.4倍.已知万有引力常量和地球表面的重力加速度.根 据以上信息,下列推理中正确的是( )A •若能观测到该行星的轨道半径,可求出该行星所受的万有引力B .若该行星的密度与地球的密度相等,可求出该行星表面的重力加速度C .根据地球的公转周期与轨道半径,可求出该行星的轨道半径D •若已知该行星的密度和半径,可求出该行星的轨道半径 解析:根据万有引力公式 F =,由于不知道中心天体的质量,无法算出向心力,故A 错误;根据万有引力提供向心力公式 G^Mm = mg ,有g = G%,若该行星的密度与地球表面时的支持力,则mg = mr GJ ,C 、D 项错误;半径V 1 V 2G 132因此角速度与质量无=m^? v =。
教科版高中物理必修第二册第三章万有引力定律3预言未知星体计算天体质量练习含答案
3.预言未知星体计算天体质量基础巩固1.(多选)火星直径约为地球直径的一半,质量约为地球质量的十分之一,它绕太阳公转的轨道半径约为地球绕太阳公转轨道半径的1.5倍。
根据以上数据,下列说法正确的是()A.火星表面重力加速度的数值比地球表面的小B.火星公转的周期比地球的长C.火星公转的线速度比地球的大D.火星公转的向心加速度比地球的大答案:AB解析:由G m0mR2=mg得g=G m0R2,计算得A对;由G m0mr2=m(2πT)2r得T=2π√r3Gm0,计算得B对;周期长的线速度小(或由v=√Gm0r判断轨道半径大的线速度小),C错;公转的向心加速度a=G m0r2,计算得D错。
2.利用引力常量G和下列某一组数据,不能计算出地球质量的是()A.地球的半径及重力加速度(不考虑地球自转)B.人造卫星在地面附近绕地球做圆周运动的速度及周期C.月球绕地球做圆周运动的周期及月球与地球间的距离D.地球绕太阳做圆周运动的周期及地球与太阳间的距离答案:D解析:由于不考虑地球自转,则在地球表面附近,有G m'm0R2=m0g,故可得m'=gR2G,A项错误;由万有引力提供人造卫星的向心力,有G m'm1R2=m1v2R,v=2πRT,联立得m'=v3T2πG,B项错误;由万有引力提供月球绕地球运动的向心力,有G m'm2r2=m2(2πT')2r,故可得m'=4π2r3GT'2,C项错误;同理,根据地球绕太阳做圆周运动的周期及地球与太阳间的距离,可求出太阳的质量,但不可求出地球的质量,D项正确。
3.(多选)把太阳系各行星的运动近似看成匀速圆周运动,则离太阳越远的行星()A.周期越小B.线速度越小C.角速度越小D.加速度越小答案:BCD解析:行星绕太阳做匀速圆周运动,所需的向心力由太阳对行星的引力提供,由G m0mr2=m v2r得v=√Gm0r,可知r越大,线速度越小,B正确。
高考物理高频考点重点新题精选训练专题16万有引力定律与天体运动精品
高考物理高频考点重点新题精选训练专题16万有引力定律及天体运动1.(2013浙江省海宁市质检)2005年,美国放射了一个探测器,叫“深度撞击”,它旳任务是跟一个彗星相遇,并把携带旳将近400千克旳重锤发出去撞击彗星,进而探讨彗星被撞击之后旳结构·把彗星和地球绕太阳旳运行进行简化,如图所示,椭圆轨道Ⅰ为彗星旳运行轨道,圆轨道Ⅱ为地球旳运行轨道·下列说法正确旳是A.彗星在b点速度大于a点速度B.彗星在b、c两点时旳速度及地球绕太阳运行旳速度大小相等C.彗星在a点时加速度值比地球绕太阳运行旳加速度值大D.彗星在b、c两点时旳加速度值比地球绕太阳运行旳加速度值大2.(2013辽宁省沈阳名校质检)宇宙中两个相距较近旳星球可以看成双星,它们只在相互间旳万有引力作用下,绕二球心连线上旳某一固定点做周期相同旳匀速圆周运动·依据宇宙大爆炸理论,双星间旳距离在不断缓慢增加,设双星仍做匀速圆周运动,则下列说法正确旳是()A.双星相互间旳万有引力减小B.双星做圆周运动旳角速度增大C.双星做圆周运动旳周期减小D.双星做圆周运动旳半径增大3.(2013安徽省联考)如图所示,一颗行星和一颗彗星绕同一恒星旳运行轨道分别为A和B,A是半径为r旳圆轨道,B为椭圆轨道,椭圆长轴QQ′为2r·P点为两轨道旳交点,以下说法正确旳是A.彗星和行星经过P点时受到旳万有引力相等B.彗星和行星绕恒星运动旳周期相同C.彗星和行星经过P点时旳速度相同D.彗星在Q′处加速度为行星加速度旳1/44. (2013广东汕头市期末)质量为m旳探月航天器在接近月球表面旳轨道上做匀速圆周运动. 已知月球质量为M,月球半径为R,引力常量为G,不考虑月球自转旳影响,则A. 航天器旳线速度B. 航天器旳角速度GMRω=C. 航天器旳向心加速度a=GM/R2D. 月球表面重力加速度g=GM/R25.(2013河南平顶山期末)如图所示,A 为绕地球做椭圆轨道运动旳卫星,B 为地球同步卫星,P 为A 、B 两轨道旳交点·下列说法中正确旳是A .卫星A 所受万有引力完全供应向心力B .卫星B 相对地面静止,肯定不会及A 相撞C .卫星B 加速后其轨道可及卫星A 轨道相同D .卫星A 在远地点加速后其轨道可以变成比B 轨道半径更大旳圆轨道6.(2013四川攀枝花二模)在赤道平面内绕地球做匀速圆周运动旳三颗卫星1m 、2m 、3m ,它们旳轨道半径分别为1r 、2r 、3r ,且1r >2r >3r ,,其中2m 为同步卫星,若三颗卫星在运动过程中受到旳向心力大小相等,则A .相同旳时间内,1m 通过旳路程最大B .三颗卫星中,3m 旳质量最大C .三颗卫星中,3m 旳速度最大D .1m 绕地球运动旳周期小于24小时7.(2013福建三明市联考)2012年6月18日,“神舟九号”飞船及“天宫一号”目标飞行器胜利实现自动交会对接·设地球半径为R ,地球表面重力加速度为g ·对接胜利后“神舟九号”和“天宫一号”一起绕地球运行旳轨道可视为圆轨道,轨道离地球表面高度约为R 191,运行周期为T ,则( )A .地球质量为2019()2R 2B .对接胜利后,“神舟九号”飞船旳线速度为C .对接胜利后,“神舟九号”飞船里旳宇航员受到旳重力为零D .对接胜利后,“神舟九号”飞船旳加速度为g/T=,选项B 正确·对接胜利后,“神舟九号”飞船旳加速度小于g ,神舟九号”飞船里旳宇航员受到旳重力不为零,选项CD 错误·8 .(2013年安徽省合肥市一模)理论上可以证明,质量匀称分布旳球壳对壳内物体旳引力为零·假定地球旳密度匀称,半径为R ·若矿底部和地面处旳重力加速度大小之比为k ,则矿井旳深度为 A.(1-k )R B.kR C. (1kk R9.(2013安徽省池州市期末)一名宇航员来到某星球上,假如该星球旳质量为地球旳一半.它旳直径也为地球旳一半,那么这名宇航员在该星球上旳重力是他在地球上重力旳()A. 4倍 B .2倍C. 0.5倍D. 0.25倍答案:B解析:由mg=GMm/R2,这名宇航员在该星球上旳重力是他在地球上重力旳2倍,选项B正确·10(2013无锡高三期末). 2012年5月6日,天空出现“超级大月亮”,月亮旳亮度和视觉直径都大于平常,如图,究其缘由,月球旳绕地运动轨道事实上是一个偏心率很小旳椭圆,当天月球刚好运动到近地点.结合所学学问推断下列及月球椭圆轨道运动模型有关旳说法中正确旳是A.月球公转周期小于地球同步卫星旳公转周期B.月球在远地点旳线速度小于地球第一宇宙速度C.月球在远地点旳加速度小于在近地点旳加速度D.月球在远地点旳机械能小于在近地点旳机械能11.(2013上海市黄浦区期末)关于万有引力定律,下列说法正确旳是()(A)牛顿提出了万有引力定律,并测定了引力常量旳数值(B)万有引力定律只适用于天体之间(C)万有引力旳发觉,揭示了自然界一种基本相互作用旳规律(D)地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳旳万有引力大小是相同旳答案:C解析:牛顿提出了万有引力定律,卡文迪许测定了引力常量旳数值,万有引力定律适用于任何物体之间,万有引力旳发觉,揭示了自然界一种基本相互作用旳规律,选项AB错误C正确;地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳旳万有引力大小是不相同旳,选项D错误·12.(2013河南开封一模)随着世界航空事业旳发展,深太空探测已渐渐成为各国关注旳热点,假,设深太空中有一颗外星球,其质量是地球质量旳2倍,半径是地球半径旳12则下列推断正确旳是:A.该外星球旳同步卫星周期肯定小于地球同步卫星旳周期B.某物体在该外星球表面所受旳重力是在地球表面所受重力旳4倍C.该外星球上第一宇宙速度是地球上第一宇宙速度旳2倍D.绕该外星球旳人造卫星和以相同轨道半径绕地球旳人造卫星运行速度相同13.(2013山东济南期中检测)经国际小行星命名委员会命名旳“神舟星”和“杨利伟星”旳轨道均处在火星和木星轨道之间.已知“神舟星”平均每天绕太阳运行174万公里,“杨利伟星”平均每天绕太阳运行145万公里.假设两行星均绕太阳做匀速圆周运动,则两星相比较( )A.“神舟星”旳轨道半径大B.“神舟星”旳公转周期大C.“神舟星”旳加速度大D.“神舟星”受到旳向心力大【答案】C【解析】依据线速度旳定义式得:v= l t∆∆,已知“神舟星”平均每天绕太阳运行174万公里,“杨利伟星”平均每天绕太阳运行145万公里,可以得出:“神舟星”旳线速度14. (2013山东济南测试)宇宙中存在一些质量相等且离其他恒星较远旳四颗星组成旳四星系统,通常可忽视其他星体对它们旳引力作用·设四星系统中每个星体旳质量均为m ,半径均为R ,四颗星稳定分布在边长为a 旳正方形旳四个顶点上.已知引力常量为G .关于四星系统,下列说法错误旳是 ( )A .四颗星围绕正方形对角线旳交点做匀速圆周运动B .四颗星旳轨道半径均为2aC .四颗星表面旳重力加速度均为2R GmD .四颗星旳周期均为【答案】BD【解析】星体在其他三个星体旳万有引力作用下,合力方向指向对角线旳交点,围绕正15.(2013江苏省名校质检)太阳系以外存在着很多恒星及行星组成旳双星系统·它们运行旳原理可以理解为,质量为M旳恒星和质量为m旳行星(M>m),在它们之间旳万有引力作用下有规则地运动着·如图所示,我们可认为行星在以某肯定点C为中心、半径为a旳圆周上做匀速圆周运动(图中没有表示出恒星)·设万有引力常量为G,恒星和行星旳大小可忽视不计,则下图中粗略反映恒星、行星运动旳轨道和位置旳是()答案:C解析:质量为M旳恒星和质量为m旳行星(M>m),在它们之间旳万有引力作用下围绕它们旳质心做匀速圆周运动·由于M>m,粗略反映恒星、行星运动旳轨道和位置旳是图C·16.(2013江西省红色六校联考)一些星球由于某种缘由而发生收缩,假设该星球旳直径缩小到原来旳四分之一,若收缩时质量不变,则及收缩前相比 ( )A.同一物体在星球表面受到旳重力增大到原来旳4倍B.同一物体在星球表面受到旳重力增大到原来旳2倍C.星球旳第一宇宙速度增大到原来旳4倍D.星球旳第一宇宙速度增大到原来旳2倍17.(2013四川绵阳二诊)一个物体静止在质量匀称旳球形星球表面旳赤道上·已知万有引力常量为G,星球密度为ρ,若由于星球自转使物体对星球表面旳压力恰好为零,则星球自转旳角速度为A .B .C .D .G ρπ3答案:A解析:由G 2Mm R =mR ω2,M=ρV,,V=4πR 3/3,联立解得ω=,选项A 正确·18.(2013年浙江省宁波市期末)若用假想旳引力场线描绘质量相等旳两星球之间旳引力场分布,使其它星球在该引力场中随意一点所受引力旳方向沿该点引力场线旳切线上.指向箭头方向·则描述该引力场旳引力场线分布图是答案:B解析:其它星球在该引力场中随意一点必定受到两星球旳万有引力,描述该引力场旳引力场线分布图是图B ·19. (2013云南省玉溪质检)月球及地球质量之比约为1:80,有探讨者认为月球和地球可视为一个由两质点构成旳双星系统,他们都围绕地月连线上某点O 做匀速圆周运动·据此观点,可知月球及地球绕O 点运动旳线速度大小之比约为 ( ) A . 1:6400 B. 1:80 C. 80:1 D. 6400:120、(2013杭州名校质检)如图所示,放射远程弹道导弹,弹头脱离运载火箭后,在地球引力作用下,沿椭圆轨道飞行,击中地面目标B·C为椭圆轨道旳远地点,距地面高度为h·已知地球半径为R,地球质量为M,引力常量为G·关于弹头在C点处旳速度v和加速度a,下列结论正确旳是()A.,B.,C.,D.,答案:B解析:若弹头在半径为R+h旳圆轨道上围绕地球做匀速圆周运动,弹头在C点处旳速度·弹头做椭圆轨道运动到远地点,弹头在C点处旳速度·由万有引力定律和牛顿其次定律,弹头在C点旳加速度,选项B正确·21. (2013河南洛阳市一模)某星球旳质量为M,在该星球表面某一倾角为θ旳山坡上以初速度v0平抛一物体,经过时间t该物体落到山坡上·欲使该物体不再落回该星球旳表面,求至少应以多大旳速度抛出该物体?(不计一切阻力,万有引力常数为G)22(2013浙江省舟山市期末联考)在半径R=5000km旳某星球表面,宇航员做了如下试验,试验装置如图甲所示·竖直平面内旳光滑轨道由轨道AB和圆弧轨道BC组成,将质量m=0.2kg旳小球,从轨道AB上高H处旳某点静止滑下,用压力传感器测出小球经过C点时对轨道旳压力F,变更H 旳大小,可测出相应旳F大小,F随H旳变更关系如图乙所示(横坐标每小格长度表示0.1m)·求:⑴圆轨道旳半径及星球表面旳重力加速度;⑵该星球旳第一宇宙速度·23.(7分)(2013河南中原名校第三次联考)天文工作者观测到某行星旳半径为R 1,自转周期为T 1,它有一颗卫星,轨道半径为R 2,绕行星公转周期为T 2·若万有引力常量为G ,求: (1)该行星旳平均密度;(2)要在此行星旳赤道上放射一颗质量为m 旳近地人造卫星,使其轨道平面及行星旳赤道平面重合,且设行星上无气体阻力,则对卫星至少应做多少功?解析:.(1)卫星及行星之间旳万有引力供应卫星做圆周运动旳向心力·G 22Mm R =mR 2(22T )2,24.(9分)(2013山东寿光市质检)已知地球旳半径为R ,地球表面旳重力加速度大小为g ,万有引力常量为G ,不考虑地球自转旳影响.试求:(1)卫星环绕地球运行旳第一宇宙速度v 1旳大小;(2)若卫星绕地球做匀速圆周运动且运行周期为T ,求卫星运行旳轨道半径r ; (3)由题干所给条件,推导出地球平均密度p 旳表达式【解析】(1)设卫星旳质量为m ,地球旳质量为M ,依据万有引力定律,物体在地球表面旁边满意2MmG mg R ==, 第一宇宙速度是指卫星在地面旁边绕地球做匀速圆周运动旳速度,卫星做圆周运动旳向25.(12分)(2013年山东省东营市一中期末)如图为宇宙中一个恒星系旳示意图,A 为该星系旳一颗行星,它绕中心恒星O 运行轨道近似为圆,天文学家观测得到A 行星运动旳轨道半径为R 0,周期为T 0·(1)中心恒星O 旳质量是多大?(2)长期观测发觉,A 行星实际运动旳轨道及圆轨道总存在一些偏离,且周期性地每隔t 0时间发生一次最大旳偏离,天文学家认为形成这种现象旳缘由可能是A 行星外侧还存在着一颗未知旳行星B (假设其运行轨道及A 在同一平面内,且及A 旳绕行方向相同),它对A 行星旳万有引力引起A 轨道旳偏离·依据上述现象及假设,试求出行星B 运动旳周期和轨道半径·解析:(1)由G20MmR =m R 0(2T )2,解得:M =·(2)由题意可知:A 、B 相距最近时,B 对A 旳影响最大, 且每隔t 0时间相距最近·设B 行星周期为T B ,OA。
教科版高中物理必修第二册第三章万有引力定律1天体运动练习含答案
1.天体运动基础巩固1.(多选)下列说法正确的是()A.地心说认为:地球是宇宙的中心,太阳、月亮以及其他星球都绕地球运动B.哥白尼的日心说认为:宇宙的中心是太阳,所有行星都绕太阳做匀速圆周运动C.太阳是静止不动的,地球由西向东自转,使得太阳看起来自东向西运动D.地心说是错误的,日心说是正确的答案:AB解析:由物理学史可知,地心说认为地球是宇宙的中心,日心说认为太阳是宇宙的中心,日心说和地心说都有一定的局限性,可见A、B正确,C、D错误。
2.(多选)关于开普勒第三定律r 3T2=k ,下列说法正确的是()A.k值对所有的天体都相同B.该公式适用于围绕太阳运行的所有行星C.该公式也适用于围绕地球运行的所有卫星D.以上说法都不对答案:BC解析:开普勒第三定律r 3T2=k中的k只与中心天体有关,对于不同的中心天体,k不同,A 错。
此公式虽由行星运动规律总结所得,但它也适用于其他天体的运动,包括卫星绕地球的运动,B、C对,D错。
3.某行星绕太阳运行的椭圆轨道如图所示,F1和F2是椭圆轨道的两个焦点,行星在A点的速率比在B点的大,则太阳位于()A.F2B.AC.F1D.B答案:A解析:根据开普勒第二定律:太阳和行星的连线在相等的时间内扫过相同的面积,因为行星在A点的速率比在B点的速率大,所以太阳和行星的连线必然是行星与F2的连线,故太阳位于F2。
4.已知两颗行星的质量m1=2m2,公转周期T1=2T2,则它们绕太阳运转轨道的半长轴之比为()A.a1a2=12B.a1a2=21C.a1a2=√43 D.a1a2=√43答案:C解析:由a 3T2=k知,a13a23=T12T22,则a1a2=√43,与行星质量无关。
5.太阳系有八大行星,八大行星离地球的远近不同,绕太阳运转的周期也不相同。
下列图像能反映周期与轨道半径关系的是()答案:D解析:由开普勒第三定律知R 3T2=k,所以R3=kT2,D正确。
6.行星A、B的质量分别为m1和m2,绕太阳运行的轨道半长轴分别为r1和r2,则A、B的公转周期之比为()A.√r1r2B.r13r23C.√r13r23D.无法确定答案:C解析:由开普勒第三定律r 3T2=k,得r13T12=r23T22,所以T12T22=r13r23,T1T2=√r13r23,C正确。
天体运动试题及答案
天体运动试题及答案1. 请简述开普勒第一定律的内容。
答案:开普勒第一定律,也称为椭圆定律,指出所有行星围绕太阳运动的轨道都是椭圆形状,太阳位于椭圆的一个焦点上。
2. 根据开普勒第三定律,行星公转周期与其轨道半长轴的关系是怎样的?答案:开普勒第三定律,也称为调和定律,表明所有行星绕太阳公转周期的平方与它们轨道半长轴的立方成正比。
3. 描述牛顿万有引力定律的主要内容。
答案:牛顿万有引力定律指出,宇宙中任何两个物体之间都存在引力,其大小与两物体的质量的乘积成正比,与它们之间的距离的平方成反比。
4. 请解释什么是地球的公转和自转。
答案:地球的公转是指地球围绕太阳的运动,周期大约为一年。
地球的自转是指地球围绕自己的轴线旋转,周期大约为一天。
5. 简述潮汐现象是如何产生的。
答案:潮汐现象是由于地球、月球和太阳的引力作用,导致地球上的海水周期性地涨落。
6. 为什么我们通常看不到月球的背面?答案:月球的自转周期与公转周期相同,这种现象称为潮汐锁定,因此我们总是看到月球的同一面。
7. 描述地球在太阳系中的位置。
答案:地球是太阳系中的第三颗行星,位于金星和火星之间。
8. 请解释什么是日食和月食。
答案:日食是指月球位于地球和太阳之间,遮挡住太阳的现象;月食是指地球位于太阳和月球之间,地球的阴影遮挡住月球的现象。
9. 简述恒星和行星的区别。
答案:恒星是能够通过核聚变产生能量的天体,而行星是围绕恒星运行的较小天体,不能产生能量。
10. 请解释什么是黑洞。
答案:黑洞是一种天体,其质量极大,引力极强,以至于连光都无法逃逸,因此无法直接观测到。
万有引力定律的练习题
四、万有引力定律的练习题一、选择题1、关于地球同步通讯卫星,下列说法中正确的是[]A.它一定在赤道上空运行B.各国发射的这种卫星轨道半径都一样C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度介于第一和第二宇宙速度之间2、设地面附近重力加速度为g0,地球半径为R0,人造地球卫星圆形运行轨道半径为R,那么以下说法正确的是[]3、人造地球卫星绕地球做匀速圆周运动,其轨道半径为R,线速度为v,周期为T,若要使卫星的周期变为2T,可能的办法是[]A.R不变,使线速度变为 v/2B.v不变,使轨道半径变为2RD.无法实现4、两颗靠得较近天体叫双星,它们以两者重心联线上的某点为圆心做匀速圆周运动,因而不至于因引力作用而吸引在一起,以下关于双星的说法中正确的是[]A.它们做圆周运动的角速度与其质量成反比B.它们做圆周运动的线速度与其质量成反比C.它们所受向心力与其质量成反比D.它们做圆周运动的半径与其质量成反比5、由于地球的自转,地球表面上各点均做匀速圆周运动,所以[]A.地球表面各处具有相同大小的线速度B.地球表面各处具有相同大小的角速度C.地球表面各处具有相同大小的向心加速度D.地球表面各处的向心加速度方向都指向地球球心6、以下说法中正确的是[]A.质量为m的物体在地球上任何地方其重力都一样B.把质量为m的物体从地面移到高空中,其重力变小C.同一物体在赤道上的重力比在两极处重力大D.同一物体在任何地方质量都是相同的7、假设火星和地球都是球体,火星的质量M火和地球的质量M地之比M火/M地=p,火星的半径R火和地球的半径R地之比R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力的加速度g地之比等于[]A.p/q2B.pq2C.p/qD.pq8、假如一作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则[]A.根据公式v=ωr,可知卫星的线速度将增大到原来的2倍9.如图为某行星绕太阳运动的轨道,下列关于太阳位置的描述正确的是 ( )A .太阳的位置在O 点B .太阳的位置一定在C .太阳的位置一定在C 1、C 2两点中的一点D .太阳的位置可以在C 1、O 、C 2任意一点 10. 地球绕太阳的运行轨道是椭圆形,因而地球与太阳之间的距离岁季节变化。
天体运动习题及答案
天体运动习题及答案1.假设某行星绕太阳运转的轨道半径为r,周期为T,引力常量为G,则可求得太阳的质量。
根据牛顿第二定律和万有引力定律,行星受到的向心力为F=GMm/r^2,其中M为太阳质量,m为行星质量。
又因为行星做匀速圆周运动,所以F=ma=m4π^2r/T^2.将两个式子相等,解得M=4π^2r^3/GT^2.2.该星球的质量将是地球质量的64倍。
根据牛顿万有引力定律,重力加速度与质量成正比,与距离平方成反比。
设该星球质量为M,半径为r,则重力加速度为GM/r^2.又因为重力加速度是地球的4倍,所以GM/r^2=4GM/R^2,解得M=64M。
3.正确选项为AB。
根据牛顿万有引力定律,行星表面重力加速度与行星质量和半径成正比。
因为火星质量是地球质量的十分之一,直径是地球的一半,所以表面重力加速度是地球的约三成。
行星公转周期与轨道半径的三次方成正比,所以火星公转周期比地球长。
4.该行星的平均密度为3πGT^2/4.根据牛顿万有引力定律,宇宙飞船做匀速圆周运动的向心力为F=mv^2/r=GMm/r^2,其中m为行星质量,v为宇宙飞船的速度。
又因为周期T=2πr/v,所以可以解得m=4π^2r^3/GT^2.将行星质量代入密度公式ρ=m/V,其中V为行星体积,代入球体积公式V=4/3πr^3,解得密度为3πGT^2/4.5.能够计算出火星的密度和火星表面的重力加速度。
根据开普勒第三定律,T^2/r^3=4π^2/GM,其中M为火星质量。
又因为探测器在不同高度的轨道上运动,所以可以利用万有引力定律计算出火星的质量和表面重力加速度。
6.正确选项为D。
根据牛顿第二定律和万有引力定律,物体做匀速圆周运动的向心力为F=mv^2/r=GMm/r^2,其中m为物体质量,v为物体速度。
同步卫星和近地卫星的运动速度和周期可以利用牛顿第二定律和开普勒第三定律计算得出。
7.确信卫星与“神舟七号”的线速度大小之比为1∶2.根据牛顿第二定律和万有引力定律,物体做匀速圆周运动的向心力为F=mv^2/r=GMm/r^2,其中m为物体质量,v为物体速度。
教科版高中物理必修第二册第三章万有引力定律2万有引力定律练习含答案
2.万有引力定律基础巩固1.行星之所以绕太阳运动是因为()A.行星运动时的惯性作用B.太阳是宇宙的中心,所以行星都绕太阳运动C.太阳对行星有约束运动的引力作用D.太阳对行星有排斥作用,所以不会落向太阳答案:C解析:行星能够绕太阳运动,是因为太阳对行星有引力作用,故只有C选项正确。
2.(多选)下列关于太阳对行星的引力的说法正确的是()A.太阳对行星的引力等于行星做匀速圆周运动的向心力B.太阳对行星的引力大小与行星的质量成正比,与行星和太阳间的距离成正比C.太阳对行星的引力是由实验得出的D.太阳对行星的引力规律是由开普勒定律和行星绕太阳做匀速圆周运动的规律推导出来的答案:AD解析:太阳对行星的引力提供行星做圆周运动的向心力,太阳与行星间的引力F∝mr2,可知A正确,B错误。
太阳对行星的引力规律由开普勒定律和行星绕太阳做匀速圆周运动的规律推导出来,故D正确,C错误。
3.两个质量分布均匀的球体,两球心相距r,它们之间的万有引力为10-8 N,若它们的质量、球心间的距离都增加为原来的2倍,则它们之间的万有引力为()A.10-8 NB.0.25×10-8 NC.4×10-8 ND.10-4 N答案:A解析:原来的万有引力为F=G Mmr2,后来变为F'=G2M·2m(2r)2=G Mmr2,即F'=F=10-8 N,故选项A正确。
4.两个完全相同的实心均质小铁球紧靠在一起,它们之间的万有引力为F。
若将两个用同种材料制成的半径是小铁球2倍的实心大铁球紧靠在一起,则两大铁球之间的万有引力为()A.2FB.4FC.8FD.16F答案:D解析:两个小铁球之间的万有引力为F=G mm(2r)2=G m24r2。
实心小铁球的质量为m=ρV=ρ·43πr3,大铁球的半径是小铁球的2倍,则大铁球的质量m'与小铁球的质量m之比为m'm =r'3r3=8,故两个大铁球间的万有引力为F'=G m'm'r'2=16F。
万有引力定律12种典型题
万有引力定律12种典型题【案例1】下列哪一组数据能够估算出地球的质量()A.月球绕地球运行的周期与月地之间的距离B.地球表面的重力加速度与地球的半径C.绕地球运行卫星的周期与线速度D.地球表面卫星的周期与地球的密度解析:人造地球卫星环绕地球做匀速圆周运动。
月球也是地球的一颗卫星。
设地球的质量为M,卫星的质量为m,卫星的运行周期为T,轨道半径为r根据万有引力定律:【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。
总之,牛顿万有引力定律是解决天体运动问题的关键。
【案例2】普通卫星的运动问题我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。
“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h。
问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少解析:本题主要考察普通卫星的运动特点及其规律由开普勒第三定律T2∝r3知:“风云二号”卫星的轨道半径较大⑴所有运动学量量都是r的函数。
我们应该建立函数的思想。
⑵运动学量v、a、ω、f随着r的增加而减小,只有T随着r的增加而增加。
⑶任何卫星的环绕速度不大于s,运动周期不小于85min。
⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。
【案例3】同步卫星的运动下列关于地球同步卫星的说法中正确的是:A、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上B、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24hC、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上D、不同通讯卫星运行的线速度大小是相同的,加速度的大小也是相同的。
高中物理天体运动专题复习试题
天体运动(完整版·共7页)一、开普勒运动定律1、开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.2、开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等.3、开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等. 二、万有引力定律1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. 2、公式:F =G221rm m ,其中2211/1067.6kg m N G ⋅⨯=-,称为为有引力恒量。
3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力. 4、万有引力与重力的关系:合力与分力的关系。
三、卫星的受力和绕行参数(角速度、周期与高度) 1、由()()22mMv G m r h r h =++,得()GMv r h =+,∴当h↑,v↓2、由G()2h r mM+=mω2(r+h ),得ω=()3h r GM+,∴当h↑,ω↓3、由G ()2h r mM+()224m r h T π=+,得T=()GM h r 324+π ∴当h↑,T↑ 注:(1)卫星进入轨道前加速过程,卫星上物体超重. (2)卫星进入轨道后正常运转时,卫星上物体完全失重. 4、三种宇宙速度(1)第一宇宙速度(环绕速度):v 1=7.9km/s ,人造地球卫星的最小发射速度。
也是人造卫星绕地球做匀速圆周运动的最大速度。
计算:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力.()21v mg m r h =+.当r >>h 时.g h ≈g 所以v 1=gr =7.9×103m/s第一宇宙速度是在地面附近(h <<r ),卫星绕地球做匀速圆周运动的最大速度. (2)第二宇宙速度(脱离速度):v 2=11.2km/s ,使卫星挣脱地球引力束缚的最小发射速度. (3)第三宇宙速度(逃逸速度):v 3=16.7km/s ,使卫星挣脱太阳引力束缚的最小发射速度. 四、两种常见的卫星 1、近地卫星近地卫星的轨道半径r 可以近似地认为等于地球半径R ,其线速度大小为v 1=7.9×103m/s ;其周期为T =5.06×103s=84min 。
物理试题天体运动及答案
物理试题天体运动及答案一、选择题(每题2分,共10分)1. 以下哪项不是开普勒描述的行星运动定律?A. 行星沿椭圆轨道绕太阳运动B. 行星绕太阳运动的角速度是恒定的C. 行星绕太阳运动的周期的平方与轨道半长轴的立方成正比D. 行星与太阳的连线在相等时间内扫过的面积相等2. 根据牛顿的万有引力定律,两个物体之间的引力大小与它们的质量的乘积成正比,与它们之间的距离的平方成反比。
以下哪个选项正确描述了这一定律?A. 引力与两物体质量的乘积成正比,与距离的平方成正比B. 引力与两物体质量的乘积成反比,与距离的平方成反比C. 引力与两物体质量的乘积成正比,与距离的平方成反比D. 引力与两物体质量的乘积成反比,与距离的平方成正比3. 地球的自转周期大约是24小时,这导致了什么现象?A. 季节变化B. 潮汐现象C. 昼夜交替D. 地球的公转4. 月球绕地球公转的周期大约是27.3天,这与地球自转周期的不同步导致了什么现象?A. 季节变化B. 潮汐现象C. 月食D. 日食5. 根据牛顿的第二定律,以下哪个选项正确描述了力与加速度的关系?A. 力与加速度成正比B. 力与加速度成反比C. 力与加速度成正比,与质量成反比D. 力与加速度成反比,与质量成正比二、填空题(每题2分,共10分)1. 地球绕太阳公转的轨道近似为_________。
2. 根据开普勒第三定律,行星绕太阳运动的周期的平方与轨道半长轴的立方成正比,这个定律也被称为_________定律。
3. 牛顿的万有引力定律公式为_________,其中G是引力常数,m1和m2是两个物体的质量,r是它们之间的距离。
4. 地球的自转轴与公转轨道平面的夹角称为_________,其大小约为23.5°。
5. 潮汐现象是由于_________和_________之间的引力作用造成的。
三、简答题(每题5分,共10分)1. 简述牛顿的万有引力定律及其在天体运动中的应用。
新教材粤教版高中物理必修第二册第三章万有引力定律 课时练习题及章末测验
第三章万有引力定律第一节认识天体运动.................................................................................................... - 1 - 第二节认识万有引力定律............................................................................................ - 5 - 第三节万有引力定律的应用........................................................................................ - 9 - 第四节宇宙速度与航天.............................................................................................. - 13 - 章末综合测验................................................................................................................ - 17 -第一节认识天体运动A级合格达标1.日心说的代表人物是()A.托勒密B.哥白尼C.布鲁诺D.第谷解析:日心说的代表人物是哥白尼,布鲁诺是宣传日心说的代表人物.答案:B2.关于天体的运动以下说法正确的是()A.天体的运动毫无规律,无法研究B.天体的运动是最完美的、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都围绕太阳运动解析:天体运动是有规律的,不是做匀速圆周运动,轨迹是椭圆,地球绕太阳转动.日心说虽然最终战胜了地心说,但由于当时人们认知水平的局限性,它的一些观点也是不准确的,如运动轨道不是圆而是椭圆,做的不是匀速圆周运动而是变速曲线运动.故D项正确.答案:D3.(多选)关于开普勒第二定律,下列理解正确的是()A.行星绕太阳运动时,一定是做匀速曲线运动B.行星绕太阳运动时,一定是做变速曲线运动C.行星绕太阳运动时,由于角速度相等,故在近日点处的线速度小于它在远日点处的线速度D.行星绕太阳运动时,由于它与太阳的连线在相等的时间内扫过的面积相等,故它在近日点的线速度大于它在远日点的线速度解析:行星绕太阳运动的轨道是椭圆形的,故行星做变速曲线运动,A错,B对.行星绕太阳运动时,角速度不相等,根据开普勒第二定律可知,行星在近日点时的线速度最大,在远日点时的线速度最小,C错,D对.答案:BD4.开普勒分别于1609年和1619年发表了他发现的行星运动规律,后人称之为开普勒行星运动定律.关于开普勒行星运动定律,下列说法正确的是()A.所有行星绕太阳运动的轨道都是圆,太阳处在圆心上B.对任何一颗行星来说,离太阳越近,运行速率就越大C.在牛顿发现万有引力定律后,开普勒才发现了行星的运行规律D.开普勒独立完成了观测行星的运行数据、整理观测数据、发现行星运动规律等全部工作解析:根据第一定律——所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上,所以A错误;根据第二定律——对每一个行星而言,太阳行星的连线在相同时间内扫过的面积相等,所以对任何一颗行星来说,离太阳越近,运行速率就越大,所以B正确;在开普勒发现了行星的运行规律后,牛顿才发现万有引力定律,故C错误;开普勒整理第谷的观测数据后,发现了行星运动的规律,所以D错误.答案:B5.有两颗行星环绕某恒星运动,它们的运动周期比为27∶1,则它们的轨道半径比为()A.3∶1B.27∶1C.9∶1D.1∶9解析:根据开普勒第三定律R3T2=k,有R3AT2A=R3BT2B,解得R AR B=3T2AT2B=9∶1,故选项C正确,A、B、D错误.答案:CB级等级提升6.太阳系各行星绕太阳轨道为椭圆,太阳位于椭圆的一个焦点上.如图为地球绕太阳运动的椭圆轨道,A为近日点,C为远日点,B、D为轨道短轴的两个端点,地球从B点经C点运动到D的时间为t1,地球从D点经A点运动到B的时间为t2,下列说法正确的是()A.t1>t2B.t1<t2C.t 1=t 2D.由于需要高等数学积分知识,高中阶段无法比较t 1、t 2的大小解析:根据开普勒第二定律可知,地球在AB 段的速度大小大于BC 段的速度大小,则有AB 段的时间小于BC 段的时间;地球在DA 段的速度大小大于CD 段的速度大小,则有DA 段的时间小于CD 段的时间,所以有t 1>t 2,故A 正确,B 、C 、D 错误.答案:A7.地球和金星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A.太阳位于金星运行轨道的中心B.它们在近日点速度小于远日点速度C.地球和金星公转周期的平方之比等于它们轨道半长轴的立方之比D.地球和金星绕太阳运行速度的大小始终相等解析:根据开普勒第一定律,所有行星分别沿不同大小的椭圆轨道绕太阳运动,太阳处于椭圆的一个焦点上,故A 错误.根据开普勒第二定律,对每一个行星而言,太阳与行星的连线在相同时间内扫过的面积相等.所以行星距离太阳越近,速度越大,在近日点速度大于远日点速度,故B 错误.根据开普勒第三定律,可知r 3地T 2地=r 3金T 2金,则T 2金T 2地=r 3金r 3地,即地球和金星公转周期的平方之比等于它们轨道半长轴的立方之比,故C 正确.根据开普勒第二定律——对每一个行星而言,太阳与行星的连线在相同时间内扫过的面积相等,速度始终在变化.对于处于不同轨道的地球和金星,绕太阳运行速度的大小不相等,故D 错误.答案:C8.(多选)如图所示,已知某卫 星在赤道上空轨道半径为r 1的圆形轨道上绕地球运行的周期为T ,卫 星运动方向与地球自转方向相同,赤道上某城市的人每三天恰好五次看到该卫 星掠过其正上方.假设某时刻,该卫 星在A 点变轨进入椭圆轨道,近地点B 到地心距离为r 2.设卫 星由A 到B (只经B 点一次)运动的时间为t ,地球自转周期为T 0,不计空气阻力.则( )A.T =3T 05B.T =3T 08C.t =(r 1+r 2)T 4r 1r 1+r 22r 1D.t =(r 1+r 2)T 6r 1r 1+r 22r 1解析:依题意有2πT ·3T 0-2πT 0·3T 0=5·2π,解得T =3T 08,故A 错误,B 正确;根据开普勒第三定律知,⎝ ⎛⎭⎪⎫r 1+r 223(2t )2=r 31T 2,解得t =T (r 1+r 2)4r 1r 1+r 22r 1,故C 正确,D 错误. 答案:BC 9.1781年,人们发现了太阳系中的第七颗行星——天王星,但是,它的运动轨迹有些“古怪”:根据万有引力定律计算出来的轨道与实际观测的结果总有一些偏差.有人认为是其轨道外侧还有未发现的行星影响其运动,后来据此发现了海王星.设从两行星离得最近时开始计时,到下一次两行星离得最近所经历的最短时间为t ;设天王星的轨道半径为R ,周期为T .忽略各行星之间的相互作用,那么海王星的轨道半径为( )A.3t 2t -T R B. 3⎝ ⎛⎭⎪⎫t -T t 2R C. 3⎝ ⎛⎭⎪⎫t t -T 2R D.tt -T R 解析:由题意可知:海王星与天王星相距最近时,对天体运动的影响最大,且每隔时间t 发生一次.设海王星的周期为T ′,轨道半径为R ′,则有⎝ ⎛⎭⎪⎫2πT -2πT ′t =2π,且R ′3T ′2=R 3T 2,联立解得R ′=3⎝ ⎛⎭⎪⎫t t -T 2R .故C 正确. 答案:C10. 土星直径为120 540 km ,是太阳系中的第二大行星,自转周期为10.546 h ,公转周期为29.5年,球心距离太阳1.429×109 km.土星最引人注目的是绕着其赤道的巨大光环.在地球上人们只需要一架小型望远镜就能清楚地看到光环,环的外沿直径约为274 000 km.请由上面提供的信息,估算地球距太阳有多远.(保留三位有效数字)解析:根据开普勒第三定律R 3T 2=k ,k 只与太阳的质量有关,则R 3地T 2地=R 3土T 2土,其中T 为公转周期,R 为行星到太阳的距离,代入数据可得R 3地(1年)2=(1.429×1012 m )3(29.5年)2, 解得R 地≈1.50×1011 m =1.50×108 km.答案:1.50×108 km第二节 认识万有引力定律A 级 合格达标1.下面列举的四位大师,他们对世界天文学的发展影响极其深远,那么其中排列符合历史发展顺序的是( )A.哥白尼 托勒密 牛顿 开普勒B.托勒密 牛顿 哥白尼 开普勒C.哥白尼 托勒密 开普勒 牛顿D.托勒密 哥白尼 开普勒 牛顿解析:希腊科学家托勒密提出了地心说,认为地球是静止不动的,太阳、月亮和星星从人类头顶飞过,地球是宇宙的中心;波兰天文学家哥白尼,发表著作《天体运行论》提出日心说,预示了地心宇宙论的终结;德国天文学家开普勒对他的导师第谷观测的行星数据进行了多年研究,得出了开普勒三大行星运动定律;开普勒发现了行星的运行规律之后,牛顿根据开普勒定律和牛顿运动定律,总结出了万有引力定律.D 与分析相符,符合题意.答案:D2.(多选)对于万有引力公式F =G m 1m 2r 2,下列说法中正确的是( ) A.对于相距很远,可看成质点的两物体,公式中的r 为两质点间的距离B.对于质量分布均匀的球体,公式中的r 为两球体间的距离C.公式中的万有引力常量G =6.67×10-11N·m 2/kg 2,它在数值上等于质量均为1 kg 的两质点相距1 m 时的相互作用力D.对于任意的两物体间的万有引力,r 表示两物体重心之间的距离解析:对于相距很远,可看成质点的两物体,公式中的r 为两质点间的距离,故A 正确;对于质量分布均匀的球体,公式中的r 为两球体间的距离,故B 正确;根据F =G m 1m 2r 2知,引力常量的大小在数值上等于质量均为1 kg 的两质点相距1 m 时的相互作用力,故C 正确;在万有引力定律公式中,若两个物体可以看成质点,则r 为质点间的距离,对于质量分布均匀的球体,公式中的r 为两球体重心间的距离,故D 错误.答案:ABC3.(多选)要使两物体间的万有引力减小到原来的14,下列办法可以采用的是( ) A.使两物体的质量各减小一半,距离不变B.使其中一个物体的质量减小到原来的14,距离不变 C.使两物体间的距离增大为原来的2倍,质量不变D.使两物体间的距离和质量都减小为原来的14解析:由万有引力定律F =G m 1m 2r 2可知,选项A 、B 、C 中两物体间的万有引力都将减少到原来的14,而选项D 中两物体间的万有引力保持不变,故选项A 、B 、C 正确. 答案:ABC4.下列关于行星对太阳的引力的说法正确的是( )A.行星对太阳的引力与太阳对行星的引力是同一性质的力B.行星对太阳的引力与太阳的质量成正比,与行星的质量无关C.太阳对行星的引力大于行星对太阳的引力D.行星对太阳的引力大小与太阳的质量成正比,与行星和太阳的距离成反比解析:行星对太阳的引力与太阳对行星的引力是相互的,是同一性质的力,所以选项A 正确;行星对太阳的引力与太阳对行星的引力,是作用力和反作用力,遵循牛顿第三定律,大小与太阳和行星质量的乘积成正比,与行星距太阳的距离的平方成反比,选项B 、C 、D 均错误.答案:A5.(多选)关于引力常量,下列说法正确的是( )A.引力常量是两个质量为1 kg 的质点相距1 m 时的相互吸引力B.牛顿发现了万有引力定律,给出了引力常量的值C.引力常量的测定,进一步证明了万有引力定律的正确性D.引力常量的测定,使人们可以测出天体的质量解析:引力常量的大小等于两个质量为1 kg 的质点相距1 m 时的万有引力的数值,而引力常量不是两个质量为1 kg 的质点相距1 m 时的相互吸引力,A 错.牛顿发现了万有引力,但他并未测出引力常量的值,引力常量的值是卡文迪什巧妙地利用扭秤装置在实验室中测出的,B 错.引力常量的测定,成了万有引力定律正确性的证据,而且也可以帮助人们测量天体的质量,这也是测出引力常量的意义所在,C 、D 对.答案:CD6.如图所示,两球间的距离为r ,两球的质量分布均匀,大小分别为m 1、m 2,则两球的万有引力大小为( )A.G m 1m 2r 2B.G m 1m 2r 21C.G m 1m 2(r 1+r 2)2D.G m 1m 2(r 1+r 2+r )2 解析:两球质量分布均匀,可认为质量集中于球心,由公式可知两球间万有引力应为G m 1m 2(r 1+r 2+r )2,故D 正确. 答案:DB 级 等级提升7.(多选)下列说法正确的是( )A.在探究太阳对行星的引力规律时,我们引用了F =m v 2r,这个关系式实际上是牛顿第二定律的公式,是可以在实验室中得到验证的B.在探究太阳对行星的引力规律时,我们引用了v =2πr T,这个关系式实际上是匀速圆周运动的一个公式,它是由速度的定义式得到的C.在探究太阳对行星的引力规律时,我们引用了r 3T 2=k ,这个关系式实际上是开普勒第三定律,是可以在实验室中得到验证的D.在探究太阳对行星的引力规律时,使用的三个公式都是可以在实验室中得到验证的 解析:物理公式或规律,都是在满足一定条件下建立的.有些通过实验获得,并能在实验室中进行验证的,如本题中选项A 、B.但有些则无法在实验室中进行证明,如开普勒的三大定律,是根据行星运动的观察结果而总结归纳出来的,每一条都是经验定律,故开普勒的三大定律都是在实验室中无法验证的定律.公式F =GMm r 2来源于开普勒定律,无法得到验证.故本题正确选项是A 、B.答案:AB8.(多选)在讨论地球潮汐成因时,地球绕太阳运行的轨道与月球绕地球运行的轨道可视为圆轨道.已知太阳质量约为月球质量的2.7×107倍,地球绕太阳运行的轨道半径约为月球绕地球运行的轨道半径的400倍.关于太阳和月球对地球上相同质量海水的引力,以下说法正确的是( )A.太阳引力远大于月球引力B.太阳引力与月球引力相差不大C.月球对不同区域海水的吸引力大小相等D.月球对不同区域海水的吸引力大小有差异 解析:根据F =G Mm R 2,可得F 太F 月=M 太M 月·R 2月地R 2太地,代入数据可知,太阳对相同质量海水的引力远大于月球的引力,A 对,B 错.由于月心到不同区域海水的距离不同,所以月球对不同区域海水的引力大小有差异,C 错,D 对.答案:AD9.有两个大小一样、由同种材料制成的均匀球体紧靠在一起,它们之间的万有引力为F .若用上述材料制成两个半径更小的均匀球体仍靠在一起,它们之间的万有引力将( )A.等于FB.小于FC.大于FD.无法比较解析:设球的半径为R ,密度为ρ,则球的质量m =43πR 3ρ,根据万有引力定律,两个相同的球紧靠在一起时的万有引力F =G m 2(2R )2=49G π2R 4ρ2,由此可知,用同种材料制作两个更小的球,靠在一起时的万有引力F ′,比两个大球紧靠在一起时的万有引力F 小,故选项B 正确.答案:B10.两个质量均匀、密度相同且大小相同的实心小球紧靠在一起,它们之间的万有引力为F ,如图所示.现将其一个小球按图所示挖去半径为原球半径12的球,并按如图所示的形式紧靠在一起(三个球心在一条直线上),试计算剩余部分之间的万有引力大小.解析:设两实心小球质量为m ,半径为r ,挖去部分质量为m 1,由万有引力公式知,挖去小球前,两实心小球间的万有引力为F =G mm(2r )2.挖去部分与左边球之间的万有引力为F 1=G mm 1⎝ ⎛⎭⎪⎫5r 22,又有m 1∶m =⎝ ⎛⎭⎪⎫12r 3∶r 3=1∶8, 联立得F 1=225F . 则剩余部分之间的万有引力大小为 F ′=F -F 1=2325F .答案:2325F 第三节 万有引力定律的应用A 级 合格达标1.地球可近似看成球形,由于地球表面上物体都随地球自转,所以有( )A.物体在赤道处受的地球引力等于两极处,而重力小于两极处B.赤道处的角速度比南纬30°大C.地球上物体的向心加速度都指向地心,且赤道上物体的向心加速度比两极处大D.地面上的物体随地球自转时提供向心力的是重力解析:由F =G Mm R 2可知,若将地球看成球形,则物体在地球表面任何位置受到地球的引力都相等.此引力的两个分力,一个是物体的重力,另一个是物体随地球自转的向心力.在赤道上,向心力最大,重力最小,A 对.地表各处的角速度均等于地球自转的角速度,B 错.地球上只有赤道上的物体向心加速度指向地心,其他位置的向心加速度均不指向地心,C 错.地面上物体随地球自转的向心力是万有引力与地面支持力的合力,D 错.答案:A2.某个行星的质量是地球质量的一半,半径也是地球半径的一半,那么一个物体在此行星表面上的重力是地球表面上重力的( )A.14倍 B.12倍 C.4倍 D.2倍解析:物体在某星球表面的重力等于万有引力G 星=G M 星m r 2星=G 12M 地m ⎝ ⎛⎭⎪⎫12r 地2=2G M 地m r 2地=2G 地,故D 正确.答案:D3.“嫦 娥三号”携带“玉兔”探测车在实施软着陆过程中,“嫦 娥三号”离月球表面4 m 高时最后一次悬停,确认着陆点.若总质量为M 的“嫦 娥三号”在最后一次悬停时,反推力发动机对其提供的反推力为F ,已知引力常量为G ,月球半径为R ,则月球的质量为( )A.FR 2MGB.FR MGC.MG FRD.MG FR 2 解析:设月球的质量为M ′,由G M ′M R 2=Mg 和F =Mg 解得M ′=FR 2MG,选项A 正确. 答案:A4.某星球的半径为R ,表面的重力加速度为g ,引力常量为G ,则该星球的平均密度为( )A.3g 4πR 2G B.3g 4πRG C.g RG D.g R 2G解析:根据重力近似等于星球的万有引力,有G Mm R 2=mg ,解得M =gR 2G.把该星球看作均匀球体,则星球体积为V =43πR 3,则其密度为ρ=M V =3g 4πRG. 答案:B5.随着太空技术的飞速发展,地球上的人们登陆其他星球成为可能.假设未来的某一天,宇航员登上某一星球后,测得该星球表面的重力加速度是地球表面重力加速度的2倍,而该星球的平均密度与地球的差不多,则该星球质量大约是地球质量的( )A.12B.2倍C.4倍D.8倍解析:由G Mm R 2=mg 得M =gR 2G ,而M =ρ·43πR 3,由两式可得R =3g 4πρG ,所以M =9g 316π2ρ2G 3,易知该星球质量大约是地球质量的8倍.D 正确.答案:DB 级 等级提升6.月球表面的重力加速度为地球表面重力加速度的16.一个质量为600 kg 的飞行器到达月球后,下列说法错误的是( )A.在月球上的质量仍为600 kgB.在月球表面上的重力为980 NC.在月球表面上方的高空中重力小于980 ND.在月球上的质量将小于600 kg解析:物体的质量与物体所处的位置及运动状态无关,故A 正确,D 错误;由题意可知,物体在月球表面上受到的重力为地球表面上重力的16,即F =16mg =16×600×9.8 N =980 N ,故B正确;由F =Gm 1m 2r 2知,r 增大时,引力F 减小,在月球表面,物体的重力可近似认为等于物体所受的万有引力,故C 正确.答案:D7.2018年10月20日,酒泉 发射中心迎来60岁生日.作为我国航天事业的发祥地,它拥有我国最早的航天发射场和目前唯一的载人航天发射场.2013年6月,我国成功实现目标飞行器“神 舟 十 号”与轨道空间站“天 宫 一号”的对接.已知“神 舟 十 号”从捕获“天宫 一号”到两个飞行器实现刚性对接用时为t ,这段时间内组合体绕地球转过的角度为θ,地球半径为R ,组合体离地面的高度为H ,万有引力常量为G .据以上信息,可求地球的质量为( )A.(R +H )3θ2Gt 2B.π2(R +H )3θ2Gt 2C.(G +H )3θ24πGt2D.4π4(R +H )3θ2Gt 2解析:组合体在圆轨道运行的周期T =2πθ·t ,根据万有引力定律和牛顿定律得GMm (R +H )2=m ⎝ ⎛⎭⎪⎫2πT 2(R +H ),所以M =(R +H )3θ2Gt 2.选项A 正确. 答案:A8. 对于环绕地球做圆周运动的卫 星来说,它们绕地球做圆周运动的周期会随着轨道半径的变化而变化.某同学根据测得的不同卫 星做圆周运动的半径r 与周期T 关系作出如图所示图像,则可求得地球质量为(已知引力常量为G )( )A.4π2b GaB.4π2aGbC.Ga4π2bD.Gb4π2a解析:根据G Mm r 2=m 4π2T 2r ,得r 3=GMT 24π2,由题图可知r 3T 2=GM 4π2=a b ,所以地球的质量M =4π2a Gb.答案:B9.一物体在地球表面重16 N ,它在以5 m/s 2的加速度加速上升的火箭中的视重(即物体对火箭竖直向下的压力)为9 N ,则此火箭离地球表面的距离为地球半径的(地球表面重力加速度取10 m/s 2)( )A.2倍B.3倍C.4倍D.12解析:设此时火箭离地球表面高度为h . 由牛顿第二定律得F N -mg ′=ma ,① 在地球表面处mg =G Mm R2,② 由①可得g ′=0.625 m/s 2.③ 又因h 处mg ′=G Mm(R +h )2,④由②④得g ′g =R 2(R +h )2.代入数据,得h =3R ,故选B. 答案:B10.火星半径约为地球半径的一半,火星质量约为地球质量的19.一位宇航员连同宇航服在地球上的质量为50 kg.地球表面的重力加速度g 取10 m/s 2,则(1)在火星上宇航员所受的重力为多少?(2)宇航员在地球上可跳1.5 m 高,他以相同初速度在火星上可跳多高? 解析:(1)由mg =G MmR 2,得g =GM R 2,在地球上有g =GMR 2,在火星上有g ′=G ·19M⎝ ⎛⎭⎪⎫12R 2,所以g ′=409m/s 2,那么宇航员在火星上所受的重力mg ′=50×409N ≈222.2 N.(2)在地球上,宇航员跳起的高度为h =v 202g =1.5 m ,在火星上,宇航员跳起的高度h ′=v 202g ′,联立以上两式得h ′=3.375 m. 答案:(1)222.2 N (2)3.375 m第四节 宇宙速度与航天A 级 合格达标1.不同的地球同步卫 星,下列哪个物理量可能不同( ) A.线速度大小 B.向心力大小 C.轨道半径D.加速度大小解析:同步卫 星绕地球做匀速圆周运动,根据万有引力提供向心力,G mM r 2=m 4π2T 2r =mv 2r=ma ,则有r = 3GMT 24π2.同步卫 星的周期与地球自转周期相同,所以各个同步卫 星轨道半径相同,线速度v =GMr,所以所有地球同步卫 星线速度大小相同,故A 、C 不符合题意.向心加速度a =GM r2,所以加速度大小相同,但质量不知,因此向心力大小不一定相同,故D 不符合题意,B 符合题意.答案:B2.行星A 、B 都可看作质量分布均匀的球体,其质量之比为1∶2、半径之比为1∶2,则行星A 、B 的第一宇宙速度大小之比为( )A.2∶1B.1∶2C.1∶1D.1∶4解析:根据第一宇宙速度计算的表达式可得v 1=GMR,行星A 、B 的第一宇宙速度大小之比为1∶1,C 正确,A 、B 、D 错误.答案:C3.已知地球两极处的重力加速度为g ,赤道上的物体随地球匀速圆周运动的向心加速度为a 、周期为T .由此可知地球的第一宇宙速度为( )A.aT2πB.gT2πC.T ag2πD.T a 2+ag2π解析:根据a =4π2T 2R ,解得地球的半径为R =aT24π2,则地球的第一宇宙速度为v =gR =agT 24π2=T ag2π.答案:C4.如图所示为在同一轨道平面上的三颗人造地球卫 星A 、B 、C ,下列说法正确的是( )A.根据v =gR ,可知三颗卫 星的线速度v A <v B <v CB.根据万有引力定律,可知三颗卫 星受到的万有引力F A >F B >F CC.三颗卫 星的向心加速度a A >a B >a CD.三颗卫 星运行的角速度ωA <ωB <ωC解析:由G Mm r 2=m v 2r 得v =GM r ,故v A >v B >v C ,选项A 错误;卫 星受的万有引力F =G Mmr2,但三颗卫 星的质量关系不知道,故它们受的万有引力大小不能比较,选项B 错误;由G Mmr2=ma 得a =GM r 2,故a A >a B >a C ,选项C 正确;由G Mmr2=mω2r 得ω=GMr 3,故ωA >ωB >ωC ,选项D 错误.答案:C5.(多选)我国计划2020年发射 火星 探 测 器.已知火星的质量约为地球质量的19,火星的半径约为地球半径的12.下列关于火星探测器的说法中正确的是( )A.发射速度只要大于第一宇宙速度即可B.发射速度只有达到第三宇宙速度才可以C.发射速度应大于第二宇宙速度、小于第三宇宙速度D.火星探测器环绕火星运行的最大速度约为第一宇宙速度的一半解析:根据三个宇宙速度的意义,可知发射火星探测器的速度应大于第二宇宙速度、小于第三宇宙速度.故选项A 、B 不符合题意,选项C 符合题意.已知M 火=M 地9,R 火=R 地2,则火星探测器环绕火星运行的最大速度与地球第一宇宙速度之比为:v max ∶v 1=GM 火R 火∶GM 地R 地≈0.5,故选项D 符合题意.答案:CDB 级 等级提升6.星球上的物体脱离星球引力所需要的最小速度称为该星球的第二宇宙速度,星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1.已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的16,不计其他星球的影响,则该星球的第二宇宙速度为( )A.grB.gr6C.gr3D.13gr 解析:设地球的质量为M ,半径为R ,近地飞行的卫 星质量为m ,由万有引力提供向心力:GMm R 2=m v 2R,①在地球表面有GMmR 2=mg ,② 联立①②式得v =gR .利用类比的关系知该星球第一宇宙速度为v 1=gr6,第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1, 即v 2=gr3.答案:C7.在距地面200 km 的轨道上,宇宙飞船环绕地球做匀速圆周运动,则下列说法正确的是( )A.飞船的速度一定大于第一宇宙速度B.在飞船中,用弹簧秤测一个物体的重力,读数为零C.在飞船中,可以用天平测物体的质量D.因飞船处于完全失重状态,飞船中一切物体的质量都为零解析:由GMm (h +R )2=m v 2(R +h ),得v =GMR +h < GM R. 所以飞船的速度小于第一宇宙速度,故A 错误;在飞船中的物体处于完全失重状态,所以用弹簧秤测一个物体的重力,读数为零,故B 正确;在飞船中物体处于完全失重状态,不可以用天平测物体的质量,故C 错误;质量是物体的固有属性,飞船处于完全失重状态,飞船中一切物体的质量不会改变,故D 错误.答案:B8.在地球上空有许多绕地球做匀速圆周运动的卫 星,下面说法正确的是( ) A.我们可以发射一颗静止在上海正上空的同步卫 星,来为2019年10月份NBA 中国赛的上海站提供通信服务B.离地面越高的卫 星,周期越大C.在同一圆周轨道上运动的卫 星,向心加速度大小可能不同D.这些卫 星的发射速度至少为11.2 km/s解析:同步卫 星只能定点在赤道上空,不能静止在上海正上方,故A 项错误;由GMm r 2=m 4π2rT 2可知T =4π2r3GM,故离地面越高的卫 星,运行周期越大,故B 项正确;同一轨道上的卫 星轨迹半径相同,则根据GMm r 2=ma ,可得a =GMr2,故向心加速度大小相等,故C 项错误;绕地球做匀速圆周运动的卫 星发射速度至少为7.9 km/s ,故D 项错误.答案:B9.已知地球同步卫 星离地面的高度约为地球半径的6倍.若某行星的平均密度为地球平均密度的一半,它的同步卫 星距其表面的高度是其半径的2.5倍,则该行星的自转周期约为( )A.6 hB.12 hC.24 hD.36 h解析:同步卫 星的周期与其中心天体的自转周期相同.设地球的半径为R 1,某行星的半径为R 2,地球的同步卫 星的周期为T 1,轨道半径为r 1,地球的平均密度为ρ1,某行星的同步卫 星周期为T 2,轨道半径为r 2,行星的平均密度为ρ2,已知T 1=24 h ,r 1=7R 1,r 2=3.5R 2,ρ1=2ρ2,根据牛顿第二定律和万有引力定律有。
物理天体运动试题及答案
物理天体运动试题及答案一、选择题1. 以下哪项是描述天体运动的物理定律?A. 牛顿第一定律B. 牛顿第二定律C. 牛顿第三定律D. 牛顿万有引力定律答案:D2. 地球绕太阳公转的周期大约是:A. 24小时B. 365天C. 1年D. 12个月答案:B3. 以下哪项不是开普勒行星运动定律的内容?A. 行星沿椭圆轨道绕太阳运动B. 行星公转周期的平方与轨道半长轴的立方成正比C. 行星公转速度与轨道半径成反比D. 行星公转速度与轨道半径成正比答案:D二、填空题4. 地球的自转周期是____小时。
答案:245. 地球绕太阳公转的轨道形状是____。
答案:椭圆三、简答题6. 简述牛顿万有引力定律的主要内容。
答案:牛顿万有引力定律指出,任何两个物体之间都存在引力,其大小与两物体质量的乘积成正比,与两物体间距离的平方成反比。
7. 描述一下地球的自转和公转对我们的生活有什么影响。
答案:地球的自转导致了昼夜交替和时间的差异,而地球的公转则导致了季节的变化和太阳高度角的变化。
四、计算题8. 已知地球质量为5.97×10^24千克,月球质量为7.34×10^22千克,地月平均距离为3.84×10^8米。
根据万有引力定律,计算地月之间的引力大小。
答案:根据万有引力定律,F = G * (m1 * m2) / r^2,其中G为万有引力常数,取值6.674×10^-11 N(m/kg)^2。
代入数值计算得:F = 6.674×10^-11 * (5.97×10^24 * 7.34×10^22) /(3.84×10^8)^2F ≈ 2×10^20 N五、论述题9. 论述开普勒行星运动定律对天文学和物理学的影响。
答案:开普勒行星运动定律揭示了行星运动的规律,不仅为天文学提供了精确的行星位置预测方法,也为牛顿后来提出万有引力定律奠定了基础。
万有引力定律应用例题
万有引力定律应用例题
1. 在太阳系中,行星绕太阳运动的轨道是通过万有引力定律来解释的。
根据万有引力定律,行星受到太阳的引力作用,行星沿着椭圆轨道绕太阳运动。
2. 在地球表面上,物体受到地球的引力作用,加速度约为9.8米/秒²。
这是因为根据万有引力定律,地球的质量和物体的质量以及两者之间的距离决定了引力的大小和方向。
3. 人造卫星的运行也是通过万有引力定律来解释的。
卫星受到地球的引力作用,沿着地球表面上的轨道飞行,同时还要克服大气阻力和其他外力的影响。
4. 万有引力定律也可以用来解释天体的引力束缚。
例如,引力束缚是在双星系统中观察到的现象,其中两个星体以互相围绕的方式相互吸引。
5. 万有引力定律还可以用来解释地球潮汐现象。
地球和月球之间的引力相互作用导致地球潮汐的形成,使得海洋表面上的水产生周期性的涨落。
这些是万有引力定律在物理学和天文学中的一些应用例题。
它提供了解释和预测天体运动和相互作用的基本原理。
高一物理天体运动测试题
高一物理天体运动测试题一.选择题1. 人造卫星在运行中因受高空稀薄空气的阻力作用,绕地球运转的轨道半径会慢慢减小,在半径缓慢变化过程中,卫星的运动还可近似当作匀速圆周运动;当它在较大的轨道半径r 1上时运行线速度为v 1,周期为T 1,后来在较小的轨道半径r 2上时运行线速度为v 2,周期为T 2,则它们的关系是A .v 1﹤v 2,T 1﹤T 2B .v 1﹥v 2,T 1﹥T 2C .v 1﹤v 2,T 1﹥T 2D .v 1﹥v 2,T 1﹤T 22. 两个质量均为M 的星体,其连线的垂直平分线为AB;O 为两星体连线的中点,如图,一个质量为M 的物体从O 沿OA 方向运动,则它受到的万有引力大小变化情况是A.一直增大B.一直减小C.先减小,后增大D.先增大,后减小3. 土星外层上有一个土星环,为了判断它是土星的一部分还是土星的卫星群,可以测量环中各层的线速度v 与该层到土星中心的距离R 之间的关系来判断 ① 若v R ∝,则该层是土星的一部分 ②2v R ∝,则该层是土星的卫星群.②③若1v R ∝,则该层是土星的一部分 ④若21v R∝,则该层是土星的卫星群.以上说法正确的是A. ①②B. ①④C. ②③D. ②④4. 假如地球自转速度增大,关于物体重力的下列说法中不正确的是 A 放在赤道地面上的物体的万有引力不变 B.放在两极地面上的物体的重力不变 C 赤道上的物体重力减小 D 放在两极地面上的物体的重力增大5.在太阳黑子的活动期,地球大气受太阳风的影响而扩张,这样使一些在大气层外绕地球飞行的太空垃圾被大气包围,而开始下落;大部分垃圾在落地前烧成灰烬,但体积较大的则会落到地面上给我们造成威胁和危害.那么太空垃圾下落的原因是A .大气的扩张使垃圾受到的万有引力增大而导致的B .太空垃圾在燃烧过程中质量不断减小,根据牛顿第二定律,向心加速度就会不断增大,所以垃圾落向地面C .太空垃圾在大气阻力的作用下速度减小,那么它做圆运动所需的向心力就小于实际受到的万有引力,因此过大的万有引力将垃圾拉向了地面D .太空垃圾上表面受到的大气压力大于下表面受到的大气压力,所以是大气的力量将它推向地面的6.用 m 表示地球通讯卫星同步卫星的质量,h 表示它离地面的高度,R 表示地球的半径,g 表示地球表面处的重力加速度,ω表示地球自转的角速度,则通讯卫星所受万有引力的大小为A.等于零B.等于22()R g mR h + C.等于342ωg R m D.以上结果都不正确7. 关于第一宇宙速度,下列说法不正确的是A 第一宇宙速度是发射人造地球卫星的最小速度B .第一宇宙速度是人造地球卫星环绕运行的最大速度C .第一宇宙速度是地球同步卫星环绕运行的速度D .地球的第一宇宙速度由地球的质量和半径决定的8.如图5-1所示,以s 的水平速度v 0抛出的物体,飞行一段时间后垂直地撞在倾角为θ=30°的斜面上,可知物体完成这段飞行的时间是 A .s 33 B .s 332 C .3 s D .2s9、某人造地球卫星绕地球做匀速圆周运动,假如它的轨道半径增加到原来的n 倍后,仍能够绕地球做匀速圆周运动,则A .根据r vω=,可知卫星运动的线速度将增大到原来的n 倍;B .根据rmv F 2=,可知卫星受到的向心力将减小到原来的n1倍;C .根据2r GMm F =,可知地球给卫星提供的向心力将减小到原来的21n 倍;D .根据rmv rGMm 22,可知卫星运动的线速度将减小到原来的n1倍;10、设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度之比为k 均不计空气阻力,且已知地球和该天体的半径之比也为k,则地球质量与天体的质量之比为 A. 1 B. K C. K 2D. 1/K11.假设在质量与地球质量相同,半径为地球半径两倍的天体上进行运动比赛,那么与在地球上的比赛成绩相比,下列说法正确的是A .跳高运动员的成绩会更好B .用弹簧秤称体重时,体重数值变得更大C .从相同高度由静止降落的棒球落地的时间会更短些D .用手投出的篮球,水平方向的分速度变化更慢 12.在地球大气层外有很多太空垃圾绕地球做匀速圆周运动,每到太阳活动期,由于受太阳的影响,地球大气层的厚度开始增加,使得部分垃圾进入大气层.开始做靠近地球的近心运动,产生这一结果的初始原因是 A .由于太空垃圾受到地球引力减小而导致做近心运动 B .由于太空垃圾受到地球引力增大而导致做近心运动 C .由于太空垃圾受到空气阻力而导致做近心运动D .地球引力提供了太空垃圾做匀速圆周运动所需的向心力,故产生向心运动的结果与空气阻力无关13.西昌卫星发射中心的火箭发射架上,有一待发射的卫星,它随地球自转的线速度为v 1、加速度为a 1;发射升空后在近地轨道上做匀速圆周运动,线速度为v 2、加速度为a 2;实施变轨后,使其在同步卫星轨道上做匀速圆周运动,运动的线速度为v 3、加速度为a 3;则v 1、v 2、v 3的大小关系和a 1、a 2、a 3的大小关系是A .v 2>v 3>v 1;a 2<a 3<a 1B .v 2>v 3< v 1;a 2>a 3>a 1C .v 2>v 3>v 1;a 2>a 3>a 1D .v 3> v 2>v 1;a 2>a 3>a 1年1月发射的“月球勘探者”空间探测器,运用最新科技手段对月球进行近距离勘探,在月球重力分布,磁场分布及元素测定等方面取得了新成果,探测器在一些环形山中发现了质量密集区,当飞到这些质量密集区时,通过地面的大口径射电望远镜观察,“月球勘探者”的轨道参数发生了微小变化,这些变化是 A .半径变小 B.半径变大 C.速率变小 D.速率变大15.一质量为m 的物体,沿半径为R 的向下凹的圆形轨道滑行,如图所示,经过最低点的速度为v,物体与轨道之间的动摩檫因数为μ,则它在最低点时受到的摩檫力为 A .μmg B .μmv 2/R C .μmg+v 2/R D .μmg-v 2/R二.填空题16题6分,17题4分,18题4分16. 1957年10月4日,前苏联发射了世界上第一颗人造地球卫星以来,人类活动范围从陆地、海洋、大气层扩展到宇宙空间,宇宙空间成为人类的第四疆域,人类发展空间技术的最终目的是开发太空资源.1宇航员在围绕地球做匀速圆周运动的航天飞机中,会处于完全失重的状态,下列说法正确的是 A. 宇航员仍受重力作用 B. 宇航员受力平衡C.重力正好为向心力D. 宇航员不受任何力的作用2宇宙飞船要与空间站对接,飞创为了追上空间站 A.只能从较低轨道上加速 B.只能从较高轨道上加速 C. 只能从空间站同一高度上加速 D.无论在什么轨道上,只要加速都行3.已知空间站周期为T ,地面重力加速度约为g ,地球半径为R.由此可计算出国际空间站离地面的高度为________ 17.了充分利用地球自转的速度,人造卫星发射时,火箭都是从 向_______ 填东、南、西、北发射;考虑这个因素,火箭发射场应建在纬度较 填高或低的地方较好; .18.侦察卫星在通过地球两极上空的圆轨道上运动,它的运动轨道距地面高度为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是________.设地球的半径为R ,地面处的重力加速度为g ,地球自转的周期为T . 三.计算题20、9分已知地球半径为R,地球表面的重力加速度为g,地球自转的周期为T,试求地球同步卫星的向心加速度大小; 21、10分晴天晚上,人能看见卫星的条件是卫星被太阳照着且在人的视野之内;一个可看成漫反射体的人造地球卫星的圆形轨道与赤道共面,卫星自西向东运动;春分期间太阳垂直射向赤道,赤道上某处的人在日落后8小时时在西边的地平线附近恰能看到它,之后极快地变暗而看不到了;已知地球的半径m104.6R 6⨯=地,地面上的重力加速度为2s /m 10,估算:答案要求精确到两位有效数字1卫星轨道离地面的高度; 2卫星的速度22. 10分发射地球同步卫星时,可认为先将卫星发射至距地面高度为h 1的圆形轨道上,在卫星经过A 点时点火喷气发动机工作实施变轨进入椭圆轨道,椭圆轨道的近地点为A ,远地点为B .在卫星沿椭圆轨道运动经过B 点再次点火实施变轨,将卫星送入同步轨道远地点B 在同步轨道上,如图所示.两次点火过程都使卫星沿切线方向加速,并且点火时间很短.已知同步卫星的运动周期为T ,地球的半径为R ,地球表面重力加速度为g ,求: ⑴卫星在近地圆形轨道运行接近A 点时的加速度大小; ⑵卫星同步轨道距地面的高度.23. 12分现代观测表明,由于引力的作用,恒星有“聚焦”的特点,众多的恒星组成不同层次的恒星系统,最简单的恒星系统是两颗互相绕转的双星.它们以两者连线上的某点为圆心做匀速圆周运动,这样就不至于由于万有引力的作用而吸引在一起.设某双星中A 、B 两星的质量分别为 m 和 3m,两星间距为L,在相互间万有引力的作用下,绕它们连线上的某点O 转动,则O 点距B 星的距离是多大它们运动的周期为多少24 10分.宇宙中某星体每隔×10-4s 就向地球发出一次电磁波脉冲.有人曾经乐观地认为,这是外星人向我们地球人发出的联络信号,而天文学家否定了这种观点,认为该星体上有一个能连续发出电磁波的发射源,由于星体围绕自转轴高速旋转,才使得地球上接收到的电磁波是不连续的.试估算该星体的最小密度.结果保留两位有效数字 注:星体的最小密度是保持星体表面物体不脱离星体2510分.已知物体从地球上的逃逸速度第二宇宙速度v 2=R Gm 2,其中G 、m 、R 分别是引力常量、地球的质量和半径;已知G =×10-11N ·m 2/kg 2,c =×108m/s;求下列问题:1逃逸速度大于真空中光速的天体叫作黑洞,设某黑洞的质量等于太阳的质量m =×1030kg,求它的可能最大半径;2在目前天文观测范围内,物质的平均密度为10-27kg/m 3,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c ,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大 参考答案C DBAC CBC C B CD CACCAD AD161A 、C ;宇航员仍受重力作用,此力提供宇航员做圆周运动的向心力;2A,当卫星在其轨道上加速时,F 引小于向心力,故要做离心运动,从而使半径增大;3万有引力提供向心力有:2222Mm G m r r T π⎛⎫= ⎪⎝⎭2g Mm G m R =其中r =R+h 由上述三式可求得2232gT h=4Rπ17. 西、 东、低;在纬度较低的地方地球自转的线速度较大18.侦察卫星绕地球做匀速圆周运动的周期设为T 1,则 21224T rm r GMm π= ①地面处的重力加速度为g ,则B 同步轨道地球 A20R GMm =m 0g ②由上述两式得到卫星的周期T 1=gr R32π其中r =h+R,地球自转的周期为T ,在卫星绕行一周时,地球自转转过的角度为θ=2πTT 1,摄像机应拍摄赤道圆周的弧长为s =Rθ 得s =gR h T 32)(4+π20.21解:从北极沿地轴往下看的地球俯视图如图所示,设卫星离地高h,Q 点日落后8小时时能看到它反射的阳光;日落8小时Q 点转过的角度设为θ1︒=︒⨯=θ120360248轨道高地地R 2cos Rh -θ=m104.6160cos 1104.666⨯=-︒⨯⨯=)(2因为卫星轨道半径地R 2h r r =+=根据万有引力定律,引力与距离的平方成反比卫星轨道处的重力加速度2r s /m 5.2g 41g ==地r 'g v =s /m 107.5104.625.236⨯=⨯⨯⨯=s/m 106.53⨯同样给分22.⑴()g h R R a A212+=⑵R T gR h -=322224π23.解:设O 点距B 星的距离为x ,双星运动的周期为T,由万有引力提供向心力.对于B 星:G 错误!= 3mx 错误!2对于A 星:G 错误!= mL-x 错误!2∴ 错误!= 3 即 x = 错误!L∴ T =πL 错误! 3分24.解:接收电磁波脉冲的间隔时间即是该星体自转的最大周期 星体表面物体不脱离星体时满足:G 错误! = mR 错误!2 而M =错误!πR 3ρ ∴ρ= 错误! 代入已知数据得:ρ=×1017kg/m 325.1任何天体均存在其所对应的逃逸速度v 2=RGm2,其中m 、R 为天体的质量和半径;黑洞,其逃逸速度大于真空中的光速 ,即v 2>c ,R <22c Gm =283011)109979.2(1098.11067.62⨯⨯⨯⨯⨯-m =×103m,即质量为×1030kg 的黑洞的最大半径为×103m.2把宇宙视为普通天体,则其质量m =ρ·V =ρ·34πR 3------①其中R 为宇宙的半径,ρ为宇宙的密度,则宇宙的逃逸速度为v 2=RGm2------②由于宇宙密度使得其逃逸速度大于光速c ,即v 2>c-------③则由以上三式可得R =×1026m,合×1010光年;即宇宙的最小半径。
高中物理必修二第六章万有引力与航天测试(附答案)
2019年人教版新课标高中物理单元专题卷万有引力与航天第Ⅰ卷(选择题,共48分)一、选择题(本题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错的得0分)1.人类对天体运动的认识,经历了一个漫长的发展过程,以下说法正确的是( ) A .亚里士多德提出了日心说,迈出了人类认识宇宙历程中最艰难而重要的一步 B .第谷通过观察提出行星绕太阳运动的轨道是椭圆C .牛顿在前人研究的基础上发现和总结出万有引力定律,并测出了万有引力常量D .海王星的发现验证了万有引力定律的正确性,显示了理论对实践的巨大指导作用 2.下列说法不正确的是( )A .绝对时空观认为空间和时间是独立于物体及其运动而存在的B .相对论时空观认为物体的长度会因物体的速度不同而不同C .牛顿力学只适用于宏观物体、低速运动问题,不适用于高速运动的问题D .当物体的运动速度远小于光速时,相对论和牛顿力学的结论仍有很大的区别3.长期以来“卡戎星(Charon )”被认为是冥王星唯一的卫星,它的公转轨道半径119600 km r =,公转周期1 6.39T =天。
2006年3月,天文学家又发现冥王星的两颗小卫星,其中一颗的公转轨道半径248000 km r =,则它的公转周期2T 最接近于( ) A .15天 B .25天 C .35天D .45天4.如图为“嫦娥一号”卫星撞月的模拟图,卫星从控制点开始沿撞月轨道在撞击点成功撞月。
假设卫星绕月球做圆周运动的轨道半径为R ,周期为T ,引力常量为G ,根据以上信息,可以求出( )A .月球的质量B .地球的质量C .“嫦娥一号”卫星的质量D .月球对“嫦娥一号”卫星的引力5.星球上的物体脱离星球引力所需要的最小速度称为第二宇宙速度。
某星球的第二宇宙速度2v 与第一宇宙速度1v 的关系是212v v =,已知该星球的半径为r ,它表面的重力加速度为地球重力加速度g 的16。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.发现万有引力定律和测出引力常量的科学家分别是()
A.开普勒、卡文迪许B.牛顿、伽利略
C.牛顿、卡文迪许D.开普勒、伽利略
2.若已知太阳的一个行星绕太阳运转的轨道半径为r,周期为'T,引力常量为G,则可求得()A.该行星的质量B.太阳的质量
C.该行星的平均密度D.太阳的平均密度
3.我国是世界上能够发射地球同步卫星的少数国家之一,关于同步卫星正确的说法是()A.可以定点在南京上空
B.运动周期与地球自转周期相同的卫星肯定是同步卫星
C.同步卫星内的仪器处于超重状态
D.同步卫星轨道平面与赤道平面重合
4.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星,相对自己而言静止不动,则这两位观察者的位置以及两颗人造地球卫星到地球中心的距离可能是()
A.一人在南极,一人在北极,两卫星到地球中心的距离一定相等
B.一人在南极,一个在北极,两卫星到地球中心的距离可以不等,但应成整数倍
C.两人都在赤道上,两卫星到地球中心的距离一定相等
D.两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍
5.地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a,要使赤道上物体“飘”起来,则地球的转速应为原来的( )
A.g
a
B
C
D
6.火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆。
已知火卫一的周期为7小时39分,火卫二的周期为30小时18分,则两颗卫星相比()
A.火卫一距火星表面较近B.火卫二的角速度较大
C.火卫一的运动速度较大D.火卫二的向心加速度较大
7.两个行星A和B各有一颗卫星a和b。
卫星的圆轨道接近各自行星的表面。
如果两行星质量之比M A : M B = p,两行星半径之比R A : R B = q,则两卫星周期之比T a : T b为()
A
.B
.C
.D
8.已知地球和火星的质量之比:8:1
M M=
地火,半径比:2:1
R R=
地火
,表面动摩擦因数均为0.5,用一根绳在地
球上拖动一个箱子,箱子能获得10m/s2的最大加速度,将此箱和绳送上火星表面,仍用该绳子拖动木箱(使用同样大的力),则木箱产生的最大加速度为()
A.10m/s2B.12.5m/s2C.7.5m/s2D.15m/s2
9.2003年2月1日美国“哥伦比亚”号航天飞机在返回途中解体,造成人类航天史上又一悲剧。
若“哥伦比亚”号航天飞机是在赤道上空飞行,轨道半径为r,飞行方向与地球的自转方向相同。
设地球的自转角速度为ω0,地球半径为R,地球表面重力加速度为g。
在某时刻航天飞机通过赤道上某建筑物的上方,则到它下次通过该建筑物上方所需时间为()
A
.
2/)
πωB
.
1
2)
π
ω
C
.2D
.
2/)
πω
10.地球绕太阳公转的轨道半径r = 1.49×1011m,公转周期T = 3.16×107s,万有引力恒量G = 6.67×10-11N·m2/kg2。
则太阳质量的表达式M = __________,其值约为_________kg。
(取一位有效数字)
11.空间探测器进入某行星引力范围以后,在靠近该行星表面的上空做圆周运动。
测得运动周期为T,则这个
行星的平均密度ρ = ___________。
12.设地球半径为R,一颗人造卫星在离地面高度为R的圆形轨道上运行,它的运行速度是第一宇宙速度的______倍。
13.所谓“双星”就是两颗相距较近的恒星。
这两颗星各自以一定速率绕某一中心转动才不致由于万有引力而吸在一起。
已知它们的质量分别为M1和M2,相距为L。
它们的轨道半径之比r1 : r2 = __________;线速度大小之比v1 : v2 = _________;转动中心O的位置距M1为__________;它们转动的角速度为___________。
14.某星球的自转周期为T,在它的两极处用弹簧秤秤得某物重W,在赤道出称得该物重'
W,则该星球的平均密度ρ = ___________。
15.木星到太阳的距离约等于地球到太阳距离的5.2倍,如果地球在轨道上的公转速度为30 km/s,则木星在其轨道上公转的速度等于___________。
16.有关天体的质量、密度等物理量的计算。
求恒星(或行星)的质量,大致有四种解法:
(1)已知恒星的一个行星(或行星的一个卫星)的公转周期T和轨道半径R。
(2)已知恒星的一个行星(或行星的一个卫星)的绕行速度(线速度)v和轨道半径R。
(3)已知恒星(或行星)的自转周期T、赤道半径R、赤道处重力加速度g赤道。
(4)已知恒星(或行星)极半径R,两极处重力加速度g极。
以求地球的质量M为例,已知引力常量G。
分别用(1)~(4)中给出的条件,列式子求解M。
17.中子星是恒星演化过程的一种可能结果,它的密度很大。
现有一中子星,观测到它的自转周期为T=1
30
s。
问该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转而瓦解。
(计算时星体可视为均匀球体
18.月球的质量是地球的1/81,月球半径是地球半径的1/3.8,如果分别在地球上和月球上都用同一初速度竖直上抛一个物体(阻力不计),两者上升高度比为多少?。