信号与系统实验4傅里叶分析

合集下载

信号与系统 吴大正 第四章 傅立叶变换和系统的频域分析

信号与系统 吴大正 第四章 傅立叶变换和系统的频域分析

4.2 傅里叶级数
3 .f(t)为奇谐函数—f(t) = –f(t±T/2) 此时 其傅里叶级数中只含奇次谐波分量,而不含偶 次谐波分量即 a0=a2=…=b2=b4=…=0
f(t) 0 T/2 T t
4.3 周期信号(Periodic Signal)的频谱
周期信号的频谱 周期矩形脉冲的频谱 从广义上说,信号的某种特征量随信号频率变化的关 系,称为信号的频谱,所画出的图形称为信号的频谱图。 周期信号的频谱是指周期信号中各次谐波幅值、相位 随频率的变化关系,即将An~ω和n~ω的关系分别画在以ω 为横轴的平面上得到的两个图,分别称为振幅频谱图和相 位频谱图。因为n≥0,所以称这种频谱为单边谱。 也可画|Fn|~ω和n~ω的关系,称为双边谱。若Fn为实 数,也可直接画Fn 。
“非周期信号都可用正弦信号的加权积分表示”
——傅里叶的第二个主要论点
4.2 傅里叶级数
周期信号展开的无穷级数成为傅里叶级数,分“三角型傅里 叶级数”和“指数型傅里叶级数”,只有当周期信号满足狄 里赫利条件时,才能展开成傅里叶级数。 狄利赫利条件(Dirichlet condition)

t 0 T
2 T bn 2T f (t )sin(nt ) d t T 2
任意函数f(t)都可分解为奇函数和偶函数两部分, 由于f(-t) = -fod(t) + fev(t) ,所以 f (t ) f (t ) f (t ) f (t ) f e v (t ) f od (t ) 2 2
4.2 傅里叶级数
三角形式 指数形式 奇偶函数的傅里叶级数
e jx e jx 由于 cos x 2
A0 f (t ) An cos( n t n ) 2 n 1

《信号与系统》第四章

《信号与系统》第四章

图 两个矢量正交
矢量的分解
c2V2
V
V2
2
o
1
V1
c1V1
图 平面矢量的分解
c3V3
V3
V
o V1
V2
c2V2
c1V1
V c1V1 c2V2 c3V3
图 三维空间矢量的分解
推广到n维空间
1 正交函数的定义
在区间 (t1,t内2 ),函数集 {0 (t),1(t中),的,各N个(t)函} 数间,若满足下列 正交条件:
➢在波形任一周期内,其第二个半波波形与第一个半波波形相同;
x(t) x(t T0 / 2)
➢这时x(t)是一个周期减半为
的周期非正弦波,其基波频率

,即其只含有偶次谐T0波2;
20
4.4波形对称性与傅里叶系数
4 奇半波对称
➢在波形任一周期内,其第二个半周波形恰为第一个半周波形的
负值; x(t) x(t T0 / 2)
交函数集 {0 (t),1(t), ,N (t)} 是完备的,即再也找不到一个函数 (t)
能满足
t2
(t)
* m
(t
)dt
0
t1
m 0,1, , N
则在区间 (t1,t2 ) 内,任意函数x(t)可以精确地用N+1个正交函数地加权和
表示:
N
x(t) c00 (t) c11(t) cN N (t) cnn (t)
T0
3 傅里叶级数系数的确定
➢正弦—余弦形式傅里叶级数的系数
2Bk
2 T0
x(t) cos k0tdt
T0
2Dk
2 T0
x(t) sin k0tdt

何子述信号与系统习题解答第4章连续时间傅里叶分析(2012新)

何子述信号与系统习题解答第4章连续时间傅里叶分析(2012新)

2 2 3j 1
F δ t 1 δ
n
j t
F
n
再由傅里叶变换的线性,可得 h t 为
h t 2 t 3¢ t t
(c)同理可得
j Y 6Y j F 2 j F 3F
何子述
高等教育出版社
h t
题 4.8 解:
sin 1t πt
δ t
sin 2 t πt
该题中的单边带通滤波器的频率响应可看成是一个截止频率为 c 的低通滤波器的 频率响应在频谱上的一个搬移,搬移量为 3c ,由第三章傅里叶变化的频移特性知,信 号在时域乘以一个复指数信号 e j0t 后,其傅里叶变换在频域上平移 0 。 由主教材式(4.2.2)知,低通滤波器的冲激响应为
h t
由上可知,一定存在一个信号 g t ,使得
sin c t t
h t
且 g t 为
sin c t πt
g t
g t e j3c t
题 4.9 解: 由主教材式(4.2.1)知,理想低通滤波器的频率响应为
1, H 0,
由主教材式(4.2.2)知,其冲激响应为
c c

h t
sin c t πt
由主教材式(4.1.3)知,系统频率响应 H 可表示为
H H e jH
(a)由上式知,该滤波器对应的频率响应为
H1 H e
0 c c 0 其他
上式可看成截止频率为 c / 2 的低通滤波器被频移至 c / 2 和 c / 2 ,并分别乘上幅度 j 和 j ,且截止频率为 c / 2 的低通滤波器可表示为 H 2 ,所以 H 3 可表示为

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。

二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种。

1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

Matlab中进行数值积分运算的函数有quad函数和int函数。

其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。

因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。

quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

傅里叶分析实验报告

傅里叶分析实验报告

班级:姓名: 学号: 实验日期:一、实验名称脉搏、语音及图像信号的傅里叶分析二、实验目的1、了解常用周期信号的傅里叶级数表示。

2、了解周期脉搏信号、语音信号及图像信号的傅里叶分析过程3、理解体会傅里叶分析的理论及现实意义三、实验仪器脉搏语音实验仪器,数字信号发生器,示波器四、实验原理1、周期信号傅里叶分析的数学基础任意一个周期为T 的函数f(t)都可以表示为傅里叶级数:00010000000001()(cos sin )21()()1()cos()()1()sin()()n n n n n f t a a n t b n t a f t d t a f t n t d t b f t n t d t ππππππωωωωπωωωπωωωπ∞=---=++===∑⎰⎰⎰ 其中0ω为角频率,称为基频,0a 为常数,n a 和n b 称为第n 次谐波的幅值。

任何周期性非简谐交变信号均可用上述傅里叶级数进行展开,即分解为一系列不同次谐波的叠加。

对于如图1所示的方波,一个周期内的函数表达式为:(0t<)2() (-t 0)2h f t h ππ⎧≤⎪⎪=⎨⎪-≤<⎪⎩其傅里叶级数展开为:0100041()()sin(21)21411(sin sin 3sin 5)35n h f t n t n h t t t ωπωωωπ∞==--=+++∑L 同理:对于如图2所示的三角波,函数表达式为:4t (-t<)44()232(1) (t )44h T T f t t T T h T π⎧≤⎪⎪=⎨⎪-≤<⎪⎩其傅里叶级数展开为:1202100022281()(1)()sin(21)21811(sin sin 3sin 5)35n n h f t n t n h t t t ωπωωωπ∞-==---=-++∑L图1 方波 图2 三角波从以上各式可知,任何周期信号都可以表示为无限多次谐波的叠加,谐波次数越高,振幅越小,它对叠加波的贡献就越小,当小至一定程度时(谐波振幅小于基波振幅的5%),则高次的谐波就可以忽略而变成有限次数谐波的叠加,这对设计仪器电路是很有意义的。

信号与线性系统分析第四章

信号与线性系统分析第四章

A0 An j ( nt n ) j ( nt n ) [e e ] 2 n 1 2
A0 1 j n jnt 1 An e e An e j n e jnt 2 2 n 1 2 n 1 第
23 页
指数形式的傅里叶形式
2 an T 2 bn T

T 2 T 2
f ( t ) cos(nt )dt f ( t ) sin ( nt )dt
第 11 页
T 2 T 2
例题1
an 0 n 2,4,6, 0, bn 4 , n 1,3,5, n
• 信号的傅里叶级数展开式为:
上式中第三项的n用–n代换,A– n=An、 – n= – n
A0 1 j n jnt 1 上式写为: An e e An e j n e jnt 2 2 n 1 2 n 1
令A0=A0ej0ej0t ,0=0 1 所以 f ( t ) An e j n e j nt 2 n
f (t )
n
F e
n

jnt
1 j cos(n )e jnt n n
第 19 页

四、周期信号的功率 —— Parseval 等式 A
f (t )
0
2
An cos(nt n )
n 1
周期信号一般是功率信号,其平均功率为
1 T
2
2
a0 f ( t ) an cos(nt ) bn sin( nt ) 2 n 1 n 1
2 .f(t)为奇函数——对称于原点
f (t ) f ( t )
4 an =0, bn T

连续时间信号与系统的傅里叶分析

连续时间信号与系统的傅里叶分析

连续时间信号与系统的傅里叶分析连续时间信号与系统的傅里叶分析是一种非常重要的数学工具和技术,广泛应用于信号处理、通信系统、控制系统等领域。

通过傅里叶分析,我们可以将一个复杂的时域信号分解成一系列简单的正弦函数(或复指数函数)的叠加,从而更好地理解和处理信号。

在傅里叶分析中,我们首先需要了解傅里叶级数和傅里叶变换两个概念。

傅里叶级数是将一个周期信号分解成一系列正弦和余弦函数的叠加。

对于一个连续时间周期为T的周期信号x(t),其傅里叶级数表示为:x(t) = a0/2 + ∑ {an*cos(nω0t) + bn*sin(nω0t)}其中,n为整数,ω0为角频率(ω0 = 2π/T),an和bn为信号的系数。

傅里叶级数展示了信号在频域上的频谱特性,即信号在不同频率上的成分。

通过傅里叶级数,我们可以得到信号的基频和各个谐波分量的振幅和相位信息。

而对于非周期信号,我们则需要使用傅里叶变换来分析。

傅里叶变换可以将一个非周期信号分解成一系列连续的正弦和余弦函数的叠加。

对于一个连续时间信号x(t),其傅里叶变换表示为:X(ω) = ∫ x(t)*e^(-jωt) dt其中,X(ω)为信号在频域上的频谱表示,ω为角频率,e为自然对数的底。

通过傅里叶变换,我们可以将信号从时域转换到频域,从而得到信号在不同频率上的成分。

同时,我们还可以通过逆傅里叶变换将信号从频域再转换回时域。

傅里叶分析的重要性在于它能够提供信号在时域和频域之间的转换关系,从而可以更好地理解信号的特性和行为。

通过傅里叶分析,我们可以确定信号的频谱特性、频率成分等信息,从而在信号处理、通信系统设计等方面进行相应的优化和调整。

除了傅里叶级数和傅里叶变换,还有诸如快速傅里叶变换(FFT)、傅里叶变换对(FT pair)、功率谱密度(PSD)等相关概念和技术。

这些工具和技术在实际应用中非常有用,例如在音频处理、图像处理、雷达信号处理等方面经常被使用。

总之,连续时间信号与系统的傅里叶分析为我们提供了一个强大的数学工具,能够将信号从时域转换到频域,揭示信号的频谱特性和频率成分,为信号处理和系统设计提供了有力支持。

信号与系统傅里叶变换

信号与系统傅里叶变换

n次谐波系数:
2
an T
T
2 T
2
f
(t) cos(n1t)dt

2 T
2 2
A cos(n1t )dt

4A
n1T
sin n1
2

An
其有效值为:
A~n
2 2
An
36
将 n 1 代入上式,得基波有效值为:
A1
2 4A sin 1 10 2 sin18 2 1T 2
45 °
图 3.3-1 (a)振幅谱; (b) 相位谱
30 ° 30 °
20 °
54
|F n |
2
1.5
1.5
1
1
1
0.4 0.2
0.4 0.2
- 6- 5 - 4- 3- 2 - o 2 3 4 5 6

(a)
n 45 °
45 °
30 ° 30 °
20 °
15° 10°
3
VxVyT VxiVyi 0
i 1
矢量正交集:指由两两正交的矢量组成的矢量集合。
如三维空间中,Vx (1, 0, 0) Vy (0,1, 0) Vz (0, 0,1) 所组成的集合就是矢量正交集,且完备。
矢量A (1, 2.5, 4) 表示为 A Vx 2.5Vy 4Vz
电子技术中的周期信号大都满足狄里赫利条件条件,当
f(t)满足狄里赫利条件时,an, bn, cn 才存在。
21
结论:周期信号可分解为各次谐波分量之和。
一般而言 An cos(n1t n ) n 称为 次谐波 ,An
是 n 次谐波的振幅, n是其初相角。

《信号与系统》离散信号的频域分析实验报告

《信号与系统》离散信号的频域分析实验报告

信息科学与工程学院《信号与系统》实验报告四专业班级电信 09-班姓名学号实验时间 2011 年月日指导教师陈华丽成绩实验名称离散信号的频域分析实验目的1. 掌握离散信号谱分析的方法:序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换,进一步理解这些变换之间的关系;2. 掌握序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换的Matlab实现;3. 熟悉FFT算法原理和FFT子程序的应用。

4. 学习用FFT对连续信号和离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。

实验内容1.对连续信号)()sin()(0tutAetx taΩα-=(128.444=A,πα250=,πΩ250=)进行理想采样,可得采样序列50)()sin()()(0≤≤==-nnunTAenTxnx nTaΩα。

图1给出了)(txa的幅频特性曲线,由此图可以确定对)(txa采用的采样频率。

分别取采样频率为1KHz、300Hz和200Hz,画出所得采样序列)(nx的幅频特性)(ωj eX。

并观察是否存在频谱混叠。

图1 连续信号)()sin()(0tutAetx taΩα-=2. 设)52.0cos()48.0cos()(nnnxππ+=(1)取)(nx(100≤≤n)时,求)(nx的FFT变换)(kX,并绘出其幅度曲线。

(2)将(1)中的)(nx以补零方式加长到200≤≤n,求)(kX并绘出其幅度曲线。

(3)取)(nx(1000≤≤n),求)(kX并绘出其幅度曲线。

(4)观察上述三种情况下,)(nx的幅度曲线是否一致?为什么?3. (1)编制信号产生子程序,产生以下典型信号供谱分析用。

11,03()8,470,n nx n n nn+≤≤⎧⎪=-≤≤⎨⎪⎩其它2()cos4x n nπ=3()sin8x n nπ=4()cos8cos16cos20x t t t tπππ=++10.80.60.40.20100200300400500xa(jf)f /Hz(2)对信号1()x n ,2()x n ,3()x n 进行两次谱分析,FFT 的变换区间N 分别取8和16,观察两次的结果是否一致?为什么?(3)连续信号4()x n 的采样频率64s f Hz =,16,32,64N =。

信号与系统里的傅里叶变换

信号与系统里的傅里叶变换

信号与系统里的傅里叶变换信号与系统是电子信息类专业中的一门重要课程,而傅里叶变换作为信号与系统中的核心概念之一,具有重要的理论和实际应用价值。

傅里叶变换是一种将时域信号转换到频域的数学工具,可以分析信号的频谱特性,并且在信号处理、通信、图像处理等领域有着广泛的应用。

傅里叶变换的基本思想是将一个时域上的信号分解成不同频率的正弦和余弦波的叠加,通过对信号进行频谱分析,可以得到信号的频率成分、幅度和相位信息。

在傅里叶变换中,信号在频域中的表示被称为频谱,频谱图可以直观地显示信号的频率分布情况,有助于我们理解和分析信号的性质。

傅里叶变换的数学表达式较为复杂,但是我们可以通过一些简单的例子来理解其基本原理。

假设我们有一个周期为T的周期信号,通过傅里叶变换,可以将这个信号分解成不同频率的正弦和余弦波的叠加。

频率最高的分量被称为基频,其余的分量则是基频的整数倍。

通过对这些分量的幅度和相位进行适当的调整,就可以还原原始信号。

傅里叶变换不仅可以分析周期信号,还可以分析非周期信号。

对于非周期信号,我们可以将其视为周期趋于无穷大的周期信号,通过傅里叶变换可以得到其频谱信息。

在实际应用中,非周期信号更为常见,例如音频信号、图像信号等都是非周期信号。

通过傅里叶变换,我们可以将这些信号转换到频域中进行分析和处理。

傅里叶变换不仅可以分析信号的频谱特性,还可以对信号进行滤波和频域处理。

滤波是指通过调整信号的频谱来实现对特定频率成分的增强或抑制。

例如,我们可以通过低通滤波器来去除高频噪声,或者通过高通滤波器来增强低频信号。

频域处理则是指在频域中对信号进行运算和处理。

例如,我们可以通过频域乘法实现信号的卷积运算,或者通过频域加法实现多个信号的叠加。

除了傅里叶变换,还有一种相关的概念叫做傅里叶级数展开。

傅里叶级数展开是将周期信号分解成一系列正弦和余弦波的叠加,不同的是,傅里叶级数展开是在时域上进行分析,而傅里叶变换是在频域上进行分析。

信号与系统 第4章-作业参考答案

信号与系统 第4章-作业参考答案

题图 4-3-1 解:
11
第四章 傅立叶分析
第 4 章 习题参考答案
4-3-7
1)x(t)是实周期信号,且周期为 6; 3)x(t) = −x(t − 3)
1 3
设某信号x(t)满足下述条件:
2)x(t)的傅里叶系数为ak ,且当k = 0 和 k > 2时,有ak = 0;
1
4) ∫−3 |x(t)|2dt = 6 2 5)a1是正实数。
第四章 傅立叶分析
第 4 章 习题参考答案
第 4 章 习题参考答案
4-1 思考题 答案暂略 4-1 练习题 4-2-2 已知三个离散时间序列分别为 x1 ( n) = cos
2πn 2πn , x3 (n) = e , x 2 (n) = sin 25 10
π x (t ) = sin 4π t + cos 6π t + 时,试求系统输出 y (t ) 的傅立叶级数。 4
解:
3
第四章 傅立叶分析
第 4 章 习题参考答案
4因果系统: y(t) + 4y(t) = x(t)
式中x(t) 为系统输入,y(t)是系统输出。在下面两种输入条件下,求输出y(t)的傅里叶级数 展开: 1)x(t) = cos2πt ;
2
2
= 3 ) f ( t ) Sa (100t ) + Sa
解:
( 60t ) 4)
sin(4π t ) , −∞ < t < ∞ πt
9
第四章 傅立叶分析
第 4 章 习题参考答案
4)T=1/4 4-2-27 设 x(t ) 是一实值信号,在采样频率 ω s = 10000π 时, x(t ) 可用其样本值唯一确定

信号与系统 傅立叶变换

信号与系统 傅立叶变换

E
F
F E Sa 2


O


有效频宽:
B 2π
相位频谱





π

或B f
1


0
π








信号与系统
2.单边指数信号
e t t 0 0 f t t0 0
f t
1
e t u(t )

O
t
F F f (t ) e t u t e j t dt

e
0

j t
dt
F
1
2 2
1 j
arctan
信号与系统
频谱图

信号与系统
与傅里叶级数的系数对比
(a) F ( ) 是一个密度函数的概念; (b) F ( ) 是一个连续谱,包含了从零到无限高频的所有频
率分量;
(c) F ( ) 各频率分量的频率不成谐波关系。
信号与系统
四.傅里叶变换存在的条件



f t d t 有限值
(充分条件)
即f t 绝对可积
0
0

e

( j ) t
dt e
0

( j ) t
1 1 2 dt = 2 2 j j
信号与系统
频谱图
2 F ( ) = 2 2
幅度频谱:
2 F = 2 2

吴大正《信号与线性系统分析》(第4版)章节题库(傅里叶变换和系统的频域分析)【圣才出品】

吴大正《信号与线性系统分析》(第4版)章节题库(傅里叶变换和系统的频域分析)【圣才出品】
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 4 章 傅里叶变换和系统的频域分析
一、选择题 1.图 4-1 所示系统由两个 LTI 子系统组成,已知子系统 H1 和 H2 的群时延分别为 τ1 和 τ2,则整个系统的群时延 τ 为( )。
图 4-1 A.τ1+τ2 B.τ1-τ2 C.τ1·τ2 D.max(τ1,τ2) 【答案】A
9.如图 4-2 所示信号 f1(t)的傅里叶发换 F1(jω)已知,求信号 f2(t)的傅里叶发 换为( )。
图 4-2
【答案】A
【解析】由题意知, f2 (t) f1(t t0 ) 。由于 f2(t)=f1(-(t+t0)),根据傅里叶 发换的反转性质和时秱性质可知, F2 ( j) F1( j)e jt0 。
4.设 f(t)的频谱函数为 F(jω),则
的频谱函数等于( )。
【答案】D
2 / 150
圣才电子书 十万种考研考证电子书、题库视频学习平台

【解析】
可写为 f[-1/2(t-6)],根据傅里叶发换的尺度发换性质,
x(at)
|
1 a
|
[x(w
/
a)],得
f[-1/2(t)]
A.x(t)=-4Sa[2π(t-3)]
B.x(t)=4Sa[2π(t+3)]
C.x(t)=-2Sa[2π(t-3)]
D.x(t)=2Sa[2π(t+3)]
【答案】A
【解析】常用的傅里叶发换对
Sa(ct)
c
G2c
()
令c 2 ,则有 4Sa(2t) 2G4 ()
ቤተ መጻሕፍቲ ባይዱ
再由傅里叶发换的时秱性质,有
4Sa[2 (t 3)] 2G4 ()e j3

信号与系统实验报告

信号与系统实验报告

实验三常见信号的MATLAB 表示及运算一、实验目的1.熟悉常见信号的意义、特性及波形2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法二、实验原理根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法;在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了;1.连续时间信号从严格意义上讲,MATLAB 并不能处理连续信号;在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号;在MATLAB 中连续信号可用向量或符号运算功能来表示; ⑴ 向量表示法对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔;向量f 为连续信号()f t 在向量t 所定义的时间点上的样值; ⑵ 符号运算表示法如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot 等函数来绘出信号的波形; ⑶ 常见信号的MATLAB 表示 单位阶跃信号单位阶跃信号的定义为:10()0t u t t >⎧=⎨<⎩方法一: 调用Heavisidet 函数首先定义函数Heavisidet 的m 函数文件,该文件名应与函数名同名即;%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为y function y= Heavisidety=t>0; %定义函数体,即函数所执行指令%此处定义t>0时y=1,t<=0时y=0,注意与实际的阶跃信号定义的区别;方法二:数值计算法在MATLAB 中,有一个专门用于表示单位阶跃信号的函数,即stepfun 函数,它是用数值计算法表示的单位阶跃函数()u t ;其调用格式为:stepfunt,t0其中,t 是以向量形式表示的变量,t0表示信号发生突变的时刻,在t0以前,函数值小于零,t0以后函数值大于零;有趣的是它同时还可以表示单位阶跃序列()u k ,这只要将自变量以及取样间隔设定为整数即可; 符号函数符号函数的定义为:10sgn()1t t t >⎧=⎨-<⎩在MATLAB 中有专门用于表示符号函数的函数sign ,由于单位阶跃信号 t 和符号函数两者之间存在以下关系:1122()sgn()t t ε=+,因此,利用这个函数就可以很容易地生成单位阶跃信号;2.离散时间信号离散时间信号又叫离散时间序列,一般用()f k 表示,其中变量k 为整数,代表离散的采样时间点采样次数;在MATLAB 中,离散信号的表示方法与连续信号不同,它无法用符号运算法来表示,而只能采用数值计算法表示,由于MATLAB 中元素的个数是有限的,因此,MATLAB 无法表示无限序列;另外,在绘制离散信号时必须使用专门绘制离散数据的命令,即stem 函数,而不能用plot 函数; 单位序列()k δ单位序列()k δ的定义为10()0k k k δ=⎧=⎨≠⎩单位阶跃序列()u k单位阶跃序列()u k 的定义为10()0k u k k ≥⎧=⎨<⎩3.卷积积分两个信号的卷积定义为:MATLAB 中是利用conv 函数来实现卷积的;功能:实现两个函数1()f t 和2()f t 的卷积;格式:g=convf1,f2说明:f1=f 1t,f2=f 2t 表示两个函数,g=gt 表示两个函数的卷积结果;三、实验内容1.分别用MATLAB 的向量表示法和符号运算功能,表示并绘出下列连续时间信号的波形: ⑴ 2()(2)()tf t e u t -=- ⑵[]()cos()()(4)2tf t u t u t π=--1 t=-1::10;t1=-1::; t2=0::10;f1=zeros1,lengtht1,ones1,lengtht2;f=2-exp-2t.f1; plott,faxis-1,10,0, syms t;f=sym'2-exp-2theavisidet'; ezplotf,-1,10;2t=-2::8;f=0.t<0+cospit/2.t>0&t<4+0.t>4; plott,f syms t;f=sym'cospit/2heavisidet-heavisidet-4 '; ezplotf,-2,8;2.分别用MATLAB 表示并绘出下列离散时间信号的波形: ⑵ []()()(8)f t k u k u k =-- ⑶()sin()()4k f k u k π= 2 t=0:8; t1=-10:15;f=zeros1,10,t,zeros1,7; stemt1,faxis-10,15,0,10; 3 t=0:50; t1=-10:50;f=zeros1,10,sintpi/4; stemt1,faxis-10,50,-2,23.已知两信号1()(1)()f t u t u t =+-,2()()(1)f t u t u t =--,求卷积积分12()()()g t f t f t =*,并与例题比较;t1=-1::0; t2=0::1; t3=-1::1;f1=onessizet1; f2=onessizet2; g=convf1,f2;subplot3,1,1,plott1,f1; subplot3,1,2,plott2,f2; subplot3,1,3,plott3,g;与例题相比较,gt 的定义域不同,最大值对应的横坐标也不同;4.已知{}{}12()1,1,1,2,()1,2,3,4,5f k f k ==,求两序列的卷积和 ;N=4; M=5; L=N+M-1; f1=1,1,1,2;f2=1,2,3,4,5; g=convf1,f2; kf1=0:N-1; kf2=0:M-1; kg=0:L-1;subplot1,3,1,stemkf1,f1,'k';xlabel'k'; ylabel'f1k';grid onsubplot1,3,2,stemkf2,f2,'k';xlabel'k'; ylabel'f2k';grid onsubplot1,3,3;stemkg,g,'k';xlabel'k'; ylabel'gk';grid on 实验心得:第一次接触Mutlab 这个绘图软件,觉得挺新奇的,同时 ,由于之前不太学信号与系统遇到一些不懂的问题,结合这些图对信号与系统有更好的了解;实验四 连续时间信号的频域分析一、实验目的1.熟悉傅里叶变换的性质 2.熟悉常见信号的傅里叶变换3.了解傅里叶变换的MATLAB 实现方法二、实验原理从已知信号()f t 求出相应的频谱函数()F j ω的数学表示为:()F j ω()j t f t e dt ω∞--∞=⎰傅里叶反变换的定义为:1()()2j t f t F j e d ωωωπ∞-∞=⎰在MATLAB 中实现傅里叶变换的方法有两种,一种是利用MATLAB 中的Symbolic Math Toolbox 提供的专用函数直接求解函数的傅里叶变换和傅里叶反变换,另一种是傅里叶变换的数值计算实现法;1.直接调用专用函数法①在MATLAB 中实现傅里叶变换的函数为:F=fourier f 对ft 进行傅里叶变换,其结果为Fw F =fourierf,v 对ft 进行傅里叶变换,其结果为Fv F=fourier f,u,v 对fu 进行傅里叶变换,其结果为Fv ②傅里叶反变换f=ifourier F 对Fw 进行傅里叶反变换,其结果为fx f=ifourierF,U 对Fw 进行傅里叶反变换,其结果为fu f=ifourier F,v,u 对Fv 进行傅里叶反变换,其结果为fu 注意:1在调用函数fourier 及ifourier 之前,要用syms 命令对所有需要用到的变量如t,u,v,w 等进行说明,即要将这些变量说明成符号变量;对fourier 中的f 及ifourier 中的F 也要用符号定义符sym 将其说明为符号表达式;2采用fourier 及fourier 得到的返回函数,仍然为符号表达式;在对其作图时要用ezplot 函数,而不能用plot 函数;3fourier 及fourier 函数的应用有很多局限性,如果在返回函数中含有δω等函数,则ezplot 函数也无法作出图来;另外,在用fourier 函数对某些信号进行变换时,其返回函数如果包含一些不能直接表达的式子,则此时当然也就无法作图了;这是fourier 函数的一个局限;另一个局限是在很多场合,尽管原时间信号ft 是连续的,但却不能表示成符号表达式,此时只能应用下面介绍的数值计算法来进行傅氏变换了,当然,大多数情况下,用数值计算法所求的频谱函数只是一种近似值;2、傅里叶变换的数值计算实现法严格说来,如果不使用symbolic 工具箱,是不能分析连续时间信号的;采用数值计算方法实现连续时间信号的傅里叶变换,实质上只是借助于MATLAB 的强大数值计算功能,特别是其强大的矩阵运算能力而进行的一种近似计算;傅里叶变换的数值计算实现法的原理如下: 对于连续时间信号ft,其傅里叶变换为:其中τ为取样间隔,如果ft 是时限信号,或者当|t|大于某个给定值时,ft 的值已经衰减得很厉害,可以近似地看成是时限信号,则上式中的n 取值就是有限的,假定为N,有: 若对频率变量ω进行取样,得: 通常取:02k k k MM ωπωτ==,其中0ω是要取的频率范围,或信号的频带宽度;采用MATLAB 实现上式时,其要点是要生成ft 的N 个样本值()f n τ的向量,以及向量k j n eωτ-,两向量的内积即两矩阵的乘积,结果即完成上式的傅里叶变换的数值计算;注意:时间取样间隔τ的确定,其依据是τ必须小于奈奎斯特Nyquist 取样间隔;如果ft 不是严格的带限信号,则可以根据实际计算的精度要求来确定一个适当的频率0ω为信号的带宽;三、 实验内容1.编程实现求下列信号的幅度频谱1 求出1()(21)(21)f t u t u t =+--的频谱函数F 1jω,请将它与上面门宽为2的门函数()(1)(1)f t u t u t =+--的频谱进行比较,观察两者的特点,说明两者的关系;2 三角脉冲21||||1()0||1t t f t t -≤⎧=⎨>⎩3 单边指数信号3()()tf t e t ε-=4 高斯信号23()t f t e -=1 syms t w Gt=sym'Heaviside2t+1-Heaviside2t-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0与()(1)(1)f t u t u t =+--的频谱比较,1()(21)(21)f t u t u t =+--的频谱函数F 1jω最大值是其的1/2; 2syms t w;Gt=sym'1+tHeavisidet+1-Heavisidet+1-tHeavisidet-Heavisidet-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0 3syms t w Gt=sym'exp-tHeavisidet';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi -1 2 4syms t w Gt=sym'exp-t^2';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; ezplotFFw,-30 30;grid; axis-30 30 -1 22.利用ifourier 函数求下列频谱函数的傅氏反变换122()16F j j ωωω=-+ 222()58()()65j j F j j j ωωωωω+-=++1syms t w Fw=sym'-i2w/16+w^2'; ft=ifourierFw,w,t; ft运行结果: ft =-exp4theaviside-t+exp-4theavisidet 2syms t wFw=sym'iw^2+5iw-8/iw^2+6iw+5'; ft=ifourierFw,w,t; ft运行结果: ft =diract+-3exp-t+2exp-5theavisidet实验心得matlab 不但具有数值计算能力,还能建模仿真,能帮助我们理解不同时间信号的频域分析;实验五 连续时间系统的频域分析一、实验目的1. 学习由系统函数确定系统频率特性的方法;2. 学习和掌握连续时间系统的频率特性及其幅度特性、相位特性的物理意义;3.通过本实验了解低通、高通、带通、全通滤波器的性能及特点;二、实验原理及方法频域分析法与时域分析法的不同之处主要在于信号分解的单元函数不同;在频域分析法中,信号分解成一系列不同幅度、不同频率的等幅正弦函数,通过求取对每一单元激励产生的响应,并将响应叠加,再转换到时域以得到系统的总响应;所以说,频域分析法是一种变域分析法;它把时域中求解响应的问题通过 Fourier 级数或 Fourier 变换转换成频域中的问题;在频域中求解后再转换回时域从而得到最终结果;在实际应用中,多使用另一种变域分析法:复频域分析法,即 Laplace 变换分析法;所谓频率特性,也称频率响应特性,是指系统在正弦信号激励下稳态响应随频率变化的情况,包括幅度随频率的响应和相位随频率的响应两个方面;利用系统函数也可以确定系统频率特性,公式如下:幅度响应用()ωj H 表示,相位响应用)(ωϕH 表示;本实验所研究的系统函数Hs 是有理函数形式,也就是说,分子、分母分别是m 、n 阶多项式; 要计算频率特性,可以写出为了计算出()ωj H 、)(ωϕH 的值,可以利用复数三角形式的一个重要特性: 而⎥⎦⎤⎢⎣⎡+=2sin 2cosππωωj j ,则()⎥⎦⎤⎢⎣⎡+=2sin 2cos ππωωn j n j n n利用这些公式可以化简高次幂,因此分子和分母的复数多项式就可以转化为分别对实部与虚部的实数运算,算出分子、分母的实部、虚部值后,最后就可以计算出幅度()ωj H 、相位)(ωϕH 的值了;三、实验内容a)sm m ms H )(1)(2-+=,m 取值区间 0,1,绘制一组曲线 m=,,,,; b) 绘制下列系统的幅频响应对数曲线和相频响应曲线,分析其频率特性; a %figurealpha=,,,,;colorn='r' 'g' 'b' 'y' 'k'; % r g b y m c k 红,绿,蓝,黄,品红,青,黑 for n=1:5b=0 alphan; % 分子系数向量a=alphan-alphan^2 1; % 分母系数向量 printsysb,a,'s' Hz,w=freqsb,a; w=w./pi; magh=absHz;zerosIndx=findmagh==0; maghzerosIndx=1; magh=20log10magh; maghzerosIndx=-inf; angh=angleHz;angh=unwrapangh180/pi; subplot1,2,1plotw,magh,colornn;hold onsubplot1,2,2plotw,angh,colornn;hold onendsubplot1,2,1hold offxlabel'特征角频率\times\pi rad/sample' title'幅频特性曲线 |Hw| dB';subplot1,2,2hold offxlabel'特征角频率 \times\pi rad/sample' title'相频特性曲线 \thetaw degrees';b1 %b=1,0; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';2 %b=0,1,0; % 分子系数向量a=1,3,2; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';3 %b=1,-1; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';实验心得:虽然之前用公式转换到频域上分析,但是有时会觉得挺抽象的,不太好理解;根据这些图像结合起来更进一步对信号的了解;同时,这个在编程序时,虽然遇到一些问题,但是总算解决了;实验六离散时间系统的Z域分析一、 实验目的1. 学习和掌握离散系统的频率特性及其幅度特性、相位特性的物理意义;2. 深入理解离散系统频率特性和对称性和周期性;3. 认识离散系统频率特性与系统参数之间的系统4.通过阅读、修改并调试本实验所给源程序,加强计算机编程能力; 二、 实验原理及方法对于离散时间系统,系统单位冲激响应序列)(n h 的 Fourier 变换)(ωj e H 完全反映了系统自身的频率特性,称)(ωj eH 为离散系统的频率特性,可由系统函数)(z H 求出,关系式如下:ωωj j e z z H e H ==)()( 6 – 1由于ωj e是频率的周期函数,所以系统的频率特性也是频率的周期函数,且周期为π2,因此研究系统频率特性只要在πωπ≤≤-范围内就可以了;∑∑∑∞-∞=∞-∞=∞-∞=--==n n n j j n n h j n n h en h e H )sin()()cos()()()(ωωωω6 – 2容易证明,其实部是ω的偶函数,虚部是ω的奇函数,其模ωj e H (的ω的偶函数,相位[])(arg ωj e H 是ω的奇函数;因此研究系统幅度特性)(ωj e H 、相位特性[])(arg ωj e H ,只要在πω≤≤0范围内讨论即可;综上所述,系统频率特性)(ωj eH 具有周期性和对称性,深入理解这一点是十分重要的;当离散系统的系统结构一定,它的频率特性)(ωj e H 将随参数选择的不同而不同,这表明了系统结构、参数、特性三者之间的关系,即同一结构,参数不同其特性也不同; 例如,下图所示离散系统,其数学模型由线性常系数差分方程描述:)()1()(n x n ay n y +-=系统函数:a z az z z H >-=,)(系统函数频率特性:ωωωωωsin )cos 1(1)(ja a a e e e H j j j +-=-=幅频特性:ωωcos 211)(2a a eH j -+=相频特性:[]ωωωcos 1sin arctan)(arg a a eH j --= 容易分析出,当10<<a 时系统呈低通特性,当01<<-a 时系统呈高通特性;当0=a 时系统呈全通特性;同时说明,在系统结构如图所示一定时,其频率特性随参数a 的变化而变化;三、 实验内容a 2281.011)(----=z z z H ;b 1.04.06.01.03.03.01.0)(2323+++-+-=z z z z z z z Hc 2181.011)(--+-=zz z H a %b=1,0,-1; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通b %b=,,,; % 分子系数向量a=1,,,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';高通c %b=1,-1,0; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通实验心得:本来理论知识不是很强的,虽然已经编出程序得到相关图形,但是不会辨别相关通带,这让我深刻地反省;。

信号与系统傅里叶

信号与系统傅里叶

dt
= F[ j(ω-ω0)] 例 1 f(t) = ej3t ←→ F(jω) = ? 解 1 ←→ 2πδ(ω) ej3t ×1←→ 2πδ(ω-3) -
信号与系统 例 2 解
4.5
傅里叶变换的性质
f(t) = cosω0t ←→ F(jω) = ?
1 jω0t 1 − jω0t f (t) = e + e 2 2
1 ∞ − jω t f (−ω) = ∫ −∞ F( jt ) e dt 2π
∴ F(j t) ←→ 2πf (–ω)
信号与系统 例
f (t) = 1 1+t 2
− |t| α
4.5
傅里叶变换的性质
←→ F(jω) = ?
2 α

e
← →
当 α=1, e−t| | ∴
α2 +ω2 2 ← → 1+ω2

用时移特性

所以

−∞
f 2 (t − τ ) e
− jω t
d t = F2 ( jω ) e
− jω τ
F [ f1(t)*f2(t) ]=


−∞
f 1 (τ ) F2 ( jω ) e
− jω τ
d τ = F2 ( jω ) ∫ f1 (τ ) e
−∞


− jω τ

= F1(jω)F2(jω)
2
-2
0
2
ω
1 π sin t [π g 2 (ω )] * [π g 2 (ω )] = g 2 (ω ) * g 2 (ω ) ←→ 2π 2 t
信号与系统
4.5

信号与系统 matlab 综合 实验 第四章 傅里叶变换

信号与系统 matlab 综合 实验 第四章 傅里叶变换

1.如图4.4所示锯齿波信号,分别取一个周期的抽样数据X1(t),0<=t<=1和五个周期的数据X(t),0<=t<5,计算其傅立叶变换X1(w)和X(w),比较有和不同并解释原因。

图4.4 练习题2图编程如下:%计算单位锯齿波和五个周期波形的傅立叶变换%数值算法用矩阵实现,大大加快了运行速度;并且直接调用“sawtooth”生成5个周期的锯齿波T1=1; %单个周期时域范围N1=10000; %时域抽样点数t1=linspace(0,T1-T1/N1,N1)'; %生成抽样时间点f1=1-2*t1; %生成抽样函数值OMG=32*pi; %频域范围K1=100; %频域抽样点数omg=linspace(-OMG/2,OMG/2-OMG/K1,K1)'; %生成抽样频率点X1=T1/N1*exp(-j*kron(omg,t1.'))*f1; %傅里叶正变换求解傅里叶系数fs1=OMG/2/pi/K1*exp(j*kron(t1,omg.'))*X1; %傅里叶逆变换还原时域函数T2=5; %五个周期时域范围N2=10000; %时域抽样点数t2=linspace(0,T2-T2/N2,N2)'; %生成抽样时间点fs2=0*t2;f2=sawtooth(t2*2*pi,0); %生成五个周期的锯齿波X2=T2/N2*exp(-j*kron(omg,t2.'))*f2; %傅里叶正变换求解傅里叶系数fs2=fs2+OMG/2/pi/K1*exp(j*kron(t2,omg.'))*X2; %傅里叶逆变换还原时域函数figure; %生成一个2*2矩阵子图subplot(2,2,1);plot(omg,abs(X1),'r'); %一个周期时的频谱图xlabel('Frequency'),ylabel('Amplitude')title('单个锯齿周期幅频特性曲线');subplot(2,2,2);plot(t1,fs1,'r'); %还原的时域函数xlabel('Time'),ylabel('Amplitude')title('Function after recovered');subplot(2,2,3);plot(omg,abs(X2),'r'); %五个周期时的频谱图xlabel('Frequency'),ylabel('Amplitude')title('五个锯齿周期幅频特性曲线');subplot(2,2,4);plot(t2,fs2,'r'); %还原的时域函数xlabel('Time'),ylabel('Function after recovered')title('Function after recovered');阅读两函数后不难发现,其实就是改变了linspace的范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) 符号函数:;
syms t; f = 2*Heaviside(t)-1; F = fourier(f) FM = abs(F) subplot(2,1,1); ezplot(f); subplot(2,1,2); ezplot(FM); hold on; axis([-6,6,0,10]); hold off; F= -2*i/w FM = 2/abs(w)
title('f(t)的付氏变换F(w)');
四、傅立叶变换主要性质及MATLAB实现
1、尺度变换特性 若,则傅立叶变换的尺度变换特性为: (4-7) 下面举例说明傅立叶变换的尺度特性。 例4-5:设,用MATLAB求的频谱,并与的频谱进行比较。 解:将例4-4的程序进行修改,就可得到该例的MATLAB程序,即将信 号改:f=Heaviside(2*t+1)-Heaviside(2*t-1),其它语句不变。运行结果如 下:
实验四 连续时间信号的傅立叶变换
一、目的
(1)掌握连续信号傅立叶变换与逆变换的计算方法 (2)掌握利用MATLAB实现连续时间信号傅立叶变换的方法
二、傅立叶变换及MATLAB实现
信号的傅立叶变换定义为: (4-1) 值得注意的是,的傅立叶变换存在的充分条件是在无限区间内绝对 可积,即满足下式: (4-2) 但式(4-2)并非存在的必要条件。当引入奇异函数概念后,使一些 不满足绝对可积的也能进行傅立叶变换。 傅立叶逆变换定义是: (4-3) MATLAB的Symbolic Math Toolbox提供了能直接求解傅立叶变换及 逆变的函数fourier()和ifourier()。两者调用格式如下: 1、傅立叶变换 (1) F=fourier(f) (2) F=fourier(f,v) (3) F=fourier(f,u,v) 说明如下: (1) F=fourier(f)是符号函数f的傅立叶变换,默认返回是关于 的函数。如果,则fourier函数返回关于的函数; (2) F=fourier(f,v)返回函数F关于符号对象v的函数,而不是默 认的,即 (3) F=fourier(f,u,v)对关于的函数f进行变换,返回函数F关于v 的函数,即 2、傅立叶逆变换 (1) f=ifourier(F) (2) f=ifourier(F,u) (3) f=ifourier(F,v,u) 说明如下: (1) f=ifourier(F)是函数F的傅立叶逆变换。默认的独立变量 为,默认返回是关于的函数。如果,则ifourier函数返回 关于的函数; (2) f=ifourier(F,u)返回函数f是的函数,而不是默认的函数;
图4-1 例4-3程序运行结果
3、实验内容 利用fourier()命令求解如下信号的傅立叶变换,给出的波形图以及的 表达式和幅度频谱图: (1) 钟形脉冲:;
syms t; f = exp(-(t/2)^2); F = fourier(f) subplot(2,1,1); ezplot(f); subplot(2,1,2); ezplot(F); F= 2*exp(-w^2)*pi^(1/2)
(2) 。
R=0.02;t=-2:R:2; f=1-0.5.*abs(t); W1=2*pi*5; N=500;k=0:N;W=k*W1/N; F=f*exp(-j*t'*W)*R; F=real(F); W=[-fliplr(W),W(2:501)]; F=[fliplr(F),F(2:501)]; subplot(2,1,1);plot(t,f); xlabel('t');ylabel('f(t)'); title('f(t)=1-0.5.*abs(t)'); subplot(2,1,2);plot(W,F); xlabel('w');ylabel('F(w)&t-0.3)的频谱图
f1=f.*exp(-j*20*t); f2=f.*exp(j*20*t); W1=2*pi*5; N=500;k=-N:N;W=k*W1/N; F1=f1*exp(-j*t'*W)*R; F2=f2*exp(-j*t'*W)*R; F1=real(F1); F2=real(F2); subplot(121); plot(W,F1); xlabel('w'); ylabel('F1(jw)'); title('F(w)左移到w=20处的频谱F1(jw)'); subplot(122); plot(W,F2); xlabel('w'); ylabel('F2(jw)'); title('F(w)右移到w=20处的频谱F2(jw)'); 运行结果如下图所示:
精度要求来确定一个适当的频率为信号的带宽。 例4-4:已知门信号,求其傅立叶变换。 解:由信号分析可知,该信号的频谱为,其第一个过零点频率为,一般 将此频率认为信号的带宽。考虑到的形状,将精度提高到该值的50倍, 即,据此确定取样间隔: 实现该过程的MATLAB程序如下: R=0.02;t=-2:R:2; f=Heaviside(t+1)-Heaviside(t-1); W1=2*pi*5; N=500;k=0:N;W=k*W1/N; F=f*exp(-j*t'*W)*R; F=real(F); W=[-fliplr(W),W(2:501)]; F=[fliplr(F),F(2:501)]; subplot(2,1,1);plot(t,f); xlabel('t');ylabel('f(t)'); title('f(t)=u(t+1)-u(t-1)'); subplot(2,1,2);plot(W,F); xlabel('w');ylabel('F(w)'); title('f(t)的付氏变换F(w)'); 程序运行结果如图4-2所示。
图4-3 尺度变换例子
通过图4-3与图4-2比较可见,将展宽了一倍,而幅度将为的一半。
2、时移特性 若,则傅立叶变换的时移特性为: (4-8) 下面举例说明傅立叶变换的时移特性。 例4-6:设,试用MATLAB绘出,及其频谱(幅度谱和相位谱),并对 二者频谱进行比较。 解:求解程序命令如下: r=0.02; t=-5:r:5; N=200; W=2*pi*1; k=-N:N; w=k*W/N; f1=1/2*exp(-2*t).*Heaviside(t); F=r*f1*exp(-j*t'*w); F1=abs(F); P1=angle(F); subplot(311); plot(t,f1); grid; xlabel('t'); ylabel('f(t)'); title('f(t)'); subplot(312); plot(w,F1); xlabel('w'); grid; ylabel('F(jw)'); subplot(313); plot(w,P1*180/pi); grid; xlabel('w'); ylabel('P(度)'); 运行结果如图4-4所示。 将求解频谱的程序进行适当修改,即可得到求解频谱的程序,即将 t=-5:r:5修改为t=-2:r:2;f1修改为f1=1/2*exp(-2*(t-0.3)).*Heaviside(t0.3);将ylabel(‘f(t)’)修改为ylabel(‘y(t)’);将title(‘f(t)’) 修改为
title(‘y(t)’)。修改后程序运行结果如图4-5所示。 通过图4-4和图4-5比较可得,当时域波形右移后幅度谱不变,相位 增加。同样,将上述程序稍加修改可得到求解左移信号的频谱图,请同 学们自己完成。 3、频移特性 若,则傅立叶变换的频移特性为: (4-9) 下面举例说明傅立叶变换的频移特性。 例4-7:设,试用MATLAB绘出及的频谱和,并与的频谱进行比较。 解:用MATLAB实现的程序如下: R=0.02;t=-2:R:2; f=Heaviside(t+1)-Heaviside(t-1);
图4-2 矩形脉冲信号的傅立叶变换
2、实验内容 求解如下信号的傅立叶变换,绘出信号的时域波形及幅度频谱图: (1) 升余弦脉冲:;
R=0.02;t=0:R:1; f=0.5*(1+cos(pi*t)) W1=2*pi*5;
N=500;k=0:N;W=k*W1/N; F=f*exp(-j*t'*W)*R; F=real(F); W=[-fliplr(W),W(2:501)]; F=[fliplr(F),F(2:501)]; subplot(2,1,1);plot(t,f); xlabel('t');ylabel('f(t)'); title('f(t)=0.5(1+cos(pi*t))'); subplot(2,1,2);plot(W,F); xlabel('w');ylabel('F(w)'); title('f(t)的付氏变换F(w)');
function f= Heaviside(t) f=(t>0); 注意:采用fourier()和ifourier()得到的返回函数,仍然是符号表达式。若 需对返回函数作图,则应用ezplot()绘图命令而不能用plot()命令。如果 返回函数中有诸如狄拉克函数等项,则用ezplot()也无法作图。用 fourier()对某些信号求变换时,其返回函数可能会包含一些不能直接表 达的式子,甚至可能会出现一些屏幕提示“未被定义的函数或变量”的 项,更不用说对此返回函数作图了。这是fourier()的一个局限。另一个 局限是在很多场合,原信号尽管是连续的,但却不可能表示成符号表达 式,而更多的实际测量现场获得信号是多组离散的数值量,此时也不可 能应用fourier()对进行处理,而只能用下面介绍的数字计算方法求解。
相关文档
最新文档