福州市华伦中学七年级数学上册第三单元《一元一次方程》测试卷(答案解析)

合集下载

七年级数学上第三章一元一次方程单元测试含答案解析2

七年级数学上第三章一元一次方程单元测试含答案解析2

七年级单元试题…………请…………勿…………在…………密…………封…………线…………内……………作………答…………第三单元一元一次方程一、选择题(共10道小题,每小题3分,共30分)1、下列方程中,一元一次方程是()A. 2 x =1B. 3 x–5C. 3+7=10D. x x 122、下列方程中,解为x 2的方程是:()12A.4x 2B. 3x 6 0C. x 0D. 7x 14 03、在解方程x-1-2x+3=1时,去分母正确的是()2 3A、3(x-1)-2(2+3x)=1C、3x-1-4x+3=1B、3(x-1)-2(2x+3)=6D、3x-1-4x+3=64、右图是“东方”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙算一算,该洗发水的原价是:()A.22元C.24元B.23元D.26元5、小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A、 x 10 x 5B、x 10 x 515 60 12 60 15 60 12 60C、 x 10 x 5D、x 10 x515 60 12 60 15 126、有4个矿泉水空瓶可换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱最多可喝矿泉水()A.3瓶B.4瓶C.5瓶 6瓶7.某班级劳动时,将全班同学分成n个小组,若每小组10人,则有一组多2人,若每小组12人,则有一组少4人,按下列哪个选项重新分组,能使每组人数相同?(A.4组B.5组C.6组D.7组D.)8.李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为x,那么可得方程()A.C.B.D.9.甲、乙两工程队开挖一条水渠各需10天、15天,两队合作2天后,甲有其他任务,剩下的工作由乙队单独做,还需多少天能完成任务?设还需x天,可得方程A.C.B.D.10.有m辆校车及n个学生,若每辆校车乘坐40名学生,则还有10名学生不能上车;若每辆校车乘坐43名学生,则只有1名学生不能上车.现有下列四个方程:①40m+10=43m-1;② =;③=;④40m+10=43m+1.其中正确的是()A. B. C. D.二、选择题(共6道小题,每小题4分,共24分)11、已知3是关于x的方程2x a 1的解,则a 。

【3套打包】福州市七年级上册第三章《一元一次方程》单元过关测试卷.doc

【3套打包】福州市七年级上册第三章《一元一次方程》单元过关测试卷.doc

人教版七年级数学(上册)第3章一元一次方程单元检测(解析版)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各方程中,属于一元一次方程的是()A.x+2y=0B.x2+3x+2=0C.2x﹣3=+2D.x+1=02.(3分)将方程=变形为=的理论依据是()A.合并B.等式的性质C.等式的性质2D.分数的基本性质3.(3分)根据等式性质5=3x﹣2可变形为()A.﹣3x=2﹣5B.﹣3x=﹣2+5C.5﹣2=3x D.﹣3x=﹣5﹣2 4.(3分)已知x=2是方程2(x﹣3)+1=x+m的解,则m﹣1的值是()A.3B.﹣3C.﹣4D.45.(3分)下列方程中,解是x=2的是()A.2x﹣2=0B.x=4C.4x=2D.﹣1=6.(3分)已知x=y,下列等式不一定成立的是()A.ax=ay B.ax+b=ay+b C.ax﹣x=ay﹣x D.7.(3分)有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色是多少克?()A.10B.15C.20D.258.(3分)下列变形属于移项的是()A.若,则B.3x2y+3x2y2+5x2y=(3x2y+5x2y)+3x2y2C.若3x=1,则x=D.若3x﹣4=5x+5,则3x﹣5x=5﹣49.(3分)解方程时,去分母后正确的是()A.4x+2﹣10x+1=10B.4x+2﹣10x﹣1=1C.4x+2﹣10x﹣1=10D.4x+1﹣10x+1=110.(3分)甲、乙两人骑自行车同时从相距65km的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5km,则乙的时速是()A.12.5km B.15km C.17.5km D.20km二.填空题(共6小题,满分24分,每小题4分)11.(4分)方程x+11=9的解是.12.(4分)已知x与x的3倍的和比x的2倍少6,列出方程为.13.(4分)关于y的两个一元一次方程y+3m=32与y﹣4=1的解相同,那么m的值为.14.(4分)某商品降价20%后售价为20元,则该商品的原价为.15.(4分)若与是同类项,则x=.16.(4分)一条山路,某人从山下往山顶走3小时,还差1千米才到山顶,若从山顶走到山下,只用150分钟,已知下山速度是上山速度的1.5倍,则上山速度为.三.解答题(共8小题,满分66分)17.(12分)解方程(1)2x+3=x+5(2)0.5x﹣0.7=6.5﹣1.3x(3)8x=﹣2(x+4)(4)18.(7分)用76cm长的铁丝做一个长方形,要使长是22cm,宽应当是多少cm?19.(7分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?20.(7分)一架飞机飞行在两个城市之间,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求飞机在静风中的速度.21.(7分)小明的母亲今年38岁,2年前小明的母亲的年龄是小明年龄的3倍,小明今年几岁?(设小明今年x岁)22.(8分)有一个两位数,它的十位上的数比个位上的数字大5,并且这个两位数比它的两个数位上的数字之和的8倍还要大5,求这个两位数.23.(9分)某数为x,根据下列条件列方程.(1)某数与8的差等于某数的与4的和.(2)某数的与某数的的和等于3.24.(9分)电信对手机收费定出两种方式:一种是“八闽通”,每户每月话费支出10元月租费加每分钟0.4元的话费;另一种是“大众通”,用户每月话费为25元月租费加每分钟0.20元的话费.(1)通话多长时间,两种方式每月话费一样多?(2)张老板由于业务需要,他每月打电话不低于3个小时,请你帮助他选择哪种手机收费业务较划算?人教版七年级数学(上册)第3章一元一次方程单元检测参考答案一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各方程中,属于一元一次方程的是()A.x+2y=0B.x2+3x+2=0C.2x﹣3=+2D.x+1=0【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、是二元一次方程,故A错误;B、是元二次方程,故B错误;C、是分式方程,故C错误;D、是一元一次方程,故D正确;故选:D.2.(3分)将方程=变形为=的理论依据是()A.合并B.等式的性质C.等式的性质2D.分数的基本性质【分析】根据等式的性质,可得答案.【解答】解:=变形为=的理论依据是分数的性质2,故选:D.3.(3分)根据等式性质5=3x﹣2可变形为()A.﹣3x=2﹣5B.﹣3x=﹣2+5C.5﹣2=3x D.﹣3x=﹣5﹣2【分析】根据等式的两边都加或减同一个整式,结果不变,可得答案.【解答】解:等式的两边都加(﹣3x﹣5),得﹣3x=﹣5﹣2,故选:D.4.(3分)已知x=2是方程2(x﹣3)+1=x+m的解,则m﹣1的值是()A.3B.﹣3C.﹣4D.4【分析】根据方程的解满足方程,把方程的解代入方程,可得关于m的一元一次方程,根据解方程,可得答案.【解答】解:把x=2代入2(x﹣3)+1=x+m,得2(2﹣3)+1=2+m,解得m=﹣3.m﹣1=﹣4,故选:C.5.(3分)下列方程中,解是x=2的是()A.2x﹣2=0B.x=4C.4x=2D.﹣1=【分析】把x=2代入下列选项中的方程,进行一一验证即可.【解答】解:A、当x=2时,左边=2×2﹣2=2,右边=0,左边≠右边,则x=2不是该方程的解.故本选项错误;B、当x=2时,左边=×2=1,右边=4,左边≠右边,则x=2不是该方程的解.故本选项错误;C、当x=2时,左边=4×2=8,右边=2,左边≠右边,则x=2不是该方程的解.故本选项错误;D、当x=2时,左边=﹣1=,右边=,左边=右边,则x=2是该方程的解.故本选项正确;故选:D.6.(3分)已知x=y,下列等式不一定成立的是()A.ax=ay B.ax+b=ay+b C.ax﹣x=ay﹣x D.【分析】根据等式的性质对各选项分析判断后利用排除法求解.【解答】解:A、x=y的两边都乘以a,一定成立,故本选项错误;B、x=y的两边都乘以a再加上b,一定成立,故本选项错误;C、x=y的两边都乘以a再减去x,一定成立,故本选项错误;D、x=y的两边都除以a,若a=0无意义,所以不一定成立,故本选项正确.故选:D.7.(3分)有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色是多少克?()A.10B.15C.20D.25【分析】设比中每一份为x,那么可得用x表示的三种颜色的冰淇淋的质量,让这3个质量之和=50,把相关数值代入求解即可.【解答】解:设这种三色冰淇淋中咖啡色配料为2x克,那么红色和白色配料分别为3x克和5x克.根据题意,得2x+3x+5x=50,解这个方程,得x=5,于是2x=10,答:这种三色冰淇淋中咖啡色有10克,故选:AB.8.(3分)下列变形属于移项的是()A.若,则B.3x2y+3x2y2+5x2y=(3x2y+5x2y)+3x2y2C.若3x=1,则x=D.若3x﹣4=5x+5,则3x﹣5x=5﹣4【分析】利用等式的性质,在方程两边加上或减去同一个数或整式,此变形为移项,判断即可.【解答】解:x﹣=0.4x+3,得到x﹣0.4=3+变形属于移项.故选:A.9.(3分)解方程时,去分母后正确的是()A.4x+2﹣10x+1=10B.4x+2﹣10x﹣1=1C.4x+2﹣10x﹣1=10D.4x+1﹣10x+1=1【分析】方程两边乘以10去分母,去括号得到结果,即可做出判断.【解答】解:方程去分母得:2(2x+1)﹣(10x﹣1)=10,去括号得:4x+2﹣10x+1=10,故选:A.10.(3分)甲、乙两人骑自行车同时从相距65km的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5km,则乙的时速是()A.12.5km B.15km C.17.5km D.20km【分析】本题属于相遇问题,等量关系为:甲走的路程+乙走的路程=65,甲路程=甲速×甲用的时间,乙路程=乙速×乙用的时间.依此列出方程.【解答】解:设乙每小时骑x千米,则甲每小时骑(x+2.5)千米,由题意列方程:(x+x+2.5)×2=65,解得:x=15.答:乙每小时骑15千米.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.(4分)方程x+11=9的解是x=﹣2.【分析】方程移项合并,即可求出解.【解答】解:方程x+11=9,解得:x=﹣2,故答案为:x=﹣212.(4分)已知x与x的3倍的和比x的2倍少6,列出方程为x+3x=2x﹣6.【分析】根据文字表述可得到其等量关系为:x+x的3倍=x的2倍﹣6,根据此列方程即可.【解答】解:由题意得x+3x=2x﹣6.故答案为x+3x=2x﹣6.13.(4分)关于y的两个一元一次方程y+3m=32与y﹣4=1的解相同,那么m的值为9.【分析】先求出y的值,把y代入y+3m=32,得出m的值.【解答】解:解y﹣4=1得,y=5,把y=5代入y+3m=32,得5+3m=32,解得m=9.故答案为:9.14.(4分)某商品降价20%后售价为20元,则该商品的原价为25元.【分析】设商品的原价是x元,由销售问题的数量关系建立方程求出其解即可.【解答】解:设商品的原价是x元,由题意,得x(1﹣20%)=20,解得:x=25.故答案为:25元.15.(4分)若与是同类项,则x=1.【分析】利用同类项的定义列出关于x的方程,求出方程的解即可得到x的值.【解答】解:根据题意得:2x+3=4x+1,移项合并得:2x=2,解得:x=1,故答案为:1.16.(4分)一条山路,某人从山下往山顶走3小时,还差1千米才到山顶,若从山顶走到山下,只用150分钟,已知下山速度是上山速度的1.5倍,则上山速度为千米/时.【分析】设上山的速度为x千米/时,则下山的速度为1.5x千米/时,根据总路程相等即可列出代数式求解求可.【解答】解:设上山的速度为x千米/时,则下山的速度为1.5x千米/时,根据题意得:3x+1=1.5x×,解得x=(千米/时).故答案填:千米/时.三.解答题(共8小题,满分66分)17.(12分)解方程(1)2x+3=x+5(2)0.5x﹣0.7=6.5﹣1.3x(3)8x=﹣2(x+4)(4)【分析】(1)、(2)移项合并,化系数为1,即可得到方程的解.(3)去括号,移项合并,化系数为1,即可得到方程的解.(3)先去分母,再去括号,最后移项,化系数为1,即可得到方程的解.【解答】解:(1)移项得:2x﹣x=5﹣3合并得:x=2;(2)移项得:0.5x+1.3x=6.5+0.7合并得:1.8x=7.2化系数为1得:x=4;(3)去括号得:8x=﹣2x﹣8移项合并得:10x=﹣8化系数为1得:x=﹣;(4)去分母得:3(3y﹣1)﹣12=2(5y﹣7)去括号得:9y﹣3﹣12=10y﹣14移项合并得:﹣y=1化系数为1得:y=﹣1.18.(7分)用76cm长的铁丝做一个长方形,要使长是22cm,宽应当是多少cm?【分析】根据等量关系:长方形的周长=2(长+宽),得出等方程求出即可.【解答】解:设长方形的宽为xcm,由题意得出:2(22+x)=76,解得:x=16.答:宽应当是16cm.19.(7分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?【分析】设原来全厂共有4x人.依据“女工与全厂人数的比是2:3,”列出方程,并解答.【解答】解:设原来全厂共有4x人.依题意得(3x+60):(4x+60×2)=2:3,9x+180=8x+240,9x﹣8x=240﹣180,4x=240.答:原来全厂共有240人.20.(7分)一架飞机飞行在两个城市之间,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求飞机在静风中的速度.【分析】设飞机在静风中的速度为x千米/小时.利用两城市之间的路程一定,等量关系为:顺风速度×顺风时间=逆风速度×逆风时间,把相关数值代入即可求解.【解答】解:设飞机在静风中的速度为x千米/小时.根据题意,列出方程得:(x+24)×=(x﹣24)×3,解这个方程,得x=840.答:飞机在静风中的速度是840千米/小时.21.(7分)小明的母亲今年38岁,2年前小明的母亲的年龄是小明年龄的3倍,小明今年几岁?(设小明今年x岁)【分析】设小明今年x岁,则2年前小明的年龄是(x﹣2)岁,根据2年前小明的母亲的年龄是小明年龄的3倍建立方程求出其解即可.【解答】解:设小明今年x岁,则2年前小明的年龄是(x﹣2)岁,由题意,得3(x﹣2)=38﹣2,解得:x=14.答:小明今年14岁.22.(8分)有一个两位数,它的十位上的数比个位上的数字大5,并且这个两位数比它的两个数位上的数字之和的8倍还要大5,求这个两位数.【分析】设个位为x,则十位数为x+5,等量关系为:两位数=8(个位数字+十位数字)+5,列方程求解即可.【解答】解:设个位为x,则十位数为x+5,由题意得,10(x+5)+x=8[x+(x+5)]+5,解得:x=1,则这个两位数是61.23.(9分)某数为x,根据下列条件列方程.(1)某数与8的差等于某数的与4的和.(2)某数的与某数的的和等于3.【分析】(1)根据题意某数为x,则x﹣8等于x+4,即可得出答案;(2)表示出某数的和某数的进而等于3得出答案即可.【解答】解:(1)根据题意得出:x﹣8=x+4;(2)根据题意得出:x+x=3.24.(9分)电信对手机收费定出两种方式:一种是“八闽通”,每户每月话费支出10元月租费加每分钟0.4元的话费;另一种是“大众通”,用户每月话费为25元月租费加每分钟0.20元的话费.(1)通话多长时间,两种方式每月话费一样多?(2)张老板由于业务需要,他每月打电话不低于3个小时,请你帮助他选择哪种手机收费业务较划算?【分析】(1)设通话x分钟两种方式每月话费一样多,那么“八闽通”x分钟的通话费是:10+0.4x;“大众通”x分钟的通话费是25+0.2x.根据题意列方程求解.(2)由(1)可知每月通话x分钟时两种收费一样多,因为3小时=180分钟,与x对比即可知道选择哪种手机收费业务较划算.【解答】解:(1)设通话x分钟两种方式每月话费一样多,由题意得:10+0.4x=25+0.2x,解得x=75.(2)由(1)可知每月通话75分钟时两种收费一样多,因为3小时=180分钟>75分钟,故应选择“大众通”.人教版七年级数学(上册)第3章一元一次方程单元检测(解析版)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各方程中,属于一元一次方程的是()A.x+2y=0B.x2+3x+2=0C.2x﹣3=+2D.x+1=02.(3分)将方程=变形为=的理论依据是()A.合并B.等式的性质C.等式的性质2D.分数的基本性质3.(3分)根据等式性质5=3x﹣2可变形为()A.﹣3x=2﹣5B.﹣3x=﹣2+5C.5﹣2=3x D.﹣3x=﹣5﹣2 4.(3分)已知x=2是方程2(x﹣3)+1=x+m的解,则m﹣1的值是()A.3B.﹣3C.﹣4D.45.(3分)下列方程中,解是x=2的是()A.2x﹣2=0B.x=4C.4x=2D.﹣1=6.(3分)已知x=y,下列等式不一定成立的是()A.ax=ay B.ax+b=ay+b C.ax﹣x=ay﹣x D.7.(3分)有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色是多少克?()A.10B.15C.20D.258.(3分)下列变形属于移项的是()A.若,则B.3x2y+3x2y2+5x2y=(3x2y+5x2y)+3x2y2C.若3x=1,则x=D.若3x﹣4=5x+5,则3x﹣5x=5﹣49.(3分)解方程时,去分母后正确的是()A.4x+2﹣10x+1=10B.4x+2﹣10x﹣1=1C.4x+2﹣10x﹣1=10D.4x+1﹣10x+1=110.(3分)甲、乙两人骑自行车同时从相距65km的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5km,则乙的时速是()A.12.5km B.15km C.17.5km D.20km二.填空题(共6小题,满分24分,每小题4分)11.(4分)方程x+11=9的解是.12.(4分)已知x与x的3倍的和比x的2倍少6,列出方程为.13.(4分)关于y的两个一元一次方程y+3m=32与y﹣4=1的解相同,那么m的值为.14.(4分)某商品降价20%后售价为20元,则该商品的原价为.15.(4分)若与是同类项,则x=.16.(4分)一条山路,某人从山下往山顶走3小时,还差1千米才到山顶,若从山顶走到山下,只用150分钟,已知下山速度是上山速度的1.5倍,则上山速度为.三.解答题(共8小题,满分66分)17.(12分)解方程(1)2x+3=x+5(2)0.5x﹣0.7=6.5﹣1.3x(3)8x=﹣2(x+4)(4)18.(7分)用76cm长的铁丝做一个长方形,要使长是22cm,宽应当是多少cm?19.(7分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?20.(7分)一架飞机飞行在两个城市之间,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求飞机在静风中的速度.21.(7分)小明的母亲今年38岁,2年前小明的母亲的年龄是小明年龄的3倍,小明今年几岁?(设小明今年x岁)22.(8分)有一个两位数,它的十位上的数比个位上的数字大5,并且这个两位数比它的两个数位上的数字之和的8倍还要大5,求这个两位数.23.(9分)某数为x,根据下列条件列方程.(1)某数与8的差等于某数的与4的和.(2)某数的与某数的的和等于3.24.(9分)电信对手机收费定出两种方式:一种是“八闽通”,每户每月话费支出10元月租费加每分钟0.4元的话费;另一种是“大众通”,用户每月话费为25元月租费加每分钟0.20元的话费.(1)通话多长时间,两种方式每月话费一样多?(2)张老板由于业务需要,他每月打电话不低于3个小时,请你帮助他选择哪种手机收费业务较划算?人教版七年级数学(上册)第3章一元一次方程单元检测参考答案一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各方程中,属于一元一次方程的是()A.x+2y=0B.x2+3x+2=0C.2x﹣3=+2D.x+1=0【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、是二元一次方程,故A错误;B、是元二次方程,故B错误;C、是分式方程,故C错误;D、是一元一次方程,故D正确;故选:D.2.(3分)将方程=变形为=的理论依据是()A.合并B.等式的性质C.等式的性质2D.分数的基本性质【分析】根据等式的性质,可得答案.【解答】解:=变形为=的理论依据是分数的性质2,故选:D.3.(3分)根据等式性质5=3x﹣2可变形为()A.﹣3x=2﹣5B.﹣3x=﹣2+5C.5﹣2=3x D.﹣3x=﹣5﹣2【分析】根据等式的两边都加或减同一个整式,结果不变,可得答案.【解答】解:等式的两边都加(﹣3x﹣5),得﹣3x=﹣5﹣2,故选:D.4.(3分)已知x=2是方程2(x﹣3)+1=x+m的解,则m﹣1的值是()A.3B.﹣3C.﹣4D.4【分析】根据方程的解满足方程,把方程的解代入方程,可得关于m的一元一次方程,根据解方程,可得答案.【解答】解:把x=2代入2(x﹣3)+1=x+m,得2(2﹣3)+1=2+m,解得m=﹣3.m﹣1=﹣4,故选:C.5.(3分)下列方程中,解是x=2的是()A.2x﹣2=0B.x=4C.4x=2D.﹣1=【分析】把x=2代入下列选项中的方程,进行一一验证即可.【解答】解:A、当x=2时,左边=2×2﹣2=2,右边=0,左边≠右边,则x=2不是该方程的解.故本选项错误;B、当x=2时,左边=×2=1,右边=4,左边≠右边,则x=2不是该方程的解.故本选项错误;C、当x=2时,左边=4×2=8,右边=2,左边≠右边,则x=2不是该方程的解.故本选项错误;D、当x=2时,左边=﹣1=,右边=,左边=右边,则x=2是该方程的解.故本选项正确;故选:D.6.(3分)已知x=y,下列等式不一定成立的是()A.ax=ay B.ax+b=ay+b C.ax﹣x=ay﹣x D.【分析】根据等式的性质对各选项分析判断后利用排除法求解.【解答】解:A、x=y的两边都乘以a,一定成立,故本选项错误;B、x=y的两边都乘以a再加上b,一定成立,故本选项错误;C、x=y的两边都乘以a再减去x,一定成立,故本选项错误;D、x=y的两边都除以a,若a=0无意义,所以不一定成立,故本选项正确.故选:D.7.(3分)有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色是多少克?()A.10B.15C.20D.25【分析】设比中每一份为x,那么可得用x表示的三种颜色的冰淇淋的质量,让这3个质量之和=50,把相关数值代入求解即可.【解答】解:设这种三色冰淇淋中咖啡色配料为2x克,那么红色和白色配料分别为3x克和5x克.根据题意,得2x+3x+5x=50,解这个方程,得x=5,于是2x=10,答:这种三色冰淇淋中咖啡色有10克,故选:AB.8.(3分)下列变形属于移项的是()A.若,则B.3x2y+3x2y2+5x2y=(3x2y+5x2y)+3x2y2C.若3x=1,则x=D.若3x﹣4=5x+5,则3x﹣5x=5﹣4【分析】利用等式的性质,在方程两边加上或减去同一个数或整式,此变形为移项,判断即可.【解答】解:x﹣=0.4x+3,得到x﹣0.4=3+变形属于移项.故选:A.9.(3分)解方程时,去分母后正确的是()A.4x+2﹣10x+1=10B.4x+2﹣10x﹣1=1C.4x+2﹣10x﹣1=10D.4x+1﹣10x+1=1【分析】方程两边乘以10去分母,去括号得到结果,即可做出判断.【解答】解:方程去分母得:2(2x+1)﹣(10x﹣1)=10,去括号得:4x+2﹣10x+1=10,故选:A.10.(3分)甲、乙两人骑自行车同时从相距65km的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5km,则乙的时速是()A.12.5km B.15km C.17.5km D.20km【分析】本题属于相遇问题,等量关系为:甲走的路程+乙走的路程=65,甲路程=甲速×甲用的时间,乙路程=乙速×乙用的时间.依此列出方程.【解答】解:设乙每小时骑x千米,则甲每小时骑(x+2.5)千米,由题意列方程:(x+x+2.5)×2=65,解得:x=15.答:乙每小时骑15千米.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.(4分)方程x+11=9的解是x=﹣2.【分析】方程移项合并,即可求出解.【解答】解:方程x+11=9,解得:x=﹣2,故答案为:x=﹣212.(4分)已知x与x的3倍的和比x的2倍少6,列出方程为x+3x=2x﹣6.【分析】根据文字表述可得到其等量关系为:x+x的3倍=x的2倍﹣6,根据此列方程即可.【解答】解:由题意得x+3x=2x﹣6.故答案为x+3x=2x﹣6.13.(4分)关于y的两个一元一次方程y+3m=32与y﹣4=1的解相同,那么m的值为9.【分析】先求出y的值,把y代入y+3m=32,得出m的值.【解答】解:解y﹣4=1得,y=5,把y=5代入y+3m=32,得5+3m=32,解得m=9.故答案为:9.14.(4分)某商品降价20%后售价为20元,则该商品的原价为25元.【分析】设商品的原价是x元,由销售问题的数量关系建立方程求出其解即可.【解答】解:设商品的原价是x元,由题意,得x(1﹣20%)=20,解得:x=25.故答案为:25元.15.(4分)若与是同类项,则x=1.【分析】利用同类项的定义列出关于x的方程,求出方程的解即可得到x的值.【解答】解:根据题意得:2x+3=4x+1,移项合并得:2x=2,解得:x=1,故答案为:1.16.(4分)一条山路,某人从山下往山顶走3小时,还差1千米才到山顶,若从山顶走到山下,只用150分钟,已知下山速度是上山速度的1.5倍,则上山速度为千米/时.【分析】设上山的速度为x千米/时,则下山的速度为1.5x千米/时,根据总路程相等即可列出代数式求解求可.【解答】解:设上山的速度为x千米/时,则下山的速度为1.5x千米/时,根据题意得:3x+1=1.5x×,解得x=(千米/时).故答案填:千米/时.三.解答题(共8小题,满分66分)17.(12分)解方程(1)2x+3=x+5(2)0.5x﹣0.7=6.5﹣1.3x(3)8x=﹣2(x+4)(4)【分析】(1)、(2)移项合并,化系数为1,即可得到方程的解.(3)去括号,移项合并,化系数为1,即可得到方程的解.(3)先去分母,再去括号,最后移项,化系数为1,即可得到方程的解.【解答】解:(1)移项得:2x﹣x=5﹣3合并得:x=2;(2)移项得:0.5x+1.3x=6.5+0.7合并得:1.8x=7.2化系数为1得:x=4;(3)去括号得:8x=﹣2x﹣8移项合并得:10x=﹣8化系数为1得:x=﹣;(4)去分母得:3(3y﹣1)﹣12=2(5y﹣7)去括号得:9y﹣3﹣12=10y﹣14移项合并得:﹣y=1化系数为1得:y=﹣1.18.(7分)用76cm长的铁丝做一个长方形,要使长是22cm,宽应当是多少cm?【分析】根据等量关系:长方形的周长=2(长+宽),得出等方程求出即可.【解答】解:设长方形的宽为xcm,由题意得出:2(22+x)=76,解得:x=16.答:宽应当是16cm.19.(7分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?【分析】设原来全厂共有4x人.依据“女工与全厂人数的比是2:3,”列出方程,并解答.【解答】解:设原来全厂共有4x人.依题意得(3x+60):(4x+60×2)=2:3,9x+180=8x+240,9x﹣8x=240﹣180,4x=240.答:原来全厂共有240人.20.(7分)一架飞机飞行在两个城市之间,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求飞机在静风中的速度.【分析】设飞机在静风中的速度为x千米/小时.利用两城市之间的路程一定,等量关系为:顺风速度×顺风时间=逆风速度×逆风时间,把相关数值代入即可求解.【解答】解:设飞机在静风中的速度为x千米/小时.根据题意,列出方程得:(x+24)×=(x﹣24)×3,解这个方程,得x=840.答:飞机在静风中的速度是840千米/小时.21.(7分)小明的母亲今年38岁,2年前小明的母亲的年龄是小明年龄的3倍,小明今年几岁?(设小明今年x岁)【分析】设小明今年x岁,则2年前小明的年龄是(x﹣2)岁,根据2年前小明的母亲的年龄是小明年龄的3倍建立方程求出其解即可.【解答】解:设小明今年x岁,则2年前小明的年龄是(x﹣2)岁,由题意,得3(x﹣2)=38﹣2,解得:x=14.答:小明今年14岁.22.(8分)有一个两位数,它的十位上的数比个位上的数字大5,并且这个两位数比它的两个数位上的数字之和的8倍还要大5,求这个两位数.【分析】设个位为x,则十位数为x+5,等量关系为:两位数=8(个位数字+十位数字)+5,列方程求解即可.【解答】解:设个位为x,则十位数为x+5,由题意得,10(x+5)+x=8[x+(x+5)]+5,解得:x=1,则这个两位数是61.23.(9分)某数为x,根据下列条件列方程.(1)某数与8的差等于某数的与4的和.(2)某数的与某数的的和等于3.【分析】(1)根据题意某数为x,则x﹣8等于x+4,即可得出答案;(2)表示出某数的和某数的进而等于3得出答案即可.【解答】解:(1)根据题意得出:x﹣8=x+4;(2)根据题意得出:x+x=3.24.(9分)电信对手机收费定出两种方式:一种是“八闽通”,每户每月话费支出10元月租费加每分钟0.4元的话费;另一种是“大众通”,用户每月话费为25元月租费加每分钟0.20元的话费.(1)通话多长时间,两种方式每月话费一样多?(2)张老板由于业务需要,他每月打电话不低于3个小时,请你帮助他选择哪种手机收费业务较划算?【分析】(1)设通话x分钟两种方式每月话费一样多,那么“八闽通”x分钟的通话费是:10+0.4x;“大众通”x分钟的通话费是25+0.2x.根据题意列方程求解.(2)由(1)可知每月通话x分钟时两种收费一样多,因为3小时=180分钟,与x对比即可知道选择哪种手机收费业务较划算.【解答】解:(1)设通话x分钟两种方式每月话费一样多,由题意得:10+0.4x=25+0.2x,解得x=75.(2)由(1)可知每月通话75分钟时两种收费一样多,因为3小时=180分钟>75分钟,故应选择“大众通”.人教版七年级数学(上册)第3章一元一次方程单元检测(解析版)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各方程中,属于一元一次方程的是()A.x+2y=0B.x2+3x+2=0C.2x﹣3=+2D.x+1=02.(3分)将方程=变形为=的理论依据是()A.合并B.等式的性质C.等式的性质2D.分数的基本性质3.(3分)根据等式性质5=3x﹣2可变形为()A.﹣3x=2﹣5B.﹣3x=﹣2+5C.5﹣2=3x D.﹣3x=﹣5﹣2 4.(3分)已知x=2是方程2(x﹣3)+1=x+m的解,则m﹣1的值是()A.3B.﹣3C.﹣4D.45.(3分)下列方程中,解是x=2的是()A.2x﹣2=0B.x=4C.4x=2D.﹣1=6.(3分)已知x=y,下列等式不一定成立的是()A.ax=ay B.ax+b=ay+b C.ax﹣x=ay﹣x D.7.(3分)有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色是多少克?()A.10B.15C.20D.258.(3分)下列变形属于移项的是()A.若,则B.3x2y+3x2y2+5x2y=(3x2y+5x2y)+3x2y2C.若3x=1,则x=D.若3x﹣4=5x+5,则3x﹣5x=5﹣49.(3分)解方程时,去分母后正确的是()A.4x+2﹣10x+1=10B.4x+2﹣10x﹣1=1C.4x+2﹣10x﹣1=10D.4x+1﹣10x+1=110.(3分)甲、乙两人骑自行车同时从相距65km的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5km,则乙的时速是()A.12.5km B.15km C.17.5km D.20km二.填空题(共6小题,满分24分,每小题4分)11.(4分)方程x+11=9的解是.12.(4分)已知x与x的3倍的和比x的2倍少6,列出方程为.13.(4分)关于y的两个一元一次方程y+3m=32与y﹣4=1的解相同,那么m的值为.14.(4分)某商品降价20%后售价为20元,则该商品的原价为.15.(4分)若与是同类项,则x=.16.(4分)一条山路,某人从山下往山顶走3小时,还差1千米才到山顶,若从山顶走到山下,只用150分钟,已知下山速度是上山速度的1.5倍,则上山速度为.三.解答题(共8小题,满分66分)17.(12分)解方程(1)2x+3=x+5(2)0.5x﹣0.7=6.5﹣1.3x(3)8x=﹣2(x+4)(4)18.(7分)用76cm长的铁丝做一个长方形,要使长是22cm,宽应当是多少cm?19.(7分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?20.(7分)一架飞机飞行在两个城市之间,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求飞机在静风中的速度.21.(7分)小明的母亲今年38岁,2年前小明的母亲的年龄是小明年龄的3倍,小明今年几岁?(设小明今年x岁)22.(8分)有一个两位数,它的十位上的数比个位上的数字大5,并且这个两位数比它的两个数位上的数字之和的8倍还要大5,求这个两位数.23.(9分)某数为x,根据下列条件列方程.(1)某数与8的差等于某数的与4的和.(2)某数的与某数的的和等于3.24.(9分)电信对手机收费定出两种方式:一种是“八闽通”,每户每月话费支出10元月租费加每分钟0.4元的话费;另一种是“大众通”,用户每月话费为25元月租费加每分钟0.20元的话费.(1)通话多长时间,两种方式每月话费一样多?(2)张老板由于业务需要,他每月打电话不低于3个小时,请你帮助他选择哪种手机收费业务较划算?。

【3套打包】福州市七年级上册数学第三章一元一次方程单元测试题(含答案).doc

【3套打包】福州市七年级上册数学第三章一元一次方程单元测试题(含答案).doc

人教版七年级上册第三章《一元一次方程》单元过关测试卷一、选择题(每小题3分,共24分)1、下列方程中是一元一次方程的是 ( ) A 、2x =3y B 、x =0 C 、 x 2+12(x -1)=1 D 、x1-2=x 2、已知等式523+=b a ,则下列等式中不一定成立的是 ( ) A 、;253b a =- B 、;6213+=+b a C 、;523+=bc ac D 、.3532+=b a 3、若x =2是方程k (2x -1)=kx +7的解,那么k 的值是 ( ) A 、 1B 、-1C 、7D 、-74、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. A 、3年后 B 、3年前 C 、9年后 D 、不可能5、在日历上,用一个正方形任意圈出3×3个数,那么这九个数的和可能是( )A .80B .98C .108D .206.6、一项工程甲单独做要40天完成,乙单独做要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是 ( ) A 、44014050x +=+ B 、44014050x +=⨯ C 、440150x += D 、 4401114050x ++=()7、为了节约用水,某市规定:每户居民每月用水不超过20立方米,按每立方米2元收费,超过20立方米,则超过部分按每立方米4元收费,某户居民五月份交水费72元,则该居民五月份实际用水( )A . 18立方米B . 8立方米C . 28立方米D . 36立方米8、某商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件赢利25%,另一件亏本25%,在这次买卖中,该商贩( ) A 、不赔不赚 B 、赚9元 C 、赔18元 D 、赚18元 二、填空题(每小题3分,共18分) 9、方程的解是______________.10、当=x __________时,代数式24+x 与93-x 的值互为相反数. 11、如果单项式5a m -1b n-5与a 2m +1b-n + 3是同类项,则mn = .12、一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试题,得了70分,他一共做对了 题.13、一列火车匀速通过500米长的隧道,从火车头进入隧道和火车尾出隧道共用30秒,火车整体在隧道里的运行时间是20秒,则火车的长度为 .14、某商品标价为每件900元,按九折降价后再让利40元销售,仍可获利10%。

福州华南实验中学人教版初中七年级数学上册第三章《一元一次方程》模拟测试卷(有答案解析)

福州华南实验中学人教版初中七年级数学上册第三章《一元一次方程》模拟测试卷(有答案解析)

一、选择题1.(0分)[ID :68199]下列方程中,解为x=-2的方程是( )A .2x+5=1-xB .3-2(x -1)=7-xC .x -5=5-xD .1-14x=34x 2.(0分)[ID :68195]定义运算“*”,其规则为2*3a b a b +=,则方程4*4x =的解为( ) A .3x =- B .3x = C .2x =D .4x = 3.(0分)[ID :68189]新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm 4.(0分)[ID :68187]如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2 C .﹣2 D .﹣65.(0分)[ID :68183]某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元 6.(0分)[ID :68168]下列变形中,正确的是( ) A .变形为 B .变形为 C .变形为 D .变形为7.(0分)[ID :68257]一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )A .120元B .125元C .135元D .140元 8.(0分)[ID :68255]下列运用等式的性质对等式进行的变形中,错误的是( ) A .()()2211a x b x +=+若,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c= D .若x y =,则33x y -=- 9.(0分)[ID :68253]把方程10.58160.60.9x x -++=的分母化为整数,结果应为( )A .1581669x x -++=B .10105801669x x -++=C .101058016069x x -+-=D .15816069x x -++= 10.(0分)[ID :68245]互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元11.(0分)[ID :68223]对于ax+b=0(a ,b 为常数),表述正确的是( )A .当a≠0时,方程的解是x=b aB .当a=0,b≠0时,方程有无数解C .当a=0,b=0,方程无解D .以上都不正确.12.(0分)[ID :68221]某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( )A .1146x x ++=B .1146x x ++=C .1146x x -+=D .111446x x +++= 13.(0分)[ID :68215]宜宾某机械厂加工车间有34名工人,平均每名工人每天加工小齿轮20个或大齿轮15个.已知3个小齿轮和2个大齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天生产的齿轮刚好配套?若设加工小齿轮的工人有x 名,则可列方程为( )A .2015(34)x x =-B .220315(34)x x ⨯=⨯-C .320215(34)x x ⨯=⨯-D .320(34)215x x ⨯-=⨯14.(0分)[ID :68179]一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( ) A .34000m B .32500m C .32000m D .3500m 15.(0分)[ID :68169]四位同学解方程,去分母分别得到下面四个方程:①;②;③;④.其中错误的是( ) A .② B .③ C .②③ D .①④二、填空题16.(0分)[ID :68337]一条河的水流速度为3km/h ,船在静水中的速度为xkm/h ,则船在这条河中顺水行驶的速度是____km/h ;17.(0分)[ID :68336]已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________.18.(0分)[ID :68329]如果34x x =-+,那么3x +________4=.19.(0分)[ID :68324]定义一种运算:1(1)(1)x a b a b a b *=++++,若设5213*=,则34*=________.20.(0分)[ID :68309]对于数a ,b 定义这样一种运算:*2a b b a =-,例如1*3231=⨯-,若()3*11x +=,则x 的值为______.21.(0分)[ID :68308]一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为_____. 22.(0分)[ID :68307]已知222a b c k b c a c a b===+++,则k =______. 23.(0分)[ID :68280]某商店有两种进价不同的计算器都卖了64元,其中一种盈利60%,另一种亏本20%,在这次买卖中,这家商店的盈亏情况为____________.24.(0分)[ID :68269]如果ma mb =,那么下列等式一定成立的是_______.①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+.25.(0分)[ID :68277]把方程|21|5x -=化成两个一元一次方程是___________________. 26.(0分)[ID :68263]我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布__________尺.27.(0分)[ID :68259]若关于x 的方程3x m -2-m =0是一元一次方程,则m =________,方程的解为________.三、解答题28.(0分)[ID :68428]我们知道13写成小数形式为0.3,反过来,无限循环小数0.3也可以转化成分数形式.方法如下:设0.3x =,由0.30.333=,可知10 3.333x =,所以103x x -=.解方程,得13x =,所以10.33=. 例如:把无限循环小数0.32化为分数的方法如下: 设0.32x =,由0.320.323232=,可知10032.323232x =,所以10032x x -=,解方程,得3299x =,所以320.3299=.根据上述材料,解答下列问题: (1)把下列无限循环小数写成分数形式:①0.5=________;②2.58=________;③0.518=________.(2)借鉴材料中的方法,从第(1)题的①②③中任选一个,写出你的转化过程. 29.(0分)[ID :68420]解方程:228425920x x x --+=-.30.(0分)[ID:68378]学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价为多少?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.D3.A4.C5.C6.B7.B8.C9.B10.C11.D12.C13.B14.B15.D二、填空题16.x+3【分析】根据顺水速度=静水中的速度+水速即可列出代数式【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题解决问题的关键是读懂题意找到所求的量之17.【分析】先求出m的值再代入求出x的值即可【详解】因为原方程是关于x的一元一次方程所以移项得合并同类项得把代入原方程得移项得合并同类项得系数化为1得故答案为:【点睛】本题考查了解一元一次方程的问题掌握18.x【分析】根据题意得第一个等式等号右边为-x+4第二个等式等号右边为4因为(-x+4)+x=4所以等号两边同时加x【详解】两边同时加x得3x+x=4故答案为:x【点睛】本题考查的是等式的性质熟知等式19.【分析】根据定义新运算及求出x的值即可求出的值【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查定义新运算的知识解答此题的关键是根据所给出的式子得出x 的值再利用新的运算方法解决问题20.1【分析】根据新定义的运算法则代入计算即可得到答案【详解】解:∵∴∴∴;故答案为:1【点睛】本题考查了新定义的运算法则解题的关键是熟练掌握新定义的运算法则进行运算21.【分析】设火车的长度为x米则火车的速度为根据列车的速度×时间=列车长度+隧道长度列方程求解即可【详解】设火车的长度为x米则火车的速度为依题意得:45×=600+x解得:x=300故答案为:300【点22.1或-2【分析】分类讨论:①当时将等式变形即可求出k的值;②当时则代入原等式即可求出k的值【详解】解:①当时∵∴∴∴∴∴;②当时则∴故答案为:1或-2【点睛】此题考查的是等式的基本性质根据等式的基本23.赚了8元【解析】【分析】根据题意设一个价钱为x元另一个价钱为y元列出方程求出未知数的值再计算即可【详解】解:设两种计算器进价分别为x元y元则x解得(元)所以赚了8元【点睛】本题主要考查列一元一次方程24.②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决【详解】当m=0时a=b不一定成立故25.【解析】【分析】数轴上表示数的点到原点的距离叫做这个数的绝对值根据绝对值的性质可得一个数的绝对值是5则这个数是5或-5【详解】根据绝对值的性质将方程方程化成两个一元一次方程是故答案为:【点睛】本题主26.【解析】【分析】设第一天织布x尺则第二天织布2x尺第三天织布4x尺第四天织布8x尺第五天织布16x尺根据5日共织布5尺列方程求解即可【详解】设第一天织布x尺则第二天织布2x尺第三天织布4x尺第四天织27.x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1进而求得M结合m的值可得原方程为3x-3=0求解可得方程的解【详解】由题意得:m-2=1解得:m=3所以原方程为3x-3=0解得x=1【点三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】将x=-2代入方程,使方程两边相等即是该方程的解.【详解】将x=-2代入,A.左边≠右边,故不是该方程的解;B.左边=右边,故是该方程的解;C. .左边≠右边,故不是该方程的解;D. .左边≠右边,故不是该方程的解;故选:B.【点睛】此题考查一元一次方程的解使方程左右两边相等的未知数的值即是方程的解,熟记定义即可解答.2.D【分析】根据新定义列出关于x 的方程,解之可得.【详解】∵4*x=4, ∴234x ⨯+=4, 解得x=4,故选:D .【点睛】 本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.3.A解析:A【分析】设小长方形的长为x ,根据大的长方形对边相等得到小长方形的宽为2x ,再根据长方形的周长列等量关系得到2(2x+2x+x )=150,再解方程求出x ,然后计算小长方形的面积.【详解】解:设小长方形的长为x ,则宽为2x ,根据题意得2(2x+2x+x )=150,解得x=15,2x=30,所以x•2x=15×30=450.答:一块渗水防滑地板的面积为450cm 2.故选A .【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.4.C解析:C【分析】将x =2代入方程12x +a =-1可求得. 【详解】解:将x =2代入方程12x +a =﹣1得1+a =﹣1, 解得:a =﹣2.【点睛】本题是一道求方程待定字母值的试题,把方程的解代入原方程是求待定字母的值的常用方法,平时应多注意领会和掌握.5.C解析:C【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.6.B解析:B【解析】【分析】利用等式的性质对每个等式进行变形即可找出答案.【详解】A. 根据等式性质1,2x+6=0两边同时减去6,即可得到2x=−6;故选项错误.B. 根据等式性质2, 两边同时乘以2,即可得到x+3=4+2x;故选项正确.C. 根据等式性质2, 两边都除以−2,应得到x−4=−1,故选项错误;D. 根据等式性质2, 两边同时乘以2,即可得到−x−1=1;故选项错误.故选B.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.7.B解析:B【分析】设每件的成本价为x元,列方程求解即可.【详解】设每件的成本价为x 元,0.8(140%)15x x ⨯+=+,解得x=125,故选:B.【点睛】此题考查一元一次方程的实际应用—销售问题,正确理解题意是列方程解决问题的关键. 8.C解析:C【分析】根据等式的性质,逐项判断即可.【详解】解:A 、根据等式性质2,a (x 2+1)=b (x 2+1)两边同时除以(x 2+1)得a=b ,原变形正确,故这个选项不符合题意;B 、根据等式性质2,a=b 两边都乘c ,即可得到ac=bc ,原变形正确,故这个选项不符合题意;C 、根据等式性质2,c 可能为0,等式两边同时除以c 2,原变形错误,故这个选项符合题意;D 、根据等式性质1,x=y 两边同时减去3应得x-3=y-3,原变形正确,故这个选项不符合题意.故选:C .【点睛】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.B解析:B【分析】利用分数的基本性质,化简已知方程得到结果,即可做出判断.【详解】 把方程10.58160.60.9x x -++=的分母化为整数,结果应为: 10105801669x x -++=. 故选:B .【点睛】此题考查了解一元一次方程,其全部步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.10.C解析:C【详解】解:设该商品的进价为x元/件,依题意得:(x+20)÷510=200,解得:x=80.∴该商品的进价为80元/件.故选C.11.D解析:D【分析】ax+b=0(a,b为常数),当a=0时,就不是一元一次方程,当a=0时,是一元一次方程.分两种情况进行讨论.【详解】A、当a≠0时,方程的解是x=-ba,故错误;B、当a=0,b≠0时,方程无解,故错误;C、当a=0,b=0,方程有无数解,故错误;D、以上都不正确.故选D.【点睛】此题很简单,解答此题的关键是:正确记忆一元一次方程的一般形式中,一次项系数不等于0.12.C解析:C【分析】首先要理解题意找出题中存在的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据题意我们可以设总的工作量为单位“1“,根据效率×时间=工作量的等式,分别用式子表示甲乙的工作量即可列出方程.【详解】设甲一共做了x天,则乙一共做了(x−1)天.可设工程总量为1,则甲的工作效率为14,乙的工作效率为16.那么根据题意可得出方程11 46x x-+=,故选C.【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程. 13.B解析:B【分析】设加工小齿轮的工人有x 名,则加工大齿轮的工人有(34)x -名,根据生产的小齿轮的数量:生产的大齿轮的数量=3:2即可列出方程,进而可得答案.【详解】解:设加工小齿轮的工人有x 名,则加工大齿轮的工人有(34)x -名.根据题意,得220315(34)x x ⨯=⨯-.故选:B .【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.14.B解析:B【分析】设计划注入水的时间为x 小时,根据“比预定的时间提前了10分钟完成注水任务”列出方程并解答.【详解】设计划注入水的时间为x 小时,依题意得:()20105002+5001+2025006060x x ⎛⎫⨯⨯---= ⎪⎝⎭%, 解得x=5.5×500=2500,即计划注入水的体积为2500立方米.故选B.【点睛】此题考查一元一次方程的应用,解题关键在于根据题意找到等量关系列出方程. 15.D解析:D【解析】【分析】把分母中的根式化去的过程称为分母有理化,所有分母的最小公倍数是6,因此两边同时乘6;把得到的方程去括号得到另一个形式的方程,由此判断.【详解】把分母中的根式化去的过程称为分母有理化,分母的最简公分母是6,则两边同时乘6得:2(x -1)-(x +2)=3(4-x),故③正确;去括号得:2x -2-x -2=12-3x ,故②正确,故选:D.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.二、填空题16.x +3【分析】根据顺水速度=静水中的速度+水速即可列出代数式【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题解决问题的关键是读懂题意找到所求的量之解析:x +3【分析】根据顺水速度=静水中的速度+水速,即可列出代数式.【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题,解决问题的关键是读懂题意,找到所求的量之间的关系. 17.【分析】先求出m 的值再代入求出x 的值即可【详解】因为原方程是关于x 的一元一次方程所以移项得合并同类项得把代入原方程得移项得合并同类项得系数化为1得故答案为:【点睛】本题考查了解一元一次方程的问题掌握 解析:3x =-【分析】先求出m 的值,再代入求出x 的值即可.【详解】因为原方程是关于x 的一元一次方程,所以21+=m ,移项,得12m =-.合并同类项,得1m =-.把1m =-代入原方程,得224x --=.移项,得242x -=+.合并同类项,得26x -=.系数化为1,得3x =-.故答案为:3x =-.【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 18.x 【分析】根据题意得第一个等式等号右边为-x+4第二个等式等号右边为4因为(-x+4)+x=4所以等号两边同时加x 【详解】两边同时加x 得3x+x=4故答案为:x 【点睛】本题考查的是等式的性质熟知等式解析:x【分析】根据题意,得第一个等式等号右边为-x+4 ,第二个等式等号右边为4,因为(-x+4)+x=4 ,所以等号两边同时加x .【详解】两边同时加x ,得3x+x=4,故答案为:x本题考查的是等式的性质,熟知等式两边加或减同一个数或式子,结果仍相等是解答此题的关键.19.【分析】根据定义新运算及求出x 的值即可求出的值【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查定义新运算的知识解答此题的关键是根据所给出的式子得出x 的值再利用新的运算方法解决问题 解析:1935【分析】 根据定义新运算及5213*=,求出x 的值,即可求出34*的值. 【详解】解:∵1(1)(1)x a b a b a b *=++++,5213*= ∴15=21(21)(11)3++++x ∴=8x ∴18(1)(1)*=++++a b a b a b ∴181934=34(31)(41)35*=++++ 故答案为:1935【点睛】 本题主要考查定义新运算的知识,解答此题的关键是,根据所给出的式子,得出x 的值,再利用新的运算方法解决问题.20.1【分析】根据新定义的运算法则代入计算即可得到答案【详解】解:∵∴∴∴;故答案为:1【点睛】本题考查了新定义的运算法则解题的关键是熟练掌握新定义的运算法则进行运算解析:1【分析】根据新定义的运算法则,代入计算即可得到答案.【详解】解:∵*2a b b a =-,∴()3*12(1)31x x +=+-=,∴211x -=,∴1x =;故答案为:1.本题考查了新定义的运算法则,解题的关键是熟练掌握新定义的运算法则进行运算. 21.【分析】设火车的长度为x 米则火车的速度为根据列车的速度×时间=列车长度+隧道长度列方程求解即可【详解】设火车的长度为x 米则火车的速度为依题意得:45×=600+x 解得:x=300故答案为:300【点解析:【分析】设火车的长度为x 米,则火车的速度为15x ,根据列车的速度×时间=列车长度+隧道长度列方程,求解即可.【详解】设火车的长度为x 米,则火车的速度为15x ,依题意得: 45×15x =600+x 解得:x =300.故答案为:300.【点睛】本题考查了一元一次方程的应用,学生理解题意的能力,根据隧道顶部一盏固定灯在火车上垂直照射的时间为15秒钟,可知火车的速度为15x ,根据题意可列方程求解. 22.1或-2【分析】分类讨论:①当时将等式变形即可求出k 的值;②当时则代入原等式即可求出k 的值【详解】解:①当时∵∴∴∴∴∴;②当时则∴故答案为:1或-2【点睛】此题考查的是等式的基本性质根据等式的基本 解析:1或-2【分析】分类讨论:①当0a b c ++≠时,将等式变形,即可求出k 的值;②当0a b c ++=时,则a b c +=-,代入原等式即可求出k 的值.【详解】解:①当0a b c ++≠时, ∵222a b c k b c a c a b===+++, ∴()()()2,2,2a k b c b k a c c k a b =+=+=+,∴()222a b c k b c a c a b ++=+++++,∴()()22a b c k a b c ++=++,∴22k =,∴1k =;②当0a b c ++=时,则a b c +=-.∴222c c k a b c===-+- 故答案为:1或-2【点睛】 此题考查的是等式的基本性质,根据等式的基本性质将等式变形是解决此题的关键. 23.赚了8元【解析】【分析】根据题意设一个价钱为x 元另一个价钱为y 元列出方程求出未知数的值再计算即可【详解】解:设两种计算器进价分别为x 元y 元则x 解得(元)所以赚了8元【点睛】本题主要考查列一元一次方程 解析:赚了8元【解析】【分析】根据题意设一个价钱为x 元,另一个价钱为y 元,列出方程,求出未知数的值,再计算即可.【详解】解:设两种计算器进价分别为x 元,y 元,则x (160%)=64+,(120%)64y -=.解得40x =,80y =.4080120x y +=+=. 6421201281208⨯-=-=(元), 所以赚了8元.【点睛】本题主要考查列一元一次方程解决实际问题,解决本题的关键是要熟练掌握根据进价、售价与利润率之间的关系分别求出两种计算机的进价.24.②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决【详解】当m =0时a =b 不一定成立故 解析:②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立; ②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【详解】当m =0时,a =b 不一定成立.故①错误;ma =mb ,根据等式的性质1,两边同时减去6,就得到ma−6=mb−6.故②正确;根据等式的性质2,两边同时乘以−12,即可得到1122ma mb -=-,故③正确; 根据等式的性质1,两边同时加上8就可得到ma +8=mb +8.故④正确; 根据等式的性质2,两边同时乘以3,即可得到33ma mb =,根据等式的性质1,两边同时减去1就可得到3ma-1=3mb-1,故⑤正确;根据等式的性质1,ma mb =两边同时加或减3,结果仍相等,故⑥错误,故答案为:②③④⑤.【点睛】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.25.【解析】【分析】数轴上表示数的点到原点的距离叫做这个数的绝对值根据绝对值的性质可得一个数的绝对值是5则这个数是5或-5【详解】根据绝对值的性质将方程方程化成两个一元一次方程是故答案为:【点睛】本题主 解析:215x -=,215x -=-【解析】【分析】数轴上表示数的点到原点的距离叫做这个数的绝对值,根据绝对值的性质可得,一个数的绝对值是5,则这个数是5或-5.【详解】根据绝对值的性质,将方程方程|21|5x -=化成两个一元一次方程是215x -=,215x -=-,故答案为: 215x -=,215x -=-.【点睛】本题主要考查绝对值的基本性质,解决本题的关键是要熟练掌握绝对值的基本性质. 26.【解析】【分析】设第一天织布x 尺则第二天织布2x 尺第三天织布4x 尺第四天织布8x 尺第五天织布16x 尺根据5日共织布5尺列方程求解即可【详解】设第一天织布x 尺则第二天织布2x 尺第三天织布4x 尺第四天织 解析:531【解析】【分析】设第一天织布x 尺,则第二天织布2x 尺,第三天织布4x 尺,第四天织布8x 尺,第五天织布16x 尺,根据5日共织布5尺列方程求解即可.【详解】设第一天织布x 尺,则第二天织布2x 尺,第三天织布4x 尺,第四天织布8x 尺,第五天织布16x 尺,根据题意可得:x+2x+4x+8x+16x =5, 解得:5x 31=, 即该女子第一天织布531尺, 故答案为531. 【点睛】 本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.27.x =1【解析】【分析】根据一元一次方程的定义得到:m-2=1进而求得M 结合m 的值可得原方程为3x-3=0求解可得方程的解【详解】由题意得:m-2=1解得:m=3所以原方程为3x-3=0解得x=1【点解析:x =1【解析】【分析】根据一元一次方程的定义得到:m-2=1,进而求得M ,结合m 的值可得原方程为3x-3=0,求解可得方程的解【详解】由题意得:m-2=1,解得:m=3所以原方程为3x-3=0解得x=1【点睛】此题考查一元一次方程的知识,熟练掌握一元一次方程的定义是关键三、解答题28.(1)①59;②25699;③518999;(2)见解析 【分析】(1)根据题目中的转化方法进行转化即可.(2)根据题目中的转化方法进行转化,并写出过程.【详解】(1)①59;②25699;③518999. (2)从①②③中任选一个转化即可. ①设0.5x =,则10 5.5555x =⋯,所以105x x -=,解方程,得59x =,所以50.59=. ②设0.58x =,则10058.5858x =⋯,所以10058x x -=,解方程,得5899x =,所以58256 2.5829999=+=. ③设0.518x =,则1000518.518518x =⋯,所以1000518x x -=,解方程,得518999x =,所以5180.518999=. 【点睛】本题考查了一元一次方程的其他实际应用问题,掌握题目中的转化方法、解一元一次方程的方法是解题的关键.29.49x=【分析】考虑到最后一项的分子分母可同时除以4,可化简此项后再根据解一元一次方程的方法和步骤解答.【详解】解:原方程可化为:222 2595x x x--+=+.移项、合并同类项,得2 29x=.系数化为1,得49x=.【点睛】本题考查了一元一次方程的解法,灵活应用整体思想、熟练掌握解一元一次方程的方法和步骤是解题的关键.30.180元或202.5元【分析】先根据题意判断出可能打折的情况,再分别算出可能的可能的原价.【详解】∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.【点睛】本题考查打折销售问题,关键在于分类讨论.。

(好题)初中数学七年级数学上册第三单元《一元一次方程》测试题(答案解析)(1)

(好题)初中数学七年级数学上册第三单元《一元一次方程》测试题(答案解析)(1)

一、选择题1.与(-b)-(-a)相等的式子是( )A .(+b)-(-a)B .(-b)+aC .(-b)+(-a)D .(-b)-(+a) 2.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ 3.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- 4.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a5.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55 6.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6 C .5y 3+3y 2-2y -1 D .5y 3-3y 2-2y -1 7.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上8.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时A .2m n +B .mn m n +C .2mn m n +D .m nn m + 9.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . 10.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者 11.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - 12.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64 B .31,32,33 C .31,62,63 D .31,45,46二、填空题13.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)14.化简:226334x x x x _________.15.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.16.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).17.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.18.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)19.一个长方形的周长为68a b +,其一边长为23a b +,则另一边长为______. 20.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.三、解答题21.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品.下面我们用四个卡片代表四名同学(如下):(1)列式,并计算:①3-经过A ,B ,C ,D 的顺序运算后,结果是多少?②5经过B ,C ,A ,D 的顺序运算后,结果是多少?(2)探究:数a 经过D ,C ,A ,B 的顺序运算后,结果是45,a 是多少?22.已知230x y ++-=,求152423x y xy --+的值. 23.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?24.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19= ;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ;(3)请用上述计算103+105+107+…+2015+2017的值.25.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.26.化简与求值:(1)若1a =-,则式子21a -的值为______;(2)若1a b +=,则式子12a b ++的值为______; (3)若534a b +=-,请你仿照以上求式子值的方法求出()()2422a b a b +++-的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a ;B. (-b)+a=-b+a ;C. (-b)+(-a)=-b-a ;D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒故选:B ﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒2.D解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 3.C解析:C【分析】本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.4.A解析:A【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:b <a <0,且|a |<|b |,∴a -b >0,a +b <0,∴原式=a -b -a -b =-2b .故选:A .【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.5.C解析:C【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-, ∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()()4424419892+-=, 当m=45时,()()4524511342+-=, ∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.6.D解析:D【分析】根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可.【详解】解:∵5y 3-4y -6-(3y 2-2y -5)= 5y 3-4y -6-3y 2+2y+5= 5y 3-3y 2-2y -1.故答案为D .【点睛】本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键.7.C解析:C【分析】由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.8.C解析:C【分析】平均速度=总路程÷总时间,题中没有单程,可设从家到学校的单程为1,那么总路程为2.解:依题意得:1122()2m n mn m n mn m n+÷+=÷=+. 故选:C .【点睛】本题考查了列代数式;解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1. 9.D解析:D【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D .【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键. 10.D解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项.【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,m nx x 中指数大的,即m ,n 中较大的,故答案选D.【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项. 11.D解析:D【分析】根据N=M+N-M 列式即可解决此题.【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.12.C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题13.【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n条直线相交最多有1+2+3+…+(n-1)=个解析:()12 n n-【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.14.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 15.【分析】有第1排的座位数看第n 排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n 排座位有(a+n-1)个故答案为:(a+n解析:a n 1+-【分析】有第1排的座位数,看第n 排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有 a 个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n 排座位有 (a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n 排的座位数与第1排座位数的关系式的规律是解决本题的关键. 16.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个 解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 17.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算. 18.【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图 解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.19.【分析】根据长方形的周长公式列出代数式求解即可【详解】解:由长方形的周长=2×(长+宽)可得另一边长为:故答案为:a+b 【点睛】本题考查了整式的加减长方形的周长公式列出代数式是解决此题的关键解析:+a b【分析】根据长方形的周长公式列出代数式求解即可.【详解】解:由长方形的周长=2×(长+宽)可得,另一边长为:()()68223a b a b a b +÷-+=+. 故答案为:a +b .【点睛】本题考查了整式的加减,长方形的周长公式列出代数式是解决此题的关键.20.【分析】起步价10元加上超过3千米部分的费用即可【详解】解:乘出租x 千米的付费是:10+18(x-3)即18x+46故答案是:18x+46【点睛】本题考查了列代数式正确理解收费标准是关键解析:1.8 4.6x +【分析】起步价10元加上,超过3千米部分的费用即可.【详解】解:乘出租x 千米的付费是:10+1.8(x-3)即1.8x+4.6.故答案是:1.8x+4.6.【点睛】本题考查了列代数式,正确理解收费标准是关键.三、解答题21.(1)①7;②206;(2)6a =或6a =-【分析】(1)把-3和5经过A ,B ,C ,D 的运算顺序计算即可;(2)根据已知条件列列出关于a 的方程计算即可;【详解】(1)①2[(3)2(5)]67-⨯--+=;②2[5(5)]26206--⨯+=;(2)()()226545a +--=,()2620a +=,解得6a =或6a =-.【点睛】本题主要考查了规律型数字变化类,一元二次方程的求解,准确计算是解题的关键. 22.-24.【分析】首先根据绝对值的非负性求出x ,y ,然后代入代数式求值.【详解】解:∵230x y ++-=,∴x+2=0,y-3=0,∴x=-2,y=3, ∴152423x y xy --+ ()()552342323=-⨯--⨯+⨯-⨯ ()5524=-+-24=-.【点睛】本题考查了代数式求值,利用非负数的和为零得出x 、y 的值是解题关键.23.15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a ,以15%的速度增长,∴第二年的产量为a (1+15%)=1.15a .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系. 24.(1)102;(2)()22n + ;(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n 2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=21;第2个图案所代表的算式为:1+3=4=22;第3个图案所代表的算式为:1+3+5=9=23;…依次类推:第n 个图案所代表的算式为:1+3+5+…+(2n-1)=2n ;1+3+5+…+19的个数为:191102+=, ∴1+3+5+…+19=210;故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122n n ++=+, ∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n +, 故答案为:()22n +;(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=21009-251=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.25.(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 26.(1)0;(2)32;(3)-10. 【分析】(1)把a 的值代入计算即可;(2)把a+b 的值代入计算即可;(3)原式去括号转化为含有(5a+3b)的式子,然后代入5a+3b 的值计算即可.【详解】解:(1)()221110a -=--=;(2)1311222a b ++=+=; (3)()()()()24221062253224210a b a b a b a b +++-=+-=+-=⨯--=-.【点睛】本题考查的是整式的化简求值和整体代换的思想.只要原式化简出含有已知的式子,再代入求值即可.。

(典型题)初中数学七年级数学上册第三单元《一元一次方程》检测卷(有答案解析)

(典型题)初中数学七年级数学上册第三单元《一元一次方程》检测卷(有答案解析)

一、选择题1.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3- B .0 C .3 D .62.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ 3.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a4.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .11 5.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .666.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时A .2m n + B .mn m n + C .2mn m n + D .m n n m + 7.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍 8.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个 9.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c10.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个 11.一个多项式与221a a -+的和是32a -,则这个多项式为( ) A .253a a -+ B .253a a -+- C .2513a a -- D .21a a -+- 12.如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个 二、填空题 13.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.14.单项式2335x yz -的系数是___________,次数是___________. 15.有一列数:12,1,54,75,…,依照此规律,则第n 个数表示为____. 16.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .17.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________. 18.多项式223324573x x y x y y --+-按x 的降幂排列是______。

福州市华伦中学数学一元一次方程达标检测(Word版 含解析)

福州市华伦中学数学一元一次方程达标检测(Word版 含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.数轴上,两点对应的数分别为,,且满足;(1)求,的值;(2)若点以每秒个单位,点以每秒个单位的速度同时出发向右运动,多长时间后,两点相距个单位长度?(3)已知从向右出发,速度为每秒一个单位长度,同时从向右出发,速度为每秒个单位长度,设的中点为,的值是否变化?若不变求其值;否则说明理由.【答案】(1)解:∵|a+6|+(b﹣12)2=0,∴a+6=0,b﹣12=0,∴a=﹣6,b=12(2)解:设x秒后A,B两点相距2个单位长度,根据题意得:|(2x+12)﹣(3x﹣6)|=2,解得:x1=16,x2=20.答:16秒或20秒后A,B两点相距2个单位长度(3)解:当运动时间为t秒时,点M对应的数为t﹣6,点N对应的数为2t+12.∵NO的中点为P,∴PO= NO=t+6,AM=t﹣6﹣(﹣6)=t,∴PO﹣AM=t+6﹣t=6,∴PO﹣AM为定值6.【解析】【分析】(1)根据绝对值和平方的非负性,求出a、b的值即可;(2)根据题意列出方程,求出含绝对值方程的解;(3)根据题意得到点M对应的数为t﹣6,点N对应的数为2t+12,再由NO的中点为P,得到PO、AM的代数式,得到PO﹣AM的值.2.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒(3)解:OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)= (90°﹣3t),解得:t=23.3秒;如图:【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。

(典型题)初中数学七年级数学上册第三单元《一元一次方程》测试(含答案解析)

(典型题)初中数学七年级数学上册第三单元《一元一次方程》测试(含答案解析)

一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ). A .4B .8C .±4D .±82.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x ) B .100(1+x )2C .100(1+x 2)D .100(1+2x )3.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .54.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n5.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++6.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣17.下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+-D .如果||||x y =,那么x y = 8.下列同类项合并正确的是( ) A .x 3+x 2=x 5 B .2x ﹣3x =﹣1 C .﹣a 2﹣2a 2=﹣a 2 D .﹣y 3x 2+2x 2y 3=x 2y 39.代数式21a b-的正确解释是( )A .a 与b 的倒数的差的平方B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差10.若23,33M N x M x +=-=-,则N =( ) A .236x x +-B .23x x -+C .236x x -- D .23x x -11.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ). A .0 B .-2 C .0或-2D .任意有理数12.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +-D .(120%)15%a +二、填空题13.如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__.14.观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.15.将连续正整数按以下规律排列,则位于第 7 行第 7 列的数 x 是________________.? 13 6 1015 2128 2 5 9 1420 27 ? 48 131926? ?71218 25 ? ?111724??1623 ? ?22? ? ? ? ? x?16.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____. 17.观察下列式子: 1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2 019个式子为__________.18.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________. 19.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.20.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).三、解答题21.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y. 22.已知31A B x ,且3223A x x ,求代数式B .23.小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m 元的价格购进100个手机充电宝,然后每个加价n 元到市场出售.(1)求售出100个手机充电宝的总售价为多少元(结果用含m ,n 的式子表示)? (2)由于开学临近,小丽在成功售出60个充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完. ①她的总销售额是多少元?②相比不采取降价销售,她将比实际销售多盈利多少元(结果用含m 、n 的式子表示)? ③若m=2n ,小丽实际销售完这批充电宝的利润率为 (利润率=利润÷进价×100%) 24.已知单项式﹣2x 2y 的系数和次数分别是a ,b . (1)求a b ﹣ab 的值;(2)若|m|+m=0,求|b ﹣m|﹣|a+m|的值. 25.已知2223,Ax xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值26.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠).(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据单项式的定义可得8mx y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可.【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.B解析:B 【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B. 考点:列代数式.3.B解析:B 【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值. 【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3, 故选:B. 【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.4.A解析:A 【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答. 【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8; 第二个“金鱼”需用火柴棒的根数为6×2+2=14; 第三个“金鱼”需用火柴棒的根数为6×3+2=20; ……;第n 个“金鱼”需用火柴棒的根数为6n +2. 故选:A . 【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.5.B解析:B 【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形; ()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.6.D解析:D 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩,121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.7.B解析:B 【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可. 【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误; 故选:B. 【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.8.D解析:D 【分析】根据合并同类项系数相加字母及指数不变,可得答案. 【详解】解:A 、x 3与x 2不是同类项,不能合并,故A 错误; B 、合并同类项错误,正确的是2x ﹣3x =﹣x ,故B 错误; C 、合并同类项错误,正确的是﹣a 2﹣2a 2=﹣3a 2,故C 错误; D 、系数相加字母及指数不变,故D 正确; 故选:D . 【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.9.D解析:D 【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果. 【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D. 【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.10.D解析:D 【分析】根据N=M+N-M 列式即可解决此题. 【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D. 【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.11.A解析:A 【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值.【详解】∵a ,b 互为相反数, ∴0a b +=, ∵c ,d 互为倒数, ∴cd =1,∵m 的绝对值等于1, ∴m =±1, ∴原式=0110-+= 故选:A. 【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.12.A解析:A 【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可. 【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元. 故选A . 【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.二、填空题13.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解题关键解析:2 【分析】先去括号,再根据“不含2x 的项”列出式子求解即可得. 【详解】3223242(176)4(2)176x x kx x x k x x +-+-=+--+,由题意得:20k -=, 解得2k =, 故答案是:2. 【点睛】本题考查了去括号、多项式中的无关型问题,熟练掌握去括号法则是解题关键.14.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12 631 【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论. 【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…, 即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点. 第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律.15.【分析】先根据第一行的第一列的数以及第二行的第二列的数第三行的第三列数第四行的第四列数进而得出变化规律由此得出结果【详解】第一行的第一列的数是1;第二行的第二列的数是5=1+4;第三行的第三列的数是解析:85【分析】先根据第一行的第一列的数,以及第二行的第二列的数,第三行的第三列数,第四行的第四列数,进而得出变化规律,由此得出结果.【详解】第一行的第一列的数是 1;第二行的第二列的数是 5=1+4;第三行的第三列的数是 13=1+4+8;第四行的第四列的数是 25=1+4+8+12;......第n行的第n列的数是1+4+8+12+...+4(n-1)=1+4[1+2+3+...+(n+1)]=1+2n(n-1);∴第七行的第七列的数是1+2×7×(7-1)=85;故答案为:85.【点睛】本题考查数字的变化规律,学生通过观察、分析、归纳发现其中的规律,从而利用规律解决问题.16.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为ab,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b+.故答案为:a b -a a b +=a b ×a a b+.【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.17.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2 【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解. 【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2, 当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2. 【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.18.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键 解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值. 【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠,∴2m =-. 故答案为:2-. 【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键.19.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.20.【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去 解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验. 三、解答题21.132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-,当12,2x y =-=-时,原式174.22=-= 22.2322x x -++【分析】将A代入A-B=x3+1中计算即可求出B.【详解】解:∵A-B=x3+1,且A=-2x3+2x+3,∴B=A-(x3+1)=-2x3+2x+3-x3-1=-3x3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.23.(1)售出100个手机充电宝的总售价为:100(m+n)元;(2)①实际总销售额为:92(m+n)元;②实际盈利为92n﹣8m元;③38%.【分析】(1)先求出每个充电宝的售价,再乘以100,即可得出答案;(2)①先算出60个按售价出售的充电宝的销售额,再计算剩下40个按售价8折出售的充电宝的销售额,相加即可得出答案;②计算100个按售价出售的充电宝的销售额,跟①求出来的销售额比较,即可得出答案;③将m=2n代入实际利润92n-8m中,再根据利润率=利润÷进价×100%,即可得出答案.【详解】解:(1)∵每个充电宝的售价为:m+n元,∴售出100个手机充电宝的总售价为:100(m+n)元.(2)①实际总销售额为:60(m+n)+40×0.8(m+n)=92(m+n)元,②实际盈利为92(m+n)﹣100m=92n﹣8m元,∵100n﹣(92n﹣8m)=8(m+n),∴相比不采取降价销售,他将比实际销售多盈利8(m+n)元.③当m=2n时,张明实际销售完这批充电宝的利润为92n﹣8m=38m元,利润率为38100mm×100%=38%.故答案为38%.【点睛】本题考查的是列代数式,解题的关键是要看懂题目意思,理清字母之间的数量关系. 24.(1)﹣2;(2)1.【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a、b的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m的取值范围,根据差的绝对值是大数减小数,可得答案.【详解】解:由题意,得a=﹣2,b=2+1=3.a b﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2;(2)由|m|+m=0,得m≤0.|b ﹣m|﹣|a+m|=b ﹣m+(a+m )=b+a=3+(﹣2)=1;【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键.25.(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy=3xy+3y .∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.26.(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y,第8个分式为178x y-. 【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y,979324347x x x y x y y y x y, …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -. 【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键.。

(人教版)福州市七年级数学上册第三单元《一元一次方程》检测题(答案解析)

(人教版)福州市七年级数学上册第三单元《一元一次方程》检测题(答案解析)

一、选择题1.与(-b)-(-a)相等的式子是( )A .(+b)-(-a)B .(-b)+aC .(-b)+(-a)D .(-b)-(+a)2.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7B .﹣1C .5D .11 3.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6 4.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-45.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( )A .1B .2C .3D .46.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .117.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 8.下列去括号正确的是( )A .221135135122x y x x y y ⎛⎫--+=-++ ⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x +--=+-+D .()()223423422x y x x y x --+=--+9.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( )A .2和8B .4和8-C .6和8D .2-和8- 10.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个 11.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B = C .A B < D .无法确定 12.如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个二、填空题13.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.14.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____. 15.在括号内填上恰当的项:22222x xy y -+-=-(_____________________). 16.多项式223324573x x y x y y --+-按x 的降幂排列是______。

(典型题)初中数学七年级数学上册第三单元《一元一次方程》测试题(有答案解析)(1)

(典型题)初中数学七年级数学上册第三单元《一元一次方程》测试题(有答案解析)(1)

一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ). A .4B .8C .±4D .±82.在代数式a 2+1,﹣3,x 2﹣2x ,π,1x中,是整式的有( ) A .2个B .3个C .4个D .5个3.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004-4.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+15.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .226.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b7.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个 8.下列式子中,是整式的是( )A .1x +B .11x + C .1÷x D .1x x+9.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b +10.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+3111.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .73812.下列说法错误的是( ) A .23-2x y 的系数是32-B .数字0也是单项式C .-x π是二次单项式D .23xy π的系数是23π 二、填空题13.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m 的值应是_______.14.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a =________.15.如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.16.写出一个系数是-2,次数是4的单项式________.17.观察下列图形它们是按一定规律排列的,依照此规律,第 20 个图形共有________________ 个★.18.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)19.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子.20.如图,大、小两个正方形ABCD 与正方形BEFG 并排放在一起,点G 在边BC 上.已知两个正方形的面积之差为31平方厘米,则四边形CDGF 的面积是______平方厘米.三、解答题21.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>,求112210101010a b a b a b -+-++-的所有可能值.22.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c . (1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗? 23.试写出一个含a 的代数式,使a 不论取何值,这个代数式的值不大于1. 24.用代数式表示:(1)a 的5倍与b 的平方的差; (2)m 的平方与n 的平方的和;(3)x ,y 两数的平方和减去它们积的2倍.25.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.26.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式. 佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据单项式的定义可得8mx y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可.【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.C解析:C单项式和多项式统称为整式,分母中含有字母的不是整式. 【详解】解:a 2+1和 x 2﹣2x 是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个. 故选择C. 【点睛】本题考查了整式的定义.3.C解析:C 【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答. 【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2; 即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A =所以点A 2008表示的数为: 2008÷2= 1004 A 2009表示的数为:- (2009+1) ÷2=-1005 故选: C . 【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.4.B解析:B 【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n , 右边三角形的数字规律为:2,22,…,2n , 下边三角形的数字规律为:1+2,222+,…,2n n +, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n. 故选B . 【点睛】考点:规律型:数字的变化类.5.D解析:D观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可. 【详解】第个图案中有黑色纸片3×1+1=4张 第2个图案中有黑色纸片3×2+1=7张, 第3图案中有黑色纸片3×3+1=10张, …第n 个图案中有黑色纸片=3n+1张. 当n=7时,3n+1=3×7+1=22. 故选D. 【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.A解析:A 【解析】2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b , 故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.7.A解析:A 【分析】几个单项式的和叫做多项式,结合各式进行判断即可. 【详解】22a b ,3,2ab,4,m -都是单项式; 2x yzx+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab cxy y π--,是多项式,共有2个.故选:A . 【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.8.A解析:A 【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.解:A. 1x +是整式,故正确; B.11x +是分式,故错误; C. 1÷x 是分式,故错误;D.1x x +是分式,故错误. 故选A. 【点睛】本题主要考查了整式,关键是掌握整式的概念.9.D解析:D 【分析】利用大正方形的周长减去4个小正方形的周长即可求解. 【详解】解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b-,∴大正方形的周长与小正方形的周长的差是: 2a b +×4-4a b-×4=a+3b. 故选;D. 【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.10.C解析:C 【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值. 【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和. 故选:C . 【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.11.B解析:B观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数. 【详解】根据题中的数据可知: 左下角的数=上面的数的平方+1 ∴28165x =+=右下角的值=上面的数×左下角的数+上面的数 ∴888658528y x =+=⨯+= ∴65528593x y +=+= 故选:B. 【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.12.C解析:C 【分析】根据单项式的有关定义逐个进行判断即可. 【详解】A. 23-2x y 的系数是32-,故不符合题意;B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D.23xy π的系数是23π,故不符合题意. 故选C . 【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键.二、填空题13.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184 【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答. 【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m的值.14.【解析】试题解析:100 9999.【解析】试题等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15.所以a99=991100 991019999+=⨯.考点:规律型:数字的变化类.15.990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和计算得到结论【详解】解:由图2知:(a+b)1的第三项系数为0(a+b)2的第三项的系数为:1(a+b)3的解析:990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=1+2+3+…+44=44(441)2⨯+=990; 故答案为:990. 【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.16.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x . 【解析】解:系数为-2,次数为4的单项式为:-2x 4.故答案为-2x 4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.17.【分析】由排列组成的图形都是三角形找出规律即可求出答案【详解】解:根据规律可知:第一个图形中有1×3=3个★第二个图形中有2×3=6个★第三个图形中有3×3=9个★…第n 个图形有3n 个★∴第20个图 解析:60【分析】由排列组成的图形都是三角形,找出规律,即可求出答案. 【详解】解:根据规律可知: 第一个图形中有1×3=3个★, 第二个图形中有2×3=6个★, 第三个图形中有3×3=9个★, …第n 个图形有3n 个★,∴第20个图形共有20×3=60个★. 故答案为:60. 【点睛】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n 个图形有3n 个★.18.【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图 解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.19.【分析】根据题意可得第二堆现在的棋子数是2(a-2)因此原来的棋子数为2(a-2)-2【详解】解:由题意可得:现在第二堆有2(a-2)个棋子因此原来第二堆有2(a-2)-2=2a-6个棋子故答案为:解析:()26a -【分析】根据题意可得第二堆现在的棋子数是2(a -2),因此原来的棋子数为2(a -2)-2.【详解】解:由题意可得:现在第二堆有2(a -2)个棋子,因此原来第二堆有2(a -2)-2=2a -6个棋子.故答案为:(2a -6).【点睛】本题考查了整式加减的应用,根据题意列出代数式是解决此题的关键.20.【分析】设出两个正方形边长分别为ab (a>b )表示正方形面积之差用ab 表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab (a>b )由已知四边形的面积为:故答案为:【点睛】本题考查 解析:312【分析】设出两个正方形边长分别为a ,b (a>b ),表示正方形面积之差,用a 、b 表示四边形CDGF 的面积,进行整体代入即可.【详解】解:设两个正方形边长分别为a ,b (a>b )由已知2231a b -=四边形CDGF 的面积为:()()()()()()2211113122222DC GF GC DC GF BC BG a b a b a b +⋅=+-=+-=-= 故答案为:312【点睛】本题考查了列代数式和整体代入的相关知识,解答关键是将求值式子进行变式,再应用整体代入解答问题。

(人教版)福州七年级数学上册第三单元《一元一次方程》经典测试卷(答案解析)

(人教版)福州七年级数学上册第三单元《一元一次方程》经典测试卷(答案解析)

一、选择题1.如图,每个圆纸片的面积都是30,圆纸片A 与B ,B 与C ,C 与A 的重叠面积分别为6,8,5,三个圆纸片覆盖的总面积为73,则图中阴影部分面积为( )A .54B .56C .58D .692.在《九章算术》方田章“圆田术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种无限与有限的转化的思想,比如在234111112222+++++…中,“…”代表按规律不断求和,设234111112222x +++++⋅⋅⋅=.则有112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地2461111333++++⋅⋅⋅的结果为( ) A .43 B .98 C .65 D .23.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x --=,整理得36x = 4.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++ C .2(1)43x x -=-+D .2(1)4(3)x x -=-+ 5.已知5x =是关于x 的方程4231x m x +=+的解,则方程3261x m x +=+的解是_________. A .53 B .53-C .-2D .1 6.某种商品每件的标价是330元,按标价的8折销售时,仍可获利10%,则这种商品每件的进价为( )A .300元B .250元C .240元D .200元7.解方程-3x=2时,应在方程两边( )A .同乘以-3B .同除以-3C .同乘以3D .同除以3 8.方程6x+12x-9x=10-12-16的解为( )A .x=2B .x=1C .x=3D .x=-2 9.某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( )A .6折B .7折C .8折D .9折10.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( )A .3x ﹣20=24x +25B .3x +20=4x ﹣25C .3x ﹣20=4x ﹣25D .3x +20=4x +2511.“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x - = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅2m + 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个A .1B .2C .3D .412.下列方程的变形,符合等式的性质的是( )A .由2x ﹣3=7,得2x=7﹣3B .由3x ﹣2=x+1,得3x ﹣x=1﹣2C .由﹣2x=5,得x=﹣3D .由﹣13x=1,得x=﹣3 13.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( )A .2B .12C .-2D .1-214.甲、乙两个工程队,甲队32人,乙队28人,现在从乙队抽调x 人到甲队,使甲队人数为乙队人数的2倍.则根据题意列出的方程是( )A .32+x =2(28−x)B .32−x =2(28−x)C .32+x =2(28+x)D .2(32+x)=28−x15.某工厂一、二月份共完成生产任务57吨,其中二月份比一月份的23多13吨,设一月份完成x 吨,则下列所列方程正确的是( )A .x +23x −13=57B .x +23x +13=57C .x +23x =57+13D .3x +2x =57−13二、填空题16.我们规定:若关于x 的一元一次方程ax =b 的解为b +a ,则称该方程为“和解方程“. 例如:方程2x =﹣4的解为x =﹣2,而﹣2=﹣4+2,则方程2x =﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x 的一元一次方程3x =a 是“和解方程”,则a 的值为_____;(2)已知关于x 的一元一次方程﹣2x =ab +b 是“和解方程“,并且它的解是x =b ,则a +b 的值为_____.17.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵. 18.如图,折线AC -CB 是一条公路的示意图,8km AC =,甲骑摩托车从A 地沿这条公路到B 地,速度为40km/h ,乙骑自行车从C 地沿这条公路到B 地,速度为10km/h ,两人同时出发,结果甲比乙早到6分钟.则这条公路的长为________.19.小石在解关于x 的方程225a x x -=时,误将等号前的“2x -”看作“3x -”,得出解为1x =-,则a 的值是_________,原方程的解为__________ .20.一批玩具,如果3个小朋友玩1个,还剩2个玩具;如果2个小朋友玩1个,还有9人没有分到玩具.若设有x 个玩具,根据题意可列方程______.21.喜欢集邮的小惠共有中、外邮票145张,其中中国邮票的张数比外国邮票的张数的2倍少5张,问小惠有中国邮票______张,外国邮票_____张.22.解方程:2(1)3x --=-.解:去括号,得__________;移项,得____________;合并同类项,得____________. 23.某商店有两种进价不同的计算器都卖了64元,其中一种盈利60%,另一种亏本20%,在这次买卖中,这家商店的盈亏情况为____________.24.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场.25.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.26.张老师带学生乘车外出郊游,甲车主说:”不论师生,每人8折,"乙车主说:“学生9折,老师免费,“张老师算了一下,不论坐谁的车,费用一样,则张老师带的学生人数是________.三、解答题27.解下列方程:(1)(1)2(1)13x x x +--=-;(2)30564x x --=; (3)3 1.4570.50.46x x x --=. 28.统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?29.解下列方程:(1)2(x -1)=6;(2)4-x =3(2-x);(3)5(x +1)=3(3x +1)30.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x 把椅子.(1)若x=100,请计算哪种方案划算;(2)若x >100,请用含x 的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.。

【3套打包】福州市七年级上册数学第三章一元一次方程单元测试题(含答案).doc(1)

【3套打包】福州市七年级上册数学第三章一元一次方程单元测试题(含答案).doc(1)

人教版七(上)数学第三章一元一次方程单元测试一、选择题:(每小题3分共30分)1.下列关于的方程一定是一元一次方程的是()A. B. C. D.2.下列的值是方程的解的是()A. B. C. D.3.下列关于等式与方程的说法,正确的是()A.含有运算符号的式子是等式 B.含有“=”的式子是方程C.方程一定是等式 D.等式一定是方程4.把方程移项,得()A. B. C. D.5.如果7a-5与3-5a互为相反数,则a的值为()A.0B.1C.-lD.26.方程的解是()A.4B.-4C.D.7.解方程时,去分母正确的是()A. B. C. D.8.方程的解是()A. B. C. D.9.有一张桌子配4张椅子,现有90立方米,1立方米可做木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用立方米的木料做桌子,则依题意可列方程为A. B. C. D.10.A、B两地相距900km,一列快车以200/km h的速度从A地匀速驶往B地,到达B 地后立刻原路返回A地,一列慢车以75/km h的速度从B地匀速驶往A地.两车同时出发,截止到它们都到达终点的过程中,两车第四次相距200km时,行驶的时间是()A.283h B.445h C.285h D.4h二、填空题:(每小题3分共18分)11.将一根底面积为28.26平方厘米,高为10厘米的圆柱形铁块锻压成底面积为78.5平方厘米的“胖”铁块,此时的高为____________.12.成人票、学生票共1000张票,若设学生票有x张,则成人票有______张,若成人票8元,学生票5元,这1000张票共花费6950元,根据此题意,可列方程______.13.已知,两镇相距,甲、乙二人同时从,两镇出发,相向而行.甲骑电动车每小时行,乙骑自行车每小时行,甲、乙二人经过__________小时相遇.14.某种商品按进价提高50%后标价,又打八折销售,售价为每件360元,若设进价是x元,则可列方程____________________.15.某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米. (1)若设这个足球场的宽为x米,那么长为_______米。

七年级数学(上册)第三章《一元一次方程》测试卷(含答案)

七年级数学(上册)第三章《一元一次方程》测试卷(含答案)

七年级数学(上册)第三章《一元一次方程》测试卷(含答案)一、选择题(30分)1、下列方程属于一元一次方程的是( )A. 011=-x; B. y x 316=+; C. 3m =2; D. 01422=+-y y 2、下列说法正确的是( )A. 若ac=bc ,则a=b ;B. 若cb c a =,则a=b ; C. 若22b a =,则a=b ; D. 若631=-x ,则x =-2 3、方程-4x =1的解是( )A. 41-=x ;B. x =-4;C. 41=x ; D. x =4 4、方程4431212-=+--x x 去分母,得到的方程时( ) A. 2(2x -1)-1+3x =4 ; B. 2(2x -1)-1+3x =-16 ;C. 2(2x -1)-(1+3x )=-4 ;D. 2(2x -1)-(1+3x )=-165、若23-m 的值比312-m 的值大1,则m 的值是( ) A. 15; B. 13; C. -13; D. -15;6、已知关于x 的方程2x +a -9=0的解是x =2,则a 的值为( )A. 2;B. 3;C. 4;D. 5;7、轮船在河流中来往航行于A 、B 两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km ,求A 、B 两码头间的距离,若设A 、B 两码头间距离为x ,则所列方程为( ) A. 3937+=-x x ; B. 997+=x x ; C. 937x x =+; D. 3937-=+x x ; 8、某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折出售,但要保证利润不低于5﹪,则最多打( )A. 6折;B. 7折;C. 8折;D. 9折;9、2015年的5月份中有5个星期五,它们的日期之和为75,则5月3日是( )A. 星期六;B. 星期四;C. 星期五;D. 星期日;10、某商场出售某种高端品牌家电,若按标价打八折销售该家电一件,则可获利润500元,其利润率为20﹪,现在如果按同一标价打九折销售该家电一件,那么获得的利润为( )A. 562.5元;B. 875元;C. 550元;D. 750元;二、填空题(24分)11、如果7x=5x+4,那么7x - =4.12、若方程152=-x 和方程0331=--x a 的解相同,则a = . 13、小明在做解方程的作业时,不小心将方程中的一个常数污染了看不清,被污染的方程是:=-y y 21212,怎么办?小明想了想,便看了书后答案,此方程的解是:y =53-,很快补好了这个常数,这个常数应是 。

福建福州市七年级数学上册第三单元《一元一次方程》阶段练习(含答案解析)

福建福州市七年级数学上册第三单元《一元一次方程》阶段练习(含答案解析)

一、选择题1.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t =D .方程110.20.5x x --=,整理得36x = 2.如图33⨯网格中,每一横行、每一竖列以及两条斜对角线上的三个数的和都相等,则b a -的值是( )A .3-B .2-C .2D .3 3.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2 C .﹣2 D .﹣64.如图所示,两人沿着边长为90 m 的正方形,按A →B →C →D →A …的方向行走,甲从A 点以65 m/min 的速度、乙从B 点以75 m/min 的速度行走,当乙第一次追上甲时,将在正方形的( )边上.A .BCB .DC C .ADD .AB 5.下列变形中,正确的是( )A .2x +6=0变形为2x =6B .x+32=2+x 变形为x +3=4+2xC .−2(x −4)=2变形为x −4=1D .−x+12=12变形为−x +1=16.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( )A .2小时B .3小时C .125小时D .52小时 7.某人连续休假4天,这四天的日期之和是74,他休假第一天的日期是( ) A .17号 B .18号 C .19号 D .20号8.下列各题正确的是( )A .由743x x =-移项得743x x -=B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---=D .由()217x x +=+去括号、移项、合并同类项得5x =9.把方程10.58160.60.9x x -++=的分母化为整数,结果应为( ) A .1581669x x -++= B .10105801669x x -++= C .101058016069x x -+-= D .15816069x x -++= 10.方程6x+12x-9x=10-12-16的解为( ) A .x=2 B .x=1 C .x=3D .x=-2 11.某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( )A .6折B .7折C .8折D .9折 12.下列方程中,其解为﹣1的方程是( ) A .2y=﹣1+y B .3﹣y=2 C .x ﹣4=3 D .﹣2x ﹣2=4 13.对于ax+b=0(a ,b 为常数),表述正确的是( )A .当a≠0时,方程的解是x=b aB .当a=0,b≠0时,方程有无数解C .当a=0,b=0,方程无解D .以上都不正确.14.佳佳的压岁钱由爸爸存入某村镇银行,当年年利率为1.5%,一年后取出时得到本息和为4060元,则佳佳的压岁钱是( )A .2060元B .3500元C .4000元D .4100元15.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( ) A .2 B .12 C .-2 D .1-2二、填空题16.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.17.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________.18.购买某原料有如下优惠方案:①一次性购买金额不超过1万元不享受优惠;②一次性购买金额超过1万元但不超过3万元给予9折优惠;③一次性购买金额超过3万元,其中3万元给予9折优惠,超过部分给予7折优惠.(1)若某人购该原料付款9900元,则他购买的原料原价是________元;(2)某人分两次购买该原料,第1次付款8000元,第2次付款25200元,若他一次性购买同样数量的原料,可比分两次购买少付________元.19.所谓方程的解就是使方程中等号左右两边相等的未知数的值。

(人教版)福州七年级数学上册第三单元《一元一次方程》经典练习(含答案解析)

(人教版)福州七年级数学上册第三单元《一元一次方程》经典练习(含答案解析)

一、选择题1.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( ) A .()182812x x -= B .()1828212x x -=⨯ C .()181412x x -= D .()2182812x x ⨯-=2.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+3.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①②4.如图,相同形状的物体的重量是相等的,其中最左边天平是平衡的,则右边三个天平中仍然平衡的是( )A .①②③B .①③C .①②D .②③5.在三峡大坝截流时,用载重卡车将一堆石料运到围堰龙口,第一次运了这堆石料的13少2万方,第二次运了剩下的12多3万方,此时还剩下12万方未运,若这堆石料共有x 万方,于是可列方程为( )A .x −(13x −2)−[12(x −13x +2)+3]=12 B .x −(13x −2)−[12(x −13x +2)−3]=12 C .x −(13x −2)−[12(x −13x)−3]=12D .x −(13x −2)−(12x +3)=126.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( ) A .2小时 B .3小时C .125小时D .52小时7.把方程10.58160.60.9x x -++=的分母化为整数,结果应为( ) A .1581669x x -++= B .10105801669x x -++= C .101058016069x x -+-= D .15816069x x -++= 8.已知a=2b ,则下列选项错误的是( ) A .a+c=c+2bB .a ﹣m=2b ﹣mC .2a b = D .2ab= 9.一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( ) A .54B .72C .45D .6210.两年前,李叔叔在银行存了一笔两年的定期存款,年利率是2.75%.到期后取出,得到本金和利息总共21100元.设李叔叔存入的本金为x 元,则下列方程正确的是( ) A .2 2.75%21100x ⨯= B . 2.75%21100x x += C .2 2.75%21100x x +⨯= D .2( 2.75%)21100x x +=11.下列说法正确的是( ) A .若a c =bc,则a=b B .若-12x=4y ,则x=-2y C .若ax=bx ,则a=bD .若a 2=b 2,则a=b12.整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( ) x-2 -1 0 1 2 mx n + -12-8-44A .1x =-B .0x =C .1x =D .2x =13.把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律14.某商场的老板销售一种商品,标价为360元,可以获得80%的利润,则这种商品进价多少( ) A .80元B .200元C .120元D .160元15.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( ) A .九折B .八五折C .八折D .七五折二、填空题16.解关于x 的方程,有如下变形过程:①由2316x =-,得2316x =-; ②由342x -=,得324x =-;③由0.221 1.530.1x x -+=+,得366045x x +=-+; ④由253x x-=,得352x x -=. 以上变形过程正确的有_____.(只填序号)17.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有______________幅.18.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y 的值等于______.19.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________. 20.对任意四个有理数a ,b ,c ,d ,定义:a b ad bc c d=-,已知24181-=x x,则x =_____.21.完成下列的解题过程:用两种方法解方程:11(31)1(3)43x x -=-+. (1)解法一:去分母,得______________. 去括号,得_________________.移项、合并同类项,得________________. 系数化为1,得_____________.(2)解法二:去括号,得______________. 去分母,得________________.移项、合并同类项,得____________. 系数化为1,得_______________.22.解方程:1225y y -+=. 解:去分母,得____________.去括号,得______________. 移项,得_______________. 合并同类项,得______________. 方程两边同除以3,得_______________. 23.解方程:2(1)3x --=-.解:去括号,得__________;移项,得____________;合并同类项,得____________. 24.已知21535a x y -和2547a x y +是同类项,则可得关于a 的方程为________. 25.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.26.若关于x 的方程3x m -2-m =0是一元一次方程,则m =________,方程的解为________.三、解答题27.我们知道13写成小数形式为0.3,反过来,无限循环小数0.3也可以转化成分数形式.方法如下:设0.3x =,由0.30.333=,可知10 3.333x =,所以103x x -=.解方程,得13x =,所以10.33=.例如:把无限循环小数0.32化为分数的方法如下: 设0.32x =,由0.320.323232=,可知10032.323232x =,所以10032x x -=,解方程,得3299x =,所以320.3299=.根据上述材料,解答下列问题: (1)把下列无限循环小数写成分数形式:①0.5=________;②2.58=________;③0.518=________.(2)借鉴材料中的方法,从第(1)题的①②③中任选一个,写出你的转化过程. 28.老师在黑板上写了一个等式(3)4(3)a x a +=+.王聪说4x =,刘敏说不一定,当4x ≠时,这个等式也可能成立.(1)你认为他们俩的说法正确吗?请说明理由; (2)你能求出当2a =时(3)4(3)a x a +=+中x 的值吗?29.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税。

福州华南实验中学七年级数学上册第三单元《一元一次方程》测试卷(有答案解析)

福州华南实验中学七年级数学上册第三单元《一元一次方程》测试卷(有答案解析)

一、选择题1.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kgB .24(1-a %)b % 元/kgC .(24-a %-b % )元/kgD .24(1-a %)(1-b %)元/kg2.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .853.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018 B .2018- C .1009- D .10094.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 5.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55 6.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- 7.下列各式中,符合代数书写规则的是( )A .273xB .14a ⨯C .126p -D .2y z ÷ 8.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时A .2m n +B .mnm n + C .2mn m n + D .m nn m + 9.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=--10.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( )A .2和8B .4和8-C .6和8D .2-和8- 11.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xy C .0与3- D .3与a 12.已知3a b -=-,2c d +=,则()()a d b c --+的值为( ) A .﹣5 B .1 C .5 D .﹣1二、填空题13.如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__.14.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___. 15.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________. 16.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.17.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.18.在括号内填上恰当的项:22222x xy y -+-=-(_____________________). 19.一个长方形的周长为68a b +,其一边长为23a b +,则另一边长为______. 20.观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.三、解答题21.已知22134,2313P x mx y Q x y nx =+-+=-+-,(1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。

(人教版)福州七年级数学上册第三单元《一元一次方程》提高练习(答案解析)

(人教版)福州七年级数学上册第三单元《一元一次方程》提高练习(答案解析)

一、选择题1.如图,每个圆纸片的面积都是30,圆纸片A 与B ,B 与C ,C 与A 的重叠面积分别为6,8,5,三个圆纸片覆盖的总面积为73,则图中阴影部分面积为( )A .54B .56C .58D .692.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元 3.下列变形中,正确的是( )A .2x +6=0变形为2x =6B .x+32=2+x 变形为x +3=4+2xC .−2(x −4)=2变形为x −4=1D .−x+12=12变形为−x +1=1 4.下列运用等式的性质对等式进行的变形中,错误的是( )A .()()2211a x b x +=+若,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c = D .若x y =,则33x y -=- 5.解方程-3x=2时,应在方程两边( ) A .同乘以-3 B .同除以-3 C .同乘以3 D .同除以36.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元7.一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( )A .54B .72C .45D .628.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元9.某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( )A .6折B .7折C .8折D .9折10.下列方程中,其解为﹣1的方程是( )A .2y=﹣1+yB .3﹣y=2C .x ﹣4=3D .﹣2x ﹣2=4 11.若正方形的边长增加3cm ,它的面积就增加39cm ,则正方形的边长原来是( ) A .8cmB .6cmC .5cmD .10cm 12.将方程2152132x x -+=-去分母,得( ) A .()()211352x x -=-+ B .416152x x -=-+C .416152x x -=--D .()()2216352x x -=-+ 13.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( )A .1146x x ++=B .1146x x ++=C .1146x x -+=D .111446x x +++= 14.一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( )A .34000mB .32500mC .32000mD .3500m 15.下列方程中,以x =-1为解的方程是( )A . 3x +12=x 2−2B .7(x -1)=0C .4x -7=5x +7D .13x =-3 二、填空题16.解方程213412208x x x -+-= -1,去分母时,方程两边应都乘____,得______________________,这一变形的依据是________________.17.如果3m -与21m +互为相反数,则m =________. 18.若方程2(2)3m m x x ---=是一元一次方程,则m =________.19.自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按2元收费;用水超过10吨,超过10吨的部分按每吨3元收费.王老师家三月份水费为50元,则王老师家三月份用水________吨.20.定义一种运算:1(1)(1)x a b a b a b *=++++,若设5213*=,则34*=________. 21.5个人用5天完成了某项工程的14,如果再增加工作效率相同的10个人,那么完成这项工作前后共用_____天.22.若2a +1与212a +互为相反数,则a =_____. 23.一个圆柱形铁块,底面半径是20cm ,高16cm .若将其锻造成为长、宽分别是20cm 、8cm 的长方体,如果设长方体的高为cm x .根据题意,列出方程为___________. 24.完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元; 每件服装的利润为____________元.由此,列出方程_________________.解这个方程,得x =______________.因此每件服装的成本价是___________元.25.校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x 场,则可列方程为__________________.26.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.三、解答题27.小明问小白:“你知道为什么任何无限循环小数都可以写成分数形式吗?”,看着小白一脸的茫然,小明热心地为小白讲解:(小明提出问题)利用一元一次方程将0.7⋅化成分数.(小明的解答)解:设0.7⋅=x .方程两边都乘以10,可得100.7⋅⨯=10x .由0.7⋅=0.777…,可知100.7⋅⨯=7.777…=7+0.7⋅,即7+x =10x .(请你体会将方程两边都乘以10起到的作用)可解得x 79=,即0.779⋅=. (小明的问题)将0.4⋅写成分数形式.(小白的答案)49.(正确的!) 请你仿照小明的方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.73⋅⋅;②0.432⋅. 28.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★.例如:(1,2)(3,4)23142=⨯-⨯=★.根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 29.如图A 在数轴上所对应的数为﹣2.(1)点B 在点A 右边距A 点4个单位长度,求点B 所对应的数;(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.30.解下列方程:(1)517 84a-=;(2)22146y y+--=1;(3)2131683x x x-+-=-1。

(好题)初中数学七年级数学上册第三单元《一元一次方程》测试题(答案解析)(2)

(好题)初中数学七年级数学上册第三单元《一元一次方程》测试题(答案解析)(2)

一、选择题1.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b2.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-43.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n x B .(1)2n n n x - C .2n n x -D .1(1)2n n n x +- 4.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2t 5.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3 C .4 D .56.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .117.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、68.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( )A .2B .﹣2C .3D .﹣3 9.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-210.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - 11.﹣(a ﹣b +c )变形后的结果是( ) A .﹣a +b +c B .﹣a +b ﹣c C .﹣a ﹣b +cD .﹣a ﹣b ﹣c12.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a二、填空题13.已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______.14.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.15.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.16.写出一个系数是-2,次数是4的单项式________.17.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253ab ab a b ab +--+ 解:()22253a b ab a b ab +--+22253a b ab a b ab =++-①22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④18.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.19.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.20.在迎新春活动中,三位同学玩抢2018游戏,甲、乙、丙围成一圈依序报数,规定:甲、乙、丙首次报的数依次为1、2、3,接着甲报4、乙报5…按此规律,后一位同学报的数比前一位同学报的数大1,当报的数是2018时,报数结束;按此规则,最后能抢到2018的同学是______.三、解答题21.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。

福州市七年级数学上册第三单元《一元一次方程》测试(课后培优)

福州市七年级数学上册第三单元《一元一次方程》测试(课后培优)

一、选择题1.下列各等式的变形中,等式的性质运用正确的是( )A .由02x =,得2x =B .由14x -=,得5x =C .由23a =,得23a =D .由a b =,得a b c c= 2.小丽买了20支铅笔,店主给她8折优惠(即按标价的80%出售),结果共便宜了1.6元,则每支铅笔的标价是( )A .0.20元B .0.40元C .0.60元D .0.80元 3.某地为了打造千年古镇旅游景点,将修建一条长为3600m 的旅游大道.此项工程由A 、B 两个工程队接力完成,共用时20天.若A 、B 两个工程队每天分别能修建240m 、160m ,设A 工程队修建此项工程xm ,则可列方程为( )A .360020240160x x -+=B .360020160240x x -+= C .360020160240x x +-= D .360020160240x x --= 4.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2 C .﹣2 D .﹣65.在三峡大坝截流时,用载重卡车将一堆石料运到围堰龙口,第一次运了这堆石料的13少2万方,第二次运了剩下的12多3万方,此时还剩下12万方未运,若这堆石料共有x 万方,于是可列方程为( )A .x −(13x −2)−[12(x −13x +2)+3]=12 B .x −(13x −2)−[12(x −13x +2)−3]=12 C .x −(13x −2)−[12(x −13x)−3]=12 D .x −(13x −2)−(12x +3)=12 6.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )A .120元B .125元C .135元D .140元 7.下列运用等式的性质对等式进行的变形中,错误的是( )A .()()2211a x b x +=+若,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c= D .若x y =,则33x y -=- 8.一项工程,甲单独做需10天完成,乙单独做需6天完成.现由甲先做2天,乙再加入合做,完成这项工程共需多少天?若设完成这项工程共需x 天,依题意可得方程( )A .106x x +=1B .22106x x +-+=1C .2106x x -+=1D .222106x x x --++=1 9.已知方程16x -1=233x + ,那么这个方程的解是( ) A .x =-2 B .x =2 C .x =-12 D .x =1210.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( )A .-2B .34C .2D .43- 11.如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D12.如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( ) A .ab+2x 2 B .ab ﹣2x 2 C .ab+4x 2 D .ab ﹣4x 2 13.一张试卷共有25道题,若做对1题得4分,做错1题扣1分,小明做了全部试题只得了70分,那么小明做对了( )道.A .17B .18C .19D .2014.一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( )A .34000mB .32500mC .32000mD .3500m 15.下列方程中,以x =-1为解的方程是( )A . 3x +12=x 2−2B .7(x -1)=0C .4x -7=5x +7D .13x =-3 二、填空题16.若关于x 的方程2x+a=9﹣a (x ﹣1)的解是x=3,则a 的值为_____.17.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.18.如图,折线AC -CB 是一条公路的示意图,8km AC =,甲骑摩托车从A 地沿这条公路到B 地,速度为40km/h ,乙骑自行车从C 地沿这条公路到B 地,速度为10km/h ,两人同时出发,结果甲比乙早到6分钟.则这条公路的长为________.19.某区民用电的计费方式为:白天时段的单价为m 元/度,晚间时段的单价为n 元/度.某户8月份白天时段用电量比晚间时段多50%,9月份白天时段用电量比8月份白天时段用电量少60%,结果9月份的总用电量虽比8月份的总用电量多20%,但9月份的总电费却比8月份的总电费少10%,则m n =______. 20.一批玩具,如果3个小朋友玩1个,还剩2个玩具;如果2个小朋友玩1个,还有9人没有分到玩具.若设有x 个玩具,根据题意可列方程______.21.喜欢集邮的小惠共有中、外邮票145张,其中中国邮票的张数比外国邮票的张数的2倍少5张,问小惠有中国邮票______张,外国邮票_____张.22.在方程431=-x 的两边同时_________,得x =___________. 23.方程3622y y y -+=,左边合并同类项后,得____________. 24.要使代数式154t +与15()4t -的值互为相反数,则t 的值是_________. 25.在甲处工作的有27人,在乙处工作的有19人,现另外调20人去支援,使在甲处工作的人数是乙处的2倍,则往甲处调_____人,乙处调_____人.26.我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布__________尺.三、解答题27.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?28.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,交电费元.(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?29.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?30.解方程:(1)3x﹣4=2x+5;(2)2531 64x x--+=.。

福州市时代中学七年级数学上册第三单元《一元一次方程》测试(答案解析)

福州市时代中学七年级数学上册第三单元《一元一次方程》测试(答案解析)

一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±82.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x --3.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x 4.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1 5.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36B .40C .44D .46 6.下列计算正确的是( ) A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣97.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-48.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c ===9.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( ) A .43 B .44C .45D .55 10.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .3211.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时A .2m n +B .mn m n +C .2mn m n +D .m nn m + 12.下列说法正确的是( )A .0不是单项式B .25R π的系数是5C .322a 是5次单项式D .多项式2ax +的次数是2二、填空题13.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)14.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.15.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.16.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________. 17.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________. 18.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.19.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子.20.图中阴影部分的面积为______.三、解答题21.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c .(1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?22.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列; (2)请指出该多项式的次数,并写出它的二次项和常规项.23.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.24.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.25.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.26.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm ,宽为cm x ,分别回答下列问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P ),试求P 的取值范围. (2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P 的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点P 的距离(用P 表示)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据单项式的定义可得8mx y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 3.D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D .【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.B解析:B【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.5.A解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.6.D解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A.﹣1﹣1=﹣2,故本选项错误;B.2(a﹣3b)=2a﹣6b,故本选项错误;C.a3÷a=a2,故本选项错误;D.﹣32=﹣9,正确;故选:D.【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.B解析:B【分析】直接利用同类项的概念得出n,m的值,即可求出答案.【详解】21412na b--与83mab是同类项,∴21184nm-=⎧⎨=⎩解得:121mn⎧=⎪⎨⎪=⎩则()()5711n m+-=14-故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.8.B解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,所以156a=+=,51015,101020b c=+==+=.故选:B.本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键.9.C解析:C【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=()()212m m+-,∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()() 4424419892+-=,当m=45时,()() 4524511342+-=,∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.10.A解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a2020的值.【详解】∵a1=-2,∴2111(3)3a==--,3131213a==-,412312a==--∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a==-【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.11.C解析:C【分析】平均速度=总路程÷总时间,题中没有单程,可设从家到学校的单程为1,那么总路程为2.【详解】解:依题意得:1122()2m n mn m n mn m n+÷+=÷=+.故选:C.【点睛】本题考查了列代数式;解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.12.D解析:D【分析】根据整式的相关概念可得答案.【详解】A、0是单项式,故A错误;B、25Rπ的系数是5π,故B错误;C、322a是2次单项式,故C错误;D、多项式2ax+的次数是2,故D正确.故选:D.【点睛】本题考查单项式的系数,单项式中的数字因数叫做这个单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数,也考查了多项式的次数.二、填空题13.【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n条直线相交最多有1+2+3+…+(n-1)=个解析:()12 n n-【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n -个交点. 【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n - 个交点.即()12n n m -= 故答案为:()12n n -. 【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.14.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.15.08a 【解析】试题分析:根据题意得:a•(1+20)×90=108a ;故答案为108a 考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a ;故答案为1.08a .考点:列代数式.16.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 17.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 18.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a 2,a 3,a 4,a 5,a 6,观察发现3次一个循环,所以a 2019=a 3.【详解】a 1=12,a 2=111-2 =2,a 3=11-2 =﹣1,a 4=11=1--12(),a 5=111-2=2,a 6=11-2=﹣1… 观察发现,3次一个循环,∴2019÷3=673,∴a 2019=a 3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.19.【分析】根据题意可得第二堆现在的棋子数是2(a-2)因此原来的棋子数为2(a-2)-2【详解】解:由题意可得:现在第二堆有2(a-2)个棋子因此原来第二堆有2(a-2)-2=2a-6个棋子故答案为:解析:()26a -【分析】根据题意可得第二堆现在的棋子数是2(a -2),因此原来的棋子数为2(a -2)-2.【详解】解:由题意可得:现在第二堆有2(a -2)个棋子,因此原来第二堆有2(a -2)-2=2a -6个棋子.故答案为:(2a -6).【点睛】本题考查了整式加减的应用,根据题意列出代数式是解决此题的关键.20.【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积 解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】 解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键. 三、解答题21.(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.22.(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-.【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-. 【点睛】 本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.23.2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.24.(1)2a b c -+;(2)-9【分析】(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.25.m =1,n =4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值.【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5,解得m =1,n =4.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.26.(1) x <5.2(2) 13-1.5x【详解】分析:(1)按图中方式折叠后可得到除去两端,纸条使用的长度为5x ,那么纸条使用的长度应大于0,小于纸条总长度.(2)是轴对称图形,那么AM=AP+x .解答:解:(1)由折纸过程可知0<5x <26,∴0<x <5.2.(2)∵图④为轴对称图形,∴AM=2652x -+x=13-1.5x , 即点M 与点A 的距离是(13-1.5x )cm . 点评:本题考查学生的动手操作能力,难点是得到纸条除去两端使用的纸条的长度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.在代数式a 2+1,﹣3,x 2﹣2x ,π,1x 中,是整式的有( ) A .2个 B .3个 C .4个 D .5个2.下列用代数式表示正确的是( )A .a 是一个数的8倍,则这个数是8aB .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元3.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数4.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- 5.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .11 6.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 7.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者8.代数式21a b -的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差 9.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - 10.式子5x x-是( ). A .一次二项式 B .二次二项式 C .代数式 D .都不是11.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数12.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元 二、填空题13.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m 的值应是_______.14.已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______.15.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.16.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.17.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示) …………18.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.19.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式 2A B - 的值不变,则12()(2)33a A b B ---的值是_______. 20.在x y +,0,21>,2a b -,210x +=中,代数式有______个.三、解答题21.已知a+b =2,ab =2,求32231122a b a b ab ++的值. 22.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.23.奇奇同学发现按下面的步骤进行运算,所得结果一定能被9整除.请你用我们学过的整式的知识解释这一现象.24.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列; (2)请指出该多项式的次数,并写出它的二次项和常规项.25.用代数式表示:(1)a 的5倍与b 的平方的差;(2)m 的平方与n 的平方的和;(3)x ,y 两数的平方和减去它们积的2倍.26.某商店出售一种商品,其原价为m 元,现有如下两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%. (1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价20%,在此基础上又降价20%;另一种是先降价20%,在此基础上又提价20%,这时结果怎样?(3)你能总结出什么规律吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】单项式和多项式统称为整式,分母中含有字母的不是整式.【详解】解:a 2+1和 x 2﹣2x 是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个.故选择C.【点睛】本题考查了整式的定义. 2.D解析:D【分析】根据题中叙述列出代数式即可判断.【详解】A 、a 是一个数的8倍,则这个数是8a ,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意;故选:D .【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.3.C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.4.C解析:C【分析】本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.5.A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.6.C解析:C【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.7.D解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项.【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,m nx x 中指数大的,即m ,n 中较大的,故答案选D.【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项. 8.D解析:D【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点. 9.D解析:D【分析】根据N=M+N-M 列式即可解决此题.【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D.【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.10.C解析:C【分析】根据代数式以及整式的定义即可作出判断.【详解】 式子5x x-分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C .【点睛】 本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.11.A解析:A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m=±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b,cd和m的值是解决此题的关键.12.C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-2 3020302222a b a b a b a a b aa b++++ -+-=⨯+⨯)()=10(b-a)+15(a-b)=10b-10a+15a-15b=5a-5b,则这次买卖中,张师傅赚5(a-b)元.故选C.【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.二、填空题13.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m的值.14.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+ 4|=−|−2+4|=−2…所以n是奇数解析:﹣1008【解析】a2=−|a1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.15.1024【分析】先写出前3次分割得到的正方形的个数找到规律即可得出答案【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为个;分割3次得到正方形的个数为个;…以此类推分割5次得到解析:1024【分析】先写出前3次分割得到的正方形的个数,找到规律即可得出答案.【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为216=4个;分割3次得到正方形的个数为364=4个;…以此类推,分割5次得到正方形的个数为:54=1024个,故答案为:1024.【点睛】本题考查了图形规律题,仔细观察图形找到规律是解题的关键.16.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n表示其规律代入n=2016即可求解【详解】解:观察发现第n个等式可以表示为:(3n-2)×3n+1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n表示其规律,代入n=2016即可求解.【详解】解:观察发现,第n个等式可以表示为:(3n-2)×3n+1=(3n-1)2,当n=2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n之间的关系是解题的关键.17.【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解n解析:83【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.18.-25【分析】由x=1时代数式ax+b+1的值是﹣3求出a+b的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x=1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b=﹣4∴(a解析:-25.【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a +b +1=﹣3,∴a +b =﹣4,∴(a +b ﹣1)(1﹣a ﹣b )=(a +b ﹣1)[1﹣(a +b )]=(﹣4﹣1)×(1+4)=﹣25. 故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.19.-2【分析】先根据代数式为定值求出ab 的值及的值然后对所求代数式进行变形然后代入计算即可【详解】∵对于任意有理数代数式的值不变∴∵∴原式=故答案为:-2【点睛】本题主要考查代数式的求值能够对代数式进解析:-2【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++(6)(25)9a x b y =-+-+∵对于任意有理数 ,x y ,代数式 2A B - 的值不变∴60,250a b -=-=,29A B -=56,2a b ∴== ∵121()(2)2(2)333a Ab B a b A B ---=--- ∴原式=51629653223-⨯-⨯=--=- 故答案为:-2【点睛】 本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.20.3【分析】代数式是指把数或表示数的字母用+-×÷连接起来的式子而对于带有=><等数量关系的式子则不是代数式【详解】解:是不等式不是代数式;是方程不是代数式;0是代数式共3个故答案是:3【点睛】本题考解析:3【分析】代数式是指把数或表示数的字母用+、-、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.【详解】解:21>是不等式,不是代数式;210x +=是方程,不是代数式;x y +,0,,2a b -,是代数式,共3个.故答案是:3.【点睛】本题考查了代数式的定义,理解定义是关键.三、解答题21.4【分析】 根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.22.0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.23.见解析.【分析】设原来的两位数十位数字为a ,个位数字为b ,表示出原来两位数与新的两位数,相减得到结果,即可得出结果.【详解】解:设原来的两位数十位数字为a ,个位数字为b ,则原来两位数为10a+b ,交换后的新两位数为10b+a ,(10a+b )-(10b+a )=10a+b-10b-a=9a-9b=9(a-b ),则这个结果一定是被9整除.【点睛】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.24.(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-.【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-. 【点睛】 本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.25.(1)5a -b 2(2)m 2+n 2(3)x 2+y 2-2xy【分析】(1)a 的5倍表示为5a ,b 的平方表示为b 2,然后把它们相减即可;(2)m 与n 平方的和表示为m 2+n 2;(3)x 、y 两数的平方和表示为x 2+y 2,它们积的2倍表示为2xy ,然后把两者相减即可;【详解】解:(1)a 的5倍与b 的平方的差可表示为:5a -b 2;(2)m 的平方与n 的平方的和可表示为:m 2+n 2;(3)x ,y 两数的平方和减去它们积的2倍可表示为:x 2+y 2-2xy .【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.26.(1)这两种方案调价的结果一样,都没有恢复原价;(2)这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价..【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,据此可得答案;(2)先提价20%为120%m ,再降价20%后价钱为96%m ;先降价20%为80%m ,再提价20%后价钱为96%m ,据此可得答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)方案一:先提价10%价钱为()110%110%m m +=,再降价10%后价钱为()110%110%99%m m ⨯-=;方案二:先降价10%价钱为()110%90%m m -=,再提价10%后价钱为()90%110%99%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(2)方案一:先提价20%价钱为()120%120%m m +=,再降价20%后价钱为()120%120%96%m m ⨯-=;方案二:先降价20%价钱为()120%80%m m -=,再提价20%后价钱为()80%120%96%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价.【点睛】本题考查了列代数式的知识,解题的关键是能够表示出降价或涨价后的量,难度不大.。

相关文档
最新文档